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The generation of spatial bright solitons of reflection and transmission pulses 
and their intensities are investigated in a sodium atomic medium using 
Gaussian Milnor polynomial control fields. Significant bright and dark ring-
shaped solitons are controlled by balancing nonlinearity and dispersion along 
two spatial coordinates. The intensity is more localized along one of the 
spatial coordinates due to larger nonlinearity and spread along other spatial 
coordinates due to smaller nonlinearity in the reflection pulse. A circular, 
crater-type bright soliton intensity is also maintained around the origin of the 
x and y coordinates, exhibiting varying intensity along the circumference. A 
large, bright intensity peak is observed around the origin, with the intensity 
minima at the center in reflection. The intensity peaks are enhanced in one 
of the spatial coordinates and localized in another coordinate in reflection. 
A large Gaussian-type bright solitonic intensity distribution is investigated 
at approximately y = 0λ throughout the variation along the x-axis in the 
transmission pulse pattern. The reflection and transmission pulse intensities vary 
from 0% to 40%, and at least 20% of the intensity of the incident pulse is lost 
by attenuation. The modified results are useful in optical communications, fiber 
optics, optical computation, signal processing, radar technology, and artificial
neural networks.
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 1 Introduction

Solitons are spatial waves that stay together as they travel because the medium’s 
nonlinearity and spreading effects cancel each other out. The word “soliton” is used for 
a wave that looks like a single, short pulse that can pass through another similar pulse 
without changing its shape or speed [1]. They occur in various physical systems, such as 
fluids [2], optical fibers [3, 4], plasmas [5], condensed matter systems [6], acoustic media 
[7], and gravitational systems [8, 9]. Solitons have some key properties that distinguish 
them from other wave phenomena. Among these properties, shape preservation [10], stable 
propagation [11, 12], elastic collisions [13], stability [11], localized energy [15], nonlinear
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nature [16, 17], and robustness [18] are the most prominent. Solitons 
remain stable when the spreading effect (dispersion or diffraction) 
and the medium’s nonlinearity cancel each other out at a certain 
level of the applied control field [19]. Because of this balance, strong 
solitons can withstand disturbances such as fluctuations in light 
intensity or phase noise.

The history of solitons spans several centuries and involves 
contributions from multiple fields of science and mathematics. 
Early studies of waves in various media—such as the motion of 
water waves—laid the groundwork for understanding the wave 
behavior. However, the concept of a soliton had not yet formed 
in the early 19th century [20]. John Scott Russell observed 
a phenomenon while traveling along a canal near Edinburgh, 
Scotland. He witnessed a single solitary wave traveling along the 
water that retained its shape and velocity over a long distance 
[21]. Solitons were theoretically developed in the 19th century, 
particularly with Korteweg–de Vries (KdV) equations [20] in 1895. 
The concept of solitons began to mature with the advent of 
nonlinear dynamics and solitary wave theory. In particular, the 
works of Mikhail M. Korteweg and Balthazar de Vries in the 
late 19th century contributed to the refinement of the soliton 
theory [23]. In 1970, the inverse scattering theory and solitons 
in mathematical physics gained great recognition [23]. In 1980, 
solitons played a vital role in nonlinear optics and fiber-optic 
communications [25]. In 2000, solitons were integrated into string 
theory and quantum field theory. Since then, solitons have been 
explored in numerous modern technologies, such as quantum 
computing, secure communication, and advanced optical systems 
[26–28].

Solitons have many types based on the physical systems 
in which they occur and the nature of the balance between 
nonlinearity and dispersion. The main types are bright solitons 
[29], dark solitons [30], vortex solitons [31], breathers [32], sine-
Gordon solitons [33], and Korteweg–de Vries solitons [34], among 
others. Spatial bright solitons are self-trapped light beams that 
can travel through a nonlinear medium without spreading out. 
They form when the medium’s refractive index increases with light 
intensity, focusing the beam and balancing diffraction [35]. Solitons 
in the presence of Milnor polynomials involve studying soliton 
solutions within systems influenced by the structure of Milnor 
polynomials. Milnor polynomials arise in singularity theory and 
are used to describe the behavior of complex systems near critical 
points or singularities. When applied to nonlinear systems, these 
polynomials can introduce new potential landscapes that affect 
soliton dynamics. Solitons have applications in diverse fields of 
science and technology. The concept of solitons finds applications 
across a wide range of disciplines, such as optical communications 
[36–38], plasma physics [39], laser physics [40, 41], fluid dynamics 
[42, 43], magnetism, semiconductor and materials science [44, 
45], chalcogenide glasses [46], nerve impulses [47, 48], fiber 
optics [49], optical computation [50], signal processing [51], radar 
technology [52], microcomb range measurement [53], and artificial 
neural networks [54].

In this work, we study the generation of spatial bright solitons 
of reflection and transmission pulses and their intensities in a 
sodium atomic medium using control fields of Gaussian Milnor 
polynomial. A significant gap in the study of optics will be filled by 
the updated result. 

FIGURE 1
Four-level sodium atomic medium.

2 Model of the atomic system and its 
susceptibility

The sodium atomic system as shown in Figure 1, has a ground 
state |1⟩ and additional states |2,3,4⟩ resulting from hyperfine 
splitting. In this atomic configuration, the probe field with Rabi 
frequency Ωp and detuning Δp couples the lowest energy level |1⟩
to the uppermost state |4⟩. The state |2⟩ connects to levels |3⟩ and 
|4⟩ via control fields with Rabi frequencies Ω3 and Ω1, respectively. 
Similarly, the state |3⟩ interacts with the upper excited state |4⟩
through a control field of Rabi frequency Ω2 and detuning Δ2. The 
associated decay rates are given by γ32, γ41, γ42, and γ43.

The optical behavior of this atomic arrangement interacting with 
the probe and the three control fields is examined by analyzing 
its response. The Hamiltonian for the sodium atomic system 
is constructed in the interaction picture, employing the dipole 
approximation and the rotating wave approximation, in order to 
derive the required atomic susceptibility.

The Hamiltonian representing the configuration in the absence 
of external interactions is expressed as follows:

H0 = ℏω2|2⟩⟨2| + ℏω1|1⟩⟨1| + ℏω4|4⟩⟨4| + ℏω3|3⟩⟨3|. (1)

The Hamiltonian governing the system’s dynamics in the 
interaction picture is expressed as follows:

HI = −
ℏ
2
[Ω1e−iΔ1t|2⟩⟨4| +Ωpe−iΔpt|1⟩⟨4| +Ω3e−iΔ3t|2⟩⟨3|

+Ω2e−iΔ2t|3⟩⟨4|] +H.c.
(2)

Equations 1, 2 represent the complete Hamiltonian of the 
system. The dynamics of the atomic system in the Heisenberg 
picture are governed by the density matrix formalism, which is 
calculated as follows:

d
dt

ρ = − i
ℏ
[HI,ρ] −

1
2
∑γij (−2σρσ† + σ†σρ+ ρσ†σ) . (3)
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In Equation 3, ρ indicates the operator elements of the density 
matrix, whereas σ† and σ denote the creation (raising) and 
annihilation (lowering) operators, respectively. The decay processes 
between the energy levels are described by the coefficients γij for 
i, j = 1,2,3,4. The system yields a set of coupling equations that do 
not explicitly depend on time. At the initial moment, the atoms are 
assumed to be entirely in the ground state |1⟩, which sets the initial 
density element to ρ̃(0)11 = |1⟩. Consequently, the excited states are 
unoccupied at the start, implying that ρ̃(0)44 = ρ̃(0)43 = ρ̃(0)42 = 0. Using a 
first-order perturbative expansion, the density matrix equations can 
be simplified and solved through the use of the following relation:

P =M−1Q. (4)

In Equation 4, X(t) and M are treated as column vectors, whereas 
Y represents a 3× 3 matrix. The resulting expression for the probe 
coherence element, ρ̃14, is given as follows:

ρ̃14 =
−(a2a3 +Ω2

2)Ωp

F− 2i(4a1a2a3 + a3Ω2
1 + a1Ω2

2 + a2Ω2
3)
. (5)

To introduce cross Kerr nonlinearity in ̃ρ14 as shown in Equation 
5, we expanded ρ̃14 in the manner ρ̃14(k) = ρ̃14(0) + I ∂ρ14

∂Ω1
|Ω1−>0, 

where ρ̃14(0) is probe coherence without the Kerr-nonlinearity 
and ∂2

Ω1
ρ̃14|Ω1−>0 shows the cross Kerr effect coherence and I =

Ω2
1 Kerr field intensity. The dispersion is related to the derivative 

of susceptibility with the respected probe detuning, such as 
Dispersion = ∂Re[χ]

∂Δp
,

where

a1 = −
1
2 (γ41 + γ21) + iΔp, a2 = i(−Δ1 +Δp) −

1
2 γ32, a3 = i(−Δ3 +Δp) −

1
2 γ43,

F =Ω1Ω2Ω3 [exp(iφ) + exp(−iφ)] .

The Rabi frequencies of the control light fields in the form of 
Gaussian Minor polynomial are written as follows:

Ω1 = G1 exp[ −r
2

2W
](1− r2 − r4 + r6 − 8r3e3iϕ1) , (6)

Ω2 = G2 exp[ −r
2

2W
](1− r2 − r4 + r6 − 8r3e3iϕ2) , (7)

Ω3 = G3 exp[ −r
2

2W
](1− r2 − r4 + r6 − 8r3e3iϕ3) , (8)

In Equations 6–8, W is the beam waist, G1,2,3 are the associated field 
strengths, and r = √x2 + y2. For this four-level sodium atom scheme, 
the resulting complex susceptibility takes the form. Gaussian Minor 
polynomial generated optical knot behaviors in pulses and was more 
informative than standard Gaussian or Laguerre-Gaussian profiles,

χ =
2N℘2

14

ε0ℏΩp
ρ̃14 (k) , (9)

where, in Equation 9, N represents the atomic density. ε0
corresponds to the permittivity of free space and ℏ is the reduced 
plank constant and

℘14 = √
3ℏγ41ε0λ3

8π2 . (10)

Equation 10 represent the dipole matrix element. The group 
index characterizing the medium can be expressed as follows:

ng = 2πωRe(∂Δpχ) + 2πRe(χ) + 1, (11)

where, in Equation 11, ng is the group index. The group velocity vg
can be written as follows:

vg =
c

2πωRe(∂Δpχ) + 2πRe(χ) + 1
. (12)

The group index expression in Equation 12, show the fast or slow 
propagation of solitons waves. The reflection and transmission are 
written as follows:

R(Δi,x,y,Gi,γij) =
u3 sin (α2) + (ξ2

0 − ξ2
1)ξ1ξ2 sin 2α1 cos (α2)

u2 sin (α2) + ξ1ξ2u1 cos (α2)
,

(13)

T(Δi,x,y,Gi,γij) =
2iξ0ξ2ξ2

1

u2 sin (α2) + ξ1ξ2u1 cos (α2)
, (14)

where, in Equations 13, 14 the terms u1,2,3 are given as

u1 = 2iξ0ξ1 cos 2α1 + (ξ
2
0 + ξ2

1) sin 2α1,
u2 = ξ2

1 (ξ
2
0 + ξ2

2)cos2α1 − (ξ4
1 + ξ2

0ξ2
2) sin2α1 − iξ0ξ1 (ξ2

1 + ξ2
2) sin 2α1,

u3 = ξ2
1 (ξ

2
0 − ξ2

2)cos2α1 + (ξ4
1 − ξ2

0ξ2
2) sin2α1.

At the plane z = 0, the incident probe beam is 
represented as follows:

Ei (x,y) |z=0 =
1

2π
∫
∞

−∞
ei(kzz+kyy)A(ωp,ky)dky, (15)

where, in Equation 15 the term “A” is described as

A(ωp,ky) =
Wy

√2
e−

W2
y(ky−ky0)

2

4 .

The mathematical expressions for the transmitted and reflected 
pulses are given below.

Et (x,y) =
1

2π
∫
∞

−∞
T(x,y,Δi,Gi,γij)A(ωp,ky)e

i(kz(z−L)+kyy)dky, (16)

Er (x,y) =
1

2π
∫
∞

−∞
R(x,y,Δi,Gi,γij)A(ky,ωp)e

i(−kzz+kyy)dky, (17)

In Equations 16, 17, Er(x,y) represents the pulse variation of the 
reflection beam and Et(x,y) represents the pulse variation of the 
transmission beam. These pulses are taken in full domain, and their 
boundaries are from −∞ to +∞. The intensities of the reflection and 
transmission beams are Ir(x,y)R = |Er(x,y)|

2 and It(x,y) = |Et(x,y)|
2, 

respectively. 

3 Results and discussion

The results are presented to demonstrate the generation of spatial 
bright solitons for both the reflected and transmitted pulses, as 
well as their corresponding intensities. This is achieved by applying 
control fields that have a shape described by a Gaussian Milnor 
polynomial within a sodium atomic medium. A decay rate of Γ =
1GHz is used as the reference value, and all other frequency-
related parameters are expressed in units scaled by this decay rate 
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γ. Throughout this work, atomic units are consistently employed for 
all calculations. Furthermore, ω = 1,000γ, d = 2d1 + d2, λ = 2πc/ω, 
r = √x2 + y2. ε1 = 2.2, ε2 = 1+ 4πRe(χ), d1 = 1.5λ, d2 = 15λ, k0 = ω/c, 
and z = 0.1λ. w = 2.5λ, where kz =

2π
λ

cos θ; wy = w sec θ, where ε2 =

1+ χ, ξ0,1 = √ε0,1 − sin2 θ, ξ2 = √ε2 − sin2 θ, α1 =
2π
λ

d1√ε1 − sin2 θ, 
and α2 =

2π
λ

d2ξ2. The nonlinearity is generated by the expansion of 
susceptibility with respect to Rabi frequency Ω1, and higher-order 
Kerr effect is ignored in the system.

In Figure 2, the charts depict the reflection pulse and reflection 
pulse intensity against wavelength-normalized y and x positions 
through a four-level sodium atomic medium. Periodic bright and 
dark soliton behaviors are obtained with variations of y/λ and x/λ. 
Sketches are presented for the reflection pulse and intensity at the 
chosen parameters of Δ1 = 0.2Γ, Δ3 = 0.2Γ, Δp = 0Γ, φ = π/2, G1,2,3 =
5Γ, θ = π/3, ϕ1 = π/6, ϕ3 = π/3, τ0 = 1/Γ, and ϕ2 = π/4. The reflection 
pulse Er(x,y) shows periodic bright and dark soliton behaviors with 
large nonlinearity and minimum dispersion along the y-axis and 
small nonlinearity and larger dispersion along the x-axis. The bright 
soliton is formed by balancing Kerr nonlinearity and anomalous 
dispersion, whereas the dark soliton is formed by balancing Kerr 
nonlinearity and normal dispersion in this work. The pulse is more 
localized along the y-axis due to large nonlinearity and spread along 
the x-axis due to small nonlinearity. Stability is obtained through 
balancing nonlinearity and dispersion, and a stable periodic soliton 
is controlled. The pulse behaviors are periodic mostly along the y-
axis and solitonic vectors along the x-axis. Three bright ring-type 
solitonic shapes are also controlled, as shown in Figure 2a, and their 
clear density plots are shown in Figure 2c. The intensity of reflection 
pulse Ir(x,y) = |Er(x,y)|2 is also a varying function of wavelength-
normalized y and x positions. The reflection pulse intensity varies 
from 0% to 40%.The intensity is more localized along one of 
the spatial coordinates, the y-axis, due to larger nonlinearity and 
spread along the other spatial coordinate, the x-axis, due to smaller 
nonlinearity. A circular ring-type right soliton intensity is also 
controlled around the origin of the x and y coordinates, as shown in 
Figure 2b. This is clearer in their density plots, as shown in Figure 2d.

The graphs in Figure 3 visualize the transmission pulse and 
transmission pulse intensity against wavelength-normalized x and y
positions through a four-level sodium atomic medium. The plots for 
transmission pulse and their intensity are traced at the parameters 
shown in Figure 3. Vector bright and dark soliton behaviors are 
obtained with variations of y/λ and x/λ in the transmission 
pulse. The transmission pulse Et(x,y) shows periodic bright and 
dark soliton behavior along both wavelength-normalized x and y
positions. The nonlinearity is larger along the y-axis and small 
along the x-axis at the mentioned parameters. Stability is obtained 
through balancing nonlinearity and dispersion. The pulse behaviors 
are periodic mostly along the x and y axes and solitonic vectors 
along the x and y axes. Ring-type bright and dark solitonic shapes 
are also controlled, as shown in Figure 3a. The transmission pulse 
density plot is visualized in Figure 3c. The intensity of transmission 
pulse It(x,y) = |Et(x,y)|2 is also a varying function of the spatial 
coordinates x/λ and y/λ. The transmission pulse intensity also 
varies from 0% to 40%.The intensity is more localized along one 
of the spatial coordinates, the y-axis, due to larger nonlinearity and 
spread along the other spatial coordinate, the x-axis, due to smaller 
nonlinearity. A circular crater-type bright soliton intensity is also 

controlled around the origin of the x and y axes, having varying 
intensity at the circumference length, as shown in Figure 3b. This 
is clearer in their density plots shown in Figure 3d.

In Figure 4, illustrations are presented for the reflection pulse 
and reflection pulse intensity against wavelength-normalized x and y
positions through a four-level sodium atomic medium. The periodic 
vectors’ bright and dark soliton behaviors are investigated with 
the variation of wavelength-normalized x and y positions. At the 
parameters of Δ1 = 0.2Γ, Δ3 = 0.2Γ, Δp = 0Γ, φ = π/2, G1,2,3 = 5Γ, θ =
π/4, ϕ1,2,3 = 0, and τ0 = 1/Γ, nonlinearity is smaller along the x-axis, 
and the pulse is spread, whereas nonlinearity is again larger along 
the y-axis, and the pulse is more localized in the reflection pulse 
pattern. The reflection pulse Er(x,y) shows periodic bright and dark 
soliton behavior with large nonlinearity and minimum dispersion 
along the y-axis and small nonlinearity and larger dispersion along 
the x-axis. The pulse is more localized along the y-axis due to large 
nonlinearity and spread along the x-axis due to small nonlinearity. 
The pulse behavior is mostly localized along the y-axis and solitonic 
along the x-axis of the spatial coordinates. A bright ring soliton at 
the origin and a larger circular bright ring soliton around the origin 
are investigated. Furthermore, at y = 0λ along the x-axis, a periodic 
dark soliton is investigated, whereas around the x-axis, y ≠ 0 on 
both sides, bright solitons are controlled, as presented in Figure 4a, 
and their clear density plots are shown in Figure 4c. The intensity 
of the reflection pulse Ir(x,y) = |Er(x,y)|2 is also a strong varying 
function of wavelength-normalized axes x/λ and y/λ. The reflection 
pulse intensity varies from 0% to 1.5%. A large bright intensity peak 
around the origin is investigated, which has intensity minima at the 
center at the origin. The intensity is more localized along one of 
the spatial coordinates, the y-axis, due to larger nonlinearity and 
spread along the other spatial coordinate, the x-axis, due to smaller 
nonlinearity. The intensity peaks are enhanced in one of the spatial 
coordinates (x-axis) and localized in the other coordinate (y-axis) 
in reflection, as shown in Figure 4b. This is clearer in their density 
plots, as shown in Figure 4d.

Figure 5 presents the illustrations for the transmission pulse and 
transmission pulse intensity versus the spatial coordinates y/λ and 
x/λ. At the parameters of Δ1 = 0.2Γ, Δ3 = 0.2Γ, Δp = 0Γ, φ = π/2, 
G1,2,3 = 5Γ, θ = π/4, ϕ1,2,3 = 0, and τ0 = 1/Γ, nonlinearity is smaller 
along the x-axis and the pulse is spread, whereas along the y-
axis, nonlinearity is larger and the pulse is more localized in the 
transmission pulse spectrum. The transmission pulse Et(x,y) is a 
vector of bright and dark soliton behaviors at y = 0λ along the x-axis. 
At approximately y = 0λ along the x-axis on both sides, dark soliton 
behaviors exist in the transmission pulse pattern, as presented in 
Figure 5a, and their clear density plots are shown in Figure 5c. The 
intensity of the transmission pulse It(x,y) = |Er(x,y)|2 is uniform 
along the x-axis and more localized along the y-axis and is a function 
of x/λ and y/λ. The transmission pulse intensity varies from 0% to 
50%. A large Gaussian bright intensity distribution is investigated at 
approximately y = 0λ throughout the variation along the x-axis. The 
intensity is more localized along one of the spatial coordinates, the 
y-axis, due to larger nonlinearity and spread along the other spatial 
coordinate, the x-axis, due to smaller nonlinearity. Furthermore, 
the intensity peak is Gaussian and has the minimum uncertainty, 
as shown in Figure 5b. This is clearer in the density plot of the 
transmission spectrum in Figure 5d. 
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FIGURE 2
Reflection pulse and reflection pulse intensity versus the spatial axes x/λ and y/λ. The proposed parameters are γ32,41,42,43 = 2Γ, Δ1 = 0.2Γ, Δ3 = 0.2Γ, Δp =
0Γ, φ = π/2, G1,2,3 = 5Γ, θ = π/3, ϕ2 = π/4, τ0 = 1/Γ, ϕ1 = π/6, and ϕ3 = π/3. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c) is the density plot 
of (a), and panel (d) is the density plot of (b).

FIGURE 3
Transmission pulse and transmission pulse intensity versus wavelength-normalized x and y positions. The proposed parameters are γ32,41,42,43 = 2Γ, Δ1 =
0.2Γ, Δ3 = 0.2Γ, Δp = 0Γ, φ = π/2, G1,2,3 = 5Γ, θ = π/3, ϕ1 = π/6, ϕ2 = π/4, ϕ3 = π/3, and τ0 = 1/Γ. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c)
is the density plot of (a), and panel (d) is the density plot of (b).
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FIGURE 4
Reflection pulse and reflection pulse intensity versus wavelength-normalized x and y positions. The proposed parameters are γ32,41,42,43 = 2Γ, Δ1 = 0.2Γ, 
Δ3 = 0.2Γ, Δp = 0Γ, φ = π/2, G1,2,3 = 5Γ, θ = π/4, ϕ1,2,3 = 0, and τ0 = 1/Γ. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c) is the density plot of
(a), and panel (d) is the density plot of (b).

FIGURE 5
Transmission pulse and transmission pulse intensity versus wavelength-normalized x and y positions. The proposed parameters are γ32,41,42,43 = 2Γ, Δ1 =
0.2Γ, Δ3 = 0.2Γ, Δp = 0Γ, φ = π/2, G1,2,3 = 5Γ, θ = π/4, ϕ1,2,3 = 0, and τ0 = 1/Γ. Panel (a) is the soliton pulse, panel (b) is its intensity, panel (c) is the density 
plot of (a), and panel (d) is the density plot of (b).
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4 Conclusion

The formation of spatial bright solitons in the reflected and 
transmitted pulses, along with their intensities, is examined in 
a sodium atomic medium by applying control fields shaped as 
Gaussian Milnor polynomials. A four-level sodium atomic system 
is driven by a weak probe field and three control fields, with the 
control fields having the Gaussian Milnor polynomial profile, to 
control and tune the bright and dark solitons in the reflected and 
transmitted beams. The density matrix formalism is utilized to 
calculate the electric susceptibility of the medium, and the dielectric 
function is derived from it. The reflection and transmission 
coefficients are determined using this dielectric function. These 
coefficients are then used to obtain the reflected and transmitted 
pulses and their respective intensities. Finally, the behavior of the 
reflected and transmitted pulses and their intensities is analyzed 
by plotting them against spatial coordinates normalized to the 
free-space wavelength of light. Significant bright and dark ring-
shaped solitons are controlled by balancing nonlinearity and 
anomalous/normal dispersion along the two spatial coordinates. The 
intensity is more localized along one of the spatial coordinates due 
to larger nonlinearity and spread along other spatial coordinate 
due to smaller nonlinearity in the reflection pulse. A circular 
crater-type bright soliton intensity is also controlled around the 
origin of the x and y coordinates, having varying intensity at the 
circumference length. A large bright intensity peak around the 
origin is investigated, which has intensity minima at the center in 
the reflection. The intensity peaks are enhanced in one of the spatial 
coordinates and localized in the other coordinate in reflection. 
A large Gaussian-type bright solitonic intensity distribution is 
investigated at approximately y = 0λ throughout the variation along 
the x-axis in the transmission pulse pattern. The reflection and 
transmission pulse intensities both vary from 0% to 40%, and at 
least 20% of the intensity of the incident pulse is lost. The maximum 
of the reflection pulse intensity is 40%, and the maximum of the 
transmission pulse intensity is 40%. The total sum of the reflection 
and transmission pulses are 80%, and the remaining 20% energy of 
the pulse is lost in the medium to other forms of energy, such as heat 
and internal molecular configuration.
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