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Introduction: With the growing complexity and scale of cyber attacks, 
intrusion detection for unmanned aerial vehicle (UAV) systems has become a 
critical challenge in modern network security. UAVs have unique constraints 
including limited battery life, restricted data-transmission distance, and small 
data-storage capacity, while malicious activities can disrupt their power 
usage, communication, and data storage—highlighting the need for dedicated 
intrusion-detection solutions. Traditional traffic detection methods lack efficient 
modeling of local and global features, making it difficult to capture complex 
data patterns.
Methods: We propose an intrusion detection model integrating machine 
learning and neural networks. First, UAV data is cleaned, and traditional feature 
selection techniques (filtering, packaging, embedding) are used to separate key 
and non-key features. Non-key features are mapped to the key feature subspace 
via CNN + LSTM for feature fusion, and the fused features serve as model 
inputs. Machine learning and neural networks are then combined to detect UAV 
network traffic.
Results: Testing on public datasets ISCXVPN2016, CICIDS2018, TON IoT, and CIC 
IoT 2023 shows that our method improves accuracy by up to 3%, F1 score by up 
to 4%, and recall by up to 3% compared to the three major feature selection 
techniques.
Discussion: The integration of CNN + LSTM enables effective modeling of 
local and global features, addressing the limitations of traditional methods. The 
model’s optimization for feature fusion and UAV-specific constraints ensures it 
is suitable for resource-constrained UAV systems, providing reliable intrusion 
detection.
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 1 Introduction

With the continuous development of drone technology, its application in various 
fields is becoming increasingly widespread, but it also faces many challenges, especially 
network security issues. With the widespread application of unmanned aerial vehicle 
(UAV) systems, network security issues are becoming increasingly prominent. Unmanned 
aerial vehicle systems involve a large amount of data transmission and communication,
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such as flight control data, sensor data, etc. Once these data 
are attacked or leaked, it may lead to serious consequences such 
as unmanned aerial vehicle loss of control and data tampering. 
Therefore, ensuring the security of the communication system 
between UAVs and ground stations is crucial for the normal 
operation of UAV systems.

Intrusion detection system is a fundamental tool used to identify 
different network attacks in a system, and is a key component of 
maintaining network security. It screens and checks system traffic 
entering or leaving system applications, and issues warnings in the 
event of interruptions or abnormal actions.

In recent years, deep methods have gradually been applied to 
intrusion detection systems, and it can be seen from literature 
[1, 2] that traditional deep learning algorithms have been used 
in intrusion detection systems. These traditional deep learning 
models play a significant role in fields characterized by large-scale 
and high-dimensional data [3, 4], but network traffic and system 
data are essentially highly structured, reflecting rich relationships 
between various elements such as IP addresses, protocols, and host 
events. Guo et al. [5] believe that these intrusion detection methods 
based on traditional deep learning only utilize attribute information 
in network traffic, making it difficult to effectively capture these 
intricate relationships and cope with the high dynamics and 
complexity of current networks.

Gao et al. [6] pointed out that nodes in graph neural networks 
(GNNs) can access information from higher-order neighbors, rather 
than only accessing information from first-order neighbors like 
traditional methods. Therefore, GNNs perform well in intrusion 
detection, especially in identifying complex attack patterns. Wu 
et al. [7] proposed an attack detection model for Blockchain-
enabled Internet of Things (BCoT) utilizing a contrastive variational 
autoencoder combined with metric learning to enhance security 
in cloud computing environments. Huang and Lu [8] discussed 
the security, governance, and challenges associated with the 
new generation of cyber-physical-social systems, highlighting key 
considerations for their development and deployment. Meanwhile, 
Wu et al. [9] argue that GNN is a subfield of deep learning that 
leverages the advantages of traditional CNN in both explicit and 
implicit graph structures, GNN can effectively capture complex 
interactions and relationships embedded in graph structures. 
Therefore, due to the natural representation of graph structures in 
networks, data such as network traffic, communication patterns, 
and system logs can be modeled as graphs. Network flow graphs 
or source graphs can be used in conjunction with graph neural 
network methods to detect intrusions. Bilot et al. [10] first outlined 
the feasibility of intrusion detection based on graph neural networks. 
They pointed out that Graph Neural Networks (GNNs) can capture 
the complex relationships in network data through high - order 
neighborhood information, thus effectively identifying abnormal 
behaviors and attack patterns hidden in the graph structure.

In summary unmanned aerial vehicle systems require 
specialized network security solutions because of three operational 
constraints: limited computation and memory on embedded flight 
controllers, constrained energy budget, and intermittent or narrow-
bandwidth telemetry links. Existing intrusion detection research 
often targets data-center or general IoT settings and assumes 
abundant compute or rich labeled data; such assumptions are 
not representative of many deployed UAV systems. A clear gap 

therefore exists between intrusion detection models designed for 
general network contexts and solutions tailored to the operational 
constraints and traffic characteristics of UAV platforms.

To address this gap, the present study proposes a compact 
intrusion detection pipeline that (1) applies targeted feature 
selection to minimize input dimensionality, (2) employs a hybrid 
convolutional–recurrent backbone to jointly model local and 
temporal patterns, and (3) maps lower-importance features into 
the key-feature subspace to recover useful information lost by 
aggressive dimensionality reduction. The goal is to balance detection 
performance with resource-efficiency for edge/in-flight deployment 
scenarios.

The main contributions of this study are summarized as follows: 

1. A resource-aware hybrid model that combines convolutional 
neural networks and long short-term memory networks for 
spatio-temporal feature fusion with an emphasis on model 
compactness for UAV deployment.

2. A pipeline that separates key and non-key features, 
maps non-key features into the key feature space via a 
convolutional–recurrent mapping, and fuses features for 
downstream classification.

3. An empirical evaluation across three public datasets 
(ISCXVPN2016, CICIDS2018, TON IoT) demonstrating 
improved detection metrics under constrained input 
dimensionality and a discussion of computational cost (model 
size, inference latency, energy estimate) for edge platforms.

4. A discussion of limitations associated with using general 
network datasets for UAV traffic and suggestions for 
UAV-specific evaluation protocols and domain-adaptation 
strategies.

The remainder of the paper is organized as follows. Section 
II reviews related work and recent trends in metaheuristic-
optimized machine learning for intrusion detection. Section 
III presents the preprocessing, feature-selection ensemble, and 
the convolutional–recurrent architecture. Section IV details the 
datasets, experimental setup, evaluation metrics, and results 
including ablation and per-attack analyses. Section V discusses 
limitations, statistical significance analysis, and deployment 
considerations. Section VI concludes the paper and outlines 
directions for future work. 

2 Related work

According to the architecture of deep learning, the academic 
community divides the methods for intrusion detection in 
unmanned aerial vehicle (UAV) systems and model robustness 
into three categories: intrusion detection based on generative 
architecture, intrusion detection based on discriminative 
architecture, and intrusion detection based on hybrid architecture. 

2.1 Intrusion detection based on 
generative architecture

Intrusion detection based on generative architecture refers to the 
use of the capabilities and architectures of generative models (such 
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as generative adversarial networks, etc.) to detect whether there are 
abnormal intrusion behaviors in networks or systems by learning the 
patterns of normal data. It usually involves a model for generating 
normal data and a mechanism for determining whether the input 
data conforms to the normal pattern to identify intrusions.

Bilot et al. [10] proposed an Intrusion Detection System (IDS) 
framework that utilizes different types of RNNs, namely, LSTM 
networks, Gated Recurrent Units (GRUs), and Simple RNNs. In this 
study, a feature selection algorithm based on XGBoost was used 
to reduce the feature space of each dataset. The results showed 
that XGBoost LSTM achieved the best performance for binary 
classification tasks using NSL-KDD, with a testing accuracy of 
88.13% and a validation accuracy of 99.49%.

Huang et al. [11] proposed a learning-based approach for 
fast splitting and directional mode decision in VVC intra 
prediction, achieving improved efficiency in video coding 
applications. Lu et al. [12] conducted a systematic study on 
the applications of machine learning in composing Internet of 
Things services, outlining current progress and proposing a future 
research agenda.

Syed et al. [13] proposed a new fog cloud based IoT intrusion 
detection framework that combines distributed processing of large-
scale BoTIoT datasets. The framework segments the dataset based 
on attack categories and time series feature selection steps, reducing 
the dataset size by 90%. Subsequently, SimpleRNN and Bi LSTM 
models were used for classification.

In order to avoid inappropriate and redundant features slowing 
down the classification process and causing erroneous decisions that 
affect the performance of IDS, Mushtaq et al. [14] proposed a hybrid 
intrusion detection framework consisting of deep autoencoder (AE), 
LSTM, and Bi LSTM. AE is used to obtain optimal features, 
and then LSTM divides the samples into normal and abnormal 
samples. On the NSL-KDD dataset, the AE-LSTM classification
accuracy is 89%.

Kanna et al. [15] proposed a black widow optimized convolution 
long short-term memory (BWO-CONV-LSTM) network model 
based on MapReduce. The network model is a combination of CNN 
and LSTM neural networks, which combines the advantages of 
both networks and can learn spatiotemporal features with minimal 
complexity. The hyperparameters of the model are optimized 
through BWO. The experimental results show that the BWO-
CONV-LSTM model has high intrusion detection performance on 
the NSL-KDD, ISCX-IDS, UNSW-NB15, and CSE-CIC-IDS2018 
datasets, with accuracies of 98.67%, 97.003%, 98.667%, and 98.25%, 
respectively. It also has fewer false less computation time, and better 
classification coefficients.

Generative methods have broad application prospects in 
intrusion detection systems, which can help improve the accuracy 
and robustness of detection, and are of great significance in dealing 
with complex and ever-changing network security threats. However, 
generative architectures typically require a significant amount of 
computational resources for training, especially when generative 
adversarial networks or deep learning models are complex. 

2.2 Intrusion detection based on 
discriminative architecture

Intrusion detection based on discriminative architecture, that 
is, intrusion detection based on the discriminative architecture, 
is a detection technology that uses a discriminative model. By 
learning a large number of labeled normal and intrusion data, it 
extracts features from them to construct a classifier, and then directly 
classifies the input data to determine whether it is an intrusion 
behavior. It aims to accurately distinguish between normal data and 
intrusion data to ensure system security.

Kanumalli et al. [16] utilized the advantages of CNN and 
bidirectional LSTM to establish a deep learning system for learning 
the spatiotemporal properties of data. By using CNN to discover the 
structure or high-level attributes of the dataset, BiLSTM is used to 
train the long-term and short-term temporal attributes of the data, 
and then integrate them to predict attacks.

Ullah et al. [17] proposed a intrusion detection system using 
transformer-based transfer learning for imbalanced network 
traffic (IDS-INT). The system uses Transformer based transfer 
learning to learn network feature representations and feature 
interactions in imbalanced data. Using synthetic few oversampling 
technique (SMOTE) to balance abnormal traffic and detect minority 
attacks. Extract deep features from balanced network traffic 
using a Convolutional Neural Network (CNN) model. Finally, a 
Convolutional Neural Network Long Short Term Memory Network 
Hybrid Model (CNN-LSTM) was proposed to detect different types 
of attacks from deep features. In addition, baseline experiments 
were conducted using CNN-RNN and CNN-GRU, and IDS-INT 
outperformed the baseline method with 99% precision, 100% recall, 
99% F1 score, and 99.21% accuracy.

Lu et al. [18] conducted a systematic study on the applications 
of machine learning in composing Internet of Things services, 
outlining current progress and proposing a future research agenda.

Ren et al. [19] proposed a new hierarchical CNN Attention 
network called CANET. In CANET, CNN and Attention 
mechanisms are combined to form a CA block that focuses on 
local spatiotemporal feature extraction. The combination of multi-
layer CA blocks can fully learn the multi-level spatiotemporal 
characteristics of network attack data, making it more suitable for 
modern large-scale network intrusion detection systems. Numerous 
experiments have shown that CANET outperforms current state-of-
the-art methods in terms of accuracy, detection rate, and false alarm 
rate. Effectively increased the detection rate of minority groups.

CHEN C et al. [20] proposed an intrusion detection model 
FCNN-SE to address the drawbacks of complex feature extraction 
and insufficient information extraction in existing intrusion 
detection models. Using Fusion Convolutional Neural Network 
(FCNN) to extract multidimensional features from the dataset and 
construct a new dataset, intrusion detection is performed using an 
ensemble learning method based on superposition.

In intrusion detection systems, discriminative methods can 
learn the differences between normal and abnormal behavior 
from known data samples, thereby achieving classification and 
discrimination of unknown data. Compared with generative 
methods, discriminative methods focus more on learning the 
category information of data and do not pay attention to 
the potential distribution of data, making them more efficient 
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in the training process and able to provide more accurate 
and reliable classification results. In the task of dealing with 
intrusion detection, discriminative methods usually exhibit good 
performance, especially suitable for processing large-scale and high-
dimensional network data, and can quickly and accurately identify 
potential security threats. 

2.3 Intrusion detection based on hybrid 
architecture

The hybrid deep network method combines generative and 
discriminative methods, mainly including Generative Adversarial 
Networks (GAN) and Graph Neural Networks.

Park et al. [21] studied generative adversarial networks based 
on reconstruction error and Wasserstein distance, as well as deep 
learning models driven by autoencoders. The system sequentially 
trains the generative model and the autoencoder model, where the 
trained generative model is used to train the autoencoder model. 
Finally, the system trains the prediction model by applying a trained 
generative model and a trained autoencoder encoder, where the 
generative model is used to generate minority class data and the 
encoder is used as a feature extractor. The experimental results show 
that the accuracy of the proposed model on the NSL-KDD dataset 
and UNSW-NB15 dataset reached 93.2% and 87%, respectively. 
In particular, the model demonstrated significant performance in 
detecting R2L and probe type attacks on the NSL-KDD dataset.

Yuan et al. [22] proposed a data balancing method called B-
GAN. It is based on generative adversarial networks and is used to 
solve data imbalance problems. Due to the continuous establishment 
of intrusion detection datasets, the generator and discriminator of 
B-GAN adopt long short-term memory (LSTM) network models, 
which can better capture the features of data and generate high-
quality abnormal samples. By comparing the performance of the 
original dataset and the B-GAN balanced dataset, the experimental 
results show that the performance of these different intrusion 
detection models has been improved to varying degrees.

ALTAF et al. [23] proposed a Node Edge Graph Convolutional 
Network (NE-GCONV) framework, which introduces a graph 
structure with both node and edge features, overcoming the 
limitations of traditional graph convolutional networks, which 
either rely solely on node features or fail to fully utilize edge 
features for intrusion detection. The experimental results show that 
this model outperforms other GNN models in terms of accuracy 
and false positive rate, and has high computational efficiency. 
DUAN G et al. [24] proposed a semi supervised learning intrusion 
detection method based on dynamic line graph neural network 
(DLGNN). This model converts network traffic into a series of 
spatiotemporal graphs. This method further utilizes the natural 
topology of cyberspace and the interactive evolution of host to 
host communication of information, which can more effectively 
learn, analyze, and summarize the characteristics of traffic data to 
effectively distinguish malicious behavior in the network based on 
fewer labeled samples.

Recent research has combined machine learning classifiers with 
metaheuristic optimizers to tune model hyperparameters, select 
features, or coordinate hybrid pipelines for intrusion detection in 
IoT/edge environments. Examples include hybrid convolutional 

plus gradient-boosting systems optimized by modified sine–cosine 
algorithms [25], metaheuristics-tuned two-level frameworks 
targeting metaverse/IoT edge systems [26], and CatBoost-based 
detectors whose hyperparameters are tuned with altered firefly or 
chimp-inspired optimizers [27]. These approaches demonstrate that 
metaheuristic optimization can yield notable gains in detection 
metrics and that hybrid pipelines (CNN + tree-based learners 
or CatBoost) are competitive for constrained environments. 
Representative works include a hybrid CNN–XGBoost [28] pipeline 
tuned with a modified sine–cosine algorithm and recent studies 
on metaheuristics-optimized CatBoost and related two-level 
frameworks.

Intrusion detection based on hybrid architecture can adaptively 
adjust according to the different requirements and attack modes 
of unmanned aerial vehicle systems, and adopt the most suitable 
detection strategies for different attacks [3, 4, 29, 30]. However, 
hybrid architecture involves the coordination of multiple methods 
and models, making the design and implementation more complex 
and increasing the difficulty of development and maintenance.

Our proposed neural network-based unmanned aerial vehicle 
intrusion detection system combines the advantages of generative 
and discriminative methods, making it particularly suitable for 
intrusion detection in unmanned aerial vehicle systems. Firstly, 
we combined traditional feature selection techniques with CNN 
+ LSTM models to optimize the limited computing resources 
of drones. In order to reduce the number of model parameters 
and computational complexity, we selected key features through 
traditional feature selection techniques. We carefully designed 
convolutional kernels in combination with CNN, utilized parameter 
sharing, reasonably set the number of neurons in LSTM, and 
introduced the Dropout mechanism. These measures helped to 
decrease the number of model parameters and computational 
complexity. As a result, the requirements for the UAV’s computing 
power are reduced, enabling it to operate efficiently under 
limited hardware conditions. Secondly, in order to adapt to the 
operational requirements of drones in different environments, the 
CNN + LSTM architecture can simultaneously process spatial and 
temporal features, effectively capturing complex spatiotemporal 
relationships. This not only enhances the ability to recognize 
abnormal behavior, but also demonstrates excellent generalization 
ability and robustness. Finally, our method has been optimized 
in a targeted manner from multiple dimensions to meet the 
security requirements of the communication system between drones 
and ground stations. In the data processing stage, abnormal data 
is first cleaned up. Subsequently, non - numerical features are 
digitally transformed and normalizedaiming to reduce resource 
consumption, improve detection accuracy and efficiency. This 
design adapts to the limited computing power and energy of drones, 
providing reliable warning and decision support. 

3 Our methods

Our method aims to fully ensure the security of the 
communication system between drones and ground stations. By 
combining an improved data feature extraction method with 
machine learning based intrusion detection technology, we propose 
an intrusion detection scheme based on machine learning and 
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LSTM + CNN, which enables drones to detect malicious behavior 
during communication with ground stations. Our solution uses 
feature selection techniques on the basis of preprocessed data, 
aiming not only to reduce the difficulty of training machine 
learning models with full feature data, but also to fit the limited 
computing power and energy of drones. Although feature selection 
technology can generally improve model accuracy by reducing the 
dimensionality of input data, in some low - dimensional scenarios, it 
may lead to a decrease in model accuracy. This is because when the 
feature space is extremely reduced, important information might be 
inadvertently removed. In such cases, the model may lack sufficient 
data characteristics to make accurate predictions, undermining the 
very purpose of using feature selection to enhance performance. 
However, this does not mean that feature selection is ineffective. 
By carefully choosing appropriate feature selection methods and 
evaluating the impact on the model at different dimensionality 
levels, we can mitigate this potential negative effect and still benefit 
from the advantages of dimensionality reduction, such as faster 
training and reduced overfitting risks. Due to the introduction of the 
CNN + LSTM method, the problem of decreased model accuracy in 
low dimensional features caused by feature selection techniques has 
been overcome, and it is well adapted to the limited battery capacity 
of drones, saving resources consumed by drone training models. 

3.1 Overall architecture

The intrusion detection scheme for unmanned aerial vehicle 
systems based on neural networks can be divided into five parts: data 
resource layer, data processing layer, feature selection layer, CNN + 
LSTM layer, and training and testing layer. The overall architecture 
is shown in Figure 1. Among them, the CNN + LSTM layer is 
the core of the entire intrusion detection scheme, responsible for 
extracting spatiotemporal features and judging abnormal behavior 
from preprocessed data.

The data resource layer mainly includes three datasets used, 
providing raw network traffic data. These datasets are the foundation 
for model training and testing.

The core function of the data processing layer is to refine and 
process the raw data provided by the data resource layer. Firstly, 
through data cleaning operations, missing values, infinitesimal 
values, and infinite values in the dataset are identified and cleared 
to ensure the integrity and accuracy of the data. Secondly, for 
non numerical features in the dataset (such as transport layer 
protocol types), symbolic feature digitization methods are used to 
convert them into numerical form, achieving full digitization of 
the dataset for subsequent mathematical modeling and analysis. 
Finally, through normalization processing, features with different 
dimensions and numerical ranges are unified to the same scale, 
eliminating scale differences, thereby improving the efficiency and 
accuracy of model training, and providing a scientific and reasonable 
data foundation for the operation of the feature selection layer.

The main function of the feature selection layer is to use feature 
selection techniques on data from the data processing layer to screen 
out high contribution features, thereby reducing the dimensionality 
of the feature space, lowering the difficulty of model training, 
and improving model accuracy. This article mainly applies three 

mainstream feature selection methods in filtering: chi square, F-
test and mutual information, packaging, and embedded. Using 
statistical methods such as chi square test, F-test, and mutual 
information to automatically select features, reduce the number of 
features, and improve model performance. Packaging is the process 
of encapsulating selected features and preparing them for input into 
the model. Embedded systems directly select features during the 
model training process, using regular expressions, etc., laying the 
foundation for subsequent feature extraction and model training.

The CNN + LSTM layer is capable of processing local features 
(spatial features) and global patterns (temporal dependencies) in 
time-series data, thus enabling more accurate determination of 
whether unmanned aerial vehicles have intrusion behavior. CNN is 
used to extract local features of data and process image or sequence 
data; LSTM is used to process sequential data and capture long-
term dependencies. The combination of the two has played a very 
important role in improving prediction accuracy and robustness for 
processing complex sequence data.

The model training and model testing in the model testing layer 
use training set data to train the model and test set data to evaluate 
the performance of the model, respectively.

By introducing different parameters and variables, the entire 
process from data cleaning to model testing was simulated. 

3.2 Data processing layer

In the actual operation environment of UAV system, the 
collected flight data packets are converted into feature vectors 
for representation after feature extraction. However, these data 
inevitably contain missing values, infinity and infinitesimal values, 
and may also contain non numerical values (such as UAV identifiers, 
flight modes, time stamps, etc.). These types of values cannot be 
directly used for model input, and may even result in inaccurate 
model output. Therefore, it is necessary to clean the data before 
entering it into the model. The method adopted in this paper 
is to delete records containing abnormal data such as missing 
values, infinity and infinitesimal values. For non numerical values, 
numerical mapping is used to convert them to numerical types.

After data cleaning, the values of different features in the data 
set may differ by several orders of magnitude. This unbalanced 
data performance may bring severe challenges to some machine 
learning models, such as affecting the judgment of the model’s 
contribution to each feature, increasing the model training time, 
and even leading to the poor generalization ability of the model. 
Therefore, in order to avoid similar situations, some treatment 
methods are needed to eliminate the adverse effects as far as possible. 
At present, the commonly used means include data normalization 
and standardization. This paper adopts the normalization method, 
which mainly has two strategies. The formulas 1, 2 is as follows: 

x∗ =
x−min (x)

max (x) −min (x)
(1)

x∗ = x− x
max (x) −min (x)

(2)

The normalization approach has the capacity to eliminate the 
interference among different dimensions and can enhance the 
convergence rate and accuracy of certain machine - learning models. 
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FIGURE 1
Overall architecture of intrusion detection for UAV systems based on neural networks.

As mentioned above, there are two normalization methods. The first 
method maps the data onto the interval, while the second one maps 
the data onto the interval. Here, denotes the mean value. 

3.3 Feature selection layer

When dealing with high-dimensional data, dimension curse is 
a difficult problem in many practical machine learning problems. 
For many real world data (such as video analysis), their feature 
space dimensions are usually very high, which leads to a significant 
increase in computing time and space. But in practice, not all 
features are equally important and distinctive, because most of them 
are usually highly related, or even redundant. These redundant 
features usually make the learning method over fitting and difficult 
to interpret. Therefore, it is necessary to apply feature selection 
technology to reduce the data dimension and select the most 
important features. Feature selection can be divided into filtering 
method, packaging method and embedding method. We select the 
most commonly used three categories of five methods, namely, 
chi square (chi2), F-test (f_class), mutual information (mutual_
info), circular feature elimination (RFE) and tree based embedding 
(embedded).

To determine the weights for the feature selection methods (chi-
square, F-test, mutual information) and integrate their results, we 
employed a weighted ensemble approach. Each method’s weight 
was determined through a grid search over weight combinations 
(ranging from 0.1 to 0.5 in increments of 0.1), evaluating their 
impact on model performance using 5-fold cross-validation on the 
ISCXVPN2016, CICIDS2018, and TON IoT datasets. Specifically, 
the chi-square method was assigned a weight of 0.4, F-test 0.3, 

and mutual information 0.3 for ISCXVPN2016, as this combination 
maximized the F1 score (by 2.5% compared to equal weights). For 
CICIDS2018 and TON IoT, weights were adjusted to 0.35, 0.35, and 
0.3, respectively, based on dataset-specific characteristics like feature 
distribution. The integration strategy combined feature rankings 
by calculating a weighted average of scores from each method, 
selecting the top M features (e.g., M = 40 for ISCXVPN2016) 
to form the key feature matrix. This ensemble approach ensured 
robust feature selection by leveraging the complementary strengths 
of statistical significance (chi-square, F-test) and information gain 
(mutual information), enhancing model accuracy and stability 
across diverse datasets.

The key feature matrix and non key feature matrix of each 
sample matrix are generated by filtering method. According to the 
chi square calculation formula, calculate the chi square statistical 
values of each column in each sample matrix, sort all the chi square 
statistical values of each sample matrix by power reduction, and 
form the key characteristic matrix of the sample matrix with all 
the element values in the matrix column corresponding to the first 
M values, and form the non key characteristic matrix with the 
remaining element values; Wherein, D represents the total number 
of columns in each sample matrix.

The chi square calculation formula is as Formula 3:

χ2
i,j =

m

∑
a=1

( f0,j − fe,j)
2

fe,j
  (3)

Where, χ2 and j represent the chi square statistical value of 
the element value in the j column in the i sample matrix, and m 
represents the total number of element values in the jth column of 
the ith sample matrix, a represents the sequence number of element 
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values in the j column of the i sample matrix, f0,j represents the 
actual observation times of all element values in the j column of 
the j sample matrix, fe,j represents the ideal observation times of all 
element values in the j column of the j sample matrix.

According to the F-test formula, calculate the F value of each 
column in the sample matrix, sort all chi square statistical values 
of each sample matrix by descending power, and form the key 
characteristic matrix of the sample matrix by all element values in 
the matrix column corresponding to the first m values, and the 
remaining element values form the non key characteristic matrix. 
The F-test formula is as shown in Formula 4.

Fi,j =

∑k
j=1nj(xj−x)

2

k−1

∑k
j=1∑

nj
i=1(xi,j−xj)

2

n−k

(4)

Where, Fi,j represents the F-test value of the j column feature 
in the j training set matrix, k is the number of categories, j is the 
total number of samples, nj is the j sample, xi,j is the j sample of 
the i category, and j expressed as the mean value of the j category. 
The mean value of x categories, x represents the average value of the 
total sample.

According to the mutual information calculation formula, the 
information gain of each column in each sample matrix is calculated, 
and all the information gains of each sample matrix are sorted by 
descending power. All the element values in the matrix column 
corresponding to the first m values form the key characteristic 
matrix of the training set, and the remaining element values form 
the non key characteristic matrix.

The mutual information calculation formula is 
as follows Formula 5:

Ei,j = −
n

∑
b=1

pi,j log2(pi,j) (5)

Wherein, Ei,j  represent the information gain of the element value 
in the j column of the i training set matrix, and generate vectors from 
all non repeating elements contained in the j column of the i training 
set matrix.

The packaging method generates the key characteristic matrix 
and non key characteristic matrix of the sample matrix. The decision 
tree model is the core tool for feature selection using the wrapper 
method. The two work closely together to achieve the goal of 
screening out key features from high - dimensional data. The 
decision tree model is used to generate the key characteristic matrix 
and non key characteristic matrix of the sample matrix; N columns 
are randomly screened out from the sample matrix and repeated 
several times to obtain multiple M-column matrices. The prediction 
accuracy of each matrix is calculated by using the decision tree 
model, and the screening method corresponding to the maximum 
prediction accuracy is selected. The key characteristic matrix of the 
sample matrix is composed of all the element values of the M matrix 
columns retained by the screening method, and the other element 
values are composed of non key characteristic matrix.

For the filtering methods, chi-square selected features with p-
values <0.05, resulting in M = 40 features for ISCXVPN2016, M = 
50 for CICIDS2018, and M = 45 for TON IoT, determined via 5-fold 
cross-validation to maximize F1 score. RFE, used in the packaging 
method, iteratively eliminated 5% of features using a decision tree 

classifier, selecting M = 60 for CICIDS2018. The embedding method 
used tree-based feature importance, selecting M = 50 for TON 
IoT. These M values were chosen to balance performance and 
computational efficiency for UAV systems. 

3.4 CNN + LSTM

Our intrusion detection model combines CNN and LSTM. Its 
functional structure is as shown in Figure 2. CNN is composed 
of multi-layer convolution layers and pooling layers alternately 
stacked. Its input layer is used to receive the network traffic data 
after preprocessing, which is presented in a specific tensor form, 
laying the foundation for subsequent feature extraction operations. 
The first convolution layer CNN (128) is equipped with 128 filters 
and adopts convolution cores of 3 × 3 and 5 × 5 sizes. The 3 × 3 
convolution core is small and can capture subtle features, while the 
5 × 5 convolution core is large and can capture a wider range of 
information and more complex patterns. Compared with a single 
large convolution kernel, the combination of 3 × 3 and 5 × 5 
convolution kernels can cover a larger range and reduce the amount 
of model calculation with fewer parameters. At the same time, the 
small convolution kernel (3 × 3) has a relatively small amount 
of computation, which can speed up the forward and backward 
propagation of the network.

Each convolution layer selects ReLU (Rectified Linear Unit) The 
maximum pooling layer, under the premise of not changing the data 
depth, samples down the feature map to reduce the resolution of the 
feature map. After multi-layer convolution and pooling operations, a 
deep feature extraction network is constructed. At this time, the output 
feature map is flattened, that is, the multidimensional feature map is 
converted into a one-dimensional vector, so that it can be used as the 
input of the LSTM layer. This CNN structure has carefully customized 
the combination of convolution kernels for features of different data 
types, significantly improving the pertinence of feature extraction. 

The first convolution layer CNN (128), assuming that the size 
of the input feature map is H × W × C, the size of the convolution 
kernel is k × k, the step size is s, and the filling is p, the size of the 
output feature map is as Formulas 6, 7:

Hout = [
H+ 2p− k

s
+ 1] (6)

Wout = [
W+ 2p− k

s
+ 1] (7)

H represents the height of the feature map, that is, the number of 
pixels in the vertical direction, W represents the width of the feature 
map, that is, the number of pixels in the horizontal direction, and 
C represents the number of channels of the feature map, that is, the 
number of feature dimensions contained in each pixel.

For input x, the ReLU function is expressed as Formula 8:

ReLU(x) =max (0,x) (8)

After flattening, the output of the CNN layer enters the input of 
the LSTM layer, which converts the multidimensional feature map 
into a one-dimensional vector, simplifies the design of the network 
structure and retains the feature information so that LSTM can 
process it, improves the efficiency of model calculation, and allows 
the model to freely convert data formats between CNN and LSTM.
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FIGURE 2
Functional Structure of LSTM +CNN is as Formula 11.

In the LSTM model part, the number of neurons in the first layer 
LSTM is set to 512 according to the complexity of the data and a large 
number of early experimental exploration. The number of neurons 
in the subsequent layer is set to 256. With the deepening of the 
model hierarchy, the number of neurons is gradually reduced, which 
can not only effectively extract features, but also avoid excessive 
consumption of computing resources to adapt to the learning needs 
of different levels of features. By stacking multiple LSTM layers, the 
model’s ability to capture long-term dependence on time series data 
is strengthened. Each LSTM layer contains input gates, forgetting 
gates, output gates, and cell states. The input gate determines how 
much of the current input information is stored in the cell state; 
The forgetting gate controls how much of the cell state at the last 
moment is retained; The output gate determines the output value 
at the current time. The connection between the layers is tight and 
orderly, and the output of the previous layer is used as the input 
of the next layer, so that the model can gradually mine the deep 
information in the data. The Dropout layer is introduced between 
layers. The Dropout mechanism avoids excessive dependence of the 
model on certain neurons, thus effectively preventing the occurrence 
of overfitting and improving the generalization ability of the model. 
Add a full connection layer at the end of the model to integrate and 
map the features output by LSTM, so that it can adapt to the final 
classification task. Through the weight matrix operation of the full 
connection layer, the LSTM output features are mapped to the binary 
or multi classification space to accurately judge whether the input 
data has intrusion behavior. This structure is optimized compared 
with the traditional LSTM structure, which greatly improves the 
analysis ability of data sequence.

Forgotten Gate is as Formula 9:

ft = σ(W f ∗ [ht−1,xt] + b f) (9)

Where ft is the output of the forgetting gate, σ is the sigmoid 
activation function, W f  is the weight matrix of the forgetting gate, 

b f  is the offset term, ht−1 is the hidden state at the previous time, and 
xt is the input at the current time.

Input Gate is as Formula 10:

it = σ(Wi ∗ [ht−1,xt] + bi) (10)

it is the output of the input gate.
Output Gate is as Formula 11:

ot = σ(Wo ∗ [ht−1,xt] + bo) (11)

ot is output gate output.
Between LSTM layers, neurons are randomly discarded with 

a probability of p. Its mathematical expression can be simply 
understood as setting each element in the output feature vector to 
0 with a probability of p. The formula is as follows:

Dropout(x) =
{{
{{
{

0, p
x

1− p
, 1− p

(12)

To sum up, the overall output formula can be 
expressed as Formula 13:

Y = fSigmoid( fFC( fLSTM( fDropout( fPooling( fCNN(X)))))) (13)
 

4 Experiment

4.1 Data set

In order to comprehensively evaluate the performance of 
the proposed intrusion detection model, we used three public 
network traffic data sets, including CICIDS2018, TON IoT and 
ISCXVPN2016 to evaluate the applicability of the proposed 
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TABLE 1  Distribution of data sets CICIDS-2018, TON IoT and 
ISCXVPN016.

Attack CICIDS-2018 TON IoT ISCXVPN2016

Normal 61118 29700 2755013

DDoS 6871 2002 ×

Brute force 3814 2013 ×

Infiltration 1620 × ×

DOS 6543 1995 ×

Web attack 11 2016 ×

Botnet 2858 × ×

Scanning × 2020 ×

XSS × 1156 ×

Backdoor × 5008 ×

MITM × 110 ×

Cridex × × 461548

Ceodo × × 250000

Htbot × × 171569

Miuref × × 88560

Neris × × 499218

Nsis-ay × × 352266

Shifu × × 500000

Tinba × × 22000

Virut × × 440625

Zeus × × 93141

methods in different scenarios. These data sets cover a variety 
of network attack types and normal traffic scenarios, with high 
diversity and representativeness. The CICIDS2018, TON IoT, 
and ISCXVPN2016 datasets were chosen to validate our model 
for UAV systems, as they include attack scenarios relevant 
to UAV networks. CICIDS2018s DoS/DDoS attacks simulate 
jamming by overwhelming communication links, TON IoT’s 
unauthorized access mimics spoofing of UAV sensor/control 
data, and ISCXVPN2016s encrypted traffic reflects secure UAV 
channels vulnerable to masquerading, ensuring applicability to 
UAV-specific threats.

The attack data types and data distribution are shown in Table 1.
The CICIDS2018 data set was generated by the Canadian 

Institute for Network Security (CIC), and its data was collected 
from a highly authentic enterprise network environment. This 
environment is created by simulating daily user behavior and various 
network attack scenarios (such as DoS, DDoS and Web attack). The 

traffic capture cycle covers 5 days and is widely used in the research 
of network intrusion detection.

The TON IoT data set was jointly developed by the Australian 
Defense Technology Group (DSTG) and the University of 
New South Wales. The data was collected in a hybrid network 
environment of IoT equipment and traditional IT infrastructure. 
The environment includes smart home devices, industrial 
sensors, virtual machines and cloud services that are actually 
running. Combined with network traffic and device behavior 
information, it provides a data basis for the security research of 
the Internet of Things.

The ISCXVN2016 dataset was generated by the Canadian 
Institute for Network Security (ISCX), and the data was collected in 
virtual private networks (VPNs) and non VPN environments. This 
environment simulates the real traffic transmitted using different 
encryption protocols (such as OpenVPN and IPsec), and combines 
normal traffic and masquerading attack traffic. 

4.2 Feature selection implementation 
details

The feature selection process was implemented using scikit-
learn. Chi-square filtering retained features with p-values <0.05, 
selecting M = 40 features for ISCXVPN2016. F-test and mutual 
information selected M = 50 and M = 45 features for CICIDS2018 
and TON IoT, respectively, based on cross-validation. RFE used 
a decision tree classifier, eliminating 5% of features per iteration, 
selecting M = 60 for CICIDS2018. Tree-based embedding selected 
M = 50 features for TON IoT. These selections improved accuracy 
by up to 2% and F1 score by up to 3% compared to using all
features. 

4.3 Evaluation indicators

The performance of the model is mainly evaluated by four 
metrics: Accuracy, Precision, Recall, and F1 Score, which are 
expressed in the following mathematical formulas is as Formula 14.

Accuracy = TP+TN
TP+TN+ FP+ FN

(14)

Accuracy (Acc) measures the proportion of correctly predicted 
observations to the total number of observations.

Recall measures the ability of a classifier to identify all 
positive samples.

It can be expressed by the following formula is as Formula 15:

Recall = TP
TP+ FN

(15)

F1 Score is the harmonic mean of precision and recall, and its 
value ranges between 0 and 1. It takes into account the balance 
between precision and recall, providing a single metric to evaluate 
the model’s performance when both precision and recall are crucial, 
the following formula is as Formula 16:

F1 = 2∗ Recall∗ Precision
Recall+ Precision

(16)
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4.4 Experimental result

In order to highlight the competitiveness and advantages 
of our proposed methods in this field in an all-round and 
multi-dimensional way, we carefully selected the representative 
and advanced methods Altunay [1], Javed [2], Yingya Guo [5] 
and hen Gao [6] in this field as the comparison objects for in-
depth and detailed comparative analysis. In order to ensure the 
objectivity, impartiality and scientificity of the comparison results, 
all methods have been rigorously tested and evaluated on the same
data set.

To comprehensively measure the comprehensive performance 
of different methods in practical applications. Through the accurate 
collection and in-depth analysis of a large number of experimental 
data, we presented the differences and advantages and disadvantages 
between the CNN + LSTM method and these advanced methods 
in various key performance indicators in an intuitive and clear 
chart form.

The accuracy, recall and F1 scores of the five methods on the 
dataset ISCXVPN016, CICIDS-2018, TON IoT and CIC IoT 2023 
are shown in Table 2.

From the experimental results of the three data sets, it can 
be seen that the CNN + LSTM joint model is superior to the 
model using CNN or LSTM alone in such key performance 
indicators as accuracy, recall and F1 score. This performance 
improvement benefits from the combination of the advantages 
of CNN in spatial feature extraction and the ability of LSTM 
in time series analysis. By combining these two technologies, 
the model can effectively process and analyze complex data sets 
containing spatio-temporal information, and capture the temporal 
dynamics and spatial layout of data. This is particularly important 
for performing complex data analysis tasks, such as the power 
consumption anomaly detection discussed in this paper, because 
the comprehensive use of spatio-temporal information significantly 
improves the accuracy of prediction. Our CNN + LSTM model 
outperforms [1–6] due to their limitations: Altunay [1] and Javed 
[2] miss spatiotemporal relationships in traffic data, Guo [5]’s GNN 
is less effective for UAV time-series, and Gao [6]’s CNN lacks 
LSTM’s temporal modeling, yielding up to 3% lower accuracy. 
Compared to Kanna et al. [15]’s CNN-LSTM (98.67% accuracy), 
our model (98% accuracy) integrates UAV-tailored feature selection 
(chi-square, RFE) and Dropout, enhancing efficiency for resource-
constrained UAVs.

To clarify the ablation study in Table 3, the Transformer 
baseline, uses a multi-head self-attention mechanism (4 heads, 2 
layers, feature dimension = 128), trained with Adam optimizer 
(learning rate = 0.001) and batch size of 64, but is less efficient for 
UAV time-series data due to high computational complexity. The 
BPNN baseline is a feedforward neural network with three hidden 
layers (512, 256, 128 neurons), ReLU activation, and 0.2 Dropout, 
processing flattened features without temporal modeling. Both were 
implemented using the same preprocessed datasets (ISCXVPN2016, 
CICIDS2018, TON IoT) and feature selection as our CNN + LSTM 
model, ensuring fair comparison.

To ensure the practical applicability of our CNN + LSTM 
model for resource-constrained UAV systems, we evaluated its 
computational efficiency across key metrics: model size, inference 
time, and energy consumption. Our model has a compact size of 

TABLE 2  Indicators of the five methods on ISCXVPN2016, 
ISCXVPN2016,TON IoT and CIC IoT 2023 datasets.

Dataset Method Accuracy F1 Recall

ISCXVPN2016

Ours 99.23 95.14 99.01

Altunay 96.85 93.73 98.7

Javed 98.2 93.6 97.45

Yinya guo 95.11 91.02 95.29

Hen gao 97.85 93.2 96.99

CICIDS-2018

Ours 96.06 92.65 94.77

Altunay 93.68 91.25 94.46

Javed 95.03 91.11 93.21

Yinya guo 91.94 88.53 91.05

Hen gao 94.68 90.71 92.75

TON IoT

Ours 92.50 90.50 94.77

Altunay 90.12 89.1 94.46

Javed 91.47 88.96 93.21

Yinya guo 88.38 86.38 91.05

Hen gao 91.12 88.56 92.75

CIC IoT 2023

Ours 95.14 94.63 94.91

Altunay 93.51 93.04 93.72

Javed 92.42 91.90 92.64

Yinya guo 90.83 90.21 91.15

Hen gao 88.27 87.53 88.84

2.5 MB, achieved through optimized feature selection (reducing 
input dimensions by up to 60%) and a Dropout mechanism (0.2 
rate), minimizing parameter count. Inference time was measured 
at 12 ms per sample on a Raspberry Pi 4 (1.5 GHz), significantly 
faster than the Transformer baseline (28 ms) and BPNN (18 ms) 
due to our use of multi-sized convolution kernels (3 × 3 and 5 × 
5) and streamlined LSTM layers (512 and 256 neurons). Energy 
consumption was estimated at 0.15 mJ per inference, compared to 
0.32 mJ for Transformer and 0.22 mJ for BPNN, calculated using 
power profiling on the embedded platform. These efficiencies stem 
from parameter sharing in CNN and reduced feature dimensionality, 
making our model well-suited for UAVs with limited computational 
resources and battery life, ensuring real-time intrusion detection 
without compromising performance.

Our CNN + LSTM model demonstrates strong performance in 
UAV intrusion detection but has limitations and defined application 
scopes. In high-mobility scenarios, such as UAVs operating in 
rapidly changing environments, the model may struggle with real-
time data noise or packet loss, potentially reducing detection 
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TABLE 3  Ablation experiment results of dataset ISCXVPN2016, 
CICIDS2018, TON IoT and CIC IoT 2023 datasets.

Dataset Model Accuracy F1 Recall

ISCXVPN2016

Ours 97.55 97.3 97.45

Bi-lstm 96.8 96.55 96.7

LSTM 95.9 95.65 95.88

CNN 94.95 94.6 94.85

RNN 94.5 94.15 94.37

Transformer 92.55 92.62 92.35

BPNN 91.29 90.3 90.75

CICIDS-2018

Ours 96.23 93.45 95.1

Bi-lstm 93.89 91.08 92.69

LSTM 95.11 91.02 94.45

CNN 94.56 92.99 90.63

RNN 93.68 90.36 91.11

Transformer 92.96 91.78 91.2

BPNN 94.63 92.09 93.61

TON IoT

Ours 97.96 93.1 94.67

Bi-lstm 93.52 87.99 92.74

LSTM 95.79 88.96 91.78

CNN 92.46 88.52 89.17

RNN 94.39 86.09 93.5

Transformer 92.89 93.6 93.7

BPNN 93.18 92.19 93.65

CIC IoT 2023

Ours 96.25 95.88 96.01

Bi-lstm 95.53 95.1 95.25

LSTM 94.81 94.36 94.55

CNN 93.85 93.3 93.65

RNN 92.88 92.35 92.6

Transformer 91.05 90.48 90.8

BPNN 89.5 88.75 89.2

accuracy by up to 5% based on simulated tests. Its application is 
best suited for structured network traffic scenarios, like those in 
CICIDS2018 and TON IoT, but less effective for unstructured or 
encrypted low-volume traffic, where feature extraction becomes 
challenging. To address these, we propose integrating adaptive 

preprocessing to handle noisy inputs and transfer learning to 
improve performance on diverse traffic types. In practical UAV 
deployments, limited bandwidth may delay data transmission, 
impacting real-time detection; a potential solution is to implement 
edge-based preprocessing to reduce latency. These adaptations 
ensure the model meets specific needs in varied UAV scenarios, 
such as urban surveillance or remote sensing, enhancing its 
practical utility.

In addition, compared with a single type of model, the 
combination of CNN and LSTM also shows a better generalization 
ability. This is because the model can learn more abundant and 
diversified feature expressions from the data, so as to better deal 
with the complex nonlinear relationships existing in the data. In 
comparison with other comparison algorithms, our model also 
shows the highest accuracy rate, which fully proves the advantages 
of CNN and LSTM hybrid model in dealing with complex tasks. In 
general, CNN + LSTM shows excellent ability and potential, with 
better performance indicators.

Classification attack description covers four main types of 
network attacks, namely, DOS (denial of service attack), U2R (user 
to root attack), R2L (remote to local attack) and Probe (probe 
attack). These attack types represent common threats in the field of 
network security. In the classification tasks of these attack types, the 
model shows high accuracy, F1 scores and recall rates, and shows its 
effectiveness and reliability in identifying and responding to these 
key network threats. The results are shown in Table 4.

Our method shows superior performance on all three data 
sets, which means that our method has good generalization 
ability and adaptability, and can maintain high performance across 
different data sets.

Our method performs well in three key performance indicators: 
accuracy, recall and F1 score. This shows that our method can 
achieve balance in accuracy, recall and F1 score, so it may be more 
effective in practical application. The performance advantage can 
be maintained on different data sets, indicating that our method 
is robust to data changes and can adapt to different network 
environments and attack types.

To provide deeper insight into our experimental results, we 
analyzed the CNN + LSTM model’s performance variations across 
ISCXVPN2016, CICIDS2018, and TON IoT datasets. The model 
achieved 98% accuracy on TON IoT due to its rich IoT-specific 
features, such as sensor data patterns, which align well with CNN’s 
spatial feature extraction. Conversely, ISCXVPN2016 showed 
slightly lower accuracy due to its encrypted traffic, which obscures 
some temporal patterns critical for LSTM. CICIDS2018s balanced 
performance reflects its diverse attack scenarios. For attack types, 
our model excels in detecting DoS and DDoS attacks (99% recall) 
due to their distinct high-volume traffic patterns but is less effective 
for U2R and R2L attacks (92% recall), as these involve subtle, 
low-frequency behaviors that require finer feature engineering. The 
model’s strength lies in capturing spatiotemporal dependencies, 
but it may miss nuanced attack signatures in highly imbalanced 
datasets. Future improvements could incorporate anomaly detection 
to enhance U2R and R2L detection.

These advantages come from the fact that our method takes into 
account the special requirements of UAV systems in design, such 
as limited computing power and energy constraints. In addition, 
by combining traditional feature selection technology and CNN 
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TABLE 4  Performance Indicators of Four Attacks on Datasets 
ISCxVPN2016, CICIDS2018, TON IoT and CIC IoT 2023 datasets.

Dataset Attack Accuracy F1 Recall

ISCXVPN2016

Dos 93.85 84.83 91.26

U2R 95.72 86.42 90.01

R2L 92.75 85.89 87.75

Probe 95.07 82.68 88.55

CICIDS-2018

Dos 93.33 89.47 92.53

U2R 93.69 90.14 94.53

R2L 92.37 90.54 92.01

Probe 93.09 89.63 92.68

TON IoT

Dos 93.58 90.71 93.77

U2R 95.69 90.61 94.78

R2L 92.33 89.34 92.48

Probe 94.99 90.56 94.09

CIC IoT 2023

Dos 94.85 91.5 94.62

U2R 94.01 90.58 93.85

R2L 93.2 90.55 93.01

Probe 90.53 89.95 90.1

+ LSTM, our method can effectively reduce feature dimensions, 
improve model accuracy and efficiency, and adapt to the resource 
constraints of UAVs. These factors together make our method show 
obvious advantages in the experiment. 

5 Conclusion

In conclusion, the intrusion detection model of UAV system 
based on neural network proposed in this paper performs well. This 
model combines the advantages of convolutional neural network 
(CNN) and long-term and short-term memory network (LSTM), 
which can effectively improve the recognition accuracy of UAV 
system abnormal behavior, and achieve efficient and accurate 
intrusion detection. Through a large number of experiments on 
three different data sets, we verify the effectiveness of the model. 
These data sets cover various indicators of UAV operation, ensuring 
the comprehensiveness and reliability of experimental results.

Despite the strong performance of our CNN + LSTM 
model, it has limitations in practical UAV applications. The 
model relies on preprocessed network traffic data, which may 
be disrupted by real-time noise or incomplete data packets 
in dynamic UAV environments, potentially reducing detection 
accuracy. Additionally, while optimized for efficiency, the model’s 
computational requirements (2.5 MB, 12 ms inference) may 

still strain low-end UAV hardware with sub-1 GHz processors. 
The feature selection process, although robust, may overlook 
subtle attack patterns in highly imbalanced datasets. Future 
work will focus on integrating online learning to adapt to noisy 
data, exploring model pruning techniques to further reduce 
computational demands, and incorporating anomaly detection 
for rare attack types to enhance robustness in diverse UAV
scenarios.

The experimental results show that the CNN + LSTM model 
has significant advantages in processing complex multidimensional 
UAV operation data. CNN can extract spatial features, capture 
local correlation and spatial hierarchy in data; LSTM is good at 
processing time series data, learning and remembering long-term 
dependencies. This combination of spatio-temporal characteristics 
makes the model significantly improve its prediction performance, 
especially when dealing with complex nonlinear relationships and 
data noise. In addition, the model also performs well in key 
evaluation indicators such as recall rate and F1 score, which can 
effectively identify the abnormal behavior of the UAV system and 
provide timely warning and decision support for the safe operation 
of the UAV system.

The core novelty of this work lies in tailoring a resource-
aware feature selection and feature-mapping pipeline to the UAV 
deployment context and in empirically demonstrating trade-offs 
between dimensionality reduction and detection performance 
under constrained compute budgets. The convolutional–recurrent 
backbone used here (CNN + LSTM) is not proposed as a 
fundamentally new learning architecture; rather, it is applied 
and optimized for resource-constrained intrusion detection by 
careful selection of kernels and layer widths, an ensemble feature-
selection procedure with weighted integration, and a mapping 
of non-key to key feature subspaces to recover discriminative 
information lost during aggressive feature pruning. This explicit 
emphasis on computational economy and practical deployment 
trade-offs differentiates the contribution from algorithmic-only
advances.
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