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Introduction: With the growing complexity and scale of cyber attacks,
intrusion detection for unmanned aerial vehicle (UAV) systems has become a
critical challenge in modern network security. UAVs have unique constraints
including limited battery life, restricted data-transmission distance, and small
data-storage capacity, while malicious activities can disrupt their power
usage, communication, and data storage—highlighting the need for dedicated
intrusion-detection solutions. Traditional traffic detection methods lack efficient
modeling of local and global features, making it difficult to capture complex
data patterns.

Methods: We propose an intrusion detection model integrating machine
learning and neural networks. First, UAV data is cleaned, and traditional feature
selection techniques (filtering, packaging, embedding) are used to separate key
and non-key features. Non-key features are mapped to the key feature subspace
via CNN + LSTM for feature fusion, and the fused features serve as model
inputs. Machine learning and neural networks are then combined to detect UAV
network traffic.

Results: Testing on public datasets ISCXVPN2016, CICIDS2018, TON loT, and CIC
loT 2023 shows that our method improves accuracy by up to 3%, F1 score by up
to 4%, and recall by up to 3% compared to the three major feature selection
techniques.

Discussion: The integration of CNN + LSTM enables effective modeling of
local and global features, addressing the limitations of traditional methods. The
model’s optimization for feature fusion and UAV-specific constraints ensures it
is suitable for resource-constrained UAV systems, providing reliable intrusion
detection.

KEYWORDS

machine learning, graph neural networks, unmanned aerial vehicle systems, intrusion
detection, malignant traffic

1 Introduction

With the continuous development of drone technology, its application in various
fields is becoming increasingly widespread, but it also faces many challenges, especially
network security issues. With the widespread application of unmanned aerial vehicle
(UAV) systems, network security issues are becoming increasingly prominent. Unmanned
aerial vehicle systems involve a large amount of data transmission and communication,
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such as flight control data, sensor data, etc. Once these data
are attacked or leaked, it may lead to serious consequences such
as unmanned aerial vehicle loss of control and data tampering.
Therefore, ensuring the security of the communication system
between UAVs and ground stations is crucial for the normal
operation of UAV systems.

Intrusion detection system is a fundamental tool used to identify
different network attacks in a system, and is a key component of
maintaining network security. It screens and checks system traffic
entering or leaving system applications, and issues warnings in the
event of interruptions or abnormal actions.

In recent years, deep methods have gradually been applied to
intrusion detection systems, and it can be seen from literature
[1, 2] that traditional deep learning algorithms have been used
in intrusion detection systems. These traditional deep learning
models play a significant role in fields characterized by large-scale
and high-dimensional data [3, 4], but network traffic and system
data are essentially highly structured, reflecting rich relationships
between various elements such as IP addresses, protocols, and host
events. Guo et al. [5] believe that these intrusion detection methods
based on traditional deep learning only utilize attribute information
in network traffic, making it difficult to effectively capture these
intricate relationships and cope with the high dynamics and
complexity of current networks.

Gao etal. [6] pointed out that nodes in graph neural networks
(GNNs) can access information from higher-order neighbors, rather
than only accessing information from first-order neighbors like
traditional methods. Therefore, GNNs perform well in intrusion
detection, especially in identifying complex attack patterns. Wu
etal. [7] proposed an attack detection model for Blockchain-
enabled Internet of Things (BCoT) utilizing a contrastive variational
autoencoder combined with metric learning to enhance security
in cloud computing environments. Huang and Lu [8] discussed
the security, governance, and challenges associated with the
new generation of cyber-physical-social systems, highlighting key
considerations for their development and deployment. Meanwhile,
Wu etal. [9] argue that GNN is a subfield of deep learning that
leverages the advantages of traditional CNN in both explicit and
implicit graph structures, GNN can effectively capture complex
interactions and relationships embedded in graph structures.
Therefore, due to the natural representation of graph structures in
networks, data such as network traffic, communication patterns,
and system logs can be modeled as graphs. Network flow graphs
or source graphs can be used in conjunction with graph neural
network methods to detect intrusions. Bilot et al. [10] first outlined
the feasibility of intrusion detection based on graph neural networks.
They pointed out that Graph Neural Networks (GNNs) can capture
the complex relationships in network data through high - order
neighborhood information, thus effectively identifying abnormal
behaviors and attack patterns hidden in the graph structure.

In summary unmanned aerial vehicle systems require
specialized network security solutions because of three operational
constraints: limited computation and memory on embedded flight
controllers, constrained energy budget, and intermittent or narrow-
bandwidth telemetry links. Existing intrusion detection research
often targets data-center or general IoT settings and assumes
abundant compute or rich labeled data; such assumptions are
not representative of many deployed UAV systems. A clear gap
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therefore exists between intrusion detection models designed for
general network contexts and solutions tailored to the operational
constraints and traffic characteristics of UAV platforms.

To address this gap, the present study proposes a compact
intrusion detection pipeline that (1) applies targeted feature
selection to minimize input dimensionality, (2) employs a hybrid
convolutional-recurrent backbone to jointly model local and
temporal patterns, and (3) maps lower-importance features into
the key-feature subspace to recover useful information lost by
aggressive dimensionality reduction. The goal is to balance detection
performance with resource-efficiency for edge/in-flight deployment
scenarios.

The main contributions of this study are summarized as follows:

1. A resource-aware hybrid model that combines convolutional
neural networks and long short-term memory networks for
spatio-temporal feature fusion with an emphasis on model
compactness for UAV deployment.

A pipeline that separates key and non-key features,
maps non-key features into the key feature space via a
convolutional-recurrent mapping, and fuses features for
downstream classification.

An empirical evaluation across three public datasets
(ISCXVPN2016, CICIDS2018, TON IoT) demonstrating
improved detection metrics under constrained input
dimensionality and a discussion of computational cost (model
size, inference latency, energy estimate) for edge platforms.

A discussion of limitations associated with using general
network datasets for UAV traffic and suggestions for
UAV-specific evaluation protocols and domain-adaptation

strategies.

The remainder of the paper is organized as follows. Section
II reviews related work and recent trends in metaheuristic-
optimized machine learning for intrusion detection. Section
III presents the preprocessing, feature-selection ensemble, and
the convolutional-recurrent architecture. Section IV details the
datasets, experimental setup, evaluation metrics, and results
including ablation and per-attack analyses. Section V discusses
limitations, statistical significance analysis, and deployment
considerations. Section VI concludes the paper and outlines
directions for future work.

2 Related work

According to the architecture of deep learning, the academic
community divides the methods for intrusion detection in
unmanned aerial vehicle (UAV) systems and model robustness
into three categories: intrusion detection based on generative
intrusion detection based discriminative

architecture, on

architecture, and intrusion detection based on hybrid architecture.

2.1 Intrusion detection based on
generative architecture

Intrusion detection based on generative architecture refers to the
use of the capabilities and architectures of generative models (such
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as generative adversarial networks, etc.) to detect whether there are
abnormal intrusion behaviors in networks or systems by learning the
patterns of normal data. It usually involves a model for generating
normal data and a mechanism for determining whether the input
data conforms to the normal pattern to identify intrusions.

Bilot et al. [10] proposed an Intrusion Detection System (IDS)
framework that utilizes different types of RNNs, namely, LSTM
networks, Gated Recurrent Units (GRUs), and Simple RNN. In this
study, a feature selection algorithm based on XGBoost was used
to reduce the feature space of each dataset. The results showed
that XGBoost LSTM achieved the best performance for binary
classification tasks using NSL-KDD, with a testing accuracy of
88.13% and a validation accuracy of 99.49%.

Huang etal. [11] proposed a learning-based approach for
fast splitting and directional mode decision in VVC intra
prediction, achieving improved efficiency in video coding
applications. Lu etal. [12] conducted a systematic study on
the applications of machine learning in composing Internet of
Things services, outlining current progress and proposing a future
research agenda.

Syed et al. [13] proposed a new fog cloud based IoT intrusion
detection framework that combines distributed processing of large-
scale BoTIoT datasets. The framework segments the dataset based
on attack categories and time series feature selection steps, reducing
the dataset size by 90%. Subsequently, SimpleRNN and Bi LSTM
models were used for classification.

In order to avoid inappropriate and redundant features slowing
down the classification process and causing erroneous decisions that
affect the performance of IDS, Mushtaq et al. [14] proposed a hybrid
intrusion detection framework consisting of deep autoencoder (AE),
LSTM, and Bi LSTM. AE is used to obtain optimal features,
and then LSTM divides the samples into normal and abnormal
samples. On the NSL-KDD dataset, the AE-LSTM classification
accuracy is 89%.

Kanna et al. [15] proposed a black widow optimized convolution
long short-term memory (BWO-CONV-LSTM) network model
based on MapReduce. The network model is a combination of CNN
and LSTM neural networks, which combines the advantages of
both networks and can learn spatiotemporal features with minimal
complexity. The hyperparameters of the model are optimized
through BWO. The experimental results show that the BWO-
CONV-LSTM model has high intrusion detection performance on
the NSL-KDD, ISCX-IDS, UNSW-NBI15, and CSE-CIC-IDS2018
datasets, with accuracies of 98.67%, 97.003%, 98.667%, and 98.25%,
respectively. It also has fewer false less computation time, and better
classification coeflicients.

Generative methods have broad application prospects in
intrusion detection systems, which can help improve the accuracy
and robustness of detection, and are of great significance in dealing
with complex and ever-changing network security threats. However,
generative architectures typically require a significant amount of
computational resources for training, especially when generative

adversarial networks or deep learning models are complex.
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2.2 Intrusion detection based on
discriminative architecture

Intrusion detection based on discriminative architecture, that
is, intrusion detection based on the discriminative architecture,
is a detection technology that uses a discriminative model. By
learning a large number of labeled normal and intrusion data, it
extracts features from them to construct a classifier, and then directly
classifies the input data to determine whether it is an intrusion
behavior. It aims to accurately distinguish between normal data and
intrusion data to ensure system security.

Kanumalli etal. [16] utilized the advantages of CNN and
bidirectional LSTM to establish a deep learning system for learning
the spatiotemporal properties of data. By using CNN to discover the
structure or high-level attributes of the dataset, BILSTM is used to
train the long-term and short-term temporal attributes of the data,
and then integrate them to predict attacks.

Ullah etal. [17] proposed a intrusion detection system using
transformer-based transfer learning for imbalanced network
traffic (IDS-INT). The system uses Transformer based transfer
learning to learn network feature representations and feature
interactions in imbalanced data. Using synthetic few oversampling
technique (SMOTE) to balance abnormal traffic and detect minority
attacks. Extract deep features from balanced network traffic
using a Convolutional Neural Network (CNN) model. Finally, a
Convolutional Neural Network Long Short Term Memory Network
Hybrid Model (CNN-LSTM) was proposed to detect different types
of attacks from deep features. In addition, baseline experiments
were conducted using CNN-RNN and CNN-GRU, and IDS-INT
outperformed the baseline method with 99% precision, 100% recall,
99% F1 score, and 99.21% accuracy.

Lu etal. [18] conducted a systematic study on the applications
of machine learning in composing Internet of Things services,
outlining current progress and proposing a future research agenda.

Ren etal. [19] proposed a new hierarchical CNN Attention
network called CANET. In CANET, CNN and Attention
mechanisms are combined to form a CA block that focuses on
local spatiotemporal feature extraction. The combination of multi-
layer CA blocks can fully learn the multi-level spatiotemporal
characteristics of network attack data, making it more suitable for
modern large-scale network intrusion detection systems. Numerous
experiments have shown that CANET outperforms current state-of-
the-art methods in terms of accuracy, detection rate, and false alarm
rate. Effectively increased the detection rate of minority groups.

CHEN C etal. [20] proposed an intrusion detection model
FCNN-SE to address the drawbacks of complex feature extraction
and insufficient information extraction in existing intrusion
detection models. Using Fusion Convolutional Neural Network
(FCNN) to extract multidimensional features from the dataset and
construct a new dataset, intrusion detection is performed using an
ensemble learning method based on superposition.

In intrusion detection systems, discriminative methods can
learn the differences between normal and abnormal behavior
from known data samples, thereby achieving classification and
discrimination of unknown data. Compared with generative
methods, discriminative methods focus more on learning the
category information of data and do not pay attention to
the potential distribution of data, making them more efficient
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in the training process and able to provide more accurate
and reliable classification results. In the task of dealing with
intrusion detection, discriminative methods usually exhibit good
performance, especially suitable for processing large-scale and high-
dimensional network data, and can quickly and accurately identify
potential security threats.

2.3 Intrusion detection based on hybrid
architecture

The hybrid deep network method combines generative and
discriminative methods, mainly including Generative Adversarial
Networks (GAN) and Graph Neural Networks.

Park etal. [21] studied generative adversarial networks based
on reconstruction error and Wasserstein distance, as well as deep
learning models driven by autoencoders. The system sequentially
trains the generative model and the autoencoder model, where the
trained generative model is used to train the autoencoder model.
Finally, the system trains the prediction model by applying a trained
generative model and a trained autoencoder encoder, where the
generative model is used to generate minority class data and the
encoder is used as a feature extractor. The experimental results show
that the accuracy of the proposed model on the NSL-KDD dataset
and UNSW-NBI5 dataset reached 93.2% and 87%, respectively.
In particular, the model demonstrated significant performance in
detecting R2L and probe type attacks on the NSL-KDD dataset.

Yuan et al. [22] proposed a data balancing method called B-
GAN. It is based on generative adversarial networks and is used to
solve data imbalance problems. Due to the continuous establishment
of intrusion detection datasets, the generator and discriminator of
B-GAN adopt long short-term memory (LSTM) network models,
which can better capture the features of data and generate high-
quality abnormal samples. By comparing the performance of the
original dataset and the B-GAN balanced dataset, the experimental
results show that the performance of these different intrusion
detection models has been improved to varying degrees.

ALTAF et al. [23] proposed a Node Edge Graph Convolutional
Network (NE-GCONV) framework, which introduces a graph
structure with both node and edge features, overcoming the
limitations of traditional graph convolutional networks, which
either rely solely on node features or fail to fully utilize edge
features for intrusion detection. The experimental results show that
this model outperforms other GNN models in terms of accuracy
and false positive rate, and has high computational efficiency.
DUAN G et al. [24] proposed a semi supervised learning intrusion
detection method based on dynamic line graph neural network
(DLGNN). This model converts network traffic into a series of
spatiotemporal graphs. This method further utilizes the natural
topology of cyberspace and the interactive evolution of host to
host communication of information, which can more effectively
learn, analyze, and summarize the characteristics of traffic data to
effectively distinguish malicious behavior in the network based on
fewer labeled samples.

Recent research has combined machine learning classifiers with
metaheuristic optimizers to tune model hyperparameters, select
features, or coordinate hybrid pipelines for intrusion detection in
IoT/edge environments. Examples include hybrid convolutional
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plus gradient-boosting systems optimized by modified sine-cosine
(25],
targeting metaverse/IoT edge systems [26], and CatBoost-based
detectors whose hyperparameters are tuned with altered firefly or

algorithms metaheuristics-tuned two-level frameworks

chimp-inspired optimizers [27]. These approaches demonstrate that
metaheuristic optimization can yield notable gains in detection
metrics and that hybrid pipelines (CNN + tree-based learners
or CatBoost) are competitive for constrained environments.
Representative works include a hybrid CNN-XGBoost [28] pipeline
tuned with a modified sine-cosine algorithm and recent studies
on metaheuristics-optimized CatBoost and related two-level
frameworks.

Intrusion detection based on hybrid architecture can adaptively
adjust according to the different requirements and attack modes
of unmanned aerial vehicle systems, and adopt the most suitable
detection strategies for different attacks [3, 4, 29, 30]. However,
hybrid architecture involves the coordination of multiple methods
and models, making the design and implementation more complex
and increasing the difficulty of development and maintenance.

Our proposed neural network-based unmanned aerial vehicle
intrusion detection system combines the advantages of generative
and discriminative methods, making it particularly suitable for
intrusion detection in unmanned aerial vehicle systems. Firstly,
we combined traditional feature selection techniques with CNN
+ LSTM models to optimize the limited computing resources
of drones. In order to reduce the number of model parameters
and computational complexity, we selected key features through
traditional feature selection techniques. We carefully designed
convolutional kernels in combination with CNN, utilized parameter
sharing, reasonably set the number of neurons in LSTM, and
introduced the Dropout mechanism. These measures helped to
decrease the number of model parameters and computational
complexity. As a result, the requirements for the UAV’s computing
power are reduced, enabling it to operate efficiently under
limited hardware conditions. Secondly, in order to adapt to the
operational requirements of drones in different environments, the
CNN + LSTM architecture can simultaneously process spatial and
temporal features, effectively capturing complex spatiotemporal
relationships. This not only enhances the ability to recognize
abnormal behavior, but also demonstrates excellent generalization
ability and robustness. Finally, our method has been optimized
in a targeted manner from multiple dimensions to meet the
security requirements of the communication system between drones
and ground stations. In the data processing stage, abnormal data
is first cleaned up. Subsequently, non - numerical features are
digitally transformed and normalizedaiming to reduce resource
consumption, improve detection accuracy and efficiency. This
design adapts to the limited computing power and energy of drones,
providing reliable warning and decision support.

3 Our methods

Our method aims to fully ensure the security of the
communication system between drones and ground stations. By
combining an improved data feature extraction method with
machine learning based intrusion detection technology, we propose
an intrusion detection scheme based on machine learning and
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LSTM + CNN, which enables drones to detect malicious behavior
during communication with ground stations. Our solution uses
feature selection techniques on the basis of preprocessed data,
aiming not only to reduce the difficulty of training machine
learning models with full feature data, but also to fit the limited
computing power and energy of drones. Although feature selection
technology can generally improve model accuracy by reducing the
dimensionality of input data, in some low - dimensional scenarios, it
may lead to a decrease in model accuracy. This is because when the
feature space is extremely reduced, important information might be
inadvertently removed. In such cases, the model may lack sufficient
data characteristics to make accurate predictions, undermining the
very purpose of using feature selection to enhance performance.
However, this does not mean that feature selection is ineffective.
By carefully choosing appropriate feature selection methods and
evaluating the impact on the model at different dimensionality
levels, we can mitigate this potential negative effect and still benefit
from the advantages of dimensionality reduction, such as faster
training and reduced overfitting risks. Due to the introduction of the
CNN + LSTM method, the problem of decreased model accuracy in
low dimensional features caused by feature selection techniques has
been overcome, and it is well adapted to the limited battery capacity
of drones, saving resources consumed by drone training models.

3.1 Overall architecture

The intrusion detection scheme for unmanned aerial vehicle
systems based on neural networks can be divided into five parts: data
resource layer, data processing layer, feature selection layer, CNN +
LSTM layer, and training and testing layer. The overall architecture
is shown in Figure 1. Among them, the CNN + LSTM layer is
the core of the entire intrusion detection scheme, responsible for
extracting spatiotemporal features and judging abnormal behavior
from preprocessed data.

The data resource layer mainly includes three datasets used,
providing raw network traffic data. These datasets are the foundation
for model training and testing.

The core function of the data processing layer is to refine and
process the raw data provided by the data resource layer. Firstly,
through data cleaning operations, missing values, infinitesimal
values, and infinite values in the dataset are identified and cleared
to ensure the integrity and accuracy of the data. Secondly, for
non numerical features in the dataset (such as transport layer
protocol types), symbolic feature digitization methods are used to
convert them into numerical form, achieving full digitization of
the dataset for subsequent mathematical modeling and analysis.
Finally, through normalization processing, features with different
dimensions and numerical ranges are unified to the same scale,
eliminating scale differences, thereby improving the efficiency and
accuracy of model training, and providing a scientific and reasonable
data foundation for the operation of the feature selection layer.

The main function of the feature selection layer is to use feature
selection techniques on data from the data processing layer to screen
out high contribution features, thereby reducing the dimensionality
of the feature space, lowering the difficulty of model training,
and improving model accuracy. This article mainly applies three
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mainstream feature selection methods in filtering: chi square, F-
test and mutual information, packaging, and embedded. Using
statistical methods such as chi square test, F-test, and mutual
information to automatically select features, reduce the number of
features, and improve model performance. Packaging is the process
of encapsulating selected features and preparing them for input into
the model. Embedded systems directly select features during the
model training process, using regular expressions, etc., laying the
foundation for subsequent feature extraction and model training.

The CNN + LSTM layer is capable of processing local features
(spatial features) and global patterns (temporal dependencies) in
time-series data, thus enabling more accurate determination of
whether unmanned aerial vehicles have intrusion behavior. CNN is
used to extract local features of data and process image or sequence
data; LSTM is used to process sequential data and capture long-
term dependencies. The combination of the two has played a very
important role in improving prediction accuracy and robustness for
processing complex sequence data.

The model training and model testing in the model testing layer
use training set data to train the model and test set data to evaluate
the performance of the model, respectively.

By introducing different parameters and variables, the entire
process from data cleaning to model testing was simulated.

3.2 Data processing layer

In the actual operation environment of UAV system, the
collected flight data packets are converted into feature vectors
for representation after feature extraction. However, these data
inevitably contain missing values, infinity and infinitesimal values,
and may also contain non numerical values (such as UAV identifiers,
flight modes, time stamps, etc.). These types of values cannot be
directly used for model input, and may even result in inaccurate
model output. Therefore, it is necessary to clean the data before
entering it into the model. The method adopted in this paper
is to delete records containing abnormal data such as missing
values, infinity and infinitesimal values. For non numerical values,
numerical mapping is used to convert them to numerical types.

After data cleaning, the values of different features in the data
set may differ by several orders of magnitude. This unbalanced
data performance may bring severe challenges to some machine
learning models, such as affecting the judgment of the model’s
contribution to each feature, increasing the model training time,
and even leading to the poor generalization ability of the model.
Therefore, in order to avoid similar situations, some treatment
methods are needed to eliminate the adverse effects as far as possible.
At present, the commonly used means include data normalization
and standardization. This paper adopts the normalization method,
which mainly has two strategies. The formulas 1, 2 is as follows:

. x—min (x)
= max (x) — min (x) 0
= X=X 2)

max (x) — min (x)

The normalization approach has the capacity to eliminate the
interference among different dimensions and can enhance the
convergence rate and accuracy of certain machine - learning models.
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FIGURE 1
Overall architecture of intrusion detection for UAV systems based on neural networks.

As mentioned above, there are two normalization methods. The first
method maps the data onto the interval, while the second one maps
the data onto the interval. Here, denotes the mean value.

3.3 Feature selection layer

When dealing with high-dimensional data, dimension curse is
a difficult problem in many practical machine learning problems.
For many real world data (such as video analysis), their feature
space dimensions are usually very high, which leads to a significant
increase in computing time and space. But in practice, not all
features are equally important and distinctive, because most of them
are usually highly related, or even redundant. These redundant
features usually make the learning method over fitting and difficult
to interpret. Therefore, it is necessary to apply feature selection
technology to reduce the data dimension and select the most
important features. Feature selection can be divided into filtering
method, packaging method and embedding method. We select the
most commonly used three categories of five methods, namely,
chi square (chi2), F-test (f_class), mutual information (mutual_
info), circular feature elimination (RFE) and tree based embedding
(embedded).

To determine the weights for the feature selection methods (chi-
square, F-test, mutual information) and integrate their results, we
employed a weighted ensemble approach. Each method’s weight
was determined through a grid search over weight combinations
(ranging from 0.1 to 0.5 in increments of 0.1), evaluating their
impact on model performance using 5-fold cross-validation on the
ISCXVPN2016, CICIDS2018, and TON IoT datasets. Specifically,
the chi-square method was assigned a weight of 0.4, F-test 0.3,
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and mutual information 0.3 for ISCXVPN2016, as this combination
maximized the F1 score (by 2.5% compared to equal weights). For
CICIDS2018 and TON IoT, weights were adjusted to 0.35, 0.35, and
0.3, respectively, based on dataset-specific characteristics like feature
distribution. The integration strategy combined feature rankings
by calculating a weighted average of scores from each method,
selecting the top M features (e.g., M = 40 for ISCXVPN2016)
to form the key feature matrix. This ensemble approach ensured
robust feature selection by leveraging the complementary strengths
of statistical significance (chi-square, F-test) and information gain
(mutual information), enhancing model accuracy and stability
across diverse datasets.

The key feature matrix and non key feature matrix of each
sample matrix are generated by filtering method. According to the
chi square calculation formula, calculate the chi square statistical
values of each column in each sample matrix, sort all the chi square
statistical values of each sample matrix by power reduction, and
form the key characteristic matrix of the sample matrix with all
the element values in the matrix column corresponding to the first
M values, and form the non key characteristic matrix with the
remaining element values; Wherein, D represents the total number
of columns in each sample matrix.

The chi square calculation formula is as Formula 3:

n f '_fe‘ ’
x?fa;—( . 7 ) 3)

Where, x* and j represent the chi square statistical value of
the element value in the j column in the i sample matrix, and m
represents the total number of element values in the jth column of
the ith sample matrix, a represents the sequence number of element
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values in the j column of the i sample matrix, f,; represents the
actual observation times of all element values in the j column of
the j sample matrix, f, ; represents the ideal observation times of all
element values in the j column of the j sample matrix.

According to the F-test formula, calculate the F value of each
column in the sample matrix, sort all chi square statistical values
of each sample matrix by descending power, and form the key
characteristic matrix of the sample matrix by all element values in
the matrix column corresponding to the first m values, and the
remaining element values form the non key characteristic matrix.
The F-test formula is as shown in Formula 4.

Lian, (%)
Fy= o=
ijlzrzl(xiJ_xJ)
n—k

(4)

Where, F;; represents the F-test value of the j column feature
in the j training set matrix, k is the number of categories, j is the
total number of sar_nples, n; is the j sample, x;; is the j sample of
the i category, and j expressed as the mean value of the j category.
The mean value of x categories, X represents the average value of the
total sample.

According to the mutual information calculation formula, the
information gain of each column in each sample matrix is calculated,
and all the information gains of each sample matrix are sorted by
descending power. All the element values in the matrix column
corresponding to the first m values form the key characteristic
matrix of the training set, and the remaining element values form
the non key characteristic matrix.

The mutual information  calculation formula s
as follows Formula 5:
n
E;= _bzpi,j l"gz(Pi,j) ®)
-1

Wherein, E; ; represent the information gain of the element value
in the j column of the i training set matrix, and generate vectors from
all non repeating elements contained in the j column of the i training
set matrix.

The packaging method generates the key characteristic matrix
and non key characteristic matrix of the sample matrix. The decision
tree model is the core tool for feature selection using the wrapper
method. The two work closely together to achieve the goal of
screening out key features from high - dimensional data. The
decision tree model is used to generate the key characteristic matrix
and non key characteristic matrix of the sample matrix; N columns
are randomly screened out from the sample matrix and repeated
several times to obtain multiple M-column matrices. The prediction
accuracy of each matrix is calculated by using the decision tree
model, and the screening method corresponding to the maximum
prediction accuracy is selected. The key characteristic matrix of the
sample matrix is composed of all the element values of the M matrix
columns retained by the screening method, and the other element
values are composed of non key characteristic matrix.

For the filtering methods, chi-square selected features with p-
values <0.05, resulting in M = 40 features for ISCXVPN2016, M =
50 for CICIDS2018, and M = 45 for TON IoT, determined via 5-fold
cross-validation to maximize F1 score. RFE, used in the packaging
method, iteratively eliminated 5% of features using a decision tree
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classifier, selecting M = 60 for CICIDS2018. The embedding method
used tree-based feature importance, selecting M = 50 for TON
IoT. These M values were chosen to balance performance and
computational efficiency for UAV systems.

34 CNN + LSTM

Our intrusion detection model combines CNN and LSTM. Its
functional structure is as shown in Figure 2. CNN is composed
of multi-layer convolution layers and pooling layers alternately
stacked. Its input layer is used to receive the network traffic data
after preprocessing, which is presented in a specific tensor form,
laying the foundation for subsequent feature extraction operations.
The first convolution layer CNN (128) is equipped with 128 filters
and adopts convolution cores of 3 x 3 and 5 x 5 sizes. The 3 x 3
convolution core is small and can capture subtle features, while the
5 x 5 convolution core is large and can capture a wider range of
information and more complex patterns. Compared with a single
large convolution kernel, the combination of 3 x 3 and 5 x 5
convolution kernels can cover a larger range and reduce the amount
of model calculation with fewer parameters. At the same time, the
small convolution kernel (3 x 3) has a relatively small amount
of computation, which can speed up the forward and backward
propagation of the network.

Each convolution layer selects ReLU (Rectified Linear Unit) The
maximum pooling layer, under the premise of not changing the data
depth, samples down the feature map to reduce the resolution of the
feature map. After multi-layer convolution and pooling operations, a
deep feature extraction network is constructed. At this time, the output
feature map is flattened, that is, the multidimensional feature map is
converted into a one-dimensional vector, so that it can be used as the
input of the LSTM layer. This CNN structure has carefully customized
the combination of convolution kernels for features of different data
types, significantly improving the pertinence of feature extraction.

The first convolution layer CNN (128), assuming that the size
of the input feature map is H x W x C, the size of the convolution
kernel is k x k, the step size is s, and the filling is p, the size of the
output feature map is as Formulas 6, 7:

H+2p-k
Hyy = | 2211 ©
N
W+2p-k
Wou[:[f+l} (7)

H represents the height of the feature map, that is, the number of
pixels in the vertical direction, W represents the width of the feature
map, that is, the number of pixels in the horizontal direction, and
C represents the number of channels of the feature map, that is, the
number of feature dimensions contained in each pixel.

For input x, the ReLU function is expressed as Formula 8:

ReLU(x) = max (0,x) (8)

After flattening, the output of the CNN layer enters the input of
the LSTM layer, which converts the multidimensional feature map
into a one-dimensional vector, simplifies the design of the network
structure and retains the feature information so that LSTM can
process it, improves the efficiency of model calculation, and allows
the model to freely convert data formats between CNN and LSTM.
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FIGURE 2
Functional Structure of LSTM +CNN is as Formula 11.

In the LSTM model part, the number of neurons in the first layer
LSTM is set to 512 according to the complexity of the data and a large
number of early experimental exploration. The number of neurons
in the subsequent layer is set to 256. With the deepening of the
model hierarchy, the number of neurons is gradually reduced, which
can not only effectively extract features, but also avoid excessive
consumption of computing resources to adapt to the learning needs
of different levels of features. By stacking multiple LSTM layers, the
model’s ability to capture long-term dependence on time series data
is strengthened. Each LSTM layer contains input gates, forgetting
gates, output gates, and cell states. The input gate determines how
much of the current input information is stored in the cell state;
The forgetting gate controls how much of the cell state at the last
moment is retained; The output gate determines the output value
at the current time. The connection between the layers is tight and
orderly, and the output of the previous layer is used as the input
of the next layer, so that the model can gradually mine the deep
information in the data. The Dropout layer is introduced between
layers. The Dropout mechanism avoids excessive dependence of the
model on certain neurons, thus effectively preventing the occurrence
of overfitting and improving the generalization ability of the model.
Add a full connection layer at the end of the model to integrate and
map the features output by LSTM, so that it can adapt to the final
classification task. Through the weight matrix operation of the full
connection layer, the LSTM output features are mapped to the binary
or multi classification space to accurately judge whether the input
data has intrusion behavior. This structure is optimized compared
with the traditional LSTM structure, which greatly improves the
analysis ability of data sequence.

Forgotten Gate is as Formula 9:

fo=o( Wy [h_yx] +by)

Where f, is the output of the forgetting gate, o is the sigmoid

©)

activation function, Wy is the weight matrix of the forgetting gate,
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byis the offset term, h,_; is the hidden state at the previous time, and
x, is the input at the current time.
Input Gate is as Formula 10:

i,= (W, [h_,x,]+b;) (10)
i, is the output of the input gate.
Output Gate is as Formula 11:
OtZU(Wu * [ht—l’xt] +bo) (11)

0, is output gate output.

Between LSTM layers, neurons are randomly discarded with
a probability of p. Its mathematical expression can be simply
understood as setting each element in the output feature vector to
0 with a probability of p. The formula is as follows:

0,
D t(x) = 12
opout(9)=1 x_ | (12)
l-p
To sum up, the overall output formula can be
expressed as Formula 13:
Y= fSigmoid(fFC(fLSTM(fDmpout(fPooling(fCNN(X)))))) (13)

4 Experiment

4.1 Data set

In order to comprehensively evaluate the performance of
the proposed intrusion detection model, we used three public
network traffic data sets, including CICIDS2018, TON IoT and
ISCXVPN2016 to evaluate the applicability of the proposed
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TABLE 1 Distribution of data sets CICIDS-2018, TON loT and
ISCXVPNO16.

Attack CICIDS-2018 ‘ TON loT  ISCXVPN2016
Normal 61118 29700 2755013
DDoS 6871 2002 X
Brute force 3814 2013 X
Infiltration 1620 X X
DOS 6543 1995 X
Web attack 11 2016 X
Botnet 2858 X X
Scanning x 2020 x
XSS X 1156 X
Backdoor X 5008 X
MITM X 110 X
Cridex X X 461548
Ceodo X X 250000
Htbot X X 171569
Miuref X X 88560
Neris X X 499218
Nsis-ay X X 352266
Shifu X X 500000
Tinba X X 22000
Virut X X 440625
Zeus X X 93141

methods in different scenarios. These data sets cover a variety
of network attack types and normal traffic scenarios, with high
diversity and representativeness. The CICIDS2018, TON IoT,
and ISCXVPN2016 datasets were chosen to validate our model
for UAV systems, as they include attack scenarios relevant
to UAV networks. CICIDS2018s DoS/DDoS attacks simulate
jamming by overwhelming communication links, TON IoT’s
unauthorized access mimics spoofing of UAV sensor/control
data, and ISCXVPN2016s encrypted traffic reflects secure UAV
channels vulnerable to masquerading, ensuring applicability to
UAV-specific threats.

The attack data types and data distribution are shown in Table 1.

The CICIDS2018 data set was generated by the Canadian
Institute for Network Security (CIC), and its data was collected
from a highly authentic enterprise network environment. This
environment is created by simulating daily user behavior and various
network attack scenarios (such as DoS, DDoS and Web attack). The
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traffic capture cycle covers 5 days and is widely used in the research
of network intrusion detection.

The TON IoT data set was jointly developed by the Australian
Defense Technology Group (DSTG) and the University of
New South Wales. The data was collected in a hybrid network
environment of IoT equipment and traditional IT infrastructure.
The environment includes smart home devices, industrial
sensors, virtual machines and cloud services that are actually
running. Combined with network traffic and device behavior
information, it provides a data basis for the security research of
the Internet of Things.

The ISCXVN2016 dataset was generated by the Canadian
Institute for Network Security (ISCX), and the data was collected in
virtual private networks (VPNs) and non VPN environments. This
environment simulates the real traffic transmitted using different
encryption protocols (such as OpenVPN and IPsec), and combines

normal traffic and masquerading attack traffic.

4.2 Feature selection implementation
details

The feature selection process was implemented using scikit-
learn. Chi-square filtering retained features with p-values <0.05,
selecting M = 40 features for ISCXVPN2016. F-test and mutual
information selected M = 50 and M = 45 features for CICIDS2018
and TON IoT, respectively, based on cross-validation. RFE used
a decision tree classifier, eliminating 5% of features per iteration,
selecting M = 60 for CICIDS2018. Tree-based embedding selected
M = 50 features for TON IoT. These selections improved accuracy
by up to 2% and F1 score by up to 3% compared to using all
features.

4.3 Evaluation indicators

The performance of the model is mainly evaluated by four
metrics: Accuracy, Precision, Recall, and F1 Score, which are
expressed in the following mathematical formulas is as Formula 14.

TP+ TN

e (14)
TP+ TN+ FP+FN

Accuracy =
Accuracy (Acc) measures the proportion of correctly predicted
observations to the total number of observations.
Recall measures the ability of a classifier to identify all
positive samples.
It can be expressed by the following formula is as Formula 15:

TP

Recall = —LX—
Ot = TP EN

(15)

F1 Score is the harmonic mean of precision and recall, and its
value ranges between 0 and 1. It takes into account the balance
between precision and recall, providing a single metric to evaluate
the model’s performance when both precision and recall are crucial,
the following formula is as Formula 16:

Recall * Precision

F =2 (16)

* —
Recall + Precision
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4.4 Experimental result

In order to highlight the competitiveness and advantages
of our proposed methods in this field in an all-round and
multi-dimensional way, we carefully selected the representative
and advanced methods Altunay [1], Javed [2], Yingya Guo [5]
and hen Gao [6] in this field as the comparison objects for in-
depth and detailed comparative analysis. In order to ensure the
objectivity, impartiality and scientificity of the comparison results,
all methods have been rigorously tested and evaluated on the same
data set.

To comprehensively measure the comprehensive performance
of different methods in practical applications. Through the accurate
collection and in-depth analysis of a large number of experimental
data, we presented the differences and advantages and disadvantages
between the CNN + LSTM method and these advanced methods
in various key performance indicators in an intuitive and clear
chart form.

The accuracy, recall and F1 scores of the five methods on the
dataset ISCXVPNO16, CICIDS-2018, TON IoT and CIC IoT 2023
are shown in Table 2.

From the experimental results of the three data sets, it can
be seen that the CNN + LSTM joint model is superior to the
model using CNN or LSTM alone in such key performance
indicators as accuracy, recall and F1 score. This performance
improvement benefits from the combination of the advantages
of CNN in spatial feature extraction and the ability of LSTM
in time series analysis. By combining these two technologies,
the model can effectively process and analyze complex data sets
containing spatio-temporal information, and capture the temporal
dynamics and spatial layout of data. This is particularly important
for performing complex data analysis tasks, such as the power
consumption anomaly detection discussed in this paper, because
the comprehensive use of spatio-temporal information significantly
improves the accuracy of prediction. Our CNN + LSTM model
outperforms [1-6] due to their limitations: Altunay [1] and Javed
[2] miss spatiotemporal relationships in traffic data, Guo [5]'s GNN
is less effective for UAV time-series, and Gao [6]'s CNN lacks
LSTM’s temporal modeling, yielding up to 3% lower accuracy.
Compared to Kanna etal. [15]s CNN-LSTM (98.67% accuracy),
our model (98% accuracy) integrates UAV-tailored feature selection
(chi-square, RFE) and Dropout, enhancing efficiency for resource-
constrained UAVs.

To clarify the ablation study in Table 3, the Transformer
baseline, uses a multi-head self-attention mechanism (4 heads, 2
layers, feature dimension = 128), trained with Adam optimizer
(learning rate = 0.001) and batch size of 64, but is less efficient for
UAV time-series data due to high computational complexity. The
BPNN baseline is a feedforward neural network with three hidden
layers (512, 256, 128 neurons), ReLU activation, and 0.2 Dropout,
processing flattened features without temporal modeling. Both were
implemented using the same preprocessed datasets (ISCXVPN2016,
CICIDS2018, TON IoT) and feature selection as our CNN + LSTM
model, ensuring fair comparison.

To ensure the practical applicability of our CNN + LSTM
model for resource-constrained UAV systems, we evaluated its
computational efficiency across key metrics: model size, inference
time, and energy consumption. Our model has a compact size of
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TABLE 2 Indicators of the five methods on ISCXVPN2016,
ISCXVPN2016,TON loT and CIC loT 2023 datasets.

Dataset Method Accuracy F1 Recall ‘
Ours 99.23 95.14 99.01
Altunay 96.85 93.73 98.7
ISCXVPN2016 Javed 98.2 93.6 97.45
Yinya guo 95.11 91.02 95.29
Hen gao 97.85 93.2 96.99
Ours 96.06 92.65 94.77
Altunay 93.68 91.25 94.46
CICIDS-2018 Javed 95.03 91.11 93.21
Yinya guo 91.94 88.53 91.05
Hen gao 94.68 90.71 92.75
Ours 92.50 90.50 94.77
Altunay 90.12 89.1 94.46
TON IoT Javed 91.47 88.96 93.21
Yinya guo 88.38 86.38 91.05
Hen gao 9L.12 88.56 92.75
Ours 95.14 94.63 94.91
Altunay 93.51 93.04 93.72
CICIoT 2023 Javed 92.42 91.90 92.64
Yinya guo 90.83 90.21 91.15
Hen gao 88.27 87.53 88.84

2.5 MB, achieved through optimized feature selection (reducing
input dimensions by up to 60%) and a Dropout mechanism (0.2
rate), minimizing parameter count. Inference time was measured
at 12 ms per sample on a Raspberry Pi 4 (1.5 GHz), significantly
faster than the Transformer baseline (28 ms) and BPNN (18 ms)
due to our use of multi-sized convolution kernels (3 x 3 and 5 x
5) and streamlined LSTM layers (512 and 256 neurons). Energy
consumption was estimated at 0.15 m]J per inference, compared to
0.32 m] for Transformer and 0.22 m] for BPNN, calculated using
power profiling on the embedded platform. These efficiencies stem
from parameter sharing in CNN and reduced feature dimensionality,
making our model well-suited for UAVs with limited computational
resources and battery life, ensuring real-time intrusion detection
without compromising performance.

Our CNN + LSTM model demonstrates strong performance in
UAV intrusion detection but has limitations and defined application
scopes. In high-mobility scenarios, such as UAVs operating in
rapidly changing environments, the model may struggle with real-
time data noise or packet loss, potentially reducing detection
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TABLE 3 Ablation experiment results of dataset ISCXVPN2016,
CICIDS2018, TON loT and CIC loT 2023 datasets.

Dataset ‘ Model Accuracy ‘ F1 Recall
Ours 97.55 97.3 97.45
Bi-Istm 96.8 96.55 96.7
LSTM 95.9 95.65 95.88
ISCXVPN2016 CNN 94.95 94.6 94.85
RNN 94.5 94.15 94.37
Transformer 92.55 92.62 92.35
BPNN 91.29 90.3 90.75
Ours 96.23 93.45 95.1
Bi-Istm 93.89 91.08 92.69
LSTM 95.11 91.02 94.45
CICIDS-2018 CNN 94.56 92.99 90.63
RNN 93.68 90.36 91.11
Transformer 92.96 91.78 91.2
BPNN 94.63 92.09 93.61
Ours 97.96 93.1 94.67
Bi-Istm 93.52 87.99 92.74
LSTM 95.79 88.96 91.78
TON IoT CNN 92.46 88.52 89.17
RNN 94.39 86.09 93.5
Transformer 92.89 93.6 93.7
BPNN 93.18 92.19 93.65
Ours 96.25 95.88 96.01
Bi-Istm 95.53 95.1 95.25
LSTM 94.81 94.36 94.55
CICIoT 2023 CNN 93.85 93.3 93.65
RNN 92.88 92.35 92.6
Transformer 91.05 90.48 90.8
BPNN 89.5 88.75 89.2

accuracy by up to 5% based on simulated tests. Its application is
best suited for structured network traffic scenarios, like those in
CICIDS2018 and TON IoT, but less effective for unstructured or
encrypted low-volume traffic, where feature extraction becomes
challenging. To address these, we propose integrating adaptive
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preprocessing to handle noisy inputs and transfer learning to
improve performance on diverse traffic types. In practical UAV
deployments, limited bandwidth may delay data transmission,
impacting real-time detection; a potential solution is to implement
edge-based preprocessing to reduce latency. These adaptations
ensure the model meets specific needs in varied UAV scenarios,
such as urban surveillance or remote sensing, enhancing its
practical utility.

In addition, compared with a single type of model, the
combination of CNN and LSTM also shows a better generalization
ability. This is because the model can learn more abundant and
diversified feature expressions from the data, so as to better deal
with the complex nonlinear relationships existing in the data. In
comparison with other comparison algorithms, our model also
shows the highest accuracy rate, which fully proves the advantages
of CNN and LSTM hybrid model in dealing with complex tasks. In
general, CNN + LSTM shows excellent ability and potential, with
better performance indicators.

Classification attack description covers four main types of
network attacks, namely, DOS (denial of service attack), U2R (user
to root attack), R2L (remote to local attack) and Probe (probe
attack). These attack types represent common threats in the field of
network security. In the classification tasks of these attack types, the
model shows high accuracy, F1 scores and recall rates, and shows its
effectiveness and reliability in identifying and responding to these
key network threats. The results are shown in Table 4.

Our method shows superior performance on all three data
sets, which means that our method has good generalization
ability and adaptability, and can maintain high performance across
different data sets.

Our method performs well in three key performance indicators:
accuracy, recall and F1 score. This shows that our method can
achieve balance in accuracy, recall and F1 score, so it may be more
effective in practical application. The performance advantage can
be maintained on different data sets, indicating that our method
is robust to data changes and can adapt to different network
environments and attack types.

To provide deeper insight into our experimental results, we
analyzed the CNN + LSTM model’s performance variations across
ISCXVPN2016, CICIDS2018, and TON IoT datasets. The model
achieved 98% accuracy on TON IoT due to its rich IoT-specific
features, such as sensor data patterns, which align well with CNN’s
spatial feature extraction. Conversely, ISCXVPN2016 showed
slightly lower accuracy due to its encrypted traffic, which obscures
some temporal patterns critical for LSTM. CICIDS2018s balanced
performance reflects its diverse attack scenarios. For attack types,
our model excels in detecting DoS and DDoS attacks (99% recall)
due to their distinct high-volume traffic patterns but is less effective
for U2R and R2L attacks (92% recall), as these involve subtle,
low-frequency behaviors that require finer feature engineering. The
model’s strength lies in capturing spatiotemporal dependencies,
but it may miss nuanced attack signatures in highly imbalanced
datasets. Future improvements could incorporate anomaly detection
to enhance U2R and R2L detection.

These advantages come from the fact that our method takes into
account the special requirements of UAV systems in design, such
as limited computing power and energy constraints. In addition,
by combining traditional feature selection technology and CNN

frontiersin.org


https://doi.org/10.3389/fphy.2025.1660104
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zhou et al.

TABLE 4 Performance Indicators of Four Attacks on Datasets
ISCxVPN2016, CICIDS2018, TON loT and CIC loT 2023 datasets.

Dataset ’ Attack ‘ Accuracy F1 Recall
Dos 93.85 84.83 91.26
U2R 95.72 86.42 90.01
ISCXVPN2016
R2L 92.75 85.89 87.75
Probe 95.07 82.68 88.55
Dos 93.33 89.47 92.53
U2R 93.69 90.14 94.53
CICIDS-2018
R2L 92.37 90.54 92.01
Probe 93.09 89.63 92.68
Dos 93.58 90.71 93.77
U2R 95.69 90.61 94.78
TON IoT
R2L 92.33 89.34 92.48
Probe 94.99 90.56 94.09
Dos 94.85 91.5 94.62
U2R 94.01 90.58 93.85
CIC ToT 2023
R2L 93.2 90.55 93.01
Probe 90.53 89.95 90.1

+ LSTM, our method can effectively reduce feature dimensions,
improve model accuracy and efficiency, and adapt to the resource
constraints of UAVs. These factors together make our method show
obvious advantages in the experiment.

5 Conclusion

In conclusion, the intrusion detection model of UAV system
based on neural network proposed in this paper performs well. This
model combines the advantages of convolutional neural network
(CNN) and long-term and short-term memory network (LSTM),
which can effectively improve the recognition accuracy of UAV
system abnormal behavior, and achieve efficient and accurate
intrusion detection. Through a large number of experiments on
three different data sets, we verify the effectiveness of the model.
These data sets cover various indicators of UAV operation, ensuring
the comprehensiveness and reliability of experimental results.

Despite the strong performance of our CNN + LSTM
model, it has limitations in practical UAV applications. The
model relies on preprocessed network traffic data, which may
be disrupted by real-time noise or incomplete data packets
in dynamic UAV environments, potentially reducing detection
accuracy. Additionally, while optimized for efficiency, the model’s

computational requirements (2.5MB, 12ms inference) may
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still strain low-end UAV hardware with sub-1 GHz processors.
The feature selection process, although robust, may overlook
subtle attack patterns in highly imbalanced datasets. Future
work will focus on integrating online learning to adapt to noisy
data, exploring model pruning techniques to further reduce
computational demands, and incorporating anomaly detection
for rare attack types to enhance robustness in diverse UAV
scenarios.

The experimental results show that the CNN + LSTM model
has significant advantages in processing complex multidimensional
UAV operation data. CNN can extract spatial features, capture
local correlation and spatial hierarchy in data; LSTM is good at
processing time series data, learning and remembering long-term
dependencies. This combination of spatio-temporal characteristics
makes the model significantly improve its prediction performance,
especially when dealing with complex nonlinear relationships and
data noise. In addition, the model also performs well in key
evaluation indicators such as recall rate and F1 score, which can
effectively identify the abnormal behavior of the UAV system and
provide timely warning and decision support for the safe operation
of the UAV system.

The core novelty of this work lies in tailoring a resource-
aware feature selection and feature-mapping pipeline to the UAV
deployment context and in empirically demonstrating trade-offs
between dimensionality reduction and detection performance
under constrained compute budgets. The convolutional-recurrent
backbone used here (CNN + LSTM) is not proposed as a
fundamentally new learning architecture; rather, it is applied
and optimized for resource-constrained intrusion detection by
careful selection of kernels and layer widths, an ensemble feature-
selection procedure with weighted integration, and a mapping
of non-key to key feature subspaces to recover discriminative
information lost during aggressive feature pruning. This explicit
emphasis on computational economy and practical deployment
trade-offs differentiates the contribution from algorithmic-only
advances.
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