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The Global Navigation Satellite System (GNSS) is generally combined with
the Inertial Navigation System (INS) to deliver reliable and high-performance
navigation, particularly in scenarios where GNSS signals may be compromised.
This integration leverages the inherent strengths of both systems to ensure
continuous and accurate positioning. To enhance the robustness and accuracy
of navigation systems in challenging environments, this paper proposes a novel
hybrid integration (HI) approach for GNSS/INS fusion. The system incorporates
a Multiple State Inspection of GNSS Observations (MSI-GO) mechanism, which
dynamically selects the optimal integration mode based on the number of visible
satellites (NoS) and position dilution of precision (PDoP), thereby achieving
a balance between positioning performance and computational efficiency.
Simulation results using an open dataset demonstrate that, compared to
traditional loosely coupled (LC) and tightly coupled (TC) methods, the HI
scheme improves positioning accuracy by approximately 5% while reducing
computational complexity by around 25%. This validates the proposed approach
as both stable and resource-efficient, with strong applicability in real-world
navigation scenarios.

GNSS/INS, hybrid integration, state inspection, position accuracy, computational
complexity

1 Introduction

To achieve globally available, accurate, and dependable navigation services, integration
of the Global Navigation Satellite System (GNSS) [1] and the Inertial Navigation System
(INS) is essential [2]. Together, they ensure seamless coverage with enhanced positioning
performance [3, 4]. The INS is capable of continuously delivering information on a
vehicle’s position, velocity, and orientation, thereby effectively supporting and improving the
accuracy of GPS-based navigation and positioning [5]. When GNSS signals become weak
or unavailable, the integrated GNSS/INS system can rely on INS-derived position data to
maintain continuous navigation support [6, 7]. Moreover, the high-precision positioning
output from GPS can be used to update the INS through filtering techniques, effectively
mitigating the accumulated drift in INS navigation parameters and enhancing the overall
accuracy of the system [8, 9]. Therefore, the strengths and weaknesses of GNSS and INS
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effectively offset each other, making their integration one of the
most efficient and reliable approaches to achieve robust navigation
[10, 11].

Based on the degree of data integration and fusion complexity,
GNSS/INS coupled navigation systems can be classified into loosely
coupled (LC), tightly coupled (TC), and deeply coupled (DC) types
[12-14]. Developing a deeply coupled GNSS/INS system requires
utilizing specific variables from the GNSS receiver’s signal tracking
loop, which differentiates it from LC/TC GNSS/INS systems [15, 16].
Since the GPS receiver typically provides the user’s position, velocity,
and associated mean square error estimates, LC integration can be
achieved when the outputs from the GNSS receiver and the INS
subsystem are synchronized and match in value [17]. This makes
it feasible for virtually anyone to implement GNSS/INS integration.
Furthermore, if the receiver offers detailed GPS observations along
with their associated mean square errors, the essential requirements
for TC GNSS/INS integration are fulfilled [18, 19]. Given their
low implementation complexity and strong robustness, research on
LC/TC GNSS/INS systems remains highly valuable and relevant in
practical applications [20-23]. Currently, the research directions can
be classified into four categories: (1) Data Processing Software and
Algorithms; (2) Navigation Algorithm; (3) Performance Evaluation
and Optimization; (4) Fusion with Other Sensors.

(1) Data Processing Software and Algorithms: fundamental
research [15]. Places strong emphasis on the precision and
dependability of the softwares performance, recognizing them
as essential for achieving consistent and trustworthy results.
Additionally, the article rigorously tests the software under diverse
operational conditions-including dynamic, obstructed, and GNSS-
denied environments—and benchmarks its performance against
comparable systems, highlighting its competitive advantages
in accuracy, stability, and resilience [24]. Introduces GINav, a
MATLAB-based software specifically developed for processing and
analyzing data from GNSS/INS integrated navigation systems. The
software supports a range of functions, including data visualization
and error analysis, making it a valuable resource for research and
practical implementation. These efforts underscore the crucial role
of GNSS/INS data processing platforms in diverse application
fields and demonstrate how targeted software development and
validation can significantly enhance navigational accuracy and
system reliability. (2) Navigation Algorithm: traditional research
[25]. Proposes an algorithm to further low-end GNSS/INS
systems used for land vehicle navigation [26]. Introduces using
of “signals of opportunity” to enhance the performance of an
INS [27]. Explores the application of a cubature Kalman filter
with enhanced adaptability and robustness in TC GNSS/INS
systems. (3) Performance Evaluation and Optimization: engineering
research [28]. Suggests employing Allan variance to assess the
relative accuracy of GNSS/INS on different time scales [29]. Also
evaluates the performance of TC GPS/BDS/INS integration based
on carrier phase measurements under GNSS-degraded and GNSS-
denied conditions [30]. Assesses the accuracy and reliability of
LC/TC GNSS/INS systems in practical urban environments [31].
Suggests a multi-receiver strategy to improve the performance
of TC GNSS/MEMS-IMU systems. Moreover [32], Investigates
how adaptive and fading factors influence the performance of
filtering algorithms in GNSS/INS systems, and [33] proposes a low-
cost GNSS/INS combination method for developed land vehicle
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performance [34]. Proposes a robust vehicular navigation solution
by integrating multi-antenna GNSS with inertial sensors/odometer
measurements [35]. Presents a motion-constrained GNSS/INS
integration approach utilizing a backpropagation (BP) neural
network for enhanced navigation accuracy. Collectively, these
investigations promote the progressive optimization of GNSS/INS
fusion strategies, emphasizing higher accuracy, improved system
resilience, and broader environmental adaptability. (4) Fusion
with Other Sensors: frontier research [36]. Improves GNSS/INS
navigation performance in harsh environments through the
application of adaptive information fusion techniques [37].
Introduces a real-time kinematic (RTK) solution supported by
an inertial navigation algorithm tailored for smartphone-based
pedestrian tracking, which significantly enhances positioning
accuracy in challenging urban environments [27]. Introduces a
novel fuzzy strong tracking cubature Kalman filter (KF) tailored
for GNSS/INS integration, demonstrating superior navigation
accuracy and robustness compared to conventional algorithms
[38]. Proposes a MEMS-IMU-based autonomous navigation
algorithm designed to enhance the positioning accuracy of UAV
platforms. Navigation accuracy and robustness under various flight
scenarios have been successfully verified. Additionally, studies by
other researchers demonstrate that integrating an RTK receiver
into GNSS/INS systems improves positioning precision in both
railway measurement [39] and hydrographic survey [40] tasks, with
analyses revealing performance gains and influencing parameters.
A novel selective integration framework using weighted DOP is
proposed by [41] to combine GNSS, visual sensing, and inertial
measurements for robust navigation in GNSS-denied or degraded
environments. Collectively, this body of work contributes valuable
knowledge and innovative solutions to bolster the performance
and robustness of GNSS/INS integration in land and air vehicles,
which is essential for the development of autonomous vehicles and
unmanned systems.

Based on the literature review, achieving both high accuracy and
low computational complexity is critical for real-time positioning
applications Tang et al. [42]; Li et al. [43]; Tang et al. [44]. Tightly
Coupled (TC) GNSS/INS systems provide superior positional
accuracy compared to Loosely Coupled (LC) GNSS/INS, especially
in environments where GNSS signals are degraded. However, LC
GNSS/INS systems are simpler to implement and deliver reliable
positioning results when GNSS signals are strong, making them
advantageous in such conditions. Given this existing gap, it is
both necessary and timely to develop a novel method that reduces
computational demands without compromising accuracy [45]. To
address this, we propose the HI GNSS/INS system, which integrates
the strengths of both LC and TC modes and employs Multiple State
Inspection of GNSS Observations (MSI-GO) for data processing.
Our approach effectively lowers computational complexity while
ensuring the required positioning accuracy.

2 Fundamental theory

An overview of the commonly used LC and TC GNSS/INS
integration architectures is presented in this section [17].
GNSS/INS  integration commonly
the Kalman Filter [46, 47]. This section aims to provide

Conventional relies on
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FIGURE 1
Strap-down Inertial Navigation System (SINS) schematic diagram.
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readers with a comprehensive and clear explanation of the
mathematical principles and architectural designs behind LC and
TC methods.

2.1 GNSS/INS basic mechanisation

Practically, GNSS receivers obtain pseudorange and its rate by
tracking the carrier and code phase of the signals received. These
data are then used to estimate the receiver’s absolute location,
accounting for errors such as atmospheric interference and noise,
thereby improving positional accuracy. Currently, most GNSS/INS
systems utilize Strapdown INS (SINS). The overall framework of the
standard SINS algorithm is shown in Figure 1.

The position estimation here virtually
accomplished through the update of C, which involves data
regarding the latitude and longitude [15]; [48]. Table 1 indicates
the definitions which apply to all symbols depicted in Figure 1.

horizontal is

The INS works discretely, and the IMU typically provides results
for delta-angle Aéfb and delta-velocity Af/j’f. Accordingly, we utilize
discrete integration algorithms to convert these measurements into
navigation quantities. The digital algorithm for velocity update can
be written in a general format as Equation 1.

n_ .n n n
V=V, +Avf,k+Avg/wnk (1)
Av; Jcor 18 the velocity increment due to the gravity and Coriolis

force. Av}ﬁ . represents the velocity increment due to the specific
force. They can be written respectively as Equation 2 and Equation 3.

Av;/cor,k = [gn - (2(022 + wgn) X vn]k—osAtk )
17 Ank) n(k-1) ,  b(k-1)
no_
AV} =3 [Chy +T] ) avy 3)
b(k-1) 1 1
Avg = Avjﬁ)k + EM" X Avj’(’k * 1 (Aek_l X Avji,k + Av}b,,k_1 X Aek) (4)
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TABLE 1 Definitions of symbol in SINS algorithm.

Symbol Definition
b-frame the body frame (east-north-up)
i-frame the inertial frame (non-rotating with respect to the Earth)
n-frame the navigation frame (east-north-up)
e-frame the Earth-Centered, Earth-Fixed (ECEF) frame (rotates with the
Earth)
Vit the specific force (output of the accelerometers)
wfb the angular rate of the b-frame relative to the i-frame in b-frame
C the rotation matrix from the b-frame to the n-frame
C; the rotation matrix from the e-frame to the n-frame (representing
horizontal position)
wﬁb the angular rate of the b-frame relative to the n-frame in the
b-frame
) the angular rate of the n-frame relative to the i-frame in the
n-frame
!, the angular rate of the n-frame relative to the e-frame in the
n-frame
wl, the angular rate of the e-frame relative to the i-frame in the
n-frame
], the angular rate of the e-frame relative to the i-frame in the
e-frame
g/ the normal gravity in the local position in the n-frame
v" the velocity in the n-frame
h the ellipsoid height
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where I is an identity matrix. b(k) and n(k) denote the b-
frame and n-frame at time ¢, in Equation 3. In Equation 4, %Aﬂk X

b 1 b b
Aviy 5 (At‘)k,1 XAV AV ><A9k)

is sculling correction. These two parts are necessary, as concurrent

is the rotation correction.

integration of angular rate and linear acceleration is unattainable in
a digital implementation.

The quaternion form is utilized to update the position, as shown
in Equation 5, for the horizontal position (latitude and longitude)
to prevent numerical integration errors. The height can be updated
independently using Equation 6.

e(k=1) _  e(k-1) n(k-1)

Dy = Dntk-1) * Dugk) )
e(k) _ (k) e(k-1)

D) = Dek-1) * Dni)
hie = hy_y = vp o1 oDt (6)

The attitude quaternion update algorithm can be written as

Equation 7.
nk-1) _ (k1) b(k-1)
Doy = Doe-1) * Doci) @
n(k) _ n(k) n(k-1)
o) = Dnie-1) * Do)
b1y cos[|0-5¢,]
where ¢, = sinf0-56, and ¢, is the b-frame rotation
-5
osed 0 % 1
vector. ¢, can be obtained by Equation 8, where — (A8)_, x Af) is

the second order coning correction term.

1
¢ =00, + T (A6, x AB,) (8)

2.2 Common loosely coupled GNSS/INS
architecture

Figure 2 illustrates the architecture of the LC GNSS/INS system,
where position and velocity outputs from the GNSS are fed into
the Kalman filter to be fused with the inertial navigation data.
In this system, the KF estimates error states (i.e., dx) rather than
the states themselves (i.e., x), due to the nonlinear relationship
between the system states and the measurements. The estimated
states include both navigation variables (i.e., position, velocity, and
attitude) and inertial sensor errors (i.e., bias and scale factor). To
handle this nonlinearity, the centralized Kalman filter adopts a
linearization technique, which corresponds to the Extended Kalman
Filter (EKF).

2.2.1 System dynamics analysis model
A typical error state vector used in case of LC GNSS/INS
architecture is shown in Equation 9.
8xyc = [¢,0r",8v",", V]! )
where misalignment vector is denoted as ¢ = [\, ¢y 6] . The
position error vector and velocity error vector along the east,
north and up directions are denoted as &r" = [8ry,dry,drp]t
and 8v" = [8vy, Ovy, Ovp]T, respectively. Moreover, the gyro and
accelerometer measurement biases along each sensing axis in the
b-frame are represented by &” = [ey, ey,¢,]" and V¥ = [V, V,,V,]",
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correspondingly. The error state dynamic model (i.e., INS error
model) can be derived as Equation 10.

8" = 0r" x (—alh,) + Ov"
o' = Cif’ x ¢ — (20, + wl,) x &v" — (20w, + S,
xv" +38g" + C Vb
1¢=-w!x¢+dw, - Cre’ (10)
; 1
&= —isb +(,
ve--Lvbig
Ty v

where o}, denotes the turn rate of the Earth resolved in n-frame.
The transport rate w}, represents the turn rate of n-frame with
respect to e-frame and ), = !, + w},. The e-frame is a geocentric
coordinate system whose origin is at the Earth’s center of mass. Its
axes are defined as follows: Z-axis: aligned with the Earth’s mean
rotation axis, pointing toward the conventional terrestrial North
Pole. X-axis: points from the Earth’s center to the intersection of the
equator and the prime meridian (0°longitude, Greenwich). Y-axis:
completes the right-handed system, pointing to 90°East longitude
along the equator. Unlike the inertial frame, the Earth-Centered,
Earth-Fixed (ECEF) frame rotates with the Earth, so it is fixed
relative to positions on the Earth's surface. C} is the transformation
matrix from b-frame to n-frame. The error vectors are dw!, and
dw’,. The gravity error dg”, can be expressed as the function of
the position error 8r”, velocity error §v", and misalignment ¢; wf’b
and f? represent the angular rate and specific force measured by
gyros and accelerometers; T, and Ty are the correlation time of
gyros and accelerometers, while {, and {y are the driven noises,
whose parameters can be determined by the Allan variance analysis
or simply found in the IMU technical specifications. The system
dynamic model, as represented by Equation 10, can be expressed in
matrix form as Equation 11.

(11

Ok = Fpng - 0xp + Ggpys - G

where dx; is the INS error state vector at the kth discrete time instant;
(= [(ET, CSV]T is the process noise, which assumes {; ~ N (0,Qy);
Fyg is the system dynamics matrix, which can be used to obtain the
state transition matrix @, ,_, for small time interval [f;_,, ;] which
canbe expressed as @ ;_; = e* (ti), G s is the design matrix that
relates the error states with noise sources.

2.2.2 Measurement model

The LC GNSS/INS utilizes the GNSS receiver-derived position
and velocity (denoted as rfNSS and VENSS, respectively) as the
reference values, which are subsequently compared with the INS
IMU IMU
k k
biases in inertial sensors. To this end, we employ an EKF wherein

outputs (denotedasr,”"~ and v;”"") to estimate navigation errors and

the differences between the reference values and the INS outputs are
utilized as inputs. At time instant k, the EKF measurement 6z£c can
be expressed as Equation 12.

FIMU _ GNSS

é\ZLC _ < 62") ( k k
ko~ IMU _ _ GNSS
0z, v vy

As shown in Figure 3, GNSS antenna and IMU are fixed at
different positions, forming the lever-arm vector €’ from IMU

(12)
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The lever-arm vector description. (a) The lever-arm vector € from IMU center to GNSS phase center. (b) Description with vehicles.

center to GNSS phase center. The measurement model is derived as
Equation 13 with the lever-arm effect corrections. In Figure 3b, the
final GNSS lever arm vector for this vehicle is [1.00, 0.50, 0.80] (m).

0z, =H{C - x + e (13)

where e, = (e, e,)" denotes the GNSS position and velocity noises
. . . T
with covariance matrix E [(efi,efi) . (e;r ,e;fk)] = R, 6y 8 denotes

the Kronecker Delta function, ézic is measurement vector and

)

H ic is the design matrix.
n n n pb
82C = 0z, v~ Tonss Gy
=
0z,

Vv~ Vonss ~ (@3,%) CZ‘-’b -G, (ebx) “’fb

(14)
I3z 033 (Cﬁl’b)x 0353 03,3
Hic 1o I _ (@}, %) (CZ""X) _cn (ebx) 0
3x3 3x3 *CZ (eb « wl.:b) % b 3x3
1
(15)
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2.2.3 Kalman filter
The state-space model for LC GNSS/INS can be expressed more
straightforward in a simpler linear form shown in Equation 16.

0% = @ 16%y + Tip1$iy (16)

0z, = Hi.0x; + e (17)

Assuming the state-space model is exact and the measurement
noises follow a zero-mean Gaussian distribution, it is possible
to solve Equations 16, 17 through standard KFE. This approach
is based on optimizing the objective function formulated
in Equation 18.

. _112
8x = arg min (||axk =0 [+ IH 83, - 6zk||;;1) (18)

where ||8x||1248xT-A- 0x is the estimated state before

measurement update. dx, and Jx] is the estimated state after
measurement update. P, is the covariance matrix of the
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The standard EKF applied in LC GNSS/INS.

predicted state. We define Ay = (P;)_E (6x;—6x;7) and Ay =

1
R, * (H;0x; — 8z), then Equation 19 is obtained.

x] = arg min (A)T(; (P;)flAX; + A{R;lAk) (19)

The solution of standard KF (i.e., optimal estimates of navigation
errors and inertial sensor biases) is obtained by solving this
least-square problem. However, it is important to note that this
solution is highly sensitive to model errors. Therefore, in the
LC GNSS/INS system, a standard KF is utilized, as illustrated
in Figure 4.

2.3 Common tigtly coupled GNSS/INS
architecture

Unlike conventional LC integration, the TC model utilizes
raw GNSS observations such as pseudorange, doppler shift,
carrier-phase, instead of relying on GNSS solutions such as
position and velocity. This approach enables more comprehensive
data fusion. Figure 5 presents the structure of the TC GNSS/INS
algorithm. and highlights the differences between LC and TC in the
yellow dashed box.

2.3.1 System dynamics analysis model

In the TC system model, GNSS-related error states 8x;yss (€.8.,
receiver clock offset § (a?toffse,) and clock drift § (cc?tD”-ﬂ)) should
also be included in the filter error state dx, apart from the error
states dxgyg related to SINS. Oxgg is the same as 0x;., which
depicts the dynamics of INS error. Moreover, there is no direct
interaction between GNSS and SINS error states, while they are
actually related by the measurement model. Therefore, the system
model for GNSS/MEMS-SINS TC integrated navigation can be
represented as Equation 20.
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CSINS

GGNSS> <(GN85> (20)

Oxgns Oxgns

Sk = < ) _ <Fsms 0 >< >+ (Gchs
0% s 0 Finss/ \0%Gnss 0

where 8xgng = [¢,8r”,6v",sb,Vb]T denotes the SINS error state
vector and xgygs = [6(c8toffset),8(c8tD”-ﬂ)]T is the GNSS error
state vector. Fgg and Fyg are the state transition matrixs; (g
and { s are the process noise vectors with the covariance matrix
Qs and Qs> respectively. The difference between LC and TC
models is the dynamics for receiver clock errors. Clock offset and
drift are established according to Equation 21.

8(68t0ffset) = S(C(StDrift) + nOffset

. (21)
8(66tDrift) = ’7Drift

where c0tq . is the receiver clock offset. cdtp,,, is the clock
drift. Given the above modeling, Fgyg Gansss and gygs can
be given by Equation 22.

1 1
»GaNss =

0 ﬂOffset

Fengs = Conss = (22)

Nprift
where 710, set denotes the driven noise of clock offset with the
spectral density qq ., = hoc?/2. Mprife 18 the driven noise of clock
drift with the spectral density gp,,; , = -2 - h_,. hyand h_, are the
Allan variance parameters for the clock error and their typical values
are 2.0 x 107" and 2.0 x 107°.

2.3.2 Measurement model

The TC GNSS/INS integration method utilizes raw observations
~ (n)

"PGNss
GNSS receiver as a reference. The differences between these raw

such as pseudorange pg’i,ss and doppler obtained from the

observations, the computed pseudoranges ﬁg;;\rs’ pseudorange rates
~ (n)

"PsiNg
user are used as inputs to an EKFE. The EKF is used to estimate the

from the INS algorithm’s estimated position and velocity of the
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The schematic of the LC GNSS/INS diagram.

navigation errors and inertial sensors” biases. The KF measurement
at time instant k can be expressed as Equation 23.

z

1)
TC _ P
6zk = (8 )
Zp

(1) (1) ~2) @ (m)  (m) \T
- (PPSINS_PGNSS PsiNs ~ PGNss PSINS_PGNSS)
(0“0 T 2@ 2 ® i _zpm )T
Psins ~"Ponss  Psins ~ 'PGNss PsiNs ~ "PGnss

(23)

where 0z, and 0z, represent pseudorange and doppler KF
measurements, respectively; m denotes the number of the visible
satellites. For the raw observations of the nth GNSS satellite,
systematic error corrections are needed.

/5(anlrss =pM 4 8" — I — T ()
~ (n) . (n) n) (24)
Penss =P +Of

where ﬁ(GnIz,SS and Tpggss are the corrected pseudorange and doppler

measurements at GNSS antenna phase center, respectively; p

and p" are the raw pseudorange and doppler measurements, 1 =
1L,2,...,m. c&t™, 5f<”), I and T are the corrections for satellite
clock offset, satellite clock drift, ionosphere propagation errors,
and troposphere propagation errors, respectively, which can be
obtained from the broadcasted GNSS ephemeris. The corresponding
predicted pseudorange and doppler from the user’s position and
velocity estimated by INS algorithm are expressed in Equation 25.

~(n)
PGNss =
~ (n) _
"PsiNs =

\/(”(") —ranss) T (™ = rongs) + Ot ffeet

(V(n) - "GNss) ul” + Ot pyif

(25)

where ™ and v are the position and velocity of the nth
satellite at the time of GNSS signal transmission, calculated from
GNSS ephemeris; rgygs and vgygs are the position and
velocity of the GNSS antenna at the time of signal arrival,
calculated from SINS outputs; the line-of-sight (LOS) vector is
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u = — (r(") - rGNSS) / ||(r(”) - rGNss)”. The GNSS antenna center
7 onss and the IMU measurement center r gy, which need lever-arm
effect correction, are usually different position shown in Figure 3.
The INS-derived position and velocity at the GNSS antenna center
are obtained by Equation 26.

_ n pb
Tonss = Tsivs + €€

(26)
b b b

Vanss = Vsins ~ (@5, %) Cp€” = C} (L’ X) @i

To obtain Equation 27, substitute Equation 26 into Equation 25

and perform Taylor series expansion.

~(n) (n)
SINS ~ PGNss =
A~ ()~ (n)
sINS ~ 'PGNss =

~uMCEOr" + 8 (cOto i) + €5 o
()
—uMCeSV" + 8(c8tD,,-ﬁ) t+e,

Then, Equation 27 can be written in the matrix form as expressed
in Equation 28.

6z{c = HkTC - 0x) + eZC (28)

T
where e]zc = (ef,l) ef,m)ef.’l) e(pm)) denotes the observation noises
vector; the measurement design matrix H ZC is written in Equation 29.
1
_u( )Cfa 01><3 01><9 1 0
(m) e
-u"C 0 0 1 0
TC _ n 1x3 1x9

H" = (1) e (29)

01,3 —u’C 0 O 1

01,3 _"(m)cfl 09 O 1

Based on the preceding derivations, it is evident that the Tightly
Coupled (TC) GNSS/INS integration method outperforms the
Loosely Coupled (LC) approach in several key areas. Firstly, the TC
framework implicitly accounts for variations in satellite geometry
through the measurement model, effectively incorporating the
effects of Position Dilution of Precision (PDoP). This provides
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FIGURE 6
The details of the equipment used.

the TC system with greater robustness against unfavorable satellite
configurations. Secondly, TC integration maintains the ability to
provide continuous navigation support even when fewer than four
satellites are visible, which is a critical advantage in challenging
environments. Nevertheless, a limitation of the traditional TC
approach isits inherent vulnerability to GNSS measurement outliers,
as it lacks built-in mechanisms to reject or mitigate such anomalies.

3 Evaluation: performance and
computational complexity

This section is dedicated to evaluating and contrasting the
performance and computational burden of LC and TC GNSS/INS
integration strategies. To facilitate this comparison, our team
developed an outdoor pre-experiment platform, which enabled us
to assess and validate both approaches. Some initial experimental
results, accompanied by a brief analysis, have already been
presented. In the subsequent content, a deeper investigation of the
pre-experiment is conducted to identify the potential causes of HI
GNSS/INS anomalies.

3.1 Performance comparison

The pre-experiment was carried out on the campus of Peking
University (PKU) in Beijing, China. As shown in Figure 6, the
Programmable Logic (PL) of Zynq® SoC is used for GNSS baseband
signal processing and MEMS-IMU data collection. While GNSS
positioning algorithm, INS mechanization and ESKF are implemented
with Processing System (PS) of the chip. Table 2 gives the observation
rate of GNSS receiver and MEMS-IMU. In Figure 7a, we designed
and assembled a dedicated experimental system. The GNSS/MEMS-
IMU navigation unit (blue component) executes both LC and TC
algorithms independently under identical environmental conditions
to derive their respective position outputs. Since the performance of
the IMU plays a crucial role in the positioning accuracy of GNSS/INS
integration, we include detailed specifications of the MEMS-IMU
employed in the test. These specifications are summarized in Table 3.
Additionally, a u-blox F9P receiver was utilized to capture high-
precision position data, serving as the ground truth reference.
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TABLE 2 The observation rate of MEMS-IMU and GNSS receiver in
pre-experiment.

Equipment Observation rate ‘
GNSS 5Hz
MEMS-IMU 200 Hz

As illustrated in Figure 7b, the receiver travels from Area One
to Area Two, corresponding to an open square and dense forest.
This route allows for the assessment of positioning performance
under varying GNSS signal conditions. The resulting trajectories
are visualized using Google Earth. Figure 8a presents the movement
paths derived from the receiver shown in Figure 7a. Figure 8b
depicts the horizontal and vertical position errors, clearly indicating
that dense vegetation and surrounding buildings negatively affect
positioning accuracy. The trajectory in Figure 8a reveals that the
receiver traverses four distinct environments, eventually forming
a closed-loop path. These four regions and their corresponding
baselines are approximately marked in Figure 8b. It is evident that
both LC and TC achieve lower positioning errors in the open
square (1) and open square (3), confirming that the quality of
GNSS signals has a direct influence on accuracy. This further
highlights that LC performs more reliably when signal conditions
are favorable.

To quantitatively assess this impact, we adopted the Root
Mean Square Error (RMSE) as the evaluation metric. As defined
in Equation 30, RMSE is commonly utilized to measure the
discrepancy between the observed position P, and the ground
truth Py,. The results presented in Table 4 show that the RMSE of
TC GNSS/INS is lower than that of LC GNSS/INS, suggesting that
the TC approach achieves superior positioning accuracy.

The results of this pre-experiment demonstrate that both LC and TC
methods exhibit a significant improvement in positioning accuracy
when operating in environments with strong GNSS signals, such
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FIGURE 7
Experiment description. (a) Experiment setup. (b) Planned trajectories.

TABLE 3 Specifications of MEMS-IMU in pre-experiment.

Sources Parameter ‘ VALUE
Gyroscope Bias instability 5.1%h
angular random walk 0.78%Vh
Accelerometer Bias instability 0.07mg
velocity random walk 0.87m/s/Nh

as open squares. Under practical conditions, the positioning error
of TC GNSS/INS in these areas is observed to be smaller than
that of LC GNSS/INS. This finding indicates that LC is capable of
delivering high-precision positioning when GNSS signal conditions
are favorable. Moreover, the comparative analysis between LC
and TC suggests that LC remains a dependable solution for
real-world navigation tasks in scenarios where signal quality is
sufficient. Hence, it can be concluded that the quality of GNSS
signals is a decisive factor in achieving reliable and accurate
navigation.

3.2 Computational complexity evaluation

The results of the pre-experiment reveal that GNSS signal quality
plays a pivotal role in the performance of both LC and TC systems in
real-world scenarios. TC exhibits greater robustness under varying
signal conditions, while LC is capable of achieving acceptable
positioning accuracy when GNSS signals remain strong and stable.
Notably, TC leverages Kalman filtering for more sophisticated GNSS
data processing, which enhances accuracy but also introduces higher
computational costs. In contrast, LC features a straightforward
structure and ease of implementation, making it highly practical
for resource-constrained applications. Against this backdrop, this
study aims to investigate the potential advantages of combining
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the complementary features of LC and TC. Before delving into
the integration strategy, it is essential to first analyze and compare
the computational complexity of the LC and TC frameworks, as
presented in the following part.

The computational complexity of the KF correlates with the
dimensions of the state p and the dimensions of the measurement
g, respectively. m is the value of NoS. For LC, the dimensions of
the state of the KF p; - is 5 and the dimensions of the measurement
of the KF g, is 6 (according to Equation 9; Equation 12). For TC,
the dimensions of the state of the KF p, is 7 and the dimensions
of the measurement of the KF g is 2m (m>4) (according
to Equation 20; Equation 21; Equation 23; Equation 24). Table 5
presents a quantitative comparison of the computational complexity
associated with the Kalman Filter in both LC and TC GNSS/INS
systems. Notation O is commonly used to express the worst-case
time complexity of an algorithm. It is the longest time it takes for
an algorithm to execute under the worst-case scenario. MOT; - and
MOT . represents the multiplication operations times (MOT) of KF
in LC and TG, respectively.

The over all COST (O) of the computational complexity
of the KF is O(Q2p*+2¢*+2p*+(2p+1)q®). A more detailed
observation of satellite signals using the Kalman Filter leads to
increased computational complexity, especially when incorporating
the expanded state variables in the TC framework. The exact
multiplication operation times (MOT) for both LC and TC can be
explicitly computed. For instance, the MOT - = 3984 when m = 4,
which is significantly higher than MOT; . = 1037. As a result, LC
demonstrates a clear advantage over TC in terms of computational
efficiency. From the complexity analysis, it is evident that LC
significantly outperforms TC in terms of computational load, while
still maintaining satisfactory positioning accuracy under favorable
GNSS signal conditions. The pre-experiment has comparatively
evaluated both LC and TC with respect to positioning performance
and computational complexity, highlighting the respective strengths
and limitations of each approach. Considering the critical role
these methods play in engineering practice, a balanced evaluation
between accuracy and efficiency is of great importance. Building
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Experiment description. (a) Trajectories shown on Google Earth. (b) Position errors.

TABLE 4 RMSE analysis of position error. subsequently determining the appropriate system mode. The output
. o : o f MSI-GO is a decisi trix, denoted as D, where the value of
RMSE(m) Horizontal position Vertical position ¢ 19 @ CecIsion matr, denoled as &, Where The value o

1 indicates that the system switches to TC mode, and the value of 0

LC GNSS/INS 2.05 1.96 corresponds to LC mode.
Although the overall architecture of the HI GNSS/INS system
TC GNSS/INS 1.95 1.85 remains relatively straightforward, its key innovation lies in the

integration of the MSI-GO module for intelligent mode selection.
As such, it is crucial to conduct an in-depth investigation into
two core aspects of the HI GNSS/INS framework: positioning
upon the insights gained, this study introduces the HI GNSS/INS  accuracy and computational complexity. Initially, MSI-GO performs
integration strategy. a quantitative evaluation of positioning accuracy and GNSS signal
quality under both LC and TC modes to determine which modes
meet predefined accuracy thresholds. This process ensures that the

4 Hybrld integ ration of GNSS / INS system maintains optimal positioning performance. Furthermore,

if the LC mode meets the required accuracy standard, MSI-GO
41 Hybrld integration of GNSS/INS generates a control signal that prompts the system to operate
architecture in the LC combination mode. Given the previously analyzed

computational complexity of LC and TC, this strategy enables
The HI GNSS/INS system leverages the strengths of both LC  the system to significantly reduce the computational complexity
and TC approaches. By dynamically switching between positioning ~ of the system. A comprehensive mathematical formulation of
modes under the management of the MSI-GO, HI GNSS/INS  MSI-GO within the HI GNSS/INS system is presented in the
achieves a balance between positioning accuracy and computational ~ subsequent section.
efficiency. As illustrated in Figure 9, the system architecture
integrates both LC and TC modes. The components proposed

in this stud highlighted within the b dashed b . . .
o s sudy ate ghighted Withi The DIOWR Gashed PO% 4.2 Multiple state inspection of GNSS

in Figure 9. .
MSI-GO functions primarily as a mode selection mechanism, observations (MSI-GO)

relying on Position Dilution of Precision (PDoP) and the Number
of Satellites (NoS) as key indicators. The selection criteria are
formulated based on the evaluation of position outputs and satellite
observation data from both LC and TC modes over a specific

MSI-GO is primarily based on two observations: PDoP and
NoS. The generation process of MSI-GO parameters (MSI-P) is
described. The PDoP and NoS written as Equation 31 are data

time window. A detailed mathematical formulation of this process matrix of PDoP and No§ respectively.

is provided in Section 4.2. The operational workflow of MSI- PDoP PDoP, PDoP, - PDoP,,
GO involves continuously monitoring GNSS signal conditions = (31

upon reception of satellite data, generating control signals, and Nos§ No§, — NoS, - NoSy
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TABLE 5 Computational complexity analysis of Kalman filter in LC and TC.
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Computation COST (O) MOT, - ’ MOT¢
0, = Dy 0%t o(p*) 25 49
T Qe Tp + Dy PO, o(q*) 125 343
K= P;H{(HkP;H{ + Rk)“ o(p* +q* +pq’) 521 343+ m® +49m*
0x) = 8x, + K, (Bz; - Hkéx;) o(p* +4%) 61 49 + m?
P; = (I- KH,) P (I- KH) " +K R K] o(p* +pq®) 305 343 +7m’
Over all 0(2p* +2q° +2p° + 2p +1)g?) 1037 1127 +57m? + m?
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FIGURE 9
The schematic of the HI GNSS/INS diagram.

The Posi,lcm, Pos},[ia and Posg are position results of LC, TC
GNSS/INS and ground truth, respectively. These data are both
measured. The decision matrix D can be obtained based the function
f 4ec given by Equation 32 and Equation 33.

_ LC TC
D=f,. (PosMea,Post,PosGT)

Pos(M)JL\fm — Pos™

GT
=0, < MSI
M Pos(M)}:ga - Pos(M)GT h
= (32)
Du < Pos(M)JLVICm — Pos™ GT 3 ST
M ,Pos(M)TC — Pos™ N h
Mea GT
D=[D, D, Dy] (33)

where M in Equation 31, Equation 32 and Equation 33 is the total
number of epochs.

The MSIyy, plays a crucial role in f;,. as it is a constant that
effectively balances the precision and computational complexity.
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Specifically, a larger MSI;;,, value enhances the precision, while
a smaller MSIyy, value reduces the computational complexity. In
practical applications, the value of MSI;y,,. can be adjusted according
to the precision requirements of the position system. By substituting
Equation 31 and Equation 33 into Equation 34, the resulting value
of MSI-P can be obtained.

where @ = Y™ [D, #0].

As shown in Equation 34, the computation of MSI-P consists

PDoP PDoP
MSI-P = M

NoS,s;

-DT> /Q (34)
NoS

of two primary steps: (1) First, all PDoP and NoS values that
satisfy the predefined positioning accuracy criteria are selected.
(2) Next, the average of these qualified MSI-GO parameters is
computed to derive the final MSI-P value. The initial step ensures
that the system maintains positioning accuracy under the current
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FIGURE 10

Position results of LC and TC. (a) Position results of LC. (b) Position results of TC.

GNSS signal conditions as assessed by MSI-GO. The second step
guarantees that the MSI-GO mode selection strategy remains stable
and representative over a broader temporal window. This design
principle aligns with the operational characteristics of the HI
GNSS/INS framework.

5 Simulation
5.1 Data generation

The HI GNSS/INS system relies on accurately synchronized
GNSS and INS data. To validate the effectiveness of the proposed
method, we employ the MATLAB-based open-source software
GINav in conjunction with the publicly available CPT dataset.
GINav is a versatile GNSS/INS data processing platform that
supports integrated navigation analysis. It is capable of handling
multi-constellation and multi-frequency GNSS data, making it well-
suited for our evaluation tasks [24]. It provides a flexible and
user-friendly platform for testing newly developed algorithms and
experimental features. The CPT dataset, used in this study, was
collected in a suburban driving environment. The data acquisition
system includes a Trimble R10 GNSS receiver and a tactical-
grade IMU, with high-precision reference solutions provided by the
NovAtel SPAN-CPT system. This dataset enables comprehensive
evaluation of various GNSS/INS navigation modes. In this work, we
adopt LC SPP (Standard Point Positioning)/INS and TC SPP/INS
configurations to validate the performance of the proposed HI
GNSS/INS system. The data processing procedure is directly aligned
with the mathematical formulation of the MSI-GO algorithm
presented earlier. The trajectories of LC and TC, corresponding to
Pos:C and Pos'¢

Mea Mea
in Figure 10. Figure 11 shows the position errors of LC and

are displayed on Google Earth as illustrated

TC which are corresponding to Equation 32. These data will
be used in Equation 32 to obtain D. Furthermore, the results are
consistent with the theoretical analysis and the observations made
in the pre-experiment.
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Figure 12 illustrates the PDoP and NoS values for LC
and TC within the HI GNSS/INS framework. These datasets
correspond to the parameters defined in Equation 31 and are
utilized in the calculation of the MSI-P matrix as shown
in Equation 34. Additionally, Figure 12 visually highlights the
substantial fluctuations in GNSS signal quality encountered during
real-world positioning scenarios. For example, in Figure 12a, the
PDoP value enclosed by the red circle indicates poor satellite
geometry and degraded signal quality. An effective PDoP,s; metric
should be sensitive to such fluctuations in order to adapt to
signal degradation. Likewise, an ideal NoS,; should be capable
of recognizing signal quality deterioration when the number of
visible satellites is low, as shown in Figure 12b.

5.2 Results

The specific results of the MSI-P calculation and the position
result of HI GNSS/INS are presented in this section. Figure 13
presents the values of D in every epoch along with x-axis. The total
number of epochs M is 1721. Figure 13 shows the changes of D
between 0 and 1. The denser red lines represent more significant
changes in GNSS signal quality, which match the locations of
drastic changes in PDoP shown in Figure 12a. This suggests that D
accurately reflects changes in GNSS signal quality.

Based on Equation 34 and D, it is able to compute PDoP,,s; and
NoS,s- In this paper, the MSIy, is set as 97%. Table 6 presents
the value of PDoP,s; and NoS,. It indicates that if PDoP,g; <
5.754 and NoS,s; > 6, the MSI-GO will will assess that the current
GNSS signal quality is good and output a control matrix to operate
HI GNSS/INS in LC mode. Moreover, the values of PDoP,s; and
NoS,s; shows that the control of D is generally consistent with the
GNSS signal quality depicted in Figure 12. As shown in Figure 12a,
when PDoP,q; > 5.754, it can be basically considered that the GNSS
signal is in a poor quality stage. Similarly, Figure 12a also reflects
that the GNSS signal quality sharply decreases when there are only
4 or 5 available satellites. Therefore, the values given in Table 6 are
theoretically consistent with the previous analysis.
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Figure 14 presents the trajectory results of the HI  where system resources are limited and ultra-high positioning

GNSS/INS system, which overall exhibits satisfactory positioning
performance. Figure 15 compares the positioning errors of LC, TC,
and HI. As shown, the RMSE values of HI in the east, north, and
up directions are moderately distributed. This suggests that under
the control of MSI-GO, HI employs a mode-switching strategy
that maintains acceptable positioning accuracy while moderately
compromising accuracy to achieve lower computational cost.

In other words, the adaptive mode-switching mechanism of HI
effectively reduces computational complexity without significantly
degrading positioning performance, thus improving the overall
system efficiency. This strategy is especially beneficial in scenarios
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accuracy is not a strict requirement. Moreover, the relatively
moderate RMSE values indicate that the trade-off strategy adopted
by HI does not significantly impair system performance, making it
a practical solution for real-world applications.

To provide a more intuitive evaluation of the positioning
performance of HI, the Average Position Error (APE), defined
in Equation 35, is introduced. APE quantifies the positional
deviation in terms of three-dimensional distance. Furthermore,
computational complexity is assessed by integrating the Number of
Satellites (NoS) observed in each epoch. The results shown in Table 7
indicate that the HI system achieves lower computational complexity
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TABLE 6 Values of MSI-GO parameters.

Parameters VALUE

PDoPy; 5.754

NoS,51 6

compared to TC, while also delivering better positioning accuracy
than LC. These results highlight the strong practical potential of the
HI GNSS/INS approach in real-world applications.

APE = \/(RMSEEAST)2 + (RMSEyorre)? + (RMSEp)*  (35)

The results presented in Table 7 indicate that the HI GNSS/INS
system, under the control of MSI-GO, achieves a favorable
trade-off by reducing computational complexity at the expense
of a slight loss in positioning accuracy. This has significant
implications for the design of positioning systems intended for
use in computationally constrained environments, offering a
practical strategy to balance accuracy and processing demands.
In summary, the HI GNSS/INS framework provides a promising
approach for developing navigation systems capable of maintaining
reliable performance under limited computational resources.
By leveraging this strategy, system designers can achieve a
balance between efficiency and accuracy, enabling broader
applicability and improved adaptability across various practical
scenarios.

5.3 Discussion

Based on the positioning results, a quantitative evaluation
of positioning accuracy and computational complexity can be
conducted, allowing for direct comparison with LC GNSS/INS and
TC GNSS/INS systems. Subsequently, the limitations and potential
drawbacks of the HI GNSS/INS approach are discussed. To facilitate
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this comparison, the Computational Complexity Ratio (CCR) and
the Position Accuracy Ratio (PAR) are defined and formulated in
Equation 36 and Equation 37, respectively.

MOTModel B MOTMode2

CCRModel _ x 100% 36
"Mode2 MOTModeZ ° ( )
APE — APE
PARModel _ _ — Model Mode2  100% (37)
APEMDdeZ

CCR represents the ratio of the reduction in computational
complexity of Model relative to Mode2. The greater the CCR,
the diminished the level of computational complexity. Similarly,
PAR denotes the proportion of enhancement in position accuracy
for Model to Mode2. A larger value of PAR indicates a higher
position accuracy. Table 8 presents the specific results of CCRIT{é,
PAR!Y, CCRIY, PAR!]. Comparing to LC and TC, HI boost the
position accuracy by 4.69% and reduce computational complexity by
around 24.9%. Furthermore, it is worth noting the magnitude of the
numerical value PARJ, = —2.22%. In the previous configuration,
we mentioned setting the MSI,, as 97%, while the corresponding
MSIyy, here is actually 1 - |PARPT%| =97.78%. This demonstrates
that HI is able to achieve a balance between position accuracy and
computational complexity through the MSIy,. control of MSI-GO
which is entirely consistent with our previous theoretical analysis.
Moreover, the sum of |CCR¥é| and |CCRfé| is 24.9% +74.2% =
99.1% = 1. This is attributed to the fact that HI alternates between
LC and TC modes, leading to a computational complexity that is
higher than LC but lower than TC. This behavior is consistent with
the fundamental operating principle of the HI system.

Moreover, the results confirm that HI is capable of effectively
balancing positioning accuracy and computational complexity
across varying GNSS signal conditions. In addition, Table 5 provides
the per-epoch computational costs for LC and TC. The ratio
of LC to TC epochs under MSI-GO was observed during the
experiments. The reported 25% in Table 8 saving for HI was
estimated by combining these two components, rather than from
separately measured wall-clock runtime. The thresholds used in the
experiments were selected from observable statistics of PDoP and
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FIGURE 14

Trajectories of HI GNSS/INS. (a) Trajectories shown on Google Earth. (b) Trajectories in detailed region.
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The position errors of HI-GNSS/INS.
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TABLE 7 Performance analysis of HI GNSS/INS.

Navigation mode MOT APE(m)
LC GNSS/INS 1784677 3.6036
TC GNSS/INS 9098927 3.3585
HI GNSS/INS 6905927 3.4346

TABLE 8 HI GNSS/INS performance evaluation.

Parameters VALUE

CCRIL -24.9%
PAR[L +4.69%
CCR}Y +74.2%
PARYL -2.22%

NoS to approximate the knee of this trade-off, striking a balance
between accuracy and runtime. Importantly, no ground truth was
used during threshold selection, so the design avoids overfitting
and preserves generalizability. The reported results already include
the LC baseline (lowest cost, highest error), the TC baseline
(highest cost, lowest error), and the HI policy operating point in
between. These three points effectively capture the outer bounds
and the achieved compromise. Any ablation sweep of thresholds
would simply interpolate between these reported endpoints,
reproducing the monotonic trade-off already demonstrated
in the results.

Although the HI GNSS/INS technology demonstrates strong
potential for navigation applications, several limitations must be
addressed to fully realize its capabilities: (1) First, the current
HI GNSS/INS framework is not capable of real-time operation.
Achieving real-time functionality requires the integration of
various complex processes and system-level optimizations, which
warrant further research and development. (2) Second, the
validation and deployment of HI GNSS/INS are constrained
by the limited diversity of test environments. To ensure system
robustness and reliability, it is crucial to assess its performance
under a wide range of challenging conditions, such as varying
GNSS signal strengths, environmental dynamics, and application
contexts. In addition, more inclusive data acquisition and analysis
strategies should be adopted to ensure adaptability across diverse
user needs and usage scenarios. (3) Third, the selection of the
optimal MSIy;, threshold for different parameters requires deeper
mathematical investigation and multidimensional parameter
tuning. Furthermore, incorporating novel functions and algorithms
could broaden the system’s adaptability and operational scope,
making it more capable of addressing various real-world navigation
demands.
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In conclusion, further research and development are essential
to build a reliable and efficient HI GNSS/INS system capable
of real-time operation. Moreover, enhancements in testing and
evaluation methodologies are required to thoroughly verify the
system’s robustness and reliability under diverse conditions. Despite
these challenges, the design of MSI-GO lays a solid foundation for
the continued refinement of HI GNSS/INS technology and presents
promising opportunities for future advancements. In particular, a
deeper exploration of the theoretical basis of MSI-GO is critical, and
continued research in this domain is both necessary and valuable.

6 Conclusion

In this work, we propose a Hybrid Integration (HI) GNSS/INS
framework that effectively combines the strengths of traditional
LC and TC methods. The core innovation of the HI GNSS/INS
system lies in its adoption of MSI-GO, which enables feature-
based learning from GNSS observations. This mechanism allows
the system to autonomously switch to the most suitable operating
mode based on real-time signal characteristics, thereby reducing
computational burden while maintaining high positioning accuracy.
Simulation results demonstrate that the proposed HI GNSS/INS
system achieves superior overall performance compared to
conventional LC and TC approaches. Notably, the HI system reduces
computational complexity by approximately 25% relative to TC
mode, while also improving positioning accuracy by about 5%
over LC mode. In summary, the HI GNSS/INS framework offers
a significant advancement in integrated navigation, making it a
promising solution for resource-constrained environments such
as autonomous vehicles, unmanned aerial vehicles (UAVs), and
maritime navigation systems.
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