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fluctuation—dissipation theorem
without the need for a model
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Quantifying and characterizing fluctuations far away from equilibrium is a
challenging task. We discuss and experimentally confirm a series expansion for
a driven classical system, relating the different nonequilibrium cumulants of the
observable conjugate to the driving protocol. This series is valid from micro-
to macroscopic length scales, and it encompasses the fluctuation—dissipation
theorem (FDT). We apply it in experiments of a Brownian probe particle confined
and driven by an optical potential and suspended in a nonlinear and non-
Markovian fluid. The expansion states that the form of the FDT remains valid
away from equilibrium for Gaussian observables, up to the order presented. We
show that this expansion agrees with that of a known fluctuation theorem up to
an unresolved difference regarding moments versus cumulants.

fluctuation—dissipation theorem, nonequilibrium cumulants, Brownian probe particle,
optical potential, nonlinear fluid, non-Markovian fluid, worm-like micelles, micellar fluid

Introduction

The fluctuation—dissipation theorem (FDT) [1, 2], connecting response and fluctuations
of equilibrium systems, is of fundamental importance for condensed matter, fluids, plasmas,
or electromagnetic fields [3-6]. One of its remarkable properties is its validity at any length
scale, ranging from the nanoscale, for electric charges, to the macroscale, for macroscopic
magnetization. It is, however, restricted to the linear regime, i.e., to situations close to
equilibrium. Most previous research has been largely devoted to determining similar
relations for nonequilibrium steady states [7-29] and for nonlinear responses [30-51].
A typical observation in the found relations is the explicit appearance of microscopic
details—sometimes referred to as frenetic components [52, 53] or information on the
specific rule governing the time evolution [40]—often hampering a model-independent
formulation and systematic changes in length scales such as coarse graining to macroscopic
scales [46, 47, 49]. As a consequence, experimental tests and application of such relations
have indeed been successful for systems with a small number of accessible Markovian
degrees of freedom [51, 54-57], for which the dynamics can be modeled.

In a different spirit, nonlinear fluctuation dissipation relations [31-34, 58] and
fluctuation theorems [33, 41, 59-61] have been found, which can often be applied in the
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absence of a specific model. However, they have, to our knowledge,
not been used to quantify the error of the FDT.

In this manuscript, we discuss and experimentally confirm a
series expansion for a driven classical system, which relates the
different nonequilibrium cumulants of the observable conjugate to
the driving protocol, up to a certain order in driving velocity. This
series (i) is valid from micro- to macroscopic length scales, (ii) is
model-independent, and (iii) encompasses the FDT. We apply it in
an experimental many-body system of a Brownian probe particle
interacting with worm-like micelles and confined and driven by
an optical potential. In these experiments, we demonstrate that
the equilibrium third force cumulant quantifies the second-order
deviation from the FDT under driving. Notably, our theoretical
predictions demonstrate that the form of the FDT remains valid for
purely Gaussian observables within the displayed order.

System and fluctuation series

Consider a classical system of stochastic degrees x, at time ¢
(weakly) coupled to a heat bath at temperature T. The system’s
potential energy U depends on x, and on a time-dependent
deterministic protocol X,, i.e., U(x,,X,). The system is prepared in
equilibrium at time ¢ — —oco, with a protocol value X__ = X,, for
simplicity [62]. The time dependence of the protocol drives the
system away from equilibrium.

The derivative of U in terms of X, Fy:=0dy U(x,,X,) is the
observable conjugate to X,. For example, if X, is a position as in our
experiments, F, is (minus) the corresponding force. F, can be micro-
or macroscopic; for example, let X couple linearly to an observable
A(x); Ux,X,) = Ux,,0) - X,A(x,), ie., F, = — A(x,). Thus, if A(x)
is a macroscopic field, such as macroscopic magnetization, F, is
macroscopic. If A(x) is the position of a molecular particle, F, is
microscopic. The following remains valid if X, enters U nonlinearly.

The statistical properties of F, in this nonequilibrium situation
are encoded in its cumulants and in its correlations with another
state observable, B, = B(x,, X,), which we aim to study here. The well-
known FDT connects the covariance in the unperturbed system and
the first moment of B under weak driving [1, 2],

ﬁz,[imdSX$<Br;F5>3q = ﬁ [<Bt> - <Bt>eq] + O(XZ); (1)

with f=1/kzT and Boltzmann constant kg. (...;...) denotes
the second cumulant, and similarly for higher orders below.
Expectation values (... )., are evaluated using equilibrium
trajectories with a protocol value fixed at X,. Expectation values
(... ) are measured in the driven system, ie., under the given
time-dependent protocol [62].

In Ref. [62], we derive identities connecting the nonequilibrium
cumulants of F, and B, to different orders. These give rise to the
following series involving the mentioned cumulants [62],

t .
ﬂzj_mdsXs (B3E) =B[(B)—(B)),]
3
* _.[t ds,[t dSl XSXS, <BI;F5;FSI>

t t t
j dSJ dS/J. dS" XSXSVXSH
—00 —00 —00

X (B F3FysFo) + O(XY),

Frontiers in Physics

02

10.3389/fphy.2025.1667224

As presented in Ref. [62], this series expansion can also be
obtained from a known fluctuation theorem [33, 41], albeit with an
open question regarding cumulants versus moments.

Equation 2 is, as indicated, correct up to the fourth order
in driving X,, under the assumption of local detailed balance
[63]. Expanding! Equation 2 to the first order yields the FDT in
Equation 1 so that it is included in Equation 2. To higher orders,
first and second cumulants do not fulfill the FDT, and Equation 2
quantifies their difference in terms of third and fourth cumulants of
F and B. Notably, the second to fourth lines of Equation 2 vanish
for purely Gaussian distributed F and B so that first and second
cumulants obey the FDT to the given nonequilibrium order. It is
important to note that, in Equation 2, the protocol X appears as
pre-factors and in the nonequilibrium cumulants themselves; i.e.,
the latter are evaluated under application of driving. As Equation 2
only requires measurement of F and B, we use the notion of
model free.

Experimental setup

We exploit Equation 2 with experiments of Brownian particles
interacting with micellar fluid. In particular, we use silica particles
of diameter ~ 1um suspended in a 5-mM equimolar solution
of cetylpyridinium chloride monohydrate (CPyCl) and sodium
salicylate (NaSal). At concentrations above the critical micellar
concentration (> 4 mM), this fluid is known to form giant worm-
like micelles, leading to a viscoelastic nonlinear behavior at ambient
temperatures [64]; see SM. At 5 mM, we determine the relaxation
time of the fluid from microrheological recoil experiments, where a
particle is first driven with a constant external force which is then
suddenly removed, to be ~ (3+0.2)s [65]. A small amount of silica
particles is added to the micellar solution, which is contained in a
rectangular capillary with 100 um height and kept at a temperature
of 25°C. This sample is placed on a custom-built optical tweezer
setup that uses a Gaussian laser beam of wavelength 532 nm and
a 100x oil immersion objective (NA 1.45). The laser beam
yields a potential U(x, - X,), as shown in Figure la, centered at

X,, trapping one of the silica particles with coordinate x,. F,=
dx, Ulx; — X,) is thus the force acting on the particle by the trapping
potential (or vice versa). As the micellar degrees do not couple to
X, they do not enter F, explicitly, and knowing how they enter U
is not required to apply Equation 2. Thus, the use of Equation 2
does not require the detection of the positions of micellar particles,
and applying it to such a complex fluid demonstrates its strength.
We consider B = F, and made the potential asymmetric, to obtain a
finite second-order response of S(F,). This allows to test Equation 2
to the second order in our experiments, and it is achieved by a
controlled lateral displacement of the vertically incident laser beam
from the center of the objective lens (see SM). Notably, Equation 2
could also be tested in a purely viscous fluid, which also shows a
second-order response due to the nonlinear potential. However, to
demonstrate that Equation 2 is valid beyond simple systems, we have
chosen the more challenging case of a micellar fluid.

1 The expansion in Equation 2 suggests the dimensionless expansion

parameter ﬁFJ’i (dsx; with cumulant relaxation time t.
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(a) Asymmetric optical potential U(x) = —kgT In P(x) felt by the probe particle (inset sketch), with P(x) the probability distribution with the trap at rest. (b)
Mean force B(F,), (c) force covariance f°Xw(F,F,), and (d) equilibrium third cumulant /jz(f(w)z(lfr;/ft;/i)eq/Z, as functions of time, for driving frequency

w = 84rad/s and amplitudes X = {0.03,0.06,0.08,0.09,0.14}um as labeled. Tp= % (e) Force covariance (solid line), mean force (dotted line), and the
sum of mean force and third force cumulant (dashed line, Equation 4) for X = 0.14 pm.

1.0

To apply the driving protocol, the sample cell is moved, whereas
the optical trap remains stationary in our experiments. This is
achieved using a piezo-driven stage, on which the sample is mounted
and translated in an oscillating manner relative to the trap. In the
fluid’s rest frame, this yields a periodic motion of the potential
minimum X, i.e., the protocol,

X, = Xsin (w?), (3)

with the amplitude X and the frequency w. Particle trajectories
are recorded with a frame rate of ~ 150 Hz using a video camera,
and particle positions are determined using a custom MATLAB
algorithm. To yield sufficient statistics, each protocol (X, w) was
measured over 1400s. We allowed the system to reach a steady state
by recording trajectories only after at least five oscillation periods
had passed. Thereafter, no further equilibration was visible in the
data. Prior to each nonequilibrium protocol, we recorded particle
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trajectories for another 1000s with X, at rest. These equilibrium
data were used to check that the form of U does not vary
between measurements and also to obtain the force cumulants under
equilibrium conditions.

Data analysis

With the protocol of Equation 3, Equation 2 takes, expanded to
the second order, the form

392, 2
B2Rw(EF,) = BE) + P X2 @

+O((Xw)’),

(F;FsE,) @

where the tilde denotes the cosine transform, i.e., F[ =
ft_oods cos (ws)F,. We restrict the analysis to the lowest nontrivial,
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i.e., second, order and expand Equation 2 accordingly, also using
(Fi)eq = 0. Notably, to extract the second-order contribution from
the last term in Equation 4, the third cumulant in Equation 4 is
replaced by its equilibrium version. This is because of the pre-factor
X*w? and will be done in the following analysis.

The cumulants in Equation 4 depend on time ¢ in a periodic
8.4rad/s and
driving? amplitudes ranging from X = 0.03 um (light) to X =

manner, as shown in Figures 1b-d, for w=

0.14 pm (dark). Figure 1b shows the mean force, which, as expected
fora driven oscillator, is a periodic function with period T, = Zf For
the smallest amplitude shown, the mean force is nearly harmonic
with frequency w, as expected from linear response. With growing
amplitude, higher harmonics occur, as expected from nonlinear
response. This asymmetric system shows the second-order response
with expected frequencies of 2w and Ow.

Figure 1c shows the force covariance for the same parameters
and color code. For small amplitude X, the curves in Figures 1b,c
are equal within the experimental accuracy, as analyzed in detail
below. For larger driving amplitude, the force covariance develops
higher harmonics with signatures of second order. Very little is
known about the properties of such nonequilibrium fluctuations,
and quantifying these is difficult. It is notable that the curves in
Figure 1c, for larger amplitudes, deviate from Figure 1b, a deviation
that we claim to be quantified by Equation 4.

Figure 1d shows the third cumulant of force for the same
parameters and color code. We have here restricted to the
equilibrium cumulant as it appears in Equation 4, multiplied by
(Xw)®. The curves in Figure 1d thus differ only because of the factor
(Xw)®. They thus scale quadratically in driving velocity and only
show frequencies of 2w and Ow.

Equation 4 states that in the shown range of amplitudes,
the curves in Figure 1c are given by the sum of the curves in
Figures 1b,d. For X =0.14um, the respective summed curve is
shown as a dashed line together with the mean force and the
force covariance in Figure le. The agreement is convincing and a
confirmation of Equation 4.

To test this prediction systematically, we dissect the curves
in Figures 1b-d into the contributions from harmonics with
frequencies Ow, w, and 2w, respectively, i.e., we expand the cumulant
of order # into harmonics with the frequency mw,

(o]

B (Xw)" ((Fs)"'Fy = Y AL sin(maot+ ¢y, (5)
m=0
where the coeflicients Ag,f) depend on Xw. We set ¢é") = /2 for

consistency. Equation 4, projected on the harmonic of order m,
yields relations between coeflicients and phases for each m, which
we can test.

Results

Figure 2 shows the coefficients A% as a function of the driving
amplitude X. The top panel gives the order m =1, which is

2 wis determined from the power spectral density, thus carrying an error

depending on the length of the measurement.
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FIGURE 2

Coefficients A, corresponding to harmonics with the frequency muw,
as a function of driving amplitude X, for @ = 84 rad/s. Top panel: m =1,
demonstrating FDT. Lower panels: difference in first and second
cumulants (data points), and third cumulant (lines) for m=0 and

m = 2. The agreement confirms Equation 4. AA, = [(A(;))2 + (A(ZZ))2
—2A(21)A‘22> cos(</>(21> —(/)‘22))]1/2. Error bars and bands are obtained from
partitioning trajectories into two pieces.

considered to be linear in X for the range shown, as expected from
linear response. The graph shows the mean force (data points) and
the force covariance (line). The latter is evaluated from equilibrium
trajectories. The agreement in this panel, for the range of sufficiently
small X, is expected from the FDT.

The center and lower panels in Figure2 show the orders
m =0 and m =2, respectively. In particular, these panels present
the difference of first and second cumulants in Equation 4 (data
points), i.e., B(F,) — B*Xw(F;F,), together with the third cumulant
(line), -p° ()A(w)2 (F;F;F,) eq/2, evaluated from equilibrium
measurements®. The latter is shown as a parabola with curvature
obtained from the third force cumulant at equilibrium. The data
points in this graph thus quantify the deviation from the FDT, with
the line giving the prediction of Equation 4 for this deviation. The
agreement is convincing for both m = 0 and m = 2, supporting the
validity of Equation 4.

As data in the top panel of Figure2 grow linearly and
those in the center and lower panels grow quadratically with
X, we fit a line and a parabola to obtain the, respective, slope
and curvature for each m. The obtained values—divided by the
respective power in w—are shown in Figure3 as a function
of the frequency w. We observe convincing agreement for the
measured frequencies further supporting Equation 4. In tendency,

3 As the phases ¢(21) and </>(22) may differ, the coefficient AA, of the

difference of first and second cumulants is found via AA,=
)2 )2 @42 o _ 4@

\/(Az ) +(A2 ) —2A5°A; cos(qﬁz - ¢, ) For m = 0,

frequency contribution, there is no phase by definition, and the

i.e., the zero

coefficients Agﬂ can be compared directly.
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FIGURE 3
Coefficients A,,,, normalized as labeled, as a function of the frequency
w. The agreement in the top panel confirms the FDT, and the
agreement in the lower panels confirms Equation 4. Each data point is
obtained from averaging over driving amplitudes taking the respective
scaling of A,,, with X into account (see SM). Error bars are obtained
from partitioning trajectories into two pieces (data points) and from
the standard deviation between separate series of measurements
(gray area).

the coefficients decrease with increasing w. Notably, the statistical
accuracy of the data points decreases with decreasing w; with
smaller w, longer trajectories are required, especially in a fluid
with pronounced memory, as the period of the cosine transform
increases.

Figure 4 provides the final test of Equation 4, namely, the
phases ¢§;’) of Equation 5. These hardly depend on driving
amplitude, and the shown data are averaged over the measured
values of X. The top panel of Figure4 shows the order m =
1, ie., the linear response, with convincing agreement. The
phase angle for m =1 is small for the frequencies measured,
indicating that the force F, is almost in phase with the protocol
X,, as for an elastic material. The black curve, extracted from
equilibrium data, shows that with smaller w, the phase increases,
presumably reaching 77/2 in the limit of w — 0. The slow increase
with decreasing w displays the slow nature of the investigated
system.

The lower panel shows the phase for m=2, ie, to
second order. Although the agreement between the line
and data confirms Equation4, the graph shows that the
differences in phases of first and second cumulants are rather
small. In other words, first and second cumulants deviate
noticeable in amplitude, as shown in Figure2, but not so
much in phase.

Conclusion

We presented and tested a nonequilibrium fluctuation expansion
for a driven classical system, emphasizing the validity on various
length scales. Indeed, such relations are necessary, e.g., for
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FIGURE 4
Phase angles ¢, and ¢, of the harmonics in Equation 5, as functions of
w. Top panel shows the phases of the linear response. Lower panel
shows the phase of the second-order response, comparing the
(1) 1)_ 4@ 2)

contributions of the terms in Equation 4. A¢, = arctan %

. o i . A, cos ¢, ~A;" cos ¢,
. Error bars are obtained from partitioning trajectories into two pieces.
The gray error band is obtained as the standard deviation between

separate series of measurements.

a systematic coarse graining of nonequilibrium systems. The
identity is confirmed for experiments of a Brownian particle
interacting with a complex surrounding. Future work can
explore other systems and aim to clarify the relation to the
mentioned fluctuation theorems [33, 41]. It is also important to
investigate the use of Equation 2 for treating systems far away from
equilibrium.
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