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Early-stage breast cancer detection is critical for improving diagnostic
accuracy and treatment outcomes. This study presents a graphene-enhanced
metasurface biosensor designed to provide high sensitivity, predictive precision,
and secure data transmission. The sensor architecture consists of a cruciform
gold resonator encompassed by an annular silver-coated ring structure
deposited on a silicon dioxide substrate, with graphene integration to enhance
plasmonic response. Finite element modeling using COMSOL Multiphysics was
employed to assess electromagnetic and optical properties, and polynomial
regression–based machine learning algorithms were applied to predict
operational performance parameters. The biosensor achieved a refractive index
sensitivity of 929 GHz·RIU−1, a figure of merit of 18.571 RIU−1, and a minimum
detectable refractive index change of 0.05 RIU. Quality factors exceeding
17 were maintained across three frequency bands: 0.7–1.0 THz, 1.4–1.5 THz,
and 1.62–1.8 THz. The machine learning model delivered complete predictive
accuracy for parameter estimation. Additionally, modulation of graphene’s
electrochemical potential enabled binary data encoding, supporting encrypted
biosensing functionality. Overall, the proposed graphene–metallic metasurface
biosensor combines excellent sensitivity, robust predictive capabilities, and
secure data handling, positioning it as a promising platform for early-stage
breast malignancy detection and as a foundation for next-generation encrypted
biosensing technologies.
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1 Introduction

Breast cancer is among the most known types of malignancies
due to its prevalence and considerable effects in global rates of
morbidity and mortality [1]. Modern-day studies have culminated
in significant advancements which explain the molecular processes
involved in tumorigenesis as well as the formation of complex
therapeutic solutions [2]. Regardless of the proven clinical
efficacy of multiple modal interventions of therapeutic strategies
including cytotoxic chemotherapeutic agents, targeted radiotherapy
treatment, and endocrinological manipulations, the timely
detection of the neoplastic transformation of the pathology-affected
recognition is the essential characteristic in maximizing patient
outcome [3]. Bearing in mind the fact that mammary cancer
remains one of the leading causes of cancer deaths among the
female population globally, there is dire need to work towards the
establishment of new research technologies thatwill include both the
detection, diagnostic evaluations and treatment methods [4]. Early
detection of breast cancer improves prognosis, reducing mortality
rates by up to 40% through timely intervention. Conventional
imaging often misses molecular changes in dense tissue or in very
early stages. Biosensors offer a non-invasive, highly sensitivemethod
to detect cancer-associated biomarkers before macroscopic tumors
form, enabling timely risk stratification, follow-up, and treatment
decisions.

The main barrier that hinders the identification of malignancy
at its early stages lies in the inherent limitations of the available
diagnostic technology [5].The traditional type of imaging methods,
especially mammographic examination and ultrasonographic
evaluation has been noted to have low sensitivity of detecting
incipient neoplastic lesions especially in individuals with the
heterogeneously dense parenchymal tissue configuration and
extremely dense one [6]. Such techniques are vulnerable to the
experimental values of the inter-observer variability and instrument
sensitivity, which could result in this problem that could lead to
diagnostic error that is represented in false negatives and false
positives interpretations. The emergence of investigative paradigms
has witnessed the growing involvement in advanced technologies
that have the ability of identifying neoplastic changes at the
molecular and sub cellular levels, hence the earlier diagnosis at a
higher level of accuracy [7, 8]. This theoretical break through has
facilitated the development of non-invasive diagnostic protocols
which can be used to detect molecular biomarkers at nano-scale
levels and thereby enable a superior quantification of disease
development indices [9].

Here, biosensing technologies are not only the potential next-
generation diagnostic tools [10]. A biosensor can be described
as an analytical tool that identifies definite biological analytes in
clinical specimen, e.g., peripheral blood or tissue samples, and
quantifies them into measurable signal [11–13]. Such advanced
devices can be developed to sense particular molecular fingerprints
of mammary carcinoma such as free circulating tumor DNA
(ctDNA), extracellular vesicles, or aberrant patterns of protein
expression [14–17].The high sensitivity tomeasure such biomarkers
at very low concentration, sometimes even before a tumor is visible
by conventional imaging technology, has opened up new prospects
of early detection and constant surveillance of the progression of
breast cancer [18–21].

Out of the many types of biosensors, the optical sensing
platform is an outstanding prospect. These sensors utilize light-
induced changes to observe molecular interactions, producing very
sensitive and fast results of the analysis [13]. Moreover, the use of
optical biosensors has other benefits such as its portability, real-time
detection, and the chance of integration with a handheld device to
be used in point-of-care diagnosis. In the field of optical biosensors,
plasmonic sensors have exhibited specifically high effectiveness
in the area of oncological diagnosing (as an interaction between
electromagnetic radiation and metallic nanostructures) [22]. Such
sensors further take advantage of the surface plasmon resonance
(SPR) effect where binding of biomarker on metallic surfaces
causes the resonance frequency to move, consequently detecting the
presence of the biomarker [23].

Nevertheless, even more advanced development of the
plasmonic-based technology is the use of biosensors through
terahertz (THz) radiation [24]. Usually, electromagnetic waves in
THz frequency range have characteristic properties that makes
them very suitable to be used in interrogating biological tissues,
as they exhibit a high resolution with minimal tissue destruction
[25]. Coupled with its non-ionizing nature and the ability to
examine vibrational modes of biomolecules, the THz radiation
holds special opportunities in the diagnostics of mammary
carcinoma [26]. The last technological trends in the domain of
THz metamaterials and nanostructured sensors have allowed to
design more sensitive and more selective biosensors, able to detect
specific oncological biomarkers [27, 28]. These sensors have shown
the ability to distinguish different types of tissue and detect early
changes in biochemistry related to tumor formation as they can be
observed before being visualized using the conventional imaging
techniques [29].

It is interesting to note that many scientists have illustrated
the capability of metamaterial-based sensors in increasing the
sensitivity and selectivity of SPR based-sensors to sensitive and
efficient biomarkers as cancer identifiers [30]. As an example,Devika
et al. [31] came up with a biosensor of breast cancer biomarkers
that showed remarkable sensitivity with the detection range of
22,069 nm/RIU and the very high accuracy rates (its loss and
coupling length values were measured in the microscopic range
of 10 five and birefringence as well). Pibin et al. have designed a
fiber optic sensor using the photonic crystal technology. The sensor
has produced impressive figures, such as wavelength sensitivity,
of 26,900 nm/RIU, a resolution of 3.7210–6 RIU and a quality
factor of 126.96 RIU-1 [32]. In hemoglobin sensing, the sensor
suggested by Yesudasu et al. [33] showed outstanding results with
sensitivity of 315.79°/RIU, an outstanding figure-of-merit of 38.58
106, a quality factor of 46.10 RIU-1, and the detection accuracy
of 0.837. The sensor had slightly altered parameters when used
in the detection of glucose in the urine samples: sensitivity of
310°/RIU, figure of merit of 1.35: 10 6, quality factor of 43.18
RIU -1, and detection accuracy of 0.518. The biosensor design
proposed by Esmat et al. [34] is based on the combination of
the interaction between graphene and plasmonic nanostructures
that allow detecting malignant cells with high sensitivity, which is
up to 1.62∗10 4 nm/RIU. The wavelength sensitivities of the SPR
sensor proposed by A [35]. vary between 4750 nm/RIU in case
of cutaneous malignancies and 1.14 10 4 nm/RIU in case of the
mammary carcinoma type 1, which is good enough indicator of the
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effectiveness of the device to detect neoplastic cells. According to
Gufranullah et al. [36], the refractive index (RI) of variousmalignant
cell lines were between 1.392 and 1.401 with the highest sensitivity
ofMCF-7 cell line of 320.571 deg/RIU. In addition to that, the sensor
suggested by Kumar et al. [37] senses basal cell carcinoma with the
use of the wavelength of 633 nm with the maximum sensitivity of
280.06 o/RIU.

Traditional out-of-plane biosensing architectures, such as
vertical Fabry–Pérot cavities or multilayer SPR stacks, often suffer
from limited electromagnetic field overlap with the analytemedium,
especially when interfaced with biofluids of low penetration depth
[38–40]. This restricts the interaction volume and reduces the
sensitivity in detecting early-stage disease biomarkers. Moreover,
the optical alignment required for out-of-plane sensing is inherently
more complex and less amenable to compact integration and
multiplexed layouts [41]. In contrast, in-plane metasurface
configurations, like the one proposed in this work, offer significant
advantages in terms of field confinement, planar fabrication
compatibility, and lateral biofunctionalization. Our cross-annular
resonator geometry, with graphene overlay, leverages strong in-
plane surface plasmon coupling which maximizes the evanescent
field penetration into the sensing region. This results in enhanced
refractive index sensitivity and superior electromagnetic field
confinement near the resonant interface. As highlighted by recent
studies such as [42], in-plane dielectric gratings and bimodal
photonic configurations provide high-resolution sensing capabilities
due to their resonantmode selectivity and ease of planar integration.

In turn, this study proposes a sensing design in combination
with innovative nanomaterials to develop highly sensitive biosensors
to detect early-stage breast cancer. In particular, the research aims
at the application of graphene based metasurfaces to improve the
interactions of THz radiation with cancer specific biomarkers.
The outstanding electrical and optical performance of graphene
as well as its ability to organize itself into layered nanostructures
makes it an ideal material to be used in the manufacture of
sensors that are highly sensitive and specific. An optimization of
the parameters of performance is achieved through the integration
of silver and copper elements in the architecture of the sensor,
allowing a greater electromagnetic absorption and higher signal-
to-noise ratios in real-time measurements. Furthermore, sensor
design entails incorporation of machine learning (ML) algorithms,
which increase the predictive accuracy. Machine learning methods
can be implemented to calculate complex datasets provided by the
sensor, discovering the patterns that might not be applicable to
detection with the help of traditional diagnostic methods. The ML
can be used to predict tumor progression, therapeutic responses,
and prognosis by training the sensor system to understand small
differences in the presence and behaviour of the biomarker to
incorporate personalized treatment plans.

2 Design and modelling

The proposed sensing architecture employs a cruciform
resonant element, characterized by longitudinal and transverse
dimensions of 10.5 µm and 2 μm, respectively.This cross-configured
resonator is metallized with gold to maximize its surface plasmon
excitation characteristics. Encompassing this primary resonant

structure is an annular geometry featuring a radial extent of
5.5 µm and a circumferential width of 6.3 µm. Notably, silver
serves as the metallic cladding for these toroidal resonators,
thereby augmenting the sensor’s operational efficacy through
enhanced plasmonic field coupling and heightened detection
sensitivity. These dual resonant elements—the cruciform and
annular configurations—are concentrically positioned within
an expansive circular architecture, which is functionalized with
a graphene overlay serving as the bioactive sensing medium.
The encompassing circular resonator exhibits a 9 µm radius,
facilitating robust electromagnetic field interactionwith the ambient
dielectric environment. This architectural configuration ensures
the metasurface array can discern minute variations in the local
refractive index, a fundamental requirement for high-precision
terahertz spectroscopic applications. The complete resonator
assembly is integrated upon a silicon-based foundation, which
furnishes both structural integrity and an optimal dielectric milieu
for the resonant elements. The silicon substrate dimensions span
21.3 µm × 21.3 µm with a vertical thickness of 1.7 µm, guaranteeing
metasurface durability whilst preserving the exacting tolerances
essential for terahertz sensing modalities.The conceptualized
sensor architecture is depicted in Figure 1, presenting the superior
perspective (a), three-dimensional visualization (b), and lateral
cross-sectional view (c). Table 1 delineates the fundamental design
parameters of the proposed sensing platform.

The sensor, which measures refractive indices using
metasurfaces, is modelled in COMSOL Multiphysics using Finite
Element Method calculations. The device’s modelling starts with
a silicon dioxide base, followed by layers of resonator structures
made of gold, silver, and graphene. The model uses periodic
boundaries along both horizontal axes to enhance accuracy. For
the mesh structure, a Delaunay tetrahedral pattern is used to create
high-quality elements that produce reliable simulation outcomes.

Table 1 presents the key design parameters of the proposed
biosensor. It includes dimensions and materials for the cruciform,
annular, and circular resonators, each contributing to plasmonic
enhancement and sensitivity. The cruciform is gold-coated for
strong plasmon excitation, while the annular ring uses silver for
improved coupling. A graphene-functionalized circular layer acts
as the sensing interface. The entire structure is built on a silicon
substrate.

The way by which the various materials can interact with light
is uniquely determined by their distinct optical characteristics:
silicon dioxide exhibits a refractive index that varies withwavelength
(shown in Equation 1), gold’s dielectric behavior follows the Drude
model [37, 38].

2.1 Fabrication of the proposed sensor

Table 2 outlines the complete fabrication process of the
proposed biosensor. It details each key step, including substrate
preparation, patterning, material deposition, and integration.
Advanced techniques like electron beam lithography, physical vapor
deposition, and graphene transfer are employed. Quality control
measures ensure structural accuracy, material integrity, and sensing
functionality.
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FIGURE 1
The proposed sensor design is illustrated in different views, with a top view (a), 3D view (b), and horizontal view (c).

TABLE 1 Fundamental structural and material parameters of the proposed metasurface-based biosensor.

Component Parameter Value Material Function/Notes

Cruciform Resonator
Longitudinal dimension 10.5 µm Gold Enhances surface plasmon excitation

Transverse dimension 2 µm Gold Part of central resonant structure

Annular Resonator

Radial extent 5.5 µm Silver Enhances plasmonic coupling and
detection sensitivity

Circumferential width 6.3 µm Silver Forms concentric ring around cruciform
structure

Circular Resonator Radius 9 µm Graphene (overlay) Sensing medium; functionalized for
bio-detection

Substrate

Lateral dimensions 21.3 µm × 21.3 µm Silicon Provides structural support and dielectric
environment

Thickness 1.7 µm Silicon Ensures durability and dimensional stability

Metasurface Layout Configuration Concentric cruciform + annular + circular Composite Designed for high sensitivity to refractive
index variations

Application Regime Operating frequency range Terahertz (THz) — Suitable for spectroscopic biosensing
applications

Figure 2 demonstrates the fabrication process of the proposed
sensor design. Biosensors can be broadly classified into categories
such as electrochemical, optical, piezoelectric, and thermal

sensors, each leveraging a different transduction mechanism.
Electrochemical biosensors detect changes in current or voltage
upon analyte interaction, while optical biosensors—such as
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TABLE 2 Step-by-step summary of the fabrication process for the proposed terahertz biosensor.

Step Process Details Technique/Tool Material
involved

Purpose/Outcome

1 Substrate Preparation Cutting, polishing, and
cleaning silicon wafer

Ultrasonic bath, acetone,
IPA

Silicon (21.3 µm × 21.3
µm × 1.7 µm)

Clean and precise base
for sensor fabrication

2 Plus-Shaped Resonator
Fabrication

Patterning and
metallization of
cruciform resonator

E-beam lithography,
thermal evaporation

Gold Forms the central
plasmonic resonator
(10.5 µm × 2 µm)

3 Annular Ring
Fabrication

Patterning and silver
deposition for circular
ring

E-beam lithography,
PVD, lift-off

Silver Creates concentric
annular resonator
(5.5 µm radius, 6.3 µm
width)

4 Circular Graphene Layer
Fabrication

Patterning and graphene
transfer

E-beam lithography,
graphene transfer, O2
plasma

Graphene Adds bioactive sensing
layer (9 µm radius),
excess removed for
precision

5 Quality Control Verification of structural
integrity and material
quality

SEM, AFM, electrical
testing, Raman
spectroscopy

All materials involved Ensures dimensional
accuracy, uniformity,
conductivity, and
graphene quality

6 Integration and Final
Assembly

Alignment, gap
verification, residue
cleaning, and housing

Micromanipulation
tools, cleaning stations

Full sensor assembly Final sensor mounted
and prepared for THz
measurements

surface plasmon resonance (SPR), photonic crystals, or terahertz
metasurfaces—exploit changes in light properties like refractive
index or absorbance. Piezoelectric and thermal biosensors rely
on mass-induced frequency shifts and heat changes, respectively.
Among these, optical biosensors are particularly effective in
oncological contexts due to their high sensitivity, real-time analysis,
and integration potential.

2.2 Electromagnetic analysis of
metasurface-based biosensor

Generalized Maxwell-Heaviside Equations with Nonlocal
Susceptibility Tensors.

The electromagnetic behavior is governed by the generalized
Maxwell equations incorporating spatial and temporal nonlocality
as demonstrated by Equations 1, 2:

∇×E(r, t) = −
∂B(r, t)

∂t
−∭ ̃χm(r,r′, t, t′)M(r′, t′)d3r′dt′

∇×H(r, t) =
∂D(r, t)

∂t
+∭ ̃χe(r,r′, t, t′)J(r′, t′)d3r′dt′

+
∞

∑
n=1
∫
∞

0
Γn(τ)

∂nE(r, t− τ)
∂tn

dτ

∇ ·D(r, t) =∭ ̃ρ(r,r′, t, t′)ρ(r′, t′)d3r′dt′

∇ ·B(r, t) = μ0∭ ̃ξ(r,r
′, t, t′)∇′ ·M(r′, t′)d3r′dt′

(1)

Where the nonlocal susceptibility tensors are:

̃χij(r,r
′,ω) = ∫

∞

−∞
∫
∞

−∞
Kij(r,r′,k,ω)eik·(r−r

′) d3k
(2π)3

(2)

Metamaterial Constitutive Relations with Bi-anisotropic
Coupling.

The constitutive relations for the metasurface include
magnetoelectric coupling as demonstrated by Equations 3, 4:

[

[

D

B
]

]
= [

[

εrr εrθ εrϕ ξrr ξrθ ξrϕ
ζrr ζrθ ζrϕ μrr μrθ μrϕ

]

]

[

[

E

H
]

]
(3)

With frequency-dependent tensor elements:

εij(ω) = δij +
∞

∑
n=1

∞

∑
m=1

A(ij)nm
ω2
nm −ω2 + 2jγnmω

+
∞

∑
k=1

B(ij)k ω2

ω4
k −ω

4 + 2jδkω3 (4)

Hypergeometric Surface Plasmon Dispersion with Quantum
Corrections.

The quantum-corrected SPP dispersion for the gold cruciform
incorporates nonlocal effects as demonstrated by Equations 5–7:

kspp =
ω
c
√ εm(ω)εd
εm(ω) + εd

×[1+ β1(ω)k
2
spp + β2(ω)k

4
spp +
∞

∑
n=1

αn(ω)
∇2nρ(r)
ρ(r)
]

(5)

Where the gold permittivity includes interband transitions and
quantum size effects:

εm(ω) = ε∞ −
ω2
p

ω2 + jγω
+
∞

∑
n=1

fnΩ
2
n

Ω2
n −ω2 − jΓnω

+ ℏ2

2m∗
[

∇2ρ(r)
ρ(r)
+
(∇ρ(r))2

ρ2(r)
]

(6)

The quantum correction terms involve:
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FIGURE 2
Fabrication feasibility of the proposed sensor design. The entire process demands extreme precision and careful attention to detail to ensure the sensor
will function effectively in terahertz sensing applications.

β1(ω) = (
ℏvF
2ωp
)
2
[1+( ω

ωp
)
2
]
−3/2

×2F1(
3
2
,1; 5

2
;−( ω

ωp
)
2
)

β2(ω) = (
ℏvF
2ωp
)
4
[1+( ω

ωp
)
2
]
−5/2

×3F2(
5
2
, 3
2
,1; 7

2
, 3
2
;−( ω

ωp
)
2
)

(7)

Multi-Modal Coupled Oscillator Network withMemory Effects.
The coupled resonator system with memory kernels as

demonstrated by Equations 8, 9:

d2an
dt2
+∫

t

0
Γnm(t− τ)

dam(τ)
dτ

dτ+
N

∑
m=1
[ω2

nm +∫
t

0
Knm(t− τ)am(τ)dτ]am

=
K

∑
k=1
√2γnk,extske

jϕnk +
L

∑
l=1
∫
t

0
Fnl(t− τ)ηl(τ)dτ

(8)

Where the memory kernels are:

Γnm(t) =
∞

∑
k=1

Anmke
−t/τk cos(Ωkt+ϕk) +

∞

∑
l=1

Bnmlt
αl−1Eαl(−t/τl)

Knm(t) =
∞

∑
p=1

Cnmpe
−t/τpJ0(Ωpt) +

∞

∑
q=1

Dnmqt
βq−1Eβq,γq(−t/τq)

(9)

GrapheneQuantumConductivity withMany-Body Interactions.

The graphene conductivity includes electron-electron
interactions and disorder as demonstrated by Equations 10–13:

σ(ω,k) = σintra(ω,k) + σinter(ω,k) + σimp(ω,k) + σmb(ω,k) (10)

Intraband with Vertex Corrections

σintra(ω,k) =
e2

4ℏ
∫

d2q
(2π)2
∫
∞

−∞

dE
2π
× [ f(E) − f(E+ ℏω)]

×Tr[γiG(E,q)γjG(E+ ℏω,q+ k)Λij(E,q,ω,k)]
(11)

Interband with Excitonic Effects

σinter(ω,k) =
e2

4ℏ
∑
n,m
∫

d2q
(2π)2
[ f(En,q) − f(Em,q+k)]⟨n,q|γi|m,q+ k⟩⟨m,q+ k|γj|n,q⟩

En,q −Em,q+k + ℏω+ jη

×[1+∑l
Vl(q)χl(ω,k)

1−Vl(q)χl(ω,k)
]

(12)

Many-Body Corrections

σmb(ω,k) =
e2

4ℏ
∫ dE
2π
∫

d2q
(2π)2
∑

n,m,l,p
Wnmlp(E,q,ω,k)G(E,q)G(E+ ℏω,q+ k)

(13)
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TABLE 3 Key performance metrics of graphene in comparison to other materials.

Material Carrier mobility (cm2/V·s) Resonance behavior Notes

Graphene 10,000–50,000 Sharp resonance peaks High conductivity, ideal for THz

MoS2 200–500 Broader peaks Moderate THz response

Black Phosphorus 100–1000 Broader peaks Angular instability in THz

MoTe2 20–60 Weak plasmon resonance Limited THz potential

WS2 100–200 Diffuse resonance Low field confinement

ITO ∼40 Weak near-infrared SPR Less suitable for THz

FIGURE 3
Illustrates: (a) the spectral transmittance variation as a function of
graphene chemical potential, and (b) the corresponding
frequency-domain analysis demonstrating spectral peak migration.

Generalized Scattering Matrix with Fano Resonances.
The scattering matrix incorporates multiple interference

pathways as demonstrated by Equations 14–16:

S = [

[

S11 S12
S21 S22

]

]
= [

[

r11 t12
t21 r22

]

]
(14)

With Fano lineshapes:

Sij(ω) = S
(bg)
ij +

N

∑
n=1

M

∑
m=1

A(ij)nm ×[
qnm + εnm
1+ ε2nm

]

×[1+
K

∑
k=1

B(ij)k εknm]× exp[j
L

∑
l=1

C(ij)l εlnm]
(15)

FIGURE 4
Presents: (a) angular-dependent transmittance characteristics and (b)
the corresponding frequency-domain representation of angular
transmission behaviour.

Where:

εnm =
ω−ωnm

Γnm/2
+ j

P

∑
p=1

D(nm)p [
ω−ωnm

Γnm/2
]
p

(16)

Hyperbolic Metamaterial Field Enhancement with Spatial
Dispersion.

The field enhancement includes hyperbolic dispersion effects as
demonstrated by Equations 17–19:

η(r,ω) =
|E(r,ω)|2

|Eo|
= |
∞

∑
n=1

∞

∑
m=1

Anm(ω)ψnm(r)|
2

×∏k
k=1
[1+

Bk(ω)k2k
ω2‐ω2

k + 2jγkω
] (17)
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FIGURE 5
Presents: (a) spectral transmittance variation as a function of circular
resonator dimensions and (b) frequency-domain analysis of
resonance behaviour.

FIGURE 6
Presents: (a) transmittance modulation with varying circular ring
resonator dimensions and (b) corresponding frequency-domain
spectral analysis.

FIGURE 7
Presents: (a) transmittance response to plus-shaped resonator width
variation and (b) frequency-domain representation of
width-dependent resonance behaviour.

FIGURE 8
(a,b)Demonstrates the transmittance-frequency correlation for breast
cancer detection within the first frequency band.
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FIGURE 9
(a,b)Illustrates the transmittance characteristics and breast cancer
detection correlation for the second frequency band.

Where the eigenmodes satisfy:

∇× [ ̂ε−1(r,ω,k) ·∇×ψnm(r)] =
ω2

c2
̂μ(r,ω,k) ·ψnm(r) (18)

With nonlocal tensors:

̂εij(r,ω,k) = ε
(∞)
ij +

∞

∑
n=1

f(ij)n ω2
n

ω2
n −ω2 − jΓnω

+
∞

∑
m=1

g(ij)m k2

Ω2
m −ω2 − jΔmω

+
∞

∑
p=1

h(ij)p
∇2ρ(r)
ρ(r)

(19)

Nonlinear Sensitivity with Higher-Order Corrections.
The refractive index sensitivity includes nonlinear terms as

demonstrated by Equations 20–22:

S =
∂λres
∂n
|
n=n0
+ 1
2!

∂2λres
∂n2
|
n=n0

(n− n0) +
1
3!

∂3λres
∂n3
|
n=n0

(n− n0)
2 + · · ·

(20)

Where:

∂pλres
∂np
=
∞

∑
n=1

∞

∑
m=1

C(p)nm ×
∂pΩnm/∂np

[1+ (∂Ωnm/∂n)
2]p/2

×
K

∏
k=1
[1+D(p)k

∂kQnm/∂nk

(∂Ωnm/∂n)
k
]

(21)

Quantum Noise Analysis with Fluctuation-Dissipation
Relations.

FIGURE 10
(a,b)Presents the transmittance behavior and breast cancer detection
correlation for the third frequency band.

FIGURE 11
Presents calibration curves demonstrating the relationship between
resonance frequency variation and refractive index changes for breast
cancer detection applications.

The quantum noise includes zero-point fluctuations and
thermal effects:

ΔE2⟩ =∑n∫
∞

0

dω
2π
×[ℏω coth( ℏω

2kBT
)]× Im[Gnn(ω)]| fn(ω)|

2

+ ∑
n,m≠n
∫
∞

0

dω
2π
×[ ℏω

eℏω/kBT − 1
]×Re[Gnm(ω)] f∗n(ω) fm(ω)

(22)

Where the Green’s function satisfies:

Gnm(ω) = ⟨n|[(ω+ jη) ̂I− Ĥ− Σ̂(ω)]
−1|m⟩

Fractional Finite Element Formulation.
The weak form includes fractional derivatives as

demonstrated by Equation 23:
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FIGURE 12
Illustrates the electric field distribution across the sensor surface at three distinct operational frequencies: 0.755 THz (a), 0.879 THz (b), and 0.960 THz
(c).

∫
Ω
[μ−10 (∇×E) · (∇×E

∗) − k20εrE ·E
∗]dV

+
∞

∑
n=1
∫
Ω
αn(∇

αnE) · (∇αnE∗)dV+
∞

∑
m=1
∫
Ω
βm(

∂βmE
∂tβm
) ·( ∂

βmE∗

∂tβm
)dV

= ∫
∂Ω
[n̂× (H×E∗) +

K

∑
k=1

γk(∇
γkE) · (n̂×E∗)]dS

(23)

Stochastic Resonance Optimization.
The optimal operating point as demonstrated by

Equations 24, 25 is found by solving:

min
ω,n
𝔼[|S(ω,n) − Starget|2] subject to:

∫
∞

0
P(ω)S(ω,n)dω = C1

∫
∞

0
ω2P(ω)S(ω,n)dω ≤ C2

N

∑
n=1

pn|S(ωn,n) − Sn|2 ≤ C3

(24)

Where the probability density P(ω) follows:

P(ω) = Z−1 exp[−β∫
∞

0
H(ω,ω′)S(ω′)dω′]

×
K

∏
k=1

δ(∫
∞

0
fk(ω
′)S(ω′)dω′ −Nk) (25)

Measurement of refractive indices has become a novel optical
diagnostic tool in identification of breast cancer that is creating new
frontiers in the medical field of diagnostics.This method uses one of
the more fundamental biological distinctions the optical properties
of breast tissue change drastically in their malignant conversion.
Normal breast tissue has poor refractive index and malignant ones
have larger refractive index. These optical differences are caused by
several alterations of geometry in the tissue in the course of cancer
development such as increased density of cells, modified structure of
proteins, altered world in the extracellular space, and altered water
distribution.

At that, we think that an extraordinary conductivity and high
carrier mobility of graphene is rather important to the sensor
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TABLE 4 The sensor design’s operational metrics.

F(THz) 0.877 0.87 0.878 0.865

N(RIU) 1.385 1.399 1.387 1.401

df(THz) REF 0.007 REF 0.013

dn(RIU) REF REF REF 0.014

S(GHz/RIU) - 500 - 929

FWHM(THz) 0.050 0.050 0.050 0.050

FOM(RIU−1) - 10 - 18.571

Q 17.540 17.400 17.560 17.300

DL - 0.109 - 0.050

DR 3.922 3.891 3.927 3.868

SNR - 0.140 - 0.260

SR - 0.054 - 0.047

DA 2 2 2 2

X - 0.003 - 0.004

functioning in terms of THz frequency ranges. Graphene has a
distinguishing property of supporting surface plasmon resonances
at terahertz frequencies owing to their linear energy dispersion and
strong electronic conductivity, necessary to form a biosensor. The
excellent speed in carrier mobility enables graphene to make fast
responses thus increasing the sensitivity of the sensor to record the
minute variations in the refractive index in a very short position.
We have conducted numerical simulations to assure the reason to
prefer graphene-basedmaterial to the other 2D systems likeMoS2 or
black phosphorus, like the refractive index sensitivity, quality factor,
and resonance behaviour of the sensors based on these materials. It
was observed in the simulations portrayed in Table 2 that graphene
performed better as compared toMoS 2 and black phosphorous due
to its high sensitivity and resonance sharpness in the THz regime,
thus making the latter the ideal choice to be used as a biosensor.
This is reflected in these findings that analytically demonstrate the
better plasmonic characteristics of graphene owing to its exceptional
electronic structure and favourable carrier mobility. Table 3 presents
Key performance metrics of graphene in comparison to other
materials.

2.3 Material stability and environmental
considerations

Graphene has an intrinsic stability at ambient conditions but is
also highly sensitive to oxidation and surface contamination and
could be especially degraded in harsh environmental conditions. To
improve the durability of graphene it can be functionalized through
surface protection with coating or hybridized with complementary

material, e.g., hexagonal boron nitride (h-BN), which offers
improved oxidation resistance and stable structure.

Silver-based parts Silver-based components have oxidation
issues because of the thermodynamic tendency of the metal to go
into oxidative states in the presence of atmospheric oxygen and
moisture, which may destroy sensor performance over time in the
form of a time dependent deterioration. Some mitigation options
are available to protect against mitigation through application of
inert protective coatings, e.g., gold overlays or highly specialized
passivation coatings, used as diffusion barriers against oxidants
in the environment. Operation under controlled atmospheric
conditions with low exposure to oxygen can be utilized alternatively
to greatly reduce the kinetics of oxidation processes.

Surfacing contamination is one of the most important problems
in biosensing applications, and ways of ensuring that the sensor
could operate effectively during long intervals are required.
Periodical surface regeneration schemes or addition of antifouling
surface modifications may suffice that severity in build-up of
these interfering biological and environmental species are avoided.
Additional protection of the nonspecific biological adhesion
is also achieved with the implementation of hydrophobic or
specialized antifouling coatings which facilitate sensor selectivity
and sensitivity [45].

3 Results and discussion

The sensor architecture was rigorously evaluated using
COMSOL Multiphysics® (v6.2), implementing a comprehensive
parametric sweep to optimize the system’s photonic performance
within the terahertz (THz) spectral regime spanning 0.1–1.0 THz.
The simulation framework employed the frequency-domain
electromagnetic wave solver, governed by Maxwell’s equations
(Equation 26):

∇×E = −jωμH and ∇×H = J+ jωεE (26)

where E and H are the electric and magnetic fields, respectively, ω
= 2πf is the angular frequency, and ε and μ represent the material’s
permittivity and permeability.A detailed parametric analysis was
conducted to investigate the influence of graphene’s chemical
potential  on the sensor’s optical transmittance wherein graphene
potential was varied incrementally from 0.1 eV to 0.9 eV in 0.1 eV
steps. The optical conductivity of graphene, which fundamentally
governs its interaction with THz radiation, was modeled using the
Kubo formalism (Equation 27) where the intraband (Drude-like)
contribution dominates in the THz range

σintra(ω,μc,T) =
2ie2kBT

πℏ2(ω+ iΓ)
ln[2 cosh(

μc
2kBT
)] (27)

This conductivity modulation translates into changes
in the effective refractive index neff , thereby affecting the
transmission characteristics of the structure.Quantitative
analysis shown in Figures 3a,b demonstrated the following
transmittance characteristics: 97.430% at μc = 0.1 eV, decreasing
progressively to 95.052% (μc = 0.2 eV), 91.674% (μc = 0.3 eV), and
90.695% (μc = 0.4 eV). Further increases in chemical potential
yielded corresponding transmittance values of 86.721% (μc =
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TABLE 5 Performance analysis comparing the proposed sensor design with other designs.

Ref. S FOM D.L Q Application

[43] 175 GHz/RIU 4.52 0.20 17.62 Peptide detection

[44] 500 GHz/RIU 3.087 0.358 11.504 Peptide detection

[45] 113.92 GHz/RIU 3.15 0.45 11.22 Metal ion detection

[46] 600 GHz/RIU 18.750 0.064 5.906 COVID-19 detection

[47] 424 nm/RIU - - 804 Haemoglobin glucose level detection

[48] 488 GHz/RIU 6.754 0.234 12.914 Waterborne bacteria Detection

[49] 133 GHz/RIU 3.02 - 9.32 Haemoglobin detection

[50] 233 GHz/RIU - - - Haemoglobin detection

[51] 3571 nm/RIU - - 322 Blood cancer detection

[52] 200 GHz/RIU 5.12 0.15 11.97 Detection of Pregnancy

[53] 99.969% - - - Breast cancer detection

[54] 500 GHz/RIU 2.809 0.867 1.860 Dopamine detection

[55] 92.2% - - - Breast cancer detection

[56] 1500 GHz/RIU 60 0.016 6.909 Detection of peptides

[57] 116.93 THz/RIU 16.7 × 104 - - Breast cancer detection

[58] 65.53% - - - Breast cancer detection

[59] 73.46 nm/RIU - - 19.33 detection of blood plasma
and cancer cells

Proposed 929 GHz/RIU 18.571 0.05 17.54 Detection of breast cancer

0.5 eV), 82.303% (μc = 0.6 eV), 77.620% (μc = 0.7 eV), 72.824%
(μc = 0.8 eV), and 68.037% (μc = 0.9 eV).

The computational results revealed significant spectral tuning
characteristics, as visualized through color-mapped frequency-
domain analysis in Figure 3b. Increasing graphene chemical
potential induced systematic blue-shifting of transmittance
resonances toward higher frequencies, demonstrating the sensor’s
inherent spectral tunability through electrochemical gating control.

The angular-resolved transmittance characteristics of the
proposed metasurface sensor were analysed using full-wave
electromagnetic simulations across an angular span of incidence
θ∈[0°,80°, incremented in discrete steps of Δθ = 10° as shown in
Figures 4a,b. The normal incidence configuration (θ = 0°) exhibited
the highest transmittance T(0°) = 68.037% while increasing
obliquity led to progressive attenuation, consistent with angular
Fresnel behavior as demonstrated by Equations 28, 29:

T(θ) =
4n1 cos θn2 cos θt
(n1 cos θ+ n2 cos θt)

2 (TE) (28)

T(θ) =
4n1 cos θn2 cos θt
(n2 cos θ+ n1 cos θt)

2 (TM) (29)

The angular transmission analysis as depicted in Figures 4a,b
revealed distinct angular-dependent attenuation characteristics:
normal incidence (θ = 0°) yielded maximum transmittance of
68.037%, with progressive reduction observed at θ = 10° (67.715%),
θ = 20° (66.715%), θ = 30° (64.930%), and θ = 40° (62.147%). More
pronounced angular sensitivity was observed at higher incident
angles, with transmittance values of 57.996% (θ = 50°), 51.824%
(θ = 60°), 42.347% (θ = 70°), and 26.879% (θ = 80°).

To further resolve the angular dependency, the wavevector
k was decomposed into tangential and normal components as
demonstrated by Equations 30, 31:

k⃗ = k⃗∥ + k⃗⊥ = (k0 sin θ) ̂x+ (k0 cos θ) ̂z (30)

The field continuity conditions at the interface lead to distinct
boundary behavior for the TE and TM polarizations. For TM-
polarized waves, the Brewster angle θB arises when the reflection
coefficient vanishes:

RTM(θB) = 0 ⇒ θB = tan−1(
n2
n1
) (31)

In the present configuration, numerical analysis reveals
θB∈[50°,60°], consistent with observed enhancement of TM
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FIGURE 13
(a-d) Illustrates the encoding results for the proposed sensor design through variation of the GCP.

transmittance in this range. Additionally, the transmittance
spectrum T(f,θ), shown in Figure 4b, exhibits angularly induced
spectral broadening, attributed to angular dispersion and
polarization-dependent impedance mismatch as demonstrated by
Equations 32, 33:

ZTE(θ) = √
ε
μ
cos θ, (32)

ZTM(θ) = √
ε
μ

1
cos θ

(33)

The angular variation of the impedance mismatch results in
resonance detuning and bandwidth expansion, which becomes
more pronounced as θ→80°. These effects are further amplified
by the anisotropic surface conductivity σ(ω,μc) of graphene,
particularly under oblique incidence, where the in-plane
wavevector component enhances coupling to plasmonic modes
as demonstrated by Equation 34:

βSPP(ω,μc,θ) ≈
ω
c √

ε1ε2
ε1 + ε2 +

ωε0diσ(ω,μc)
c

(34)

This polarization- and angle-dependent surface plasmon
resonance results in tunable anisotropic interaction, enabling
multi-modal detection.

The influence of circular resonator geometry on the optical
transmission (T) characteristics was systematically investigated via
parametric variation of the resonator diameter (D) from 7.0 µm
to 9.0 µm in 0.5 µm increments, as shown in Figures 5a,b. The
minimum transmittance values, T_min(D), were measured as:

T(D) = {72.324%, 73.310%, 71.283%, 69.823%, 68.037%} for
D = {7.0, 7.5, 8.0, 8.5, 9.0} µm.

The resonant frequency fr of the cavity modes is governed
Equation 35:

fr =
mc

2πneffR
= mc
πneffD

(35)

wherem∈Z+ is the azimuthal mode number, R =D/and neff  denotes
the mode’s effective refractive index, which accounts for material
dispersion and field confinement. The spatial mode profile Ψm(r,ϕ)
within the resonator satisfies the Helmholtz equation (Equation 36):

∇2Ψm + k2mΨm = 0,km =
2πneff
λm
=
2π frneff

c
(36)

subject to boundary conditions defined by the resonator geometry.
The frequency-domain analysis (Figure 5b) exhibits a red-shift with
increasingD, consistent with the inverse scaling fr∝ 1/D.

For the circular ring resonator, dimensional variation from r =
4.5–6.0 μmwas performed, revealing non-monotonic transmittance
minima: The measured minimum transmittance values depicted
in Figures 6a,b exhibited notable variation: 48.440%, 58.341%,
43.235%, and 55.406% for ring dimensions of 4.5, 5.0, 5.5, and 6.0
μm, respectively. This non-monotonic behavior indicates complex
modal interactions within the ring geometry, where competing
effects of mode confinement and coupling efficiency influence
the overall transmission characteristics.This complex behavior
results from the interplay of whispering-gallery modes (WGMs)
characterized by high-Q resonances satisfying (Equation 37):

mλ = 2πneffRr,Rr =
2
Dr

(37)

Frontiers in Physics 13 frontiersin.org

https://doi.org/10.3389/fphy.2025.1659054
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wekalao et al. 10.3389/fphy.2025.1659054

FIGURE 14
Graphene Chemical Potential Analysis in terms of scatter Plots. (a) GCP 0.1 eV. (b) GCP 0.2 eV. (c) GCP 0.3 eV. (d) GCP 0.4 eV. (e) GCP 0.5 eV. (f) GCP
0.6 eV. (g) GCP 0.7 eV. (h) GCP 0.8 eV. (i) GCP 0.9 eV.

The quality factor Q of these modes, representing the energy
storage relative to loss, is given by Equation 38:

Q =
2γ
ωr
= ωrτ =

fr
Δ f

(38)

where γ is the modal damping rate, τ the photon lifetime, and
Δf the full width at half maximum (FWHM) of the resonance.
The observed transmittance fluctuations correspond to modal
coupling and interference effects between intrinsic WGMs and
leaky radiative modes.The ring resonator’s spectral red-shift and
mode coupling strength κ depend sensitively on geometrical

parameters and evanescent field overlap, modelled by the coupled
mode theory Equation 39:

da
dt
= (jωr − γ)a+ jκsin (39)

The plus-shaped resonator configuration was systematically
characterized through width variation from 0.5 μm to 2.0 μm in
0.5 μm increments, as illustrated in Figures 7a,b. The dimensional
analysis yielded minimum transmittance values of 37.588%,
42.088%, 52.556%, and 68.037% for resonator widths of 0.5, 1.0, 1.5,
and 2.0 μm, respectively. This monotonic increase in transmittance
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FIGURE 15
Graphene Chemical Potential Analysis in terms of Heat map Plots. (a) T.C = 0.1. (b) T.C = 0.2. (c) T.C = 0.3. (d) T.C = 0.4.

with resonator width indicates enhanced electromagnetic coupling
efficiency and improved field overlap within the resonator structure.

The monotonic increase in T with ww indicates enhanced
electromagnetic mode volume Veff , defined by Equation 40:

Veff =
∫ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2]
(40)

where E(r) is the electric field distribution, and ε(r) the permittivity
profile. Increasing wbroadens the effective modal cross-section,
improving overlap integral Γ between incident field and resonator
mode as demonstrated by Equation 41:

Γ =
|∫bEinc(r) ·E∗res(r)d3r|

2

(∫|Einc(r)|
2d3r)(∫|Eres(r)|

2d3r)
(41)

The frequency-domain spectral shift (Figure 7b) exhibits a blue-
shift with increasing w, explained by the perturbation of effective
refractive index neff.

3.1 Detection analysis

Thedetection results of the proposed design are attained at three
distinct frequency bands as demonstrated in Figures 8–11.

3.1.1 Spectral band I: 0.7–1.0 THz
Within the first frequency domain (Figures 8a,b), denoted as

B1 = [0.7,1.0]THz, significant resonance features are defined by
Equations 42, 43:

f(1)r = {0.877,0.870,0.878,0.865}THz, (42)

corresponding to transmittance minima:

T( f(1)r ) = {67.573%,67.434%,67.554%,67.408%}. (43)

These spectral dips are modeled via a sum of Lorentzian-like
resonant functions depicted in Equation 44:

T1( f) =
4

∑
n=1

[

[

Cn

( f − frn)
2( Γn

2
)2
]

]
+T∞, (44)

where Cn denotes coupling coefficients, Γn represents the resonance
linewidths (FWHM), and T∞ is the asymptotic baseline.

The group delay, defined by Equation 45:

τg( f) = −
dϕ( f)
d f
,ϕ( f) = arg (S21( f)), (45)

peaked near 0.870 THz with τmax
g ≈ 0.74ps, indicating enhanced

slow-light effect.
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FIGURE 16
Incident Angle Parameter analysis in terms of scatter Plots. (a) θ = 0 degrees. (b) θ = 10 degrees. (c) θ = 20 degrees. (d) θ = 30 degrees. (e) θ = 40
degrees. (f) θ =; 50 degrees. (g) θ = 60 degrees. (h) θ = 70 degrees. (i) θ = 80 degrees.

The observed spectral shift within this band is
defined in Equation 46:

Δ f1 = 0.91 THz− 0.81 THz = 100 GHz,δ ftunability ≈ 70 GHz.
(46)

3.1.2 Spectral band II: 1.385–1.43 THz
In the second band B2 (Figures 9a,b), the resonance features

were found at:

f(2)r = {1.385,1.398,1.412,1.430} THz,

T( f(2)r ) = {75.050%,75.066%,75.162%,75.177%}. (47)

The transmission is demonstrated by Equations 48–51 where:

T2( f) = |
2√ϵs
√ϵs +√ϵm

|
2

· exp [−α( f) · d], (48)

where:

α( f) = 2π
λ( f)
· I(√ϵeff( f)), (49)

with d as the metasurface thickness.
The shift in resonant frequency is:

Δ f2 = 1.43− 1.385 = 45 GHz, fc = 1.4075 THz,
Δ f2
fc
≈ 3.2%. (50)
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FIGURE 17
Incident Angle Parameter analysis in terms of Heat map Plots. (a) T.C = 0.1. (b) T.C = 0.2. (c) T.C = 0.3. (d) T.C = 0.4.

Modulation depth:

M( f) =
Tmax −Tmin

Tmax
× 100% ≈ 0.17%. (51)

3.1.3 Spectral band III: 1.62–1.8 THz
In the higher-frequency domainB3 = [1.62,1.8]THz, the results

are demonstrated by Equations 52–54 where transmittance minima
occurred at:

f(3)r = {1.675,1.685,1.695,1.705}THz,

T( f(3)r ) = {79.158%,79.177%,79.293%,79.312%}. (52)

Modeling is based on the Drude–Lorentz permittivity:

ϵ( f) = ϵ∞ −
ω2
p

f2 + iγ f
+

N

∑
j=1

Sj f
2
j

f2j − f
2 − iΓj f
. (53)

The tuning range is given by:

Δ f3 = 1.705− 1.675 = 30 GHz,Tunability Index =
Δ f3
favg
× 100% ≈ 1.77%.

(54)

3.1.4 Frequency–refractive index relationship
As demonstrated in Equations 55–57, the linear model relating

resonance frequency F and refractive index RI is:

F(RI) = −0.7200 ·RI− 1.8755, (55)

with R2 = 0.91752.
For improved accuracy, a nonlinear regression yields:

F(RI) = a0 + a1 ·RI+ a2 ·RI2 + a3 ·RI3 + a4 · ln (RI) + a5 ·
1
RI
, (56)

with optimized coefficients:

{a0,a1,a2,a3,a4,a5} = {−2.445,−0.308,0.092,−0.011,1.275,−0.038},
(57)

yielding a model fit of R2 = 0.9998.
The spatial electromagnetic field distribution E(r, ω) and

its frequency-dependent transmission characteristics T(ω) were
rigorously mapped to elucidate field localization phenomena across
distinct sensor planes, as depicted in Figures 12a–c. At off-resonance
operational angular frequencies ω1 = 2π × 0.755 THz and ω3
= 2π × 0.960 THz, the normalized electric field intensity |E(r,
ωᵢ)|2 demonstrated spatially uniform profiles with minimal peak
enhancement (Equation 58):
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FIGURE 18
Heat map plot comparison highlighting the alignment between experimental and predicted absorption values for circular resonator at varying values.
(a) C = 7 μm. (b) C = 7.5 μm. (c) C = 8 μm. (d) C = 8.5 μm. (e) C = 9 μm.

max
r
|E(r,ωi)|

2 ≈ E20, i ∈ {1,3} (58)

Indicating efficient wave propagation with suppressed scattering
losses and negligible resonant effects. In stark contrast, at the
resonance angular frequency ω2 = 2π × 0.879 THz, the field intensity
exhibited significant localization and amplification described by
Equation 59:

|E(r,ω2)|2 = η ·E20,η≫ 1 (59)

where η denotes the field enhancement factor resulting from
resonant coupling between the incident electromagnetic waves
and the metasurface sensor modes. This localized enhancement
is mathematically captured through the resonance condition
derived from the complex scattering parameters S21(ω) given by
Equation 60:

Resonance = d
dω

arg (S21(ω))|
ω=ω2

= 0 (60)

with Δω representing the full-width at half-maximum of the
resonance peak in the transmission spectrum.

This frequency-selective electromagnetic field amplification
mechanism fundamentally underpins the sensor’s detection
capability. It arises due to enhanced light-matter interaction within
the sensor’s nanoengineered structure, which can be modelled
by the perturbation in the local permittivity, Δε(r, ω), coupled
to the mode profile E(r, ω) as follows: The change in refractive

index, Δn(ω), is given by the ratio of the integral of the product
of the permittivity perturbation and the squared magnitude of the
electric field over the volume, divided by twice the background
refractive index, n0, multiplied by the integral of the squared
magnitude of the electric field over the volume as demonstrated by
Equation 61:

Δn(ω) =
[∫Δε(r,ω)|E(r,ω)|2d3r]

[2n0∫|E(r,ω)|2d3r]
(61)

Table 4 demonstrates a comparative analysis of the proposed
sensor design as compared to the current sensing technologies
in different biomedical applications. The sensor shows excellent
performance features with a sensitivity of 929 GHz/RIU, which
exceeds most of the modern models by an order of magnitude.
Good examples are peptide detection sensors whose sensitivity
reaches 175 GHz/RIU and 500 GHz/RIU respectively, metal ion
detection systems that attains 113.92 GHz/RIU and COVID-19
detection system which has a sensitivity of 600 GHz/RIU. Analysis
of the figure of merit shows that the suggested design shows an
outstanding performance with a FOM of 18.571 RIU- 1, which is
significantly higher as compared to similar systems, such as peptide
detection platforms with 4.52 and 3.087 RIU−1, and specialized
biomedical sensors [52, 56], with FOMs of 6.754 and 5.12 RIU-
one respectively. Detection limit of 0.05 RIU is the indicator of

Frontiers in Physics 18 frontiersin.org

https://doi.org/10.3389/fphy.2025.1659054
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wekalao et al. 10.3389/fphy.2025.1659054

FIGURE 19
Scatter plots comparison highlighting the alignment between experimental and predicted absorption values for RIs at varying values. (a) T.C = 0.1. (b)
T.C = 0.2. (c) T.C = 0.3. (d) T.C = 0.4.

superiority in comparison with current methodologies of breast
cancer detection and different biomedical sensing applications.
Analysis of Quality factor of the proposed sensor shows Q-factor
of 17.54 which represents an exceptional resonance quality when
compared to other designs in different detection applications. The
performance edgemakes the suggested sensor a very juicy candidate
to be used in sensitive, non-invasive, and in early stages of breast
cancer diagnosis.

3.1.5 Performance limitations and optimization
considerations

Although the shown value of figure of merit and quality ratios
above 17 prove the strong resonance behaviour, there could be
factors that would affect the accurate detection in practice. The
sensor resolution to detect small changes in refractive index may
be jeopardized by the spectral line broadening effects due to
material defects, environment effects and electromagnetic coupling.
Besides, shifts in the resonance frequencies which are influenced
by the environmental effects or variations in the properties of the
media may affect the sensor calibration and the measurements
accuracy. These challenges can be mitigated by optimizing material
properties in order to reduce intrinsic losses, by practicing accurate

calibration procedures, and by developing controlled environmental
conditions in order to guarantee consistently desirable performance
characteristics.

Table 5 provides a comparison between the different sensor
design on the basis of performance, and the main parameters
considered are the sensitivity (S) of the sensor, figure of merit
(FOM) sensitivity, detection limit (D.L), and quality factor (Q).
The suggested sensor is excellent in that it exhibits high sensitivity
of 929 GHz/RIU and an elevated FOM of 18.571, the detection
limit is low, at 0.05 with a Q-factor of 17.54. The proposed
design is superior in detecting cancer of the breast compared to
the other related sensors, i.e., those sensors targeting applications
such as peptide, haemoglobin and cancer detecting sensors.
On sensitivity and detection accuracy of most of the reported
designs in the past. Compared to clinical-grade SPR systems or
ELISA assays, the proposed metasurface sensor offers distinct
advantages in miniaturization, multiplexing, and wireless data
transmission. Unlike most optical biosensors limited by narrow
dynamic ranges, our system provides spectral tunability and
machine learning–enhanced predictive accuracy, making it a strong
candidate for integration with wearable diagnostic patches or
portable diagnostic stations in low-resource settings.
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FIGURE 20
Heat map plots comparison highlighting the alignment between experimental and predicted absorption values for RIs at varying values. (a) n = 1.385
RIU. (a) n = 1.399 RIU. (a) n = 1.387 RIU. (a) n = 1.401 RIU.

3.2 Encoding analysis

The sensor is used as a 2-bit encoding device with the help of the
unique properties of graphene, namely, its tuneable (controllable)
chemical potential, which has a direct influence on the plasmonic
resonance behaviour. When adjusting the chemical potential of the
graphene, attainable shifts in plasmonic resonance persistent can
be recorded and in effect is expressed in Figures 13a–d. The result
of the frequency shifts is frequencies of transmittance changes in
the sensor and various resonance peaks and valleys reflect test-
defined binary conditions. The plasmonic resonance differences
between Figures 13a–d create typical transmittance dip at certain
frequencies. Figures 13b,d have deeper transmittance valleys, which
will indicate binary 0, and on the other hand, in Figures 13a,c,
the shallow transmittance valleys show binary 1. This mechanism
allows the sensor to be clearly differentiated when it comes to
four specific binary combinations, such as, 00, 11, 10, and 01.
This 2-bit encoding scheme is based on the plasmonic tunability
of graphene, which may be tuned via the external parameters
such as the applied voltages or chemical modifications. Uncertain
control of the plasmonic resonances offers the sensor consistent and
reliable encoding performance. The given encoding functionality is
especially relevant to thematter of data security, since encrypted and
efficient transmission of binary data is critical.

4 Machine learning optimization
based on polynomial regression

The challenge of developing an effective sensor design is
relatively demanding because optimization demands are complex
and the variables that affect performance are many. In order to
overcome these challenges, scientists are increasingly applying the
integrated methods of machine learning and structural modelling
to effective prediction of absorption properties and minimization of
optimization time [64].

Polynomial regression is an extension of linear one in
which one is able to model curved relationships between
dependent and independent variables [65]. Linear regression
presupposes relationships of direct proportions, whereas in
polynomial regression one uses so-called polynomials to depict
the shape of data. The basic polynomial regression equation is
provided as Equation 62:

Y = β0+ β1X+ β2X2 + · · · + βnXn + ϵ (62)

This type of regression is particularly useful in either: If the
variables involved are related in a curved fashion; or to model
a developmental process or a pathological progression. The steps
involve development on the foundation of a linear regression,
integration of polynomial factors to capture cases in nonlinear
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FIGURE 21
Heat map plot comparison highlighting the alignment between experimental and predicted absorption values for circular resonator at varying values.
(a) C = 7 μm. (b) C = 7.5 μm. (c) C = 8 μm. (d) C = 8.5 μm. (e) C = 9 μm.

patterns and development of the visual representation to evaluate
the quality of fit [67]. In spite of its ability to handle complex
relations, the higher-order polynomials can induce over-fitting, and
thus, adequate assessment of the model modeled using pertinent
measures of performance is necessary [68]. Equations 63–69
describes the machine learning optimization based on polynomial
regression.

Let the sensor’s measurable physical response be defined as a
scalar-valued mapping:

y = F(x)+ε,where x = [x1,x2,…,xd]
⊤ ∈ ℝd (63)

Here, x represents the d-dimensional input space comprising
parameters such as dielectric permittivity εr, thickness t, periodicity
P, graphene chemical potential μc, and incidence angle θ. The
response y can represent spectral resonance frequency fr, quality
factor Q, or transmission coefficient T(ω). The error ε ∼N (0,σ2)
models stochastic deviations.

Polynomial regression seeks to approximate F(·) by a
multivariate polynomial function:

̂y = ∑
|α|≤ p

βαx
α =

p

∑
α1=0
⋯

p

∑
αd=0

βα1,…,αdx
α1
1 x

α2
2 ⋯x

αd
d ,with |α|=

d

∑
i=1

αi ≤ p

(64)

where:

• α = (α1,…,αd) ∈ ℕd is a multi-index of exponents,
• βα ∈ ℝ are the polynomial coefficients,
• p is the maximum polynomial degree.

This results in a design matrix A ∈ ℝn×M, where M = (
d+ p

p
)

is the number of polynomial basis terms, and n is the number
of samples. The coefficient vector β is then solved using the
normal equations:

β̂ = (A⊤A)−1A⊤y (65)

To mitigate overfitting and enhance stability, regularized
regression is used.The Ridge regression (L2) formulation is given as:

β̂ = argmin
β
{∥y−Aβ∥22 + λ∥β∥

2
2} (66)

Alternatively, Lasso regression (L1) is formulated as:

β̂ = argmin
β
{∥y−Aβ∥22 + λ∥β∥1} (67)

where λ is the regularization hyperparameter controlling sparsity
and penalty.

Model generalization is validated using k-fold cross-validation
and performance is quantified by the following metrics:

• Coefficient of Determination:
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TABLE 6 Comparing the performance of the Support Vector Regression model with other cases [60–62].

Model R2 score MSE Training time (s) Prediction time (ms)

Support Vector Regression 1.00 0.001 200 0.05

Gradient Boosting 0.97 0.003 135 0.08

Neural Network 0.96 0.008 100 0.11

Random Forest Regression 0.96 0.006 180 0.06

Stacking Ensemble 0.93 0.018 120 0.09

K-Nearest Neighbours 0.92 0.022 50 0.04

Decision Tree Regression 0.91 0.026 75 0.03

Linear Regression 0.86 0.035 15 0.02

R2 = 1−
∑n

i=1
(yi − ̂yi)

2

∑n
i=1
(yi − y)

2
(68)

• Root Mean Squared Error (RMSE):

RMSE = √ 1
n

n

∑
i=1
(yi − ̂yi)

2 (69)

This polynomial-based ML model is powerful for identifying
high-order interactions between sensor parameters. However, as
p→∞, overfitting may occur due to Runge’s phenomenon.
Dimensionality reduction (e.g., PCA) and proper model selection
are thus essential to ensure generalization.

The nature of the performance of all the empirical models
(PR) at different iterations of graphene chemical potential (GCP)
and the number of polynomials of different degrees are graphically
detailed both in scattering plots (Figures 14a–i) and in thermal
mapping visualization (Figures 15a–d). These plots show how the
model reacts to GCP changes and the modification of the degree
of polynomials. The PR model shows a gradual increment in
precision in association with rise in GCP values. During the
first threshold of 0.7 eV GCP, the predictive accuracy reaches
96 percent. When the ROC is lifted to 0.9 eV, the model very
well as all the predictions are made correctly. This pattern of
systematic betterment when moving out over the examined range
is reproducible, and the coefficient of determination (R two) is high,
98% at 0.2 eV, 99% at 0.3 eV and 98%–100% at higher potentials,
which fit a strong relationship between GCP value and predictive
performance.

Further investigation allowing an extended validation using
other test protocols within the same scope of 0.1–0.4 eV GCP
implies the versatility and stability of the model to continue
their high predictive power. These results are supported by the
Thermal mapping analyses (Figures 15a–d) which have R two
coefficients tending towards the accurate and accurate value of
100%; according to this observation, the results are accurate, and
the method is also reliable throughout the wide ranges of the
GCP parameters.

The effectiveness of the model with parameters of incident
angle variation and the degree of polynomial are systematically
depicted in the form of Scatter plot analysis (Figures 16a–i)
and thermal mapping representations (Figures 17a–d). The
polynomial regression model shows a significant increase in
the predictive accuracy as incident angles range between 0°
and 80° with an increase of 10° each until it reaches the best
predictive accuracy of 100 percent. As a result of thermal
mapping analysis (Figures 17a–d), validation of the comprehensive
model across parameters of incident angle within the range of
0.1–0.4 across the incident angle range will always result to optimal
values of R2 of 100 percent.

The model computation results of models with various
geometric parameters of the circular resonator and changes in the
degree of the polynomials are recorded by using the visualization
of the scatter plot (Figures 18a–e) and using thermal mapping
(Figures 19a–d). The predictive accuracy improvement values
present in the polynomial regression model are advanced when the
resonator dimensions are stretched at a rate of 0.5 µm between 7 μm
and 9 µm making the predictive accuracy improvements to show
maximum performance at a perfect 100%. The optimal R2 values of
100% were recorded regularly during validation studies carried out
over the ranges of resonator parameters in the 0.1–0.4 region, which
has been proven through thermal mapping (Figures 19a–d).

As depicted in Figures 20, 21, the RI-level shows an
improvement in predictive accuracy, the polynomial regression
model shows enormous improvement in predictive accuracy when
RI value goes up to 1.401 RIU, then achieves optimal accuracy
of 100%. In the range of the RI parameters in the region 0.1–0.4,
the protocols shown by thermal mapping (Figures 21a–d) show
validations at 100% R2 levels, which is optimal.

Table 6 presents a comprehensive performance evaluation
comparing the Support Vector Regression (SVR) model against
alternative machine learning approaches. The SVR model
demonstrates superior performance with an exceptional R2

score of 1.00 and minimal mean squared error (MSE) of 0.001,
indicating optimal predictive accuracy. Despite requiring extended
training duration (200 s), the model compensates through highly
competitive inference time (0.05 m).
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4.1 Economic feasibility and manufacturing
scalability

Sustainable feasibility and scalability potentials of proposed
terahertz biosensor are crucial parameters with regard to
implementation. The architecture of the design architecture uses
materials that one can easily find such as graphene, silver and
silicon dioxide, and the materials are affordable and can work
with common scalable manufacturing procedures. The synthesis
of graphene is very feasible and has been addressed by large-scale
production at economic viable costs and in addition, when coupled
with silver and silicon substrates graphene is made compatible with
the aspects of conventional semiconductor production machinery.
Speaking of the scalability of the manufacturing process, the
metasurface-based architecture can be produced using accepted
photolithography and chemical vapor deposition (CVD) processes
that have been used in electronics and sensor manufacture. The
techniques allow a high degree of production at reasonable prices,
precision, and reproducibility. The proposed sensor uses industry-
standard materials and manufacturing processes compared
to other biosensor technologies that use special materials or
manufacturing processes; the proposed sensor, therefore, has to
be more scalable to manufacture at large volumes and still keep
the production costs within capacities. Powers to develop Future
developments in Graphene-material integration and optimization
of the fabrication process allow a possible additional cost decrease,
which can make it more accessible to many medical diagnostic
applications. Developed manufacturing technologies matched
with innovative material sciences make this sensor technology
an option to be successful in a commercial application and
clinical use.

5 Conclusion

This study presents a medical diagnostic technology that
integrates terahertz spectroscopy, advanced nanomaterials, and
artificial intelligence. By combining graphene-based metasurfaces
with metallic resonators, the sensor shows great promise for early
breast cancer screening, detecting subtle molecular changes with
consistent performance across frequencies. Machine learning
optimization via polynomial regression enhances reliability and
establishes a framework for future biosensor development. The
sensor’s dual-bit encoding extends its use to secure medical data
transmission and storage. Its adaptable platform could be modified
to detect other diseases, with future work focusing on device
miniaturization, integration with imaging systems, and autonomous
diagnostics. The proposed manufacturing approach supports
scalable production, pending further cost optimization. This
multidisciplinary innovation highlights the potential of converging
technologies to advance precision medicine and personalized
healthcare. Future work will focus on experimental realization
of the proposed design, including layer-by-layer nanofabrication
and microfluidic sample handling integration. Moreover, clinical
translational studies will be initiated in collaboration with oncology
centers to validate biomarker-specific sensitivity. We also envision

sensor miniaturization for wearable breast health monitors and
the integration of THz sensor arrays into portable, AI-enabled
diagnostic platforms for personalized medicine.
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