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The generation of spatial bright solitons of reflection and transmission pulses
and their intensities are investigated in a sodium atomic medium using
Gaussian Milnor polynomial control fields. Significant bright and dark ring-
shaped solitons are controlled by balancing nonlinearity and dispersion along
two spatial coordinates. The intensity is more localized along one of the
spatial coordinates due to larger nonlinearity and spread along other spatial
coordinates due to smaller nonlinearity in the reflection pulse. A circular,
crater-type bright soliton intensity is also maintained around the origin of the
x and y coordinates, exhibiting varying intensity along the circumference. A
large, bright intensity peak is observed around the origin, with the intensity
minima at the center in reflection. The intensity peaks are enhanced in one
of the spatial coordinates and localized in another coordinate in reflection.
A large Gaussian-type bright solitonic intensity distribution is investigated
at approximately y =0\ throughout the variation along the x-axis in the
transmission pulse pattern. The reflection and transmission pulse intensities vary
from 0% to 40%, and at least 20% of the intensity of the incident pulse is lost
by attenuation. The modified results are useful in optical communications, fiber
optics, optical computation, signal processing, radar technology, and artificial
neural networks.

bright solitons, Milnor polynomials, reflection, transmission, control fields

1 Introduction

Solitons are spatial waves that stay together as they travel because the medium’s
nonlinearity and spreading effects cancel each other out. The word “soliton” is used for
a wave that looks like a single, short pulse that can pass through another similar pulse
without changing its shape or speed [1]. They occur in various physical systems, such as
fluids [2], optical fibers [3, 4], plasmas [5], condensed matter systems [6], acoustic media
[7], and gravitational systems [8, 9]. Solitons have some key properties that distinguish
them from other wave phenomena. Among these properties, shape preservation [10], stable
propagation [11, 12], elastic collisions [13], stability [11], localized energy [15], nonlinear
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nature [16, 17], and robustness [ 18] are the most prominent. Solitons
remain stable when the spreading effect (dispersion or diffraction)
and the medium’s nonlinearity cancel each other out at a certain
level of the applied control field [19]. Because of this balance, strong
solitons can withstand disturbances such as fluctuations in light
intensity or phase noise.

The history of solitons spans several centuries and involves
contributions from multiple fields of science and mathematics.
Early studies of waves in various media—such as the motion of
water waves—laid the groundwork for understanding the wave
behavior. However, the concept of a soliton had not yet formed
in the early 19 century [20]. John Scott Russell observed
a phenomenon while traveling along a canal near Edinburgh,
Scotland. He witnessed a single solitary wave traveling along the
water that retained its shape and velocity over a long distance
[21]. Solitons were theoretically developed in the 19th century,
particularly with Korteweg—de Vries (KdV) equations [20] in 1895.
The concept of solitons began to mature with the advent of
nonlinear dynamics and solitary wave theory. In particular, the
works of Mikhail M. Korteweg and Balthazar de Vries in the
late 19th century contributed to the refinement of the soliton
theory [23]. In 1970, the inverse scattering theory and solitons
in mathematical physics gained great recognition [23]. In 1980,
solitons played a vital role in nonlinear optics and fiber-optic
communications [25]. In 2000, solitons were integrated into string
theory and quantum field theory. Since then, solitons have been
explored in numerous modern technologies, such as quantum
computing, secure communication, and advanced optical systems
[26-28].

Solitons have many types based on the physical systems
in which they occur and the nature of the balance between
nonlinearity and dispersion. The main types are bright solitons
[29], dark solitons [30], vortex solitons [31], breathers [32], sine-
Gordon solitons [33], and Korteweg-de Vries solitons [34], among
others. Spatial bright solitons are self-trapped light beams that
can travel through a nonlinear medium without spreading out.
They form when the medium’s refractive index increases with light
intensity, focusing the beam and balancing diffraction [35]. Solitons
in the presence of Milnor polynomials involve studying soliton
solutions within systems influenced by the structure of Milnor
polynomials. Milnor polynomials arise in singularity theory and
are used to describe the behavior of complex systems near critical
points or singularities. When applied to nonlinear systems, these
polynomials can introduce new potential landscapes that affect
soliton dynamics. Solitons have applications in diverse fields of
science and technology. The concept of solitons finds applications
across a wide range of disciplines, such as optical communications
[36-38], plasma physics [39], laser physics [40, 41], fluid dynamics
[42, 43], magnetism, semiconductor and materials science [44,
45], chalcogenide glasses [46], nerve impulses [47, 48], fiber
optics [49], optical computation [50], signal processing [51], radar
technology [52], microcomb range measurement [53], and artificial
neural networks [54].

In this work, we study the generation of spatial bright solitons
of reflection and transmission pulses and their intensities in a
sodium atomic medium using control fields of Gaussian Milnor
polynomial. A significant gap in the study of optics will be filled by
the updated result.
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FIGURE 1
Four-level sodium atomic medium.

2 Model of the atomic system and its
susceptibility

The sodium atomic system as shown in Figure 1, has a ground
state |1) and additional states |2,3,4) resulting from hyperfine
splitting. In this atomic configuration, the probe field with Rabi
frequency (), and detuning A, couples the lowest energy level |1)
to the uppermost state |4). The state |2) connects to levels |3) and
|4) via control fields with Rabi frequencies Q5 and Q,, respectively.
Similarly, the state |3) interacts with the upper excited state |4)
through a control field of Rabi frequency ), and detuning A,. The
associated decay rates are given by y,,, Y4, V4> and y,5.

The optical behavior of this atomic arrangement interacting with
the probe and the three control fields is examined by analyzing
its response. The Hamiltonian for the sodium atomic system
is constructed in the interaction picture, employing the dipole
approximation and the rotating wave approximation, in order to
derive the required atomic susceptibility.

The Hamiltonian representing the configuration in the absence
of external interactions is expressed as follows:

Hj = h10,|2) (2| + hw; 1) (1] + hiw, |4) (4] + rws|3) (3. (1)

The Hamiltonian governing the system’s dynamics in the
interaction picture is expressed as follows:

H,= —Z [Q, 787 12) (4] + Qe 1) (4] + Qe 12) (3] @)
+ Qze_iA2t|3) (4|1 + H.c.

Equations 1, 2 represent the complete Hamiltonian of the
system. The dynamics of the atomic system in the Heisenberg
picture are governed by the density matrix formalism, which is
calculated as follows:

d i 1
—P= _% [Hp,p] - 3 Zyij (=20pa" +d'ap + pa'o). (3)
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In Equation 3, p indicates the operator elements of the density
matrix, whereas ¢' and ¢ denote the creation (raising) and
annihilation (lowering) operators, respectively. The decay processes
between the energy levels are described by the coefficients y;; for
1
not explicitly depend on time. At the initial moment, the atoms are

j=1,2,3,4. The system yields a set of coupling equations that do

assumed to be entirely in the ground state |1), which sets the initial
—(0)
Pui =

unoccupied at the start, implying that ﬁi(i)

density element to [1). Consequently, the excited states are
_=(0) _~(0) _
=Pu3 =P =

first-order perturbative expansion, the density matrix equations can

0. Using a
be simplified and solved through the use of the following relation:

P=M"'Q. (4)

In Equation 4, X(¢) and M are treated as column vectors, whereas
Y represents a 3 x 3 matrix. The resulting expression for the probe
coherence element, p, ,, is given as follows:

- (a0, +3)Q,

 F-2i(4a,a,a5 + a; 2 +a, Q2 +a,02)

(5)

Pia

To introduce cross Kerr nonlinearity in p, , as shown in Equation

~ . ~ ~ ap
5, we expanded p,, in the manner p,(k) :p14(0)+la_olf|9r>°’
where p,,(0) is probe coherence without the Kerr-nonlinearity
and 8é1ﬁ14|gl_>0 shows the cross Kerr effect coherence and I=
Q? Kerr field intensity. The dispersion is related to the derivative

of susceptibility with the respected probe detuning, such as
aRely]

;
n,

Dispersion =

where

1 . . 1 . 1
a==5 (}'41 + )’21) + lAp’ a, = 1(7Al +Ap) ~5Vs 3= ’(7A3 +Ap) =3V
F=0,0,0; [exp (ip) + exp (~ip)].

The Rabi frequencies of the control light fields in the form of
Gaussian Minor polynomial are written as follows:

[ =] 4,6 3i
QIZGI eXp_m‘ (1—7’2—1’ +7r —81’38 q)‘), (6)
Q,=G exp—iq(l—rz—r4+r6—8rae3"¢2), (7)
2 2 2w |
Q3:G3exp—iq(1—r2—r4+r6—81363i¢3), (8
L2W ]

In Equations 6-8, W is the beam waist, G| , ; are the associated field

strengths, and r = y/x? + y2. For this four-level sodium atom scheme,
the resulting complex susceptibility takes the form. Gaussian Minor
polynomial generated optical knot behaviors in pulses and was more

informative than standard Gaussian or Laguerre-Gaussian profiles,

2Ny @?4 ~

= — k),
‘SOthPM( )

X )

where, in Equation 9, N represents the atomic density. ¢,
corresponds to the permittivity of free space and 7 is the reduced

B 3hy4lso/\3
N e

plank constant and

Q14 (10)
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Equation 10 represent the dipole matrix element. The group
index characterizing the medium can be expressed as follows:

ng = 2mwRe (aApx) +27mRe(x) +1, (11)

where, in Equation 11, n, is the group index. The group velocity v,
can be written as follows:

9

- . (12)
2nwRe (BAP)C) +27Re(y) +1

Ve

The group index expression in Equation 12, show the fast or slow
propagation of solitons waves. The reflection and transmission are
written as follows:

uy sin (a,) + (& — &) ¢, sin 2a; cos (a,)

- u, sin(a,) + & &uy cos(ay)

R(A,-,x,y, Gi,ylj)

(13)
- 2i8y6,8;

= s 14
u, sin(a,) + & &uy cos(ay) (14)

T(Ai,x,y, G;, yij)
where, in Equations 13, 14 the terms u, , ; are given as

uy = 2i&o€, cos 2a + (& + &) sin 24,
u, =& (5(2) +&)cos’a; — (& + féf;) sin’a; — &€, (8 + &) sin 2a,

uy =& (& - &) cos’a; + (&) — £87) sin’a.

At the plane z=0, the incident probe beam is
represented as follows:
E5))lo=— | et (w,,k )dk (15)
i\6Y) =0 = 2 7006 wp’ y "y

where, in Equation 15 the term “A” is described as

W)’
—¢€

V2

The mathematical expressions for the transmitted and reflected

2
_ Wilkyko)
4

A(“’p’ky) =

pulses are given below.

(6] .
B =5 | T(0n80Gay,) A (k) B, 16)

—00

E.(xy)

L[ R(s3,Gy) A ) 6, 17
In Equations 16, 17, E,(x,y) represents the pulse variation of the
reflection beam and E,(x,y) represents the pulse variation of the
transmission beam. These pulses are taken in full domain, and their
boundaries are from —co to +00. The intensities of the reflection and
transmission beams are I,(x,y), = |E,(x,)|* and I,(x,y) = |E,(x, )|
respectively.

3 Results and discussion

The results are presented to demonstrate the generation of spatial
bright solitons for both the reflected and transmitted pulses, as
well as their corresponding intensities. This is achieved by applying
control fields that have a shape described by a Gaussian Milnor
polynomial within a sodium atomic medium. A decay rate of ' =
1GHz is used as the reference value, and all other frequency-
related parameters are expressed in units scaled by this decay rate
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y. Throughout this work, atomic units are consistently employed for
all calculations. Furthermore, w = 1,000y, d = 2d, +d,, A = 27c/ w,
r=x*+y% ¢ =22,& =1+4nRe(y), d, = 1.5\, d, = 151, ky = w/c,

and z=0.11. w = 2.5, where k, = —cos@w-wsec@whereez—

1+y, 501—\' —sin26, &, = /e, —sin? 0, (xl——d /€, —sin2 6,

and «, = 5 dzfz. "ﬂie nonlinearity is generated by the expansion of
susceptibility with respect to Rabi frequency Q,, and higher-order
Kerr effect is ignored in the system.

In Figure 2, the charts depict the reflection pulse and reflection
pulse intensity against wavelength-normalized y and x positions
through a four-level sodium atomic medium. Periodic bright and
dark soliton behaviors are obtained with variations of y/A and x/A.
Sketches are presented for the reflection pulse and intensity at the
chosen parameters of A; = 0.2, A; = 0.2I, A, = 0T, ¢ = 71/2, Gy 5 3 =
51,0 =mn/3,¢, = n/6, ¢y = n/3,7y = 1/T,and ¢, = /4. The reflection
pulse E,(x,y) shows periodic bright and dark soliton behaviors with
large nonlinearity and minimum dispersion along the y-axis and
small nonlinearity and larger dispersion along the x-axis. The bright
soliton is formed by balancing Kerr nonlinearity and anomalous
dispersion, whereas the dark soliton is formed by balancing Kerr
nonlinearity and normal dispersion in this work. The pulse is more
localized along the y-axis due to large nonlinearity and spread along
the x-axis due to small nonlinearity. Stability is obtained through
balancing nonlinearity and dispersion, and a stable periodic soliton
is controlled. The pulse behaviors are periodic mostly along the y-
axis and solitonic vectors along the x-axis. Three bright ring-type
solitonic shapes are also controlled, as shown in Figure 2a, and their
clear density plots are shown in Figure 2c. The intensity of reflection
pulse I(x,y) =
normalized y and x positions. The reflection pulse intensity varies

|E,(x,y)]? is also a varying function of wavelength-

from 0% to 40%.The intensity is more localized along one of
the spatial coordinates, the y-axis, due to larger nonlinearity and
spread along the other spatial coordinate, the x-axis, due to smaller
nonlinearity. A circular ring-type right soliton intensity is also
controlled around the origin of the x and y coordinates, as shown in
Figure 2b. This is clearer in their density plots, as shown in Figure 2d.

The graphs in Figure 3 visualize the transmission pulse and
transmission pulse intensity against wavelength-normalized x and y
positions through a four-level sodium atomic medium. The plots for
transmission pulse and their intensity are traced at the parameters
shown in Figure 3. Vector bright and dark soliton behaviors are
obtained with variations of y/A and x/A in the transmission
pulse. The transmission pulse E,(x,y) shows periodic bright and
dark soliton behavior along both wavelength-normalized x and y
positions. The nonlinearity is larger along the y-axis and small
along the x-axis at the mentioned parameters. Stability is obtained
through balancing nonlinearity and dispersion. The pulse behaviors
are periodic mostly along the x and y axes and solitonic vectors
along the x and y axes. Ring-type bright and dark solitonic shapes
are also controlled, as shown in Figure 3a. The transmission pulse
density plot is visualized in Figure 3c. The intensity of transmission
pulse I,(x,y) = |E,(x,y)|* is also a varying function of the spatial
coordinates x/A and y/A. The transmission pulse intensity also
varies from 0% to 40%.The intensity is more localized along one
of the spatial coordinates, the y-axis, due to larger nonlinearity and
spread along the other spatial coordinate, the x-axis, due to smaller
nonlinearity. A circular crater-type bright soliton intensity is also
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controlled around the origin of the x and y axes, having varying
intensity at the circumference length, as shown in Figure 3b. This
is clearer in their density plots shown in Figure 3d.

In Figure 4, illustrations are presented for the reflection pulse
and reflection pulse intensity against wavelength-normalized x and y
positions through a four-level sodium atomic medium. The periodic
vectors’ bright and dark soliton behaviors are investigated with
the variation of wavelength-normalized x and y positions. At the
parameters of A; = 0.2, A; =0.2I, A, = 0L, 9 = /2, G, , 5 = 51, 0 =
/4, ¢1’2’3 =0, and 7, = 1/T, nonlinearity is smaller along the x-axis,
and the pulse is spread, whereas nonlinearity is again larger along
the y-axis, and the pulse is more localized in the reflection pulse
pattern. The reflection pulse E,(x, y) shows periodic bright and dark
soliton behavior with large nonlinearity and minimum dispersion
along the y-axis and small nonlinearity and larger dispersion along
the x-axis. The pulse is more localized along the y-axis due to large
nonlinearity and spread along the x-axis due to small nonlinearity.
The pulse behavior is mostly localized along the y-axis and solitonic
along the x-axis of the spatial coordinates. A bright ring soliton at
the origin and a larger circular bright ring soliton around the origin
are investigated. Furthermore, at y = 01 along the x-axis, a periodic
dark soliton is investigated, whereas around the x-axis, ¥ # 0 on
both sides, bright solitons are controlled, as presented in Figure 4a,
and their clear density plots are shown in Figure 4c. The intensity
of the reflection pulse I,(x,y) = |E,(x,)|* is also a strong varying
function of wavelength-normalized axes x/A and y/A. The reflection
pulse intensity varies from 0% to 1.5%. A large bright intensity peak
around the origin is investigated, which has intensity minima at the
center at the origin. The intensity is more localized along one of
the spatial coordinates, the y-axis, due to larger nonlinearity and
spread along the other spatial coordinate, the x-axis, due to smaller
nonlinearity. The intensity peaks are enhanced in one of the spatial
coordinates (x-axis) and localized in the other coordinate (y-axis)
in reflection, as shown in Figure 4b. This is clearer in their density
plots, as shown in Figure 4d.

Figure 5 presents the illustrations for the transmission pulse and
transmission pulse intensity versus the spatial coordinates y/A and
x/A. At the parameters of A; =0.2T', A; =0.2T, AP =0I, ¢ =7/2,
G5 =50, 0=1/4, ¢,,5=0, and 7, = 1/T, nonlinearity is smaller
along the x-axis and the pulse is spread, whereas along the y-
axis, nonlinearity is larger and the pulse is more localized in the
transmission pulse spectrum. The transmission pulse E,(x,y) is a
vector of bright and dark soliton behaviors at y = 0 along the x-axis.
At approximately y = 01 along the x-axis on both sides, dark soliton
behaviors exist in the transmission pulse pattern, as presented in
Figure 5a, and their clear density plots are shown in Figure 5c. The
intensity of the transmission pulse I,(x,y) = |E,(x, y)l2 is uniform
along the x-axis and more localized along the y-axis and is a function
of x/A and y/A. The transmission pulse intensity varies from 0% to
50%. A large Gaussian bright intensity distribution is investigated at
approximately y = 0A throughout the variation along the x-axis. The
intensity is more localized along one of the spatial coordinates, the
y-axis, due to larger nonlinearity and spread along the other spatial
coordinate, the x-axis, due to smaller nonlinearity. Furthermore,
the intensity peak is Gaussian and has the minimum uncertainty,
as shown in Figure 5b. This is clearer in the density plot of the
transmission spectrum in Figure 5d.
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FIGURE 2
Reflection pulse and reflection pulse intensity versus the spatial axes x/A and y/A. The proposed parameters are yz, 44 4543 = 2I, Ay = 0.2T, Az =0.2T, A, =

OT, ¢ =7/2, Gy 5 =51, 0=n/3, ¢, =n/4, 10 =1/T, ¢, = /6, and ¢ = 7/3. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c) is the density plot
of (a), and panel (d) is the density plot of (b).
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FIGURE 3
Transmission pulse and transmission pulse intensity versus wavelength-normalized x and y positions. The proposed parameters are ys, 41 45 43 = 2I, Ay =

0.2T, A3 =0.2T, A, =0T, 9 =71/2, Gy, 5 =51, 0=1/3, ¢; = 11/6, ¢, = n/4, 5 =n/3, and 75 = 1/T. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c)
is the density plot of (a), and panel (d) is the density plot of (b).
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FIGURE 4

Reflection pulse and reflection pulse intensity versus wavelength-normalized x and y positions. The proposed parameters are ys, 41 4, 43 = 2I' Ay = 0.2T,
A3=0.2T, A, =0T, 9 =71/2, Gy 53 =5, 0=7/4, ¢, ,5 =0, and 7, = 1/T. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c) is the density plot of
(a), and panel (d) is the density plot of (b).
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FIGURE 5

Transmission pulse and transmission pulse intensity versus wavelength-normalized x and y positions. The proposed parameters are ys, 41 45 43 = 2I, Ay =
0.2T, A3 =0.2T, A, =0T, 9 =71/2, Gy, 5= 5T, 0=1/4, ¢, , =0, and 75 = 1/T. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c) is the density
plot of (a), and panel (d) is the density plot of (b).
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4 Conclusion

The formation of spatial bright solitons in the reflected and
transmitted pulses, along with their intensities, is examined in
a sodium atomic medium by applying control fields shaped as
Gaussian Milnor polynomials. A four-level sodium atomic system
is driven by a weak probe field and three control fields, with the
control fields having the Gaussian Milnor polynomial profile, to
control and tune the bright and dark solitons in the reflected and
transmitted beams. The density matrix formalism is utilized to
calculate the electric susceptibility of the medium, and the dielectric
function is derived from it. The reflection and transmission
coefficients are determined using this dielectric function. These
coefficients are then used to obtain the reflected and transmitted
pulses and their respective intensities. Finally, the behavior of the
reflected and transmitted pulses and their intensities is analyzed
by plotting them against spatial coordinates normalized to the
free-space wavelength of light. Significant bright and dark ring-
shaped solitons are controlled by balancing nonlinearity and
anomalous/normal dispersion along the two spatial coordinates. The
intensity is more localized along one of the spatial coordinates due
to larger nonlinearity and spread along other spatial coordinate
due to smaller nonlinearity in the reflection pulse. A circular
crater-type bright soliton intensity is also controlled around the
origin of the x and y coordinates, having varying intensity at the
circumference length. A large bright intensity peak around the
origin is investigated, which has intensity minima at the center in
the reflection. The intensity peaks are enhanced in one of the spatial
coordinates and localized in the other coordinate in reflection.
A large Gaussian-type bright solitonic intensity distribution is
investigated at approximately y = 0A throughout the variation along
the x-axis in the transmission pulse pattern. The reflection and
transmission pulse intensities both vary from 0% to 40%, and at
least 20% of the intensity of the incident pulse is lost. The maximum
of the reflection pulse intensity is 40%, and the maximum of the
transmission pulse intensity is 40%. The total sum of the reflection
and transmission pulses are 80%, and the remaining 20% energy of
the pulse is lost in the medium to other forms of energy, such as heat
and internal molecular configuration.
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