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Equilibrium trajectories quantify 
second-order violations of the 
fluctuation–dissipation theorem 
without the need for a model
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1Institute for Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, Germany, 
2Fachbereich Physik, Universität Konstanz, Konstanz, Germany

Quantifying and characterizing fluctuations far away from equilibrium is a 
challenging task. We discuss and experimentally confirm a series expansion for 
a driven classical system, relating the different nonequilibrium cumulants of the 
observable conjugate to the driving protocol. This series is valid from micro- 
to macroscopic length scales, and it encompasses the fluctuation–dissipation 
theorem (FDT). We apply it in experiments of a Brownian probe particle confined 
and driven by an optical potential and suspended in a nonlinear and non-
Markovian fluid. The expansion states that the form of the FDT remains valid 
away from equilibrium for Gaussian observables, up to the order presented. We 
show that this expansion agrees with that of a known fluctuation theorem up to 
an unresolved difference regarding moments versus cumulants.
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Introduction

The fluctuation–dissipation theorem (FDT) [1, 2], connecting response and fluctuations 
of equilibrium systems, is of fundamental importance for condensed matter, fluids, plasmas, 
or electromagnetic fields [3–6]. One of its remarkable properties is its validity at any length 
scale, ranging from the nanoscale, for electric charges, to the macroscale, for macroscopic 
magnetization. It is, however, restricted to the linear regime, i.e., to situations close to 
equilibrium. Most previous research has been largely devoted to determining similar 
relations for nonequilibrium steady states [7–29] and for nonlinear responses [30–51]. 
A typical observation in the found relations is the explicit appearance of microscopic 
details—sometimes referred to as frenetic components [52, 53] or information on the 
specific rule governing the time evolution [40]—often hampering a model-independent 
formulation and systematic changes in length scales such as coarse graining to macroscopic 
scales [46, 47, 49]. As a consequence, experimental tests and application of such relations 
have indeed been successful for systems with a small number of accessible Markovian 
degrees of freedom [51, 54–57], for which the dynamics can be modeled.

In a different spirit, nonlinear fluctuation dissipation relations [31–34, 58] and 
fluctuation theorems [33, 41, 59–61] have been found, which can often be applied in the
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absence of a specific model. However, they have, to our knowledge, 
not been used to quantify the error of the FDT.

In this manuscript, we discuss and experimentally confirm a 
series expansion for a driven classical system, which relates the 
different nonequilibrium cumulants of the observable conjugate to 
the driving protocol, up to a certain order in driving velocity. This 
series (i) is valid from micro- to macroscopic length scales, (ii) is 
model-independent, and (iii) encompasses the FDT. We apply it in 
an experimental many-body system of a Brownian probe particle 
interacting with worm-like micelles and confined and driven by 
an optical potential. In these experiments, we demonstrate that 
the equilibrium third force cumulant quantifies the second-order 
deviation from the FDT under driving. Notably, our theoretical 
predictions demonstrate that the form of the FDT remains valid for 
purely Gaussian observables within the displayed order. 

System and fluctuation series

Consider a classical system of stochastic degrees xt at time t
(weakly) coupled to a heat bath at temperature T. The system’s 
potential energy U depends on xt and on a time-dependent 
deterministic protocol Xt, i.e., U(xt,Xt). The system is prepared in 
equilibrium at time t→−∞, with a protocol value X−∞ = Xt, for 
simplicity [62]. The time dependence of the protocol drives the 
system away from equilibrium.

The derivative of U in terms of Xt, Ft: = ∂Xt
U(xt,Xt) is the 

observable conjugate to Xt. For example, if Xt is a position as in our 
experiments, Ft is (minus) the corresponding force. Ft can be micro- 
or macroscopic; for example, let X couple linearly to an observable 
A(x); U(xt,Xt) = U(xt,0) −XtA(xt), i.e., Ft = −A(xt). Thus, if A(x)
is a macroscopic field, such as macroscopic magnetization, Ft is 
macroscopic. If A(x) is the position of a molecular particle, Ft is 
microscopic. The following remains valid if Xt enters U nonlinearly.

The statistical properties of Ft in this nonequilibrium situation 
are encoded in its cumulants and in its correlations with another 
state observable, Bt = B(xt,Xt), which we aim to study here. The well-
known FDT connects the covariance in the unperturbed system and 
the first moment of B under weak driving [1, 2],

β2∫
t

−∞
ds Ẋs⟨Bt;Fs⟩eq = β[⟨Bt⟩ − ⟨Bt⟩eq] +O(Ẋ

2), (1)

with β = 1/kBT and Boltzmann constant kB. ⟨…;… ⟩ denotes 
the second cumulant, and similarly for higher orders below. 
Expectation values ⟨… ⟩eq are evaluated using equilibrium 
trajectories with a protocol value fixed at Xt. Expectation values 
⟨… ⟩ are measured in the driven system, i.e., under the given 
time-dependent protocol [62].

In Ref. [62], we derive identities connecting the nonequilibrium 
cumulants of Ft and Bt to different orders. These give rise to the 
following series involving the mentioned cumulants [62],

β2∫
t

−∞
ds Ẋs ⟨Bt;Fs⟩ = β[⟨Bt⟩ − ⟨Bt⟩eq]

+
β3

2
∫

t

−∞
ds∫

t

−∞
ds′ ẊsẊs′⟨Bt;Fs;Fs′⟩

−
β4

6
∫

t

−∞
ds∫

t

−∞
ds′∫

t

−∞
ds″ ẊsẊs′Ẋs″

× ⟨Bt;Fs;Fs′ ;Fs″⟩ +O(Ẋ
4),

(2)

As presented in Ref. [62], this series expansion can also be 
obtained from a known fluctuation theorem [33, 41], albeit with an 
open question regarding cumulants versus moments.

Equation 2 is, as indicated, correct up to the fourth order 
in driving Ẋt, under the assumption of local detailed balance 
[63]. Expanding1 Equation 2 to the first order yields the FDT in 
Equation 1 so that it is included in Equation 2. To higher orders, 
first and second cumulants do not fulfill the FDT, and Equation 2 
quantifies their difference in terms of third and fourth cumulants of 
F and B. Notably, the second to fourth lines of Equation 2 vanish 
for purely Gaussian distributed F and B so that first and second 
cumulants obey the FDT to the given nonequilibrium order. It is 
important to note that, in Equation 2, the protocol Ẋ appears as 
pre-factors and in the nonequilibrium cumulants themselves; i.e., 
the latter are evaluated under application of driving. As Equation 2 
only requires measurement of F and B, we use the notion of
model free. 

Experimental setup

We exploit Equation 2 with experiments of Brownian particles 
interacting with micellar fluid. In particular, we use silica particles 
of diameter ∼ 1 µm suspended in a 5-mM equimolar solution 
of cetylpyridinium chloride monohydrate (CPyCl) and sodium 
salicylate (NaSal). At concentrations above the critical micellar 
concentration (≳ 4 mM), this fluid is known to form giant worm-
like micelles, leading to a viscoelastic nonlinear behavior at ambient 
temperatures [64]; see SM. At 5 mM, we determine the relaxation 
time of the fluid from microrheological recoil experiments, where a 
particle is first driven with a constant external force which is then 
suddenly removed, to be ∼ (3±0.2)s [65]. A small amount of silica 
particles is added to the micellar solution, which is contained in a 
rectangular capillary with 100 µm height and kept at a temperature 
of 25 °C. This sample is placed on a custom-built optical tweezer 
setup that uses a Gaussian laser beam of wavelength 532 nm and 
a 100×  oil immersion objective (NA =  1.45). The laser beam 
yields a potential U(xt −Xt), as shown in Figure 1a, centered at 
Xt, trapping one of the silica particles with coordinate xt. Ft =
∂Xt

U(xt −Xt) is thus the force acting on the particle by the trapping 
potential (or vice versa). As the micellar degrees do not couple to 
X, they do not enter Ft explicitly, and knowing how they enter U
is not required to apply Equation 2. Thus, the use of Equation 2 
does not require the detection of the positions of micellar particles, 
and applying it to such a complex fluid demonstrates its strength. 
We consider B ≡ F, and made the potential asymmetric, to obtain a 
finite second-order response of β⟨Ft⟩. This allows to test Equation 2 
to the second order in our experiments, and it is achieved by a 
controlled lateral displacement of the vertically incident laser beam 
from the center of the objective lens (see SM). Notably, Equation 2 
could also be tested in a purely viscous fluid, which also shows a 
second-order response due to the nonlinear potential. However, to 
demonstrate that Equation 2 is valid beyond simple systems, we have 
chosen the more challenging case of a micellar fluid.

1 The expansion in Equation 2 suggests the dimensionless expansion 

parameter βF∫t
t−τds ẋs with cumulant relaxation time τ.
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FIGURE 1
(a) Asymmetric optical potential U(x) = − kBT ln P(x) felt by the probe particle (inset sketch), with P(x) the probability distribution with the trap at rest. (b)
Mean force β⟨Ft⟩, (c) force covariance β2X̂ω⟨ ̃Ft,Ft⟩, and (d) equilibrium third cumulant β2(X̂ω)2⟨ ̃Ft; ̃Ft;Ft⟩eq/2, as functions of time, for driving frequency 

ω = 8.4 rad/s and amplitudes X̂ = {0.03,0.06,0.08,0.09,0.14}µm as labeled. Tp =
2π
ω

. (e) Force covariance (solid line), mean force (dotted line), and the 

sum of mean force and third force cumulant (dashed line, Equation 4) for X̂ = 0.14 µm.

To apply the driving protocol, the sample cell is moved, whereas 
the optical trap remains stationary in our experiments. This is 
achieved using a piezo-driven stage, on which the sample is mounted 
and translated in an oscillating manner relative to the trap. In the 
fluid’s rest frame, this yields a periodic motion of the potential 
minimum Xt, i.e., the protocol,

Xt = X̂ sin (ωt), (3)

with the amplitude X̂ and the frequency ω. Particle trajectories 
are recorded with a frame rate of ∼ 150 Hz using a video camera, 
and particle positions are determined using a custom MATLAB 
algorithm. To yield sufficient statistics, each protocol (X̂, ω) was 
measured over 1400s. We allowed the system to reach a steady state 
by recording trajectories only after at least five oscillation periods 
had passed. Thereafter, no further equilibration was visible in the 
data. Prior to each nonequilibrium protocol, we recorded particle 

trajectories for another 1000s with Xt at rest. These equilibrium 
data were used to check that the form of U does not vary 
between measurements and also to obtain the force cumulants under 
equilibrium conditions. 

Data analysis

With the protocol of Equation 3, Equation 2 takes, expanded to 
the second order, the form

β2X̂ω⟨ ̃Ft;Ft⟩ = β⟨Ft⟩ +
β3X̂2ω2

2
⟨ ̃Ft; ̃Ft;Ft⟩

+O((X̂ω)3),
(4)

where the tilde denotes the cosine transform, i.e., ̃Ft ≡
∫t−∞ds cos (ωs)Fs. We restrict the analysis to the lowest nontrivial, 
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i.e., second, order and expand Equation 2 accordingly, also using 
⟨Ft⟩eq = 0. Notably, to extract the second-order contribution from 
the last term in Equation 4, the third cumulant in Equation 4 is 
replaced by its equilibrium version. This is because of the pre-factor 
X̂2ω2 and will be done in the following analysis.

The cumulants in Equation 4 depend on time t in a periodic 
manner, as shown in Figures 1b–d, for ω =  8.4 rad/s and 
driving 2  amplitudes ranging from X̂ =  0.03 µm (light) to X̂ =
0.14 µm (dark). Figure 1b shows the mean force, which, as expected 
for a driven oscillator, is a periodic function with period Tp =

2π
ω

. For 
the smallest amplitude shown, the mean force is nearly harmonic 
with frequency ω, as expected from linear response. With growing 
amplitude, higher harmonics occur, as expected from nonlinear 
response. This asymmetric system shows the second-order response 
with expected frequencies of 2ω and 0ω.

Figure 1c shows the force covariance for the same parameters 
and color code. For small amplitude X̂, the curves in Figures 1b,c 
are equal within the experimental accuracy, as analyzed in detail 
below. For larger driving amplitude, the force covariance develops 
higher harmonics with signatures of second order. Very little is 
known about the properties of such nonequilibrium fluctuations, 
and quantifying these is difficult. It is notable that the curves in 
Figure 1c, for larger amplitudes, deviate from Figure 1b, a deviation 
that we claim to be quantified by Equation 4.

Figure 1d shows the third cumulant of force for the same 
parameters and color code. We have here restricted to the 
equilibrium cumulant as it appears in Equation 4, multiplied by 
(X̂ω)2. The curves in Figure 1d thus differ only because of the factor 
(X̂ω)2. They thus scale quadratically in driving velocity and only 
show frequencies of 2ω and 0ω.

Equation 4 states that in the shown range of amplitudes, 
the curves in Figure 1c are given by the sum of the curves in 
Figures 1b,d. For X̂ = 0.14 µm, the respective summed curve is 
shown as a dashed line together with the mean force and the 
force covariance in Figure 1e. The agreement is convincing and a 
confirmation of Equation 4.

To test this prediction systematically, we dissect the curves 
in Figures 1b–d into the contributions from harmonics with 
frequencies 0ω, ω, and 2ω, respectively, i.e., we expand the cumulant 
of order n into harmonics with the frequency mω,

βn(X̂ω)n−1⟨( ̃Ft;)
n−1Ft⟩ =

∞

∑
m=0

A(n)m sin (mωt+ϕ(n)m ), (5)

where the coefficients A(n)m  depend on X̂ω. We set ϕ(n)0 ≡ π/2 for 
consistency. Equation 4, projected on the harmonic of order m, 
yields relations between coefficients and phases for each m, which 
we can test.

Results

Figure 2 shows the coefficients A(n)m  as a function of the driving 
amplitude X̂. The top panel gives the order m = 1, which is 

2 ω is determined from the power spectral density, thus carrying an error 

depending on the length of the measurement.

FIGURE 2
Coefficients Am corresponding to harmonics with the frequency mω, 
as a function of driving amplitude X̂, for ω = 8.4 rad/s. Top panel: m = 1, 
demonstrating FDT. Lower panels: difference in first and second 
cumulants (data points), and third cumulant (lines) for m = 0 and

m = 2. The agreement confirms Equation 4. ΔA2 ≡ [(A
(1)
2 )

2
+ (A(2)2 )

2

−2A(1)2 A(2)2 cos (ϕ(1)2 −ϕ(2)2 )]
1/2. Error bars and bands are obtained from 

partitioning trajectories into two pieces.

considered to be linear in X̂ for the range shown, as expected from 
linear response. The graph shows the mean force (data points) and 
the force covariance (line). The latter is evaluated from equilibrium 
trajectories. The agreement in this panel, for the range of sufficiently 
small X̂, is expected from the FDT.

The center and lower panels in Figure 2 show the orders 
m = 0 and m = 2, respectively. In particular, these panels present 
the difference of first and second cumulants in Equation 4 (data 
points), i.e., β⟨Ft⟩ − β2X̂ω⟨ ̃Ft;Ft⟩, together with the third cumulant 
(line), −β3(X̂ω)2⟨ ̃Ft; ̃Ft;Ft⟩eq/2, evaluated from equilibrium 
measurements3. The latter is shown as a parabola with curvature 
obtained from the third force cumulant at equilibrium. The data 
points in this graph thus quantify the deviation from the FDT, with 
the line giving the prediction of Equation 4 for this deviation. The 
agreement is convincing for both m = 0 and m = 2, supporting the 
validity of Equation 4.

As data in the top panel of Figure 2 grow linearly and 
those in the center and lower panels grow quadratically with 
X̂, we fit a line and a parabola to obtain the, respective, slope 
and curvature for each m. The obtained values—divided by the 
respective power in ω—are shown in Figure 3 as a function 
of the frequency ω. We observe convincing agreement for the 
measured frequencies further supporting Equation 4. In tendency, 

3 As the phases ϕ(1)2  and ϕ(2)2  may differ, the coefficient ΔA2 of the 

difference of first and second cumulants is found via ΔA2 ≡

√(A(1)2 )
2
+ (A(2)2 )

2
−2A(1)2 A(2)2 cos(ϕ(1)2 −ϕ(2)2 ). For m = 0, i.e., the zero 

frequency contribution, there is no phase by definition, and the 

coefficients A(n)0  can be compared directly.

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2025.1667224
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Caspers et al. 10.3389/fphy.2025.1667224

FIGURE 3
Coefficients Am, normalized as labeled, as a function of the frequency 
ω. The agreement in the top panel confirms the FDT, and the 
agreement in the lower panels confirms Equation 4. Each data point is 
obtained from averaging over driving amplitudes taking the respective 
scaling of Am with X̂ into account (see SM). Error bars are obtained 
from partitioning trajectories into two pieces (data points) and from 
the standard deviation between separate series of measurements 
(gray area).

the coefficients decrease with increasing ω. Notably, the statistical 
accuracy of the data points decreases with decreasing ω; with 
smaller ω, longer trajectories are required, especially in a fluid 
with pronounced memory, as the period of the cosine transform 
increases.

Figure 4 provides the final test of Equation 4, namely, the 
phases ϕ(n)m  of Equation 5. These hardly depend on driving 
amplitude, and the shown data are averaged over the measured 
values of X̂. The top panel of Figure 4 shows the order m =
1, i.e., the linear response, with convincing agreement. The 
phase angle for m = 1 is small for the frequencies measured, 
indicating that the force Ft is almost in phase with the protocol 
Xt, as for an elastic material. The black curve, extracted from 
equilibrium data, shows that with smaller ω, the phase increases, 
presumably reaching π/2 in the limit of ω→ 0. The slow increase 
with decreasing ω displays the slow nature of the investigated
system.

The lower panel shows the phase for m = 2, i.e., to 
second order. Although the agreement between the line 
and data confirms Equation 4, the graph shows that the 
differences in phases of first and second cumulants are rather 
small. In other words, first and second cumulants deviate 
noticeable in amplitude, as shown in Figure 2, but not so 
much in phase.

Conclusion

We presented and tested a nonequilibrium fluctuation expansion 
for a driven classical system, emphasizing the validity on various 
length scales. Indeed, such relations are necessary, e.g., for 

FIGURE 4
Phase angles ϕ1 and ϕ2 of the harmonics in Equation 5, as functions of 
ω. Top panel shows the phases of the linear response. Lower panel 
shows the phase of the second-order response, comparing the 

contributions of the terms in Equation 4. Δϕ2 ≡ arctan
A(1)2 sin ϕ(1)2 −A

(2)
2 sin ϕ(2)2

A(1)2 cos ϕ(1)2 −A
(2)
2 cos ϕ(2)2

. Error bars are obtained from partitioning trajectories into two pieces. 
The gray error band is obtained as the standard deviation between 
separate series of measurements.

a systematic coarse graining of nonequilibrium systems. The 
identity is confirmed for experiments of a Brownian particle 
interacting with a complex surrounding. Future work can 
explore other systems and aim to clarify the relation to the 
mentioned fluctuation theorems [33, 41]. It is also important to 
investigate the use of Equation 2 for treating systems far away from
equilibrium.
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