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Robust GNSS/INS hybrid 
integration based on multi-state 
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The Global Navigation Satellite System (GNSS) is generally combined with 
the Inertial Navigation System (INS) to deliver reliable and high-performance 
navigation, particularly in scenarios where GNSS signals may be compromised. 
This integration leverages the inherent strengths of both systems to ensure 
continuous and accurate positioning. To enhance the robustness and accuracy 
of navigation systems in challenging environments, this paper proposes a novel 
hybrid integration (HI) approach for GNSS/INS fusion. The system incorporates 
a Multiple State Inspection of GNSS Observations (MSI-GO) mechanism, which 
dynamically selects the optimal integration mode based on the number of visible 
satellites (NoS) and position dilution of precision (PDoP), thereby achieving 
a balance between positioning performance and computational efficiency. 
Simulation results using an open dataset demonstrate that, compared to 
traditional loosely coupled (LC) and tightly coupled (TC) methods, the HI 
scheme improves positioning accuracy by approximately 5% while reducing 
computational complexity by around 25%. This validates the proposed approach 
as both stable and resource-efficient, with strong applicability in real-world 
navigation scenarios.
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 1 Introduction

To achieve globally available, accurate, and dependable navigation services, integration 
of the Global Navigation Satellite System (GNSS) [1] and the Inertial Navigation System 
(INS) is essential [2]. Together, they ensure seamless coverage with enhanced positioning 
performance [3, 4]. The INS is capable of continuously delivering information on a 
vehicle’s position, velocity, and orientation, thereby effectively supporting and improving the 
accuracy of GPS-based navigation and positioning [5]. When GNSS signals become weak 
or unavailable, the integrated GNSS/INS system can rely on INS-derived position data to 
maintain continuous navigation support [6, 7]. Moreover, the high-precision positioning 
output from GPS can be used to update the INS through filtering techniques, effectively 
mitigating the accumulated drift in INS navigation parameters and enhancing the overall 
accuracy of the system [8, 9]. Therefore, the strengths and weaknesses of GNSS and INS
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effectively offset each other, making their integration one of the 
most efficient and reliable approaches to achieve robust navigation 
[10, 11].

Based on the degree of data integration and fusion complexity, 
GNSS/INS coupled navigation systems can be classified into loosely 
coupled (LC), tightly coupled (TC), and deeply coupled (DC) types 
[12–14]. Developing a deeply coupled GNSS/INS system requires 
utilizing specific variables from the GNSS receiver’s signal tracking 
loop, which differentiates it from LC/TC GNSS/INS systems [15, 16]. 
Since the GPS receiver typically provides the user’s position, velocity, 
and associated mean square error estimates, LC integration can be 
achieved when the outputs from the GNSS receiver and the INS 
subsystem are synchronized and match in value [17]. This makes 
it feasible for virtually anyone to implement GNSS/INS integration. 
Furthermore, if the receiver offers detailed GPS observations along 
with their associated mean square errors, the essential requirements 
for TC GNSS/INS integration are fulfilled [18, 19]. Given their 
low implementation complexity and strong robustness, research on 
LC/TC GNSS/INS systems remains highly valuable and relevant in 
practical applications [20–23]. Currently, the research directions can 
be classified into four categories: (1) Data Processing Software and 
Algorithms; (2) Navigation Algorithm; (3) Performance Evaluation 
and Optimization; (4) Fusion with Other Sensors.

(1) Data Processing Software and Algorithms: fundamental 
research [15]. Places strong emphasis on the precision and 
dependability of the software’s performance, recognizing them 
as essential for achieving consistent and trustworthy results. 
Additionally, the article rigorously tests the software under diverse 
operational conditions–including dynamic, obstructed, and GNSS-
denied environments–and benchmarks its performance against 
comparable systems, highlighting its competitive advantages 
in accuracy, stability, and resilience [24]. Introduces GINav, a 
MATLAB-based software specifically developed for processing and 
analyzing data from GNSS/INS integrated navigation systems. The 
software supports a range of functions, including data visualization 
and error analysis, making it a valuable resource for research and 
practical implementation. These efforts underscore the crucial role 
of GNSS/INS data processing platforms in diverse application 
fields and demonstrate how targeted software development and 
validation can significantly enhance navigational accuracy and 
system reliability. (2) Navigation Algorithm: traditional research 
[25]. Proposes an algorithm to further low-end GNSS/INS 
systems used for land vehicle navigation [26]. Introduces using 
of “signals of opportunity” to enhance the performance of an 
INS [27]. Explores the application of a cubature Kalman filter 
with enhanced adaptability and robustness in TC GNSS/INS 
systems. (3) Performance Evaluation and Optimization: engineering 
research [28]. Suggests employing Allan variance to assess the 
relative accuracy of GNSS/INS on different time scales [29]. Also 
evaluates the performance of TC GPS/BDS/INS integration based 
on carrier phase measurements under GNSS-degraded and GNSS-
denied conditions [30]. Assesses the accuracy and reliability of 
LC/TC GNSS/INS systems in practical urban environments [31]. 
Suggests a multi-receiver strategy to improve the performance 
of TC GNSS/MEMS-IMU systems. Moreover [32], Investigates 
how adaptive and fading factors influence the performance of 
filtering algorithms in GNSS/INS systems, and [33] proposes a low-
cost GNSS/INS combination method for developed land vehicle 

performance [34]. Proposes a robust vehicular navigation solution 
by integrating multi-antenna GNSS with inertial sensors/odometer 
measurements [35]. Presents a motion-constrained GNSS/INS 
integration approach utilizing a backpropagation (BP) neural 
network for enhanced navigation accuracy. Collectively, these 
investigations promote the progressive optimization of GNSS/INS 
fusion strategies, emphasizing higher accuracy, improved system 
resilience, and broader environmental adaptability. (4) Fusion 
with Other Sensors: frontier research [36]. Improves GNSS/INS 
navigation performance in harsh environments through the 
application of adaptive information fusion techniques [37]. 
Introduces a real-time kinematic (RTK) solution supported by 
an inertial navigation algorithm tailored for smartphone-based 
pedestrian tracking, which significantly enhances positioning 
accuracy in challenging urban environments [27]. Introduces a 
novel fuzzy strong tracking cubature Kalman filter (KF) tailored 
for GNSS/INS integration, demonstrating superior navigation 
accuracy and robustness compared to conventional algorithms 
[38]. Proposes a MEMS-IMU-based autonomous navigation 
algorithm designed to enhance the positioning accuracy of UAV 
platforms. Navigation accuracy and robustness under various flight 
scenarios have been successfully verified. Additionally, studies by 
other researchers demonstrate that integrating an RTK receiver 
into GNSS/INS systems improves positioning precision in both 
railway measurement [39] and hydrographic survey [40] tasks, with 
analyses revealing performance gains and influencing parameters. 
A novel selective integration framework using weighted DOP is 
proposed by [41] to combine GNSS, visual sensing, and inertial 
measurements for robust navigation in GNSS-denied or degraded 
environments. Collectively, this body of work contributes valuable 
knowledge and innovative solutions to bolster the performance 
and robustness of GNSS/INS integration in land and air vehicles, 
which is essential for the development of autonomous vehicles and 
unmanned systems.

Based on the literature review, achieving both high accuracy and 
low computational complexity is critical for real-time positioning 
applications Tang et al. [42]; Li et al. [43]; Tang et al. [44]. Tightly 
Coupled (TC) GNSS/INS systems provide superior positional 
accuracy compared to Loosely Coupled (LC) GNSS/INS, especially 
in environments where GNSS signals are degraded. However, LC 
GNSS/INS systems are simpler to implement and deliver reliable 
positioning results when GNSS signals are strong, making them 
advantageous in such conditions. Given this existing gap, it is 
both necessary and timely to develop a novel method that reduces 
computational demands without compromising accuracy [45]. To 
address this, we propose the HI GNSS/INS system, which integrates 
the strengths of both LC and TC modes and employs Multiple State 
Inspection of GNSS Observations (MSI-GO) for data processing. 
Our approach effectively lowers computational complexity while 
ensuring the required positioning accuracy. 

2 Fundamental theory

An overview of the commonly used LC and TC GNSS/INS 
integration architectures is presented in this section [17]. 
Conventional GNSS/INS integration commonly relies on 
the Kalman Filter [46, 47]. This section aims to provide 
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FIGURE 1
Strap-down Inertial Navigation System (SINS) schematic diagram.

readers with a comprehensive and clear explanation of the 
mathematical principles and architectural designs behind LC and
TC methods. 

2.1 GNSS/INS basic mechanisation

Practically, GNSS receivers obtain pseudorange and its rate by 
tracking the carrier and code phase of the signals received. These 
data are then used to estimate the receiver’s absolute location, 
accounting for errors such as atmospheric interference and noise, 
thereby improving positional accuracy. Currently, most GNSS/INS 
systems utilize Strapdown INS (SINS). The overall framework of the 
standard SINS algorithm is shown in Figure 1.

The horizontal position estimation here is virtually 
accomplished through the update of Cn

e , which involves data 
regarding the latitude and longitude [15]; [48]. Table 1 indicates 
the definitions which apply to all symbols depicted in Figure 1.

The INS works discretely, and the IMU typically provides results 
for delta-angle Δθ̃b

ib and delta-velocity Δṽb
f . Accordingly, we utilize 

discrete integration algorithms to convert these measurements into 
navigation quantities. The digital algorithm for velocity update can 
be written in a general format as Equation 1.

vn
k = v

n
k−1 +Δvn

f ,k +Δvn
g/cor,k (1)

Δvn
g/cor,k is the velocity increment due to the gravity and Coriolis 

force. Δvn
f ,k represents the velocity increment due to the specific 

force. They can be written respectively as Equation 2 and Equation 3.

Δvn
g/cor,k ≈ [g

n − (2ωn
ie +ω

n
en) × vn]k−0.5Δtk (2)

Δvn
f ,k =

1
2
[Cn(k)

n(k−1) + I]C
n(k−1)
b(k−1)Δv

b(k−1)
f ,k (3)

Δvb(k−1)
f,k ≈ Δvb

f,k +
1
2

Δθk ×Δvb
f,k +

1
12
(Δθk−1 ×Δvb

f,k +Δvb
f,k−1 ×Δθk) (4)

TABLE 1  Definitions of symbol in SINS algorithm.

Symbol Definition

b-frame the body frame (east-north-up)

i-frame the inertial frame (non-rotating with respect to the Earth)

n-frame the navigation frame (east-north-up)

e-frame the Earth-Centered, Earth-Fixed (ECEF) frame (rotates with the 
Earth)

f b the specific force (output of the accelerometers)

ωb
ib the angular rate of the b-frame relative to the i-frame in b-frame

Cn
e the rotation matrix from the b-frame to the n-frame

Ce
n the rotation matrix from the e-frame to the n-frame (representing 

horizontal position)

ωb
nb the angular rate of the b-frame relative to the n-frame in the 

b-frame

ωn
in the angular rate of the n-frame relative to the i-frame in the 

n-frame

ωn
en the angular rate of the n-frame relative to the e-frame in the 

n-frame

ωn
ie the angular rate of the e-frame relative to the i-frame in the 

n-frame

ωe
ie the angular rate of the e-frame relative to the i-frame in the 

e-frame

gn
l the normal gravity in the local position in the n-frame

vn the velocity in the n-frame

h the ellipsoid height
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where I  is an identity matrix. b (k) and n (k) denote the b-
frame and n-frame at time tk in Equation 3. In Equation 4, 1

2
Δθk ×

Δvb
f ,k is the rotation correction. 1

12
(Δθk−1 ×Δvb

f ,k +Δvb
f ,k−1 ×Δθk)

is sculling correction. These two parts are necessary, as concurrent 
integration of angular rate and linear acceleration is unattainable in 
a digital implementation.

The quaternion form is utilized to update the position, as shown 
in Equation 5, for the horizontal position (latitude and longitude) 
to prevent numerical integration errors. The height can be updated 
independently using Equation 6.

{
{
{

qe(k−1)
n(k) = q

e(k−1)
n(k−1) ∗ q

n(k−1)
n(k)

qe(k)
n(k) = q

e(k)
e(k−1) ∗ q

e(k−1)
n(k)

(5)

hk = hk−1 − vD,k−1/2Δtk (6)

The attitude quaternion update algorithm can be written as 
Equation 7.

{
{
{

qn(k−1)
b(k) = q

n(k−1)
b(k−1) ∗ q

b(k−1)
b(k)

qn(k)
b(k) = q

n(k)
n(k−1) ∗ q

n(k−1)
b(k)

(7)

where qb(k−1)
b(k) = [

[

cos‖0 ⋅ 5ϕk‖
sin‖0⋅5ϕk‖
‖0⋅5ϕk‖

0 ⋅ 5ϕk

]

]
 and ϕk is the b-frame rotation 

vector. ϕk can be obtained by Equation 8, where 1
12
(Δθk−1 ×Δθk) is 

the second order coning correction term. 

ϕk = Δθk +
1

12
(Δθk−1 ×Δθk) (8)

 

2.2 Common loosely coupled GNSS/INS 
architecture

Figure 2 illustrates the architecture of the LC GNSS/INS system, 
where position and velocity outputs from the GNSS are fed into 
the Kalman filter to be fused with the inertial navigation data. 
In this system, the KF estimates error states (i.e., δx) rather than 
the states themselves (i.e., x), due to the nonlinear relationship 
between the system states and the measurements. The estimated 
states include both navigation variables (i.e., position, velocity, and 
attitude) and inertial sensor errors (i.e., bias and scale factor). To 
handle this nonlinearity, the centralized Kalman filter adopts a 
linearization technique, which corresponds to the Extended Kalman
Filter (EKF).

2.2.1 System dynamics analysis model
A typical error state vector used in case of LC GNSS/INS 

architecture is shown in Equation 9.

δxLC = [ϕ,δrn,δvn,εb, ∆b]T (9)

where misalignment vector is denoted as ϕ = [ϕN,ϕE,ϕD]
T. The 

position error vector and velocity error vector along the east, 
north and up directions are denoted as δrn = [δrN,δrE,δrD]T

and δvn = [δvN,δvE,δvD]
T, respectively. Moreover, the gyro and 

accelerometer measurement biases along each sensing axis in the 
b-frame are represented by εb = [εX,εY,εZ]T and ∆b = [∇X,∇Y,∇Z]T, 

correspondingly. The error state dynamic model (i.e., INS error 
model) can be derived as Equation 10.

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

δ ̇rn = δrn × (−ωn
en) + δvn

δv̇n = Cn
bf

b ×ϕ− (2ωn
ie +ω

n
en) × δvn − (2δωn

ie + δωn
in)

×vn + δgn +Cn
b

∆b

ϕ̇ = −ωn
in ×ϕ+ δωn

in −C
n
bε

b

̇εb = − 1
Tε

εb + ζ ε

̇∆b = − 1
T∇

∆b + ζ∇

(10)

where ωn
ie denotes the turn rate of the Earth resolved in n-frame. 

The transport rate ωn
en represents the turn rate of n-frame with 

respect to e-frame and ωn
in = ω

n
ie +ω

n
en. The e-frame is a geocentric 

coordinate system whose origin is at the Earth’s center of mass. Its 
axes are defined as follows: Z-axis: aligned with the Earth’s mean 
rotation axis, pointing toward the conventional terrestrial North 
Pole. X-axis: points from the Earth’s center to the intersection of the 
equator and the prime meridian (0°longitude, Greenwich). Y-axis: 
completes the right-handed system, pointing to 90°East longitude 
along the equator. Unlike the inertial frame, the Earth-Centered, 
Earth-Fixed (ECEF) frame rotates with the Earth, so it is fixed 
relative to positions on the Earth’s surface. Cn

b  is the transformation 
matrix from b-frame to n-frame. The error vectors are δωn

ie and 
δωn

en. The gravity error δgn, can be expressed as the function of 
the position error δrn, velocity error δvn, and misalignment ϕ; ωb

ib
and f b represent the angular rate and specific force measured by 
gyros and accelerometers; Tε and T∇ are the correlation time of 
gyros and accelerometers, while ζ ε and ζ∇ are the driven noises, 
whose parameters can be determined by the Allan variance analysis 
or simply found in the IMU technical specifications. The system 
dynamic model, as represented by Equation 10, can be expressed in 
matrix form as Equation 11.

δẋk = FSINS ⋅ δxk +GSINS ⋅ ζk (11)

where δxk is the INS error state vector at the kth discrete time instant; 
ζk = [ζT

ε ,ζ∇
ε ]

T is the process noise, which assumes ζk ∼ N (0,Qk); 
FSINS is the system dynamics matrix, which can be used to obtain the 
state transition matrix Φk,k−1 for small time interval [tk−1, tk] which 
can be expressed as Φk,k−1 = eF⋅(tk−tk−1). GSINS is the design matrix that 
relates the error states with noise sources. 

2.2.2 Measurement model
The LC GNSS/INS utilizes the GNSS receiver-derived position 

and velocity (denoted as rGNSS
k  and vGNSS

k , respectively) as the 
reference values, which are subsequently compared with the INS 
outputs (denoted as rIMU

k  and vIMU
k ) to estimate navigation errors and 

biases in inertial sensors. To this end, we employ an EKF wherein 
the differences between the reference values and the INS outputs are 
utilized as inputs. At time instant k, the EKF measurement δzLC

k  can 
be expressed as Equation 12.

δzLC
k = (

δzr

δzv

) = (
rIMU

k − r
GNSS
k

vIMU
k − v

GNSS
k

) (12)

As shown in Figure 3, GNSS antenna and IMU are fixed at 
different positions, forming the lever-arm vector ℓb from IMU 
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FIGURE 2
The schematic of the LC GNSS/INS diagram.

FIGURE 3
The lever-arm vector description. (a) The lever-arm vector ℓb from IMU center to GNSS phase center. (b) Description with vehicles.

center to GNSS phase center. The measurement model is derived as 
Equation 13 with the lever-arm effect corrections. In Figure 3b, the 
final GNSS lever arm vector for this vehicle is [1.00, 0.50, 0.80] (m).

δzLC
k =H

LC
k ⋅ δxk + eLC (13)

where eLC = (er,ev)
T denotes the GNSS position and velocity noises 

with covariance matrix E[(eT
ri,e

T
vi)

T ⋅ (eT
rk,e

T
vk)] = Rkδik. δik denotes 

the Kronecker Delta function, δzLC
k  is measurement vector and 

HLC
k  is the design matrix. 

δzLC
k = (

δzr

δzv

) = (
rn

IMU − r
n
GNSS +C

n
bℓ

b

vn
IMU − v

n
GNSS − (ω

n
in×)C

n
bℓ

b −Cn
b (ℓ

b×)ωb
ib

)

(14)

HLC
k =(

I3×3 03×3 (Cn
bℓ

b)× 03×3 03×3

03×3 I3×3 −[
(ωn

in×)(C
n
bℓ

b×)
+Cn

b (ℓ
b ×ωb

ib)×
] −Cn

b (ℓ
b×) 03×3

)

(15)

2.2.3 Kalman filter
The state-space model for LC GNSS/INS can be expressed more 

straightforward in a simpler linear form shown in Equation 16.

δxk =Φk,k−1δxk−1 + Γk,k−1ζk−1 (16)

δzk =Hkδxk + ek (17)

Assuming the state-space model is exact and the measurement 
noises follow a zero-mean Gaussian distribution, it is possible 
to solve Equations 16, 17 through standard KF. This approach 
is based on optimizing the objective function formulated
in Equation 18.

δx+k = arg min(‖δxk − δx−k‖
2
(P−k)
−1 + ‖Hkδxk − δzk‖

2
R−1k
) (18)

where ‖δx‖2AδxT ⋅A ⋅  δx is the estimated state before 
measurement update. δx−k  and δx+k  is the estimated state after 
measurement update. P−k  is the covariance matrix of the 
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FIGURE 4
The standard EKF applied in LC GNSS/INS.

predicted state. We define ΛX−k
= (P−k)

− 1
2 (δxk − δxk

−) and Λk =

R
− 1

2
k (Hkδxk − δzk), then Equation 19 is obtained. 

x+k = arg min(ΛT
X−k
(P−k)
−1ΛX−k
+ΛT

kR
−1
k Λk) (19)

The solution of standard KF (i.e., optimal estimates of navigation 
errors and inertial sensor biases) is obtained by solving this 
least-square problem. However, it is important to note that this 
solution is highly sensitive to model errors. Therefore, in the 
LC GNSS/INS system, a standard KF is utilized, as illustrated
in Figure 4.

2.3 Common tigtly coupled GNSS/INS 
architecture

Unlike conventional LC integration, the TC model utilizes 
raw GNSS observations such as pseudorange, doppler shift, 
carrier-phase, instead of relying on GNSS solutions such as 
position and velocity. This approach enables more comprehensive 
data fusion. Figure 5 presents the structure of the TC GNSS/INS 
algorithm. and highlights the differences between LC and TC in the 
yellow dashed box.

2.3.1 System dynamics analysis model
In the TC system model, GNSS-related error states δxGNSS (e.g., 

receiver clock offset δ(cδtOffset) and clock drift δ(cδtDri ft)) should 
also be included in the filter error state δx, apart from the error 
states δxSINS related to SINS. δxSINS is the same as δxLC, which 
depicts the dynamics of INS error. Moreover, there is no direct 
interaction between GNSS and SINS error states, while they are 
actually related by the measurement model. Therefore, the system 
model for GNSS/MEMS-SINS TC integrated navigation can be 
represented as Equation 20.

δẋ = (
δẋSINS
δẋGNSS
) = (

FSINS 0
0 FGNSS

)(
δxSINS
δxGNSS
)+(

GGNSS 0
0 GGNSS

)(
ζSINS
ζGNSS
) (20)

 where δxSINS = [ϕ,δrn,δvn,εb, ∆b]T denotes the SINS error state 
vector and δxGNSS = [δ(cδtOffset) ,δ(cδtDri ft)]

T is the GNSS error 
state vector. FSINS and FGNSS are the state transition matrixs; ζSINS
and ζGNSS are the process noise vectors with the covariance matrix 
QSINS and QGNSS, respectively. The difference between LC and TC 
models is the dynamics for receiver clock errors. Clock offset and 
drift are established according to Equation 21.

{
{
{

δ(cδ̇tOffset) = δ(cδtDri ft) + ηOffset

δ(cδ̇tDri ft) = ηDri ft

(21)

where cδtOffset is the receiver clock offset. cδtDri ft is the clock 
drift. Given the above modeling, FSINS, GGNSS, and ζGNSS can 
be given by Equation 22.

FGNSS = [

[

0 1

0 0
]

]
,GGNSS = [

[

1 0

0 1
]

]
,ζGNSS = [

[

ηOffset

ηDri ft

]

]
(22)

where ηOffset set denotes the driven noise of clock offset with the 
spectral density qOffset = h0c2/2. ηDri ft is the driven noise of clock 
drift with the spectral density qDri ft = c2 ⋅ 2π2 ⋅ h−2. h0 and h−2 are the 
Allan variance parameters for the clock error and their typical values 
are 2.0× 10−19 and 2.0× 10−20. 

2.3.2 Measurement model
The TC GNSS/INS integration method utilizes raw observations 

such as pseudorange ̃ρ(n)GNSS and doppler ̃⋅ρ(n)GNSS obtained from the 
GNSS receiver as a reference. The differences between these raw 
observations, the computed pseudoranges ρ̂(n)SINS, pseudorange rates 
̂⋅ρ(n)SINS from the INS algorithm’s estimated position and velocity of the 

user are used as inputs to an EKF. The EKF is used to estimate the 
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FIGURE 5
The schematic of the LC GNSS/INS diagram.

navigation errors and inertial sensors’ biases. The KF measurement 
at time instant k can be expressed as Equation 23.

δzTC
k = (

δzp

δz ṗ

)

= (
(ρ̂ρ̂(1)SINS − ρ̂(1)GNSS ρ̂(2)SINS − ρ̂(2)GNSS ⋅ ⋅ ⋅ ρ̂(m)SINS − ρ̂(m)GNSS)

T

( ̂⋅ρ(1)SINS − ̂⋅ρ
(1)
GNSS ̂⋅ρ

(2)
SINS − ̂⋅ρ

(2)
GNSS ⋅ ⋅ ⋅ ̂⋅ρ

(m)
SINS − ̂⋅ρ

(m)
GNSS)

T)

(23)

where δzρ and δzρ̇ represent pseudorange and doppler KF 
measurements, respectively; m denotes the number of the visible 
satellites. For the raw observations of the nth GNSS satellite, 
systematic error corrections are needed.

{
{
{

̃ρ(n)GNSS = ρ(n) + cδt(n) − I(n) −T (n)

̃⋅ρ(n)GNSS = ρ̇(n) + δ f(n)
(24)

where ̃ρ(n)GNSS and ̃⋅ρ(n)GNSS are the corrected pseudorange and doppler 
measurements at GNSS antenna phase center, respectively; ρ(n)

and ρ̇(n) are the raw pseudorange and doppler measurements, n =
1,2,…,m. cδt(n), δ f(n), I(n), and T(n) are the corrections for satellite 
clock offset, satellite clock drift, ionosphere propagation errors, 
and troposphere propagation errors, respectively, which can be 
obtained from the broadcasted GNSS ephemeris. The corresponding 
predicted pseudorange and doppler from the user’s position and 
velocity estimated by INS algorithm are expressed in Equation 25.

{
{
{

ρ̂(n)GNSS = √(r(n) − rGNSS)
T (r(n) − rGNSS) + cδtOffset

̂⋅ρ(n)SINS = (v
(n) − vGNSS)u(n) + cδtDri ft

(25)

where r(n) and v(n) are the position and velocity of the nth 
satellite at the time of GNSS signal transmission, calculated from 
GNSS ephemeris; rGNSS and vGNSS are the position and 
velocity of the GNSS antenna at the time of signal arrival,
calculated from SINS outputs; the line-of-sight (LOS) vector is 

u(n) = − (r(n) − rGNSS)/‖(r(
n) − rGNSS)‖. The GNSS antenna center 

rGNSS and the IMU measurement center rSINS, which need lever-arm 
effect correction, are usually different position shown in Figure 3. 
The INS-derived position and velocity at the GNSS antenna center 
are obtained by Equation 26.

{
{
{

rGNSS = rSINS +C
n
bℓ

b

vGNSS = vSINS − (ω
n
in×)C

n
bℓ

b −Cn
b (ℓ

b×)ωb
ib

(26)

To obtain Equation 27, substitute Equation 26 into Equation 25 
and perform Taylor series expansion.

{
{
{

ρ̂(n)SINS − ρ(n)GNSS = −u
(n)Ce

nδrn + δ(cδtOffset) + e(n)ρ

̂⋅ρ(n)SINS − ̃⋅ρ
(n)
GNSS = −u

(n)Ce
nδvn + δ(cδtDri ft) + e(n)ρ̇

(27)

Then, Equation 27 can be written in the matrix form as expressed 
in Equation 28.

δzTC
k =H

TC
k ⋅ δxk + e

TC
k (28)

 where eTC
k = (e

(1)
ρ  ⋯ e

(m)
ρ e(1)ρ̇  ⋯ e

(m)
ρ̇ )

T
 denotes the observation noises 

vector; the measurement design matrix HTC
k  is written in Equation 29. 

HTC
k =

(((((((

(

−u(1)Ce
n 01×3 01×9 1 0

⋮ ⋮ ⋮ ⋮ ⋮

−u(m)Ce
n 01×3 01×9 1 0

01×3 −u(1)Ce
n 01×9 0 1

⋮ ⋮ ⋮ ⋮ ⋮

01×3 −u(m)Ce
n 01×9 0 1

)))))))

)

(29)

Based on the preceding derivations, it is evident that the Tightly 
Coupled (TC) GNSS/INS integration method outperforms the 
Loosely Coupled (LC) approach in several key areas. Firstly, the TC 
framework implicitly accounts for variations in satellite geometry 
through the measurement model, effectively incorporating the 
effects of Position Dilution of Precision (PDoP). This provides 
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FIGURE 6
The details of the equipment used.

the TC system with greater robustness against unfavorable satellite 
configurations. Secondly, TC integration maintains the ability to 
provide continuous navigation support even when fewer than four 
satellites are visible, which is a critical advantage in challenging 
environments. Nevertheless, a limitation of the traditional TC 
approach is its inherent vulnerability to GNSS measurement outliers, 
as it lacks built-in mechanisms to reject or mitigate such anomalies. 

3 Evaluation: performance and 
computational complexity

This section is dedicated to evaluating and contrasting the 
performance and computational burden of LC and TC GNSS/INS 
integration strategies. To facilitate this comparison, our team 
developed an outdoor pre-experiment platform, which enabled us 
to assess and validate both approaches. Some initial experimental 
results, accompanied by a brief analysis, have already been 
presented. In the subsequent content, a deeper investigation of the 
pre-experiment is conducted to identify the potential causes of HI 
GNSS/INS anomalies. 

3.1 Performance comparison

The pre-experiment was carried out on the campus of Peking 
University (PKU) in Beijing, China. As shown in Figure 6, the 
Programmable Logic (PL) of ZynqⓇ SoC is used for GNSS baseband 
signal processing and MEMS-IMU data collection. While GNSS 
positioning algorithm, INS mechanization and ESKF are implemented 
with Processing System (PS) of the chip. Table 2 gives the observation 
rate of GNSS receiver and MEMS-IMU. In Figure 7a, we designed 
and assembled a dedicated experimental system. The GNSS/MEMS-
IMU navigation unit (blue component) executes both LC and TC 
algorithms independently under identical environmental conditions 
to derive their respective position outputs. Since the performance of 
the IMU plays a crucial role in the positioning accuracy of GNSS/INS 
integration, we include detailed specifications of the MEMS-IMU 
employed in the test. These specifications are summarized in Table 3. 
Additionally, a u-blox F9P receiver was utilized to capture high-
precision position data, serving as the ground truth reference. 

TABLE 2  The observation rate of MEMS-IMU and GNSS receiver in 
pre-experiment.

Equipment Observation rate

GNSS 5 Hz

MEMS-IMU 200 Hz

As illustrated in Figure 7b, the receiver travels from Area One 
to Area Two, corresponding to an open square and dense forest. 
This route allows for the assessment of positioning performance 
under varying GNSS signal conditions. The resulting trajectories 
are visualized using Google Earth. Figure 8a presents the movement 
paths derived from the receiver shown in Figure 7a. Figure 8b 
depicts the horizontal and vertical position errors, clearly indicating 
that dense vegetation and surrounding buildings negatively affect 
positioning accuracy. The trajectory in Figure 8a reveals that the 
receiver traverses four distinct environments, eventually forming 
a closed-loop path. These four regions and their corresponding 
baselines are approximately marked in Figure 8b. It is evident that 
both LC and TC achieve lower positioning errors in the open 
square (1) and open square (3), confirming that the quality of 
GNSS signals has a direct influence on accuracy. This further 
highlights that LC performs more reliably when signal conditions
are favorable.

To quantitatively assess this impact, we adopted the Root 
Mean Square Error (RMSE) as the evaluation metric. As defined 
in Equation 30, RMSE is commonly utilized to measure the 
discrepancy between the observed position Pobs and the ground 
truth Pgt. The results presented in Table 4 show that the RMSE of 
TC GNSS/INS is lower than that of LC GNSS/INS, suggesting that 
the TC approach achieves superior positioning accuracy.

RMSE = √ 1
m

m

∑
i−1
(Pobs − Pgt)

2 (30)

The results of this pre-experiment demonstrate that both LC and TC 
methods exhibit a significant improvement in positioning accuracy 
when operating in environments with strong GNSS signals, such 
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FIGURE 7
Experiment description. (a) Experiment setup. (b) Planned trajectories.

TABLE 3  Specifications of MEMS-IMU in pre-experiment.

Sources Parameter VALUE

Gyroscope Bias instability
angular random walk

5.1°/h
0.78°/√h

Accelerometer Bias instability
velocity random walk

0.07mg
0.87m/s/√h

as open squares. Under practical conditions, the positioning error 
of TC GNSS/INS in these areas is observed to be smaller than 
that of LC GNSS/INS. This finding indicates that LC is capable of 
delivering high-precision positioning when GNSS signal conditions 
are favorable. Moreover, the comparative analysis between LC 
and TC suggests that LC remains a dependable solution for 
real-world navigation tasks in scenarios where signal quality is 
sufficient. Hence, it can be concluded that the quality of GNSS 
signals is a decisive factor in achieving reliable and accurate
navigation. 

3.2 Computational complexity evaluation

The results of the pre-experiment reveal that GNSS signal quality 
plays a pivotal role in the performance of both LC and TC systems in 
real-world scenarios. TC exhibits greater robustness under varying 
signal conditions, while LC is capable of achieving acceptable 
positioning accuracy when GNSS signals remain strong and stable. 
Notably, TC leverages Kalman filtering for more sophisticated GNSS 
data processing, which enhances accuracy but also introduces higher 
computational costs. In contrast, LC features a straightforward 
structure and ease of implementation, making it highly practical 
for resource-constrained applications. Against this backdrop, this 
study aims to investigate the potential advantages of combining 

the complementary features of LC and TC. Before delving into 
the integration strategy, it is essential to first analyze and compare 
the computational complexity of the LC and TC frameworks, as 
presented in the following part.

The computational complexity of the KF correlates with the 
dimensions of the state p and the dimensions of the measurement 
q, respectively. m is the value of NoS. For LC, the dimensions of 
the state of the KF pLC is 5 and the dimensions of the measurement 
of the KF qLC is 6 (according to Equation 9; Equation 12). For TC, 
the dimensions of the state of the KF pTC is 7 and the dimensions 
of the measurement of the KF qTC is 2m (m ≥ 4) (according 
to Equation 20; Equation 21; Equation 23; Equation 24). Table 5 
presents a quantitative comparison of the computational complexity 
associated with the Kalman Filter in both LC and TC GNSS/INS 
systems. Notation O is commonly used to express the worst-case 
time complexity of an algorithm. It is the longest time it takes for 
an algorithm to execute under the worst-case scenario. MOTLC and 
MOTTC represents the multiplication operations times (MOT) of KF 
in LC and TC, respectively.

The over all COST (O) of the computational complexity 
of the KF is O(2p2 + 2q3 + 2p3 + (2p+ 1)q2). A more detailed 
observation of satellite signals using the Kalman Filter leads to 
increased computational complexity, especially when incorporating 
the expanded state variables in the TC framework. The exact 
multiplication operation times (MOT) for both LC and TC can be 
explicitly computed. For instance, the MOTTC = 3984 when m = 4, 
which is significantly higher than MOTLC = 1037. As a result, LC 
demonstrates a clear advantage over TC in terms of computational 
efficiency. From the complexity analysis, it is evident that LC 
significantly outperforms TC in terms of computational load, while 
still maintaining satisfactory positioning accuracy under favorable 
GNSS signal conditions. The pre-experiment has comparatively 
evaluated both LC and TC with respect to positioning performance 
and computational complexity, highlighting the respective strengths 
and limitations of each approach. Considering the critical role 
these methods play in engineering practice, a balanced evaluation 
between accuracy and efficiency is of great importance. Building 
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FIGURE 8
Experiment description. (a) Trajectories shown on Google Earth. (b) Position errors.

TABLE 4  RMSE analysis of position error.

RMSE(m) Horizontal position Vertical position

LC GNSS/INS 2.05 1.96

TC GNSS/INS 1.95 1.85

upon the insights gained, this study introduces the HI GNSS/INS 
integration strategy. 

4 Hybrid integration of GNSS/INS

4.1 Hybrid integration of GNSS/INS 
architecture

The HI GNSS/INS system leverages the strengths of both LC 
and TC approaches. By dynamically switching between positioning 
modes under the management of the MSI-GO, HI GNSS/INS 
achieves a balance between positioning accuracy and computational 
efficiency. As illustrated in Figure 9, the system architecture 
integrates both LC and TC modes. The components proposed 
in this study are highlighted within the brown dashed box
in Figure 9.

MSI-GO functions primarily as a mode selection mechanism, 
relying on Position Dilution of Precision (PDoP) and the Number 
of Satellites (NoS) as key indicators. The selection criteria are 
formulated based on the evaluation of position outputs and satellite 
observation data from both LC and TC modes over a specific 
time window. A detailed mathematical formulation of this process 
is provided in Section 4.2. The operational workflow of MSI-
GO involves continuously monitoring GNSS signal conditions 
upon reception of satellite data, generating control signals, and 

subsequently determining the appropriate system mode. The output 
of MSI-GO is a decision matrix, denoted as D, where the value of 
1 indicates that the system switches to TC mode, and the value of 0 
corresponds to LC mode.

Although the overall architecture of the HI GNSS/INS system 
remains relatively straightforward, its key innovation lies in the 
integration of the MSI-GO module for intelligent mode selection. 
As such, it is crucial to conduct an in-depth investigation into 
two core aspects of the HI GNSS/INS framework: positioning 
accuracy and computational complexity. Initially, MSI-GO performs 
a quantitative evaluation of positioning accuracy and GNSS signal 
quality under both LC and TC modes to determine which modes 
meet predefined accuracy thresholds. This process ensures that the 
system maintains optimal positioning performance. Furthermore, 
if the LC mode meets the required accuracy standard, MSI-GO 
generates a control signal that prompts the system to operate 
in the LC combination mode. Given the previously analyzed 
computational complexity of LC and TC, this strategy enables 
the system to significantly reduce the computational complexity 
of the system. A comprehensive mathematical formulation of 
MSI-GO within the HI GNSS/INS system is presented in the 
subsequent section. 

4.2 Multiple state inspection of GNSS 
observations (MSI-GO)

MSI-GO is primarily based on two observations: PDoP and 
NoS. The generation process of MSI-GO parameters (MSI-P) is 
described. The PDoP and NoS written as Equation 31 are data 
matrix of PDoP and NoS respectively. 

[

[

PDoP

NoS
]

]
= [

[

PDoP1 PDoP2 ⋯ PDoPM

NoS1 NoS2 ⋯ NoSM

]

]
(31)
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TABLE 5  Computational complexity analysis of Kalman filter in LC and TC.

Computation COST (O) MOTLC MOTTC

δx−k =Φk,k−1δx+k−1 O(p2) 25 49

Γk−1Qk−1ΓT
k−1+ Φk,k−1P+k Φt

k,k−1 O(q3) 125 343

Kk = P−k HT
k (HkP−k HT

k +Rk)
−1 O(p3 + q3 + pq2) 521 343+m3 + 49m2

δx+k = δx−k +Kk (δz−k −Hkδx−k) O(p2 + q2) 61 49+m2

P+k = (I−KkHk)P−k (I−KkHk)
T+KkRkKT

k O(p3 + pq2) 305 343+ 7m2

Over all O(2p2 + 2q3 +2p3 + (2p+ 1)q2) 1037 1127+ 57m2 +m3

FIGURE 9
The schematic of the HI GNSS/INS diagram.

The PosLC
Mea, PosTC

Mea and PosGT are position results of LC, TC 
GNSS/INS and ground truth, respectively. These data are both 
measured. The decision matrix D can be obtained based the function 
f dec given by Equation 32 and Equation 33.

D = f dec (Pos
LC
Mea,Pos

TC
Mea,PosGT)

=

{{{{{{
{{{{{{
{

DM = 0,
Pos(M)LC

Mea −Pos(M)GT

Pos(M)TC
Mea −Pos(M)GT

<MSIThr

DM = 1,
Pos(M)LC

Mea −Pos(
M)

GT

Pos(M)TC
Mea −Pos(M)GT

≥MSIThr

(32)

D = [D1 D2 ⋯ DM] (33)

where M in Equation 31, Equation 32 and Equation 33 is the total 
number of epochs.

The MSIThr plays a crucial role in f dec as it is a constant that 
effectively balances the precision and computational complexity. 

Specifically, a larger MSIThr value enhances the precision, while 
a smaller MSIThr value reduces the computational complexity. In 
practical applications, the value of MSIThr can be adjusted according 
to the precision requirements of the position system. By substituting 
Equation 31 and Equation 33 into Equation 34, the resulting value 
of MSI-P can be obtained. 

MSI−P = [

[

PDoPMSI

NoSMSI

]

]
= ([

[

PDoP

NoS
]

]
⋅DT)/Ω (34)

where Ω = ∑M
i=1 [Di ≠ 0].

As shown in Equation 34, the computation of MSI-P consists 
of two primary steps: (1) First, all PDoP and NoS values that 
satisfy the predefined positioning accuracy criteria are selected. 
(2) Next, the average of these qualified MSI-GO parameters is 
computed to derive the final MSI-P value. The initial step ensures 
that the system maintains positioning accuracy under the current 

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1666410
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wang et al. 10.3389/fphy.2025.1666410

FIGURE 10
Position results of LC and TC. (a) Position results of LC. (b) Position results of TC.

GNSS signal conditions as assessed by MSI-GO. The second step 
guarantees that the MSI-GO mode selection strategy remains stable 
and representative over a broader temporal window. This design 
principle aligns with the operational characteristics of the HI 
GNSS/INS framework. 

5 Simulation

5.1 Data generation

The HI GNSS/INS system relies on accurately synchronized 
GNSS and INS data. To validate the effectiveness of the proposed 
method, we employ the MATLAB-based open-source software 
GINav in conjunction with the publicly available CPT dataset. 
GINav is a versatile GNSS/INS data processing platform that 
supports integrated navigation analysis. It is capable of handling 
multi-constellation and multi-frequency GNSS data, making it well-
suited for our evaluation tasks [24]. It provides a flexible and 
user-friendly platform for testing newly developed algorithms and 
experimental features. The CPT dataset, used in this study, was 
collected in a suburban driving environment. The data acquisition 
system includes a Trimble R10 GNSS receiver and a tactical-
grade IMU, with high-precision reference solutions provided by the 
NovAtel SPAN-CPT system. This dataset enables comprehensive 
evaluation of various GNSS/INS navigation modes. In this work, we 
adopt LC SPP (Standard Point Positioning)/INS and TC SPP/INS 
configurations to validate the performance of the proposed HI 
GNSS/INS system. The data processing procedure is directly aligned 
with the mathematical formulation of the MSI-GO algorithm 
presented earlier. The trajectories of LC and TC, corresponding to 
PosLC

Mea and PosTC
Mea are displayed on Google Earth as illustrated 

in Figure 10. Figure 11 shows the position errors of LC and 
TC which are corresponding to Equation 32. These data will 
be used in Equation 32 to obtain D. Furthermore, the results are 
consistent with the theoretical analysis and the observations made 
in the pre-experiment.

Figure 12 illustrates the PDoP and NoS values for LC 
and TC within the HI GNSS/INS framework. These datasets 
correspond to the parameters defined in Equation 31 and are 
utilized in the calculation of the MSI−P matrix as shown 
in Equation 34. Additionally, Figure 12 visually highlights the 
substantial fluctuations in GNSS signal quality encountered during 
real-world positioning scenarios. For example, in Figure 12a, the 
PDoP value enclosed by the red circle indicates poor satellite 
geometry and degraded signal quality. An effective PDoPMSI metric 
should be sensitive to such fluctuations in order to adapt to 
signal degradation. Likewise, an ideal NoSMSI should be capable 
of recognizing signal quality deterioration when the number of 
visible satellites is low, as shown in Figure 12b.

5.2 Results

The specific results of the MSI-P calculation and the position 
result of HI GNSS/INS are presented in this section. Figure 13 
presents the values of D in every epoch along with x-axis. The total 
number of epochs M is 1721. Figure 13 shows the changes of D
between 0 and 1. The denser red lines represent more significant 
changes in GNSS signal quality, which match the locations of 
drastic changes in PDoP shown in Figure 12a. This suggests that D
accurately reflects changes in GNSS signal quality.

Based on Equation 34 and D, it is able to compute PDoPMSI and 
NoSMSI. In this paper, the MSIThr is set as 97%. Table 6 presents 
the value of PDoPMSI and NoSMSI. It indicates that if PDoPMSI <
5.754 and NoSMSI ≥ 6, the MSI-GO will will assess that the current 
GNSS signal quality is good and output a control matrix to operate 
HI GNSS/INS in LC mode. Moreover, the values of PDoPMSI and 
NoSMSI shows that the control of D is generally consistent with the 
GNSS signal quality depicted in Figure 12. As shown in Figure 12a, 
when PDoPMSI > 5.754, it can be basically considered that the GNSS 
signal is in a poor quality stage. Similarly, Figure 12a also reflects 
that the GNSS signal quality sharply decreases when there are only 
4 or 5 available satellites. Therefore, the values given in Table 6 are 
theoretically consistent with the previous analysis.
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FIGURE 11
Position errors. (a) Position errors of LC GNSS/INS. (b) Position errors of TC GNSS/INS.

FIGURE 12
MSI-GO parameters analysis. (a) PDoP. (b) NoS.

Figure 14 presents the trajectory results of the HI 
GNSS/INS system, which overall exhibits satisfactory positioning 
performance. Figure 15 compares the positioning errors of LC, TC, 
and HI. As shown, the RMSE values of HI in the east, north, and 
up directions are moderately distributed. This suggests that under 
the control of MSI-GO, HI employs a mode-switching strategy 
that maintains acceptable positioning accuracy while moderately 
compromising accuracy to achieve lower computational cost.

In other words, the adaptive mode-switching mechanism of HI 
effectively reduces computational complexity without significantly 
degrading positioning performance, thus improving the overall 
system efficiency. This strategy is especially beneficial in scenarios 

where system resources are limited and ultra-high positioning 
accuracy is not a strict requirement. Moreover, the relatively 
moderate RMSE values indicate that the trade-off strategy adopted 
by HI does not significantly impair system performance, making it 
a practical solution for real-world applications.

To provide a more intuitive evaluation of the positioning 
performance of HI, the Average Position Error (APE), defined 
in Equation 35, is introduced. APE quantifies the positional 
deviation in terms of three-dimensional distance. Furthermore, 
computational complexity is assessed by integrating the Number of 
Satellites (NoS) observed in each epoch. The results shown in Table 7 
indicate that the HI system achieves lower computational complexity 
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FIGURE 13
The values of D in every epoch.

TABLE 6  Values of MSI-GO parameters.

Parameters VALUE

PDoPMSI 5.754

NoSMSI 6

compared to TC, while also delivering better positioning accuracy 
than LC. These results highlight the strong practical potential of the 
HI GNSS/INS approach in real-world applications. 

APE = √(RMSEEAST)
2 + (RMSENORTH)

2 + (RMSEUP)
2 (35)

The results presented in Table 7 indicate that the HI GNSS/INS 
system, under the control of MSI-GO, achieves a favorable 
trade-off by reducing computational complexity at the expense 
of a slight loss in positioning accuracy. This has significant 
implications for the design of positioning systems intended for 
use in computationally constrained environments, offering a 
practical strategy to balance accuracy and processing demands. 
In summary, the HI GNSS/INS framework provides a promising 
approach for developing navigation systems capable of maintaining 
reliable performance under limited computational resources. 
By leveraging this strategy, system designers can achieve a 
balance between efficiency and accuracy, enabling broader 
applicability and improved adaptability across various practical
scenarios. 

5.3 Discussion

Based on the positioning results, a quantitative evaluation 
of positioning accuracy and computational complexity can be 
conducted, allowing for direct comparison with LC GNSS/INS and 
TC GNSS/INS systems. Subsequently, the limitations and potential 
drawbacks of the HI GNSS/INS approach are discussed. To facilitate 

this comparison, the Computational Complexity Ratio (CCR) and 
the Position Accuracy Ratio (PAR) are defined and formulated in 
Equation 36 and Equation 37, respectively.

CCRMode1
Mode2 =

MOTMode1 −MOTMode2

MOTMode2
× 100% (36)

PARMode1
Mode2 = −

APEMode1 −APEMode2

APEMode2
× 100% (37)

CCR represents the ratio of the reduction in computational 
complexity of Mode1 relative to Mode2. The greater the CCR, 
the diminished the level of computational complexity. Similarly, 
PAR denotes the proportion of enhancement in position accuracy 
for Mode1 to Mode2. A larger value of PAR indicates a higher 
position accuracy. Table 8 presents the specific results of CCRHI

TC, 
PARHI

LC, CCRHI
LC, PARHI

TC. Comparing to LC and TC, HI boost the 
position accuracy by 4.69% and reduce computational complexity by 
around 24.9%. Furthermore, it is worth noting the magnitude of the 
numerical value PARHI

TC = − 2.22%. In the previous configuration, 
we mentioned setting the MSIThr as 97%, while the corresponding 
MSIThr here is actually 1− |PARHI

TC| = 97.78%. This demonstrates 
that HI is able to achieve a balance between position accuracy and 
computational complexity through the MSIThr control of MSI-GO 
which is entirely consistent with our previous theoretical analysis. 
Moreover, the sum of |CCRHI

TC| and |CCRHI
LC| is 24.9%+ 74.2% =

99.1% ≈ 1. This is attributed to the fact that HI alternates between 
LC and TC modes, leading to a computational complexity that is 
higher than LC but lower than TC. This behavior is consistent with 
the fundamental operating principle of the HI system.

Moreover, the results confirm that HI is capable of effectively 
balancing positioning accuracy and computational complexity 
across varying GNSS signal conditions. In addition, Table 5 provides 
the per-epoch computational costs for LC and TC. The ratio 
of LC to TC epochs under MSI-GO was observed during the 
experiments. The reported 25% in Table 8 saving for HI was 
estimated by combining these two components, rather than from 
separately measured wall-clock runtime. The thresholds used in the 
experiments were selected from observable statistics of PDoP and 
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FIGURE 14
Trajectories of HI GNSS/INS. (a) Trajectories shown on Google Earth. (b) Trajectories in detailed region.

FIGURE 15
The position errors of HI-GNSS/INS.
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TABLE 7  Performance analysis of HI GNSS/INS.

Navigation mode MOT APE(m)

LC GNSS/INS 1784677 3.6036

TC GNSS/INS 9098927 3.3585

HI GNSS/INS 6905927 3.4346

TABLE 8  HI GNSS/INS performance evaluation.

Parameters VALUE

CCRHI
TC −24.9%

PARHI
LC +4.69%

CCRHI
LC +74.2%

PARHI
TC −2.22%

NoS to approximate the knee of this trade-off, striking a balance 
between accuracy and runtime. Importantly, no ground truth was 
used during threshold selection, so the design avoids overfitting 
and preserves generalizability. The reported results already include 
the LC baseline (lowest cost, highest error), the TC baseline 
(highest cost, lowest error), and the HI policy operating point in 
between. These three points effectively capture the outer bounds 
and the achieved compromise. Any ablation sweep of thresholds 
would simply interpolate between these reported endpoints, 
reproducing the monotonic trade-off already demonstrated
in the results.

Although the HI GNSS/INS technology demonstrates strong 
potential for navigation applications, several limitations must be 
addressed to fully realize its capabilities: (1) First, the current 
HI GNSS/INS framework is not capable of real-time operation. 
Achieving real-time functionality requires the integration of 
various complex processes and system-level optimizations, which 
warrant further research and development. (2) Second, the 
validation and deployment of HI GNSS/INS are constrained 
by the limited diversity of test environments. To ensure system 
robustness and reliability, it is crucial to assess its performance 
under a wide range of challenging conditions, such as varying 
GNSS signal strengths, environmental dynamics, and application 
contexts. In addition, more inclusive data acquisition and analysis 
strategies should be adopted to ensure adaptability across diverse 
user needs and usage scenarios. (3) Third, the selection of the 
optimal MSIThr threshold for different parameters requires deeper 
mathematical investigation and multidimensional parameter 
tuning. Furthermore, incorporating novel functions and algorithms 
could broaden the system’s adaptability and operational scope, 
making it more capable of addressing various real-world navigation
demands.

In conclusion, further research and development are essential 
to build a reliable and efficient HI GNSS/INS system capable 
of real-time operation. Moreover, enhancements in testing and 
evaluation methodologies are required to thoroughly verify the 
system’s robustness and reliability under diverse conditions. Despite 
these challenges, the design of MSI-GO lays a solid foundation for 
the continued refinement of HI GNSS/INS technology and presents 
promising opportunities for future advancements. In particular, a 
deeper exploration of the theoretical basis of MSI-GO is critical, and 
continued research in this domain is both necessary and valuable. 

6 Conclusion

In this work, we propose a Hybrid Integration (HI) GNSS/INS 
framework that effectively combines the strengths of traditional 
LC and TC methods. The core innovation of the HI GNSS/INS 
system lies in its adoption of MSI-GO, which enables feature-
based learning from GNSS observations. This mechanism allows 
the system to autonomously switch to the most suitable operating 
mode based on real-time signal characteristics, thereby reducing 
computational burden while maintaining high positioning accuracy. 
Simulation results demonstrate that the proposed HI GNSS/INS 
system achieves superior overall performance compared to 
conventional LC and TC approaches. Notably, the HI system reduces 
computational complexity by approximately 25% relative to TC 
mode, while also improving positioning accuracy by about 5%
over LC mode. In summary, the HI GNSS/INS framework offers 
a significant advancement in integrated navigation, making it a 
promising solution for resource-constrained environments such 
as autonomous vehicles, unmanned aerial vehicles (UAVs), and 
maritime navigation systems.
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