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Competitive interactions between multiple cell populations are crucial for
modeling biological processes such as tumor growth and tissue regeneration.
In this study, we investigate the nonlocal advection model for two-species
competition, which characterizes cell growth and dispersion phenomena in co-
culture experiments. To capture realistic phenomena in biology, we introduce
the time delay representing population migration and resources recovering
time. The primary objectives are to investigate the impact of time delays
on competitive dynamics under various parameter settings and to develop
numerical methods that ensure biological feasibility of solutions. Accordingly,
we design a positivity-preserving finite volume scheme based on an upwind
flux approach, guaranteeing non-negative population densities and discrete
conservation properties. We examine the convergence orders of the scheme
through the numerical experiments and explore the effects of time delays on
species competition dynamics under different parameter settings.

two species model, time delay, hyperbolic PDE, Keller—Segel model, advection, nonlocal

1 Introduction

The mathematical modeling of multi-species population dynamics provides a theoretical
framework for studying species interactions in biological and ecological systems [1, 2].
In biochemical research, scientists employ co-culture systems to elucidate competitive
relationships between distinct cell types, such as cancer cells and normal cells [3]. Early
models included nonlinear diffusion and reaction-diffusion systems [4, 5, 6], revealing that
spatial segregation can promote species coexistence by mitigating interspecific competition.
A key approach in modern models involves nonlocal advection systems [7, 8], where
population movement is influenced by long-range interactions instead of purely local
diffusion. These models are often associated with chemotaxis, the directed movement of cells
or organisms along chemical concentration gradients [9, 10, 11, 12]. The well-posedness
of nonlocal advection models for two species (or a single species) has been studied in
[7, 8, 13, 14]. Moreover, nonlocal advection systems are closely connected to continuum
models of pedestrian dynamics, where an individual’s velocity is influenced not only by local
density but also by spatially distributed crowd information [15, 16]. Extensions considering
anisotropic interactions and domain boundaries further demonstrate the relevance of
nonlocal frameworks to realistic crowd flow modeling [17, 18].

Time delays capture the inherent non-instantaneous nature of biological processes,
yielding more realistic models that can exhibit oscillatory, bifurcation, and stability
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behaviors observed in real systems [19, 20]. Following the
pioneering work of [21], numerous studies have introduced
time delays in population dynamics models. In single species
models such as the delayed logistic model [22, 23, 24], the
delay represents the maturation time before individuals become
reproductively active and can destabilize population dynamics
by inducing oscillations or periodic behavior once it exceeds a
critical threshold. The time delayed Lotka-Volterra predator-prey
model [25, 23, 26] incorporates the predator’s delayed response to
changes in prey population, enabling more accurate simulations
of periodic oscillations and stability shifts in ecosystems. Time
lags in competition models [27, 28] physically represent ecological
processes such as resource recovery or interspecific interaction lags,
and they can destabilize equilibrium states to induce stable periodic
oscillations or even chaotic dynamics through Hopf bifurcation or
period-doubling bifurcations.

This study aims to extend the existing nonlocal advection model
for two competing species by incorporating time delays. Previous
studies focused on population mobility and interactions, while our
study introduces time delays to characterize the interaction between
population migration and resource recovery. To ensure biologically
realistic population densities, we develop a positivity-preserving
finite volume scheme. We conduct extensive numerical experiments
to: (1) examine the numerical convergence orders; (2) investigate
the influence of time delays on competitive dynamics under various
parameter settings.

In this work, we first introduce the mathematical model—the
two species hyperbolic Keller-Segel system with time delays, and
then design a finite volume scheme satisfying the positivity-
preserving property, where we adopt the upwind type flux similar to
[29-32, 33]. We investigate the experimental convergence orders of
the proposed scheme. According to the numerical simulation, under
various parameter settings, we find that small, identical delays in
both species lead to a steady state, whereas larger delays may induce
unsteady and potentially the extinction of one or both species.
Moreover, asymmetric delay parameters between the two species
tend to confer a competitive advantage to one species.

The rest of this paper is organized as follows. In Section 2, we
extend the nonlocal advection Keller-Segel model by incorporating
time delay and develop a positivity-preserving finite volume method
that also satisfies discrete conservation laws. Numerical examples are
presented in Section 3.

2 The mathematical model and the
finite volume scheme

In this section, we introduce the time delay to the classical

hyperbolic Keller-Segel system and design a positivity-preserving
finite volume scheme.

2.1 PDE model

We consider the nonlocal advection system for two competing
species with time delays in an interval I = [a,b]. We denote by
uj(t,x) (j = 1,2) the density of two species. The PDE model is stated
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as follows.
Oty = d; 0, (10,p) = urhy o (uy,up)  in (0, T] %1, (2.1a)
Oty = A0, (1,0,p) = Uphy 4 (uy 1) in (0, T] %1, (2.1b)
(I-xA)p=u;+u, in(0,T]XI, (2.1¢)
op(ta)=0,p(t,b)=0 on (0,77, (2.1d)
u (tx)=uyo(x) in I, t<0, (2.1e)
uy (t,x) =ty o(x) in I t<0, (2.1f)

where v is the outward normal vector, d; (j = 1,2) is the dispersion
coefficient, x is the sensing coefficient. The function p(t,x),
which represents the pressure or chemical potential field induced
by species densities, satisfies the elliptic Equations2.1c, 2.1d,
and its gradient d,p influences the movement direction of the
species u; (j=1,2). We set, for a;,a, >0,

hy o, (g, 1) (£,%)) = by = 8y = (agyuy (£ = oy, %) + agyu, (£%)),
(2.2a)

hz,az ((uy, 1) (%)) = by = 8, = (a3, (1X) + apu, (- ay, X)),
(2.2b)

where b; > 0 (j = 1,2) are the growth rates, a;; > 0 (j = 1,2) represent
the intraspecific competition coefficients, reflecting competition
between individuals of the same species, a,,4,, >0 denote
the interspecific competition coefficients between species, a; >
0 (j = 1,2) represent the delay parameters, and §; (j = 1,2) are the
additional mortality rates caused by drug treatment. The delay
parameters «; in hj’aj (j=1,2) represent time lags in intraspecific
competition of species u; (j=1,2), reflecting delayed self-density
feedback from migration and resource recovery. When «, =
a, =0, Equations 2.1a-2.1f is the hyperbolic Keller-Segel system
proposed in [14].

2.2 The finite volume scheme

We introduce the fully discrete finite volume scheme for problem
Equations 2.1a-2.1f. We hereafter denote by |w| the measure of the
interval w in RR.

2.2.1 The finite volume scheme
For simplicity, we divide the computational domain I = [a,b]
into N, cells (see Figure 1):

where
a=x1<x3<--<Xx =b.
pOx <o
We denote by x; = (x;,1 +x;_1)/2 the center of the cell C;, and set
2 2

(1<i<N,), h = max h;.

I<i<N,
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FIGURE 1
The mesh for the interval /.

TABLE 1 Experimental errors and convergence order of h for «; = a, = 0 (Example 1-1).

Nt er = Uiz v, N3 e = U plliz v, Iojes =P kv,
1/80 1.29E-01 - 3.02E-02 - L.11E-02 -
1/160 8.23E-02 0.64 1.78E-02 0.76 5.90E-03 0.90
1/320 4.81E-02 0.78 9.80E-03 0.86 3.00E-03 101
1/640 2.38E-02 101 4.70E-03 1.07 1.30E-03 121

TABLE 2 Experimental errors and convergence order of h for a; = a, = 0.5 (Example 1-2-2).

N N N N N N
vrer ~Unpllizy, 2rer ~ Uz nllizany, IPrer = Pp e, v,
1/80 1.35E-01 - 3.25E-02 - 1.20E-02 -
1/160 8.55E-02 0.66 1.89E-02 0.78 6.40E-03 0.90
1/320 4.95E-02 0.79 1.03E-02 0.88 3.20E-03 1.02
1/640 2.43E-02 1.03 4.80E-03 1.08 1.40E-03 1.22
0.5 ; - 1 - . 1 - a
—ry — ——
04} =i 0.8} =0 -tz}{ 0.8} =0 -tz|{
= Ld J P J
03} 06! 1 06!
02} 04 { 04
0.1} 0.2} { 02!
- 0O Y
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X X X
(a) t, =0 (c) t, =10 (d) t, =130
FIGURE 2
The numerical solution for a; = &, = 0 (Example 1-1). (a—d) show the evaluation of the numerical solution at different times.

We introduce the space of the piecewise constant function: Let N be the smallest integer such that N7 > T. The time interval
is divided into N segments:
Vy={v, e LD w,lg, € Py (C)  forall G},
O=ty<t; <. <t,<t, <- <ty with ¢, =nrt

where P(C;) represents the set of constant functions in cell C;.

We assume that there are two integers M, and M, such that the
delay parameters satisfy o, = (M,/M,)e,. Let 7 = & / (KM, ) for some
integer K. We can take the integers m, = KM,, m, = KM,. Then we oyl
integer ake the integers m = KMy, m; = KM Then w o =L ) (7 =v(s,).
see that a; = m; 7, &y = m,T. T

and we use the backward Euler to approximate time-differential, i.e.,
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0.8 1 1
—— 11y ——1uy -
08! -0 Uy | 08! -0 =y |
——p ———p
06} 1 06!
047 i 0.4
0.2} 1 02!
0 0
-2 -1 0 1 2 -2 -1 0 1 2
X X

1 1
—y -1y
0.8 —o-uy| 0.8 —0-ua|
——p —==P |
06} 1 06!
04 1 04
0.2} 1 0.2}
0 0
2 -1 0 1 2 2 -1 0 1 2
X X

(b) t, = 10 () tn = 130

FIGURE 3
The numerical solution (Examples 1-2-1, 1-2-2). (a—c) show the evaluation of the numerical solution at different times.

Let pj,u},,u, €V, be the numerical approximation to We use the approximation:
p(t,,x),u(t,,%),uy(t,,x) (n=0,1,...,N). The proposed scheme is p—p"
described below. L "L 2<i<N,
N . . =0,p (b1 ) = { =i (23)
By integrating Equations 2.1a-2.1c on each cell C; and applying p 0 LN 41
integration by parts, we obtain the following implicit scheme at ¢ = i€{LN:+1}
t, using the backward Euler method: (by Equation 2.1d)
We apply the upwind discretization to treat the flux: for j = 1,2,
X, Xl ~ _
Jcp(tn,x) dx— (x9,p (t,x)) " .[c () (11 %) + 13 (8,1,%)) dx, (d 4 () axp(tn,x)) i z - jits P;fi’%,
i X1 i R B
i Xi+l Fn 1= i— 1[ dPn } _un,[_djpn 1:| 5
.[ca uy (t,x) dx—(dyuy (£,,x) 0,p (£,,%))| 2 = qul(th)hl,a] ((uy,15) (t,-1,%)) dx, B3 ] ]’ =3
:% where [r]" = max{r,0} and [r]” = max{-r,0}. The upwind type
Jca thy (1) dx = (dyiy (£,,%) 0, (8,,%))| 2 =J 43 (1 %) Mgy (11,15 (1,1,%)) dx. numerical flux can be understood as follows. If the “flux” is from
' i S C,_, towards C; (i.e., —de?_ 1 > 0), then the numerical flux for F"

is chosen as u”l (=4 P" s 2otherwise, we take u L(=d; P’1 ' ) ’
Using p"(x) = py(x;) = pi, uj(x) = u’f’h(xi) =y Uy (x) = ug)h(xi) =

For simplicity, we set “the notations:
u;‘i on C;, we get:

-1 ._ -1 —1 . - 1 H.
Gl =ut By (W) G=12).
XHl i -1 =
J D) dx=Clp", ap(t,x)| 2 =8xp(tn,x 1)—axp( ' ) The time delayterms (”11 ,uy;)(j = 1,2) are approximated by
Gi X 1
i-5 1 n—-1-m 1
;1 . hl,al(“;ll ’“2, ):bl_al_(au”u +“12”gz )’
J () (ty-15%) + 15 (8,1, %)) dx:lcil(ul,i T ), el n-1-m,
G . hz,az(“u NTig ):bz—(S (“21”11 +aply; ),
n n i ]t .
Jciatuj(tn) dx = jciatuj'h (x;) dx =|C}lou; = |Ci|—T (i=12), where the integers m;(j = 1,2) satisfy
[ 00, (1) (100 = DG (5087) G=1,2), == (n=1-m)x.
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FIGURE 4

1.2 12
1 -1yl 4 1
-0 =l —rry
08! —esp 11 08! -0 =1t |
06 06 —
04} 04
0.2} 0.2
0 0
-2 -1 0 1 2 -2 -1 0 1 2
X X
(b) t, = 60 () t, = 130
2 0.15' —]
-0 =y
15! ——ry | ——p
-0 = Uy 01
——p .
1!
05 0.05:
0 0
-2 -1 0 1 2 -2 -1 0 1 2
X X
(b) t, = 80 (c) t, = 130
1 1
— 1y — 1y
-0 =iy -0 =iy
05! —eep || 05 —p ||
ff=—=sss————————————— ) 0
-0.5 0.5
-1 -1
-2 -1 0 1 2 -2 -1 0 1 2
X X
(b) t, =50 (¢) t, =130

The numerical solution (Examples 1-2-3, 1-2-4, 1-2-5). (a—c) show the evaluation of the numerical solution at different times.

For 1 <i < N, by the fact that |C;| = h;, we get the finite volume
scheme (FVM) scheme.

X _
g )=ar @)
1 2 2
n l _ n _ , n-1
uy;+ n <F’ii+% Ff’i_% ) +TEf = u), (2.4b)
n l _ n _ ,n—1
uy+ h <F’;i+% qu,i—% ) +TE) = uy; . (2.4¢)

Frontiers in Physics

2.2.2 Positivity-preserving property
In this section, we show the positivity-preserving for the discrete
. no_ n n T
solutions. We set w,= (uj)l, s JFNC) .

Theorem 2.1: Assume that ul.‘h (k<n-1, j=1,2) are nonnegative

and not identically zero. If T is sufficiently small such that 7<
1 1 .

mm{ﬁ, E}, then we have:

n n
u’, >0, uz,hzo

Lk Vn>1).
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a; =0.5,a0 =1
[ . . 1 1
—= "‘-“I‘ '-.—mk
08! -0 =y 1 0.8 -0 =y
[ —--p.
06" 1 06!
04 1 04
0.2 0.2
0
-2 1 1 2 -2 -1 0 1 2
X X
(b) t, = 120 (c) t, = 130
1 - = 1 .
— 1y —
08 -0 =y | 08 -0 =Uy |
x_--l) J —-") .
06! 1 06
04 | 04
0.2 1 0.2
0 0
-2 -1 0 1 2 -2 -1 0 1 2
X X
(b) t, = 120 (c) tn = 130
FIGURE 5
The numerical solution (Examples 1-2-6, 1-2-7). (a—c) show the evaluation of the numerical solution at different times.
a1 =0.5, a0 = 1.5
1.5 : . o | 1 1
—o—u.‘ v_._"‘-
08 =o-uz| | | 0.8} -0y
‘_"’) J .—-'P J
06" 1 0.6
04 1 04
0-2 [ 14 0.2,
0 0
-2 1 0 1 2 -2 -1 0 1 2
X X
(b) t, = 120 (c) t, = 130
; : 1 « - 1 - "
——11) ——1y -1y
1 -0 =y | 08" -0 =y 08! -0 -y |
08} =P |===P |
’ 06" 1 06}
0.6
04 1 04:
04
0.2 0.2 1 0.2
0d 0 0
-2 -2 -1 0 1 2 -2 -1 0 1 2
X X
(b) t, = 120 () tn = 130
FIGURE 6
The numerical solution (Examples 1-2-8, 1-2-9). (a—c) show the evaluation of the numerical solution at different times.
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TABLE 3 Classification of asymptotic behavior («, = a;).

10.3389/fphy.2025.1657967

Example o =, Steady state Long time behavior
Example 1-2-1 0.1 Steady state Both non-vanishing and steady
Example 1-2-2 0.5 Steady state Both non-vanishing and steady
Example 1-2-3 1.5 No steady state Both non-vanishing and unsteady
Example 1-2-4 2 No steady state One vanished and the other one is unsteady
Example 1-2-5 5 No steady state Both vanished

TABLE 4 Classification of asymptotic behavior («; # a).

Example o a Long time behavior
Example 1-2-6 0.5 1 Steady and u, superior
Example 1-2-7 1 0.5 Steady and u, superior
Example 1-2-8 0.5 1.5 Steady and u, superior
Example 1-2-9 1.5 0.5 Steady and u, superior

Proof. The discrete system Equations 2.4b, 2.4c can be rewritten into
the matrix forms:

= G=12),
WhereA =(a G ’5)1<1 s<N.
.
Tl_gpr Tl_gpn 1, n-1 _
1+hi[ d]PH%] +hi[ dJPi—;] Th] (ult ’uZt ) S=1n
. N
- |-4P" ] s=i+l,
aj;i,s: hi[ J i+%
4
T
- |-dP" s=i-1,
hi[ U 17%] !
0 otherwise.

We assume that u >0,#0 (k<n-1, j=1,2). In view of
o (U175 1571) < b= 8 (= 1,2).

1 3 —1 then we obtain:
)

Equations 2.2a, 2.2b, we see that h

If we choose 7 < mln{b =
1
Th ( 11’“21)21_T(bj_6f)>0

The following statements hold for .A;’.

(i=1,2).
1. .A;’ has positive diagonal entries, i.e., forj=1,2and 1 <i < N,,

Th] (u;‘ll,u;‘ll) > 0.

T T -
— | -d;P" — | -d,P" -
+hi[ J i*%] +hi / "_i]

2. .A;’ has non-positive oft-diagonal entries, i.e., for j=1,2 and
1<i<N,
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3. All the column sums of A are positive, i.e., forj=1,2and 1 <
i<N,

+a;

n-1 _ n-1
Jisiod + 61 i+l T =1- Th (ul,i ’uZ,i ) 21

(b;-8)>0
According to a convenient sufficient but not necessary condition

of M-matrices (cf. [5, Appendix]), we conclude that .A]’? is an M-
matrix.

],1 1,i

According to the properties of M-matrices, this implies that
(A]’?)’l >0 (j=1,2). Noting that u}, > 0,#0 (k<n—1,j=1,2), we
have u W= (.A”)_1 - !'> 0. By induction, we conclude that u]’.fh >0
(j=1,2) for all n.

2.2.3 The discrete conservation laws
The purpose of this section is to establish the mass conservation
property of the (FVM) scheme (see Equations 2.4a-2.4c).

Theorem 2.2: Let u}f’h (j = 1,2) be the solution of (FVM). Then, we
have the discrete conservation law:

N, N,
Z Z Z TE], (j=1,2).
i=1 =
Moreover, under the assumptions that hj,aj =0 (j=12), it
follows that
NC NC
_ 0 - _
u}fi— U (i=12).
i=1 i1

Proof. Summing up Equations 2.4b, 2.4c with respect to i, we obtain

N, N, N,

n T " n n .
Z“',iJ“ZE(Fj,Hi_Fj,i--) ZTE Z (=1,2).
i=1 i=1"" 2 2

We see that
NE
T T .
e )e(mm) oo
;h,( bty iz )y \UNes g G )
where
. _

no _ n | _ n _an|_ n _

 =upf-amt] - [-am] -0
N _

il n n —
Pii,Nc+- J’ [ dP 1] ]N+1[ dPN+-] =0
(by Equation 2.3).

Hence, we have
C N NC
Zull ZT ]"l (i=12).

i=1 i=1

il
—_
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TABLE 5 Experimental errors and convergence order of h for a; = a, = 0 (Example 2-1).

10.3389/fphy.2025.1657967

1U8er ~Utnliz.y, 192 et = Uzl IPres = Ph iy,
1/80 6.10E-02 - 6.10E-02 - 2.24E-02 -
1/160 3.53E-02 0.79 3.56E-02 0.78 1.13E-02 0.99
1/320 1.95E-02 0.86 1.97E-02 0.85 5.37E-03 1.07
1/640 9.58E-03 1.02 9.70E-03 1.02 2.25E-03 1.26

TABLE 6 Experimental errors and convergence order of h for a; = a, = 0.5 (Example 2-2-2).

N N
U3 e = Uz pllza,v,

N N
”pref Py ”Hl(/)yh

N N
IS yer = Urpliza,y,

1/80 6.14E-02 - 6.14E-02 - 2.28E-02 -
1/160 3.54E-02 0.79 3.58E-02 0.78 1.14E-02 1.00
1/320 1.94E-02 0.87 1.97E-02 0.86 5.40E-03 1.08
1/640 9.50E-03 1.04 9.60E-03 1.03 2.20E-03 1.27
0.25( - = 2 " . 2 . "
[ —y —1y
—_— - |0 =ty
02 — 15/ SO s g
0.15;
1 1
0.1
0.05 | 0.5 0.5
0 0 0
04 06 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
b3 X X b3
(a) tn =0 (b) t, =3 () tn = 10 (d) t, = 20
FIGURE 7
The numerical solution for oy = a, = 0 (Example 2-1). (a—d) show the evaluation of the numerical solution at different times.

Moreover, if we assume that hj‘aj =0 (ie., EJ” . =0), then we have

=

NC
n o_ n-1 _ 0 P —

u; = Zuj’i =) U (i=12).
=

M=

Il
—
I
—

Hence the proof is complete.

Remark 2.3: For hyperbolic systems, there exist other positivity-
preserving strategies, such as the linear scaling limiter [35, 36],
which enforces bounds in finite volume and discontinuous
Galerkin methods through constraints at Legendre Gauss-Lobatto
points.

3 Numerical experiments

In this section, we conduct extensive numerical experiments,
where we examine the numerical convergence orders, compare
the results with the classical hyperbolic Keller-Segel system, and
investigate the influence of time delays on competitive dynamics

Frontiers in Physics 08

under various parameter settings. We take &;=0 (j=1,2) in this

section. We set.
1

N, 3
V2,0, = (Zlv(x,») |2|ci|) eV,
i=1

N,

< v(x)—v(x_,)? :
|V|Hl(wh:<zu> VveV,

-1 |x; = x4

1
2 2 2
Wiy, = (M, + WRag, ) Y7 € Vi

3.1 Example 1 (non-segregated initial
functions)

WesetI=[-2,2],y=1,d,=4,d,=1,and
hy o, (g, 1) (£,%)) = 1=y (£ = 0y, %) = 21, (%),
By, (5 1) (%)) = 1= 20y (£,%) = uy (£ = 0, %) .

frontiersin.org


https://doi.org/10.3389/fphy.2025.1657967
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zeng et al.

10.3389/fphy.2025.1657967

—— 1y
-0 =y
—0

] = Qg = 0.1
2 [ - 2
=
—
15 E :0:;:: 1 15
1 E
D
0.5/ ; 05!
0 i .
0 02 04 06 08 1
X
(a) t, =3

02 04 06 08 1

(b) t, = 10

—o—u,'
-0 =iy
——p

FIGURE 8

X
(a) t, =3
ap =ay =1.5
L] U e _
ol S
i 4
5,
0
0 02 04 06 08 1
X
(a) t, =3

02 04 06 08 1

(b) t, = 10

(b) ¢, = 80

02 04 06 08 1
X

(b) t,, = 120

——ry
-0 =y
—p |1

02 04 06 08 1

(c) t, =20

——
-0 -y
===p ||

0.8 - —1y T
-0 11y
06 iy
04
0.2
0
0 0.2 04 0.6 0.8 1

The numerical solution (Examples 2-2-1 through 2-2-4). (a—c) show the evaluation of the numerical solution at different times.
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The numerical solution (Examples 2-2-5, 2-2-6). (a—c) show the evaluation of the numerical solution at different times.

The initial conditions are chosen as follows:

025-x> -05<x<05
u, (4,x) = forallt<0,
otherwise
2(025-x") -05<x<05
u, (4,x) = forallt<0.
0 otherwise

To examine the influence of time delays on competitive dynamics

under varying parameter settings, the following cases are

considered.

1. the classical hyperbolic Keller-Segel system

e Example 1-1: o) = a, = 0;

2. 0=,

e Example 1-2-1:
e Example 1-2-2:
e Example 1-2-3:
o Example 1-2-4:
e Example 1-2-5:

3. a)Fay

e Example 1-2-6:
e Example 1-2-7:
e Example 1-2-8:
e Example 1-2-9:

a; =a,=0.1;
a; =a,=0.5
a; =a, =1.5;

a =, =2;
a; =a,=>5;
a; =0.5,a,=1;
a; =1,a,=0.55

a; =0.5,a,=1.5;
a; = 1.5,a,=0.5.

To obtain the experimental convergence order of the mesh

. 1
size h, we fix 7= —
2000

1
2000

Frontiers in Physics

—— at T=1 as the reference solution (denoted by (u

, use the numerical solution with h=

N MN
Lref> “2,ref’

pfg f))’ and compute the errors for different mesh sizes h=
%, Tio’ ﬁ, ﬁ. For the classical hyperbolic Keller-Segel system (i.e.,
a, = a, = 0), the experimental errors are shown in Table 1. For the
system with time delay (a; = &, = 0.5), the experimental errors are
presented in Table 2. We observe the first-order convergence with
respect to the mesh size h for ”ujI:Iref_ ”ﬁa"Lz(I%Vh (j=1,2)and ||p1r\e’f_
Pl

The evolution of the solutions for the classical hyperbolic
Keller-Segel system (i.e., a&; =«, =0) with h=71= ﬁ is shown
in Figure 2. The solution dynamics of the time-delayed nonlocal
advection model with h = 7= ﬁ are presented in Figures 3-6. We
classify the dynamic behaviors for a; = a, and «; # «, in Tables 3,
4, respectively. For the non-segregated initial function cases, small
symmetric delays (a; = a, <0.5) lead to steady coexistence (see
Example 1-2-1 - Example 1-2-2, Figure 3), while larger delays
(a; = &, > 1.5) cause unsteady dynamics and potential extinction
of one or both species (see Example 1-2-3 - Example 1-2-5,
Figure 4). When the time delay is identical for both species (i.e.,
o, =a,) and sufficiently large, the delayed competitive feedback
leads to an unsteady system. The populations overreact to outdated
density information, causing oscillations that eventually drive both
species to extinction, as seen in the numerical results. For the
case with asymmetric delays, we observe that the species with the
larger delay is dominance in the competition (e.g., #, dominates
when «; < a,, or vice versa (see Example 1-2-6 — Example 1-2-9,

Figures 5, 6)).
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FIGURE 10
The numerical solution (Examples 2-2-7, 2-2-8). (a—c) show the evaluation of the numerical solution at different times.

TABLE 7 Classification of asymptotic behavior («; = a;).

Example Steady state Long time behavior

Example 2-2-1 0.1 Steady state Both non-vanishing and steady
Example 2-2-2 0.5 Steady state Both non-vanishing and steady
Example 2-2-3 1 No steady state Both non-vanishing and unsteady
Example 2-2-4 1.5 No steady state One vanished and the other one is unsteady
Example 2-2-5 2 No steady state Both vanished
Example 2-2-6 2.5 No steady state Both vanished
TABLE 8 Classification of asymptotic behavior (a; # a5). 32 Exam ple 2 (Seg l’egated initial fu nCtionS)
Example o a Long time behavior SetI=[0,1], y=1,d, = 1,d, = 1,and
Example 2-2-7 0.5 1 Unsteady and u, superior hl’% ((ul) uz) (t,x)) o " (t B (xl’x) —u (t,x) ’
Example 2-2-8 1 0.5 Unsteady and u, superior h2,(x2 ((MI’ uz) (t,x))=2- U (t,x) — u, (t— “Z’x) .
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TABLE 9 Experimental errors and convergence order of h for a, = a, = 0 (Example 3-1).

1U8er ~Utnliz.y, 192 et = Uzl IPres = Ph iy,

1/80 6.28E-02 - 6.25E-02 - 2.12E-02 -
1/160 3.61E-02 0.80 3.69E-02 0.76 1.07E-02 0.99
1/320 1.99E-02 0.86 2.05E-02 0.84 5.12E-03 1.07
1/640 9.77E-03 1.03 1.02E-02 1.01 2.15E-03 1.25

TABLE 10 Experimental errors and convergence order of h for a; = a, = 0.5 (Example 3-2-2).

N N
IS yer = Urpliza,y,

N N
U3 e = Uz pllza,v,

N N
||pref Py ”Hl(/)yh

1/80 6.46E-02 - 6.27E-02 - 2.20E-02 -
1/160 3.71E-02 0.80 3.68E-02 0.77 1.10E-02 0.99
1/320 2.04E-02 0.86 2.03E-02 0.86 5.20E-03 1.08
1/640 1.01E-02 1.02 1.00E-02 1.03 2.20E-03 1.27
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FIGURE 11
The numerical solution for a; = a, = 0 (Example 3-1). (a—d) show the evaluation of the numerical solution at different times.
The initial conditions are set to e Example 2-2-8: a; = 1,a, = 0.5.
1 . . . 1
—10x(x-0.3) 0<x<03 We fix 7= 7005° take the numerical solution with h = o0 At
= < .
uy (%) 0 otherwise forallt <0, T=1 as the reference solution, and compute the errors for mesh
. 1111 : . —
101 =) (0.7 - 07<x<l sizesh = =, =, =5, = The experimental errors for a; = &, = 0 and
(1=007-x) 07<xs< — a, = 0.5, shown in Tables 5, 6 tively, indicate first-ord
u, (t,x) = . forallt < 0. &, = a, = 0.5, shown in Tables 5, 6, respectively, indicate first-order
0 otherwise i i N o _ N
convergence with respect to the mesh size h for ||ujﬂ " uj)hll 2o,

We consider the following settings.

1. the classical hyperbolic Keller-Segel system
e Example2-1: o) =, = 0;

2. a;=a,

e Example 2-2-1: o) =, = 0.1,

e Example 2-2-2: a; =, = 0.5,

e Example2-2-3:a; =a, =1,

e Example 2-2-4:ay =, = 1.5,

e Example 2-2-5:a; = a, =2,

e Example 2-2-6: a; = a, = 2.5;
3.0, F

e Example 2-2-7: a; = 0.5, = 1,
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(= 1,2) and llpy = 3 lnep v,

Figure 7 displays the evolution of solutions for the classical
Keller-Segel system with h=71= ﬁ. Figures 8-10 illustrate the
dynamic behavior of the time-delayed nonlocal advection model
with h=1= ﬁ. Tables 7, 8
corresponding to the cases «; =a, and «; #a,, respectively.

Symmetric delays in segregated initial functions, where the

summarize the dynamic behaviors

coefficients for h; , and h,, are the same, demonstrate that small
delays (a; =, <0.5) can support steady coexistence. However,
larger delays (a; =a, >1) may result in unsteady states or
extinction. In Figure 10, we consider the case where «; # a,,
revealing that the species with the larger delay often gain a
competitive advantage.
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The numerical solution (Examples 3-2-1 through 3-2-4). (a—c) show the evaluation of the numerical solution at different times.
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FIGURE 13
The numerical solution (Examples 3-2-5, 3-2-6). (a—c) show the evaluation of the numerical solution at different times.

TABLE 11 Classification of asymptotic behavior (a; = a,).

Example A=y Steady state Long time behavior
Example 3-2-1 0.1 Steady state One vanished and the other one is steady
Example 3-2-2 0.5 Steady state One vanished and the other one is steady
Example 3-2-3 1 No steady state One vanished and the other one is unsteady
Example 2-2-4 4 No steady state Both vanished

3.3 Example 3 (segregated initial functions)
The settings are the same as those in Example 2, except

that we choose
hl,ot1

hm2 ((upuy) (%)) =2 —uy (H,x) — uy (F— @y, X) .

((uy,uy) (1,%)) =2 =2u, (t— oy, X) — 2u, (%),

The following parameters are considered.

1. the classical hyperbolic Keller-Segel system
e Example 3-1: o =, = 0;
2. a;=a,
e Example 3-2-1: ay =, = 0.1,
e Example 3-2-2: a; =, = 0.5,
e Example 3-2-3:a; =a, =1,

Frontiers in Physics

e Example 3-2-4: ) = a, = 4;
3.0 Fay

e Example 3-2-5: a; = 0.5, = 1,

e Example 3-2-6: a; = 1,a, = 0.5.

We fix 7= ;, take the numerical solution with & = —— at
2000 2000

T=1 as the reference solution, and compute the errors for mesh
sizes h = 8—10, ﬁ, ﬁ, ﬁ. First-order convergence with respect to the
mesh size h is observed for ”“]I‘:’ref_ “jI:Ih"LZ(I),V;, (j=1,2) and ||pzr:f—
thIIHl(D,Vh, as shown in Table 9 for &, = &, = 0, and Table 10 for o} =
a, =0.5.

The evolutions of the solution for the classical Keller-Segel
system (h=71= ﬁ) are shown in Figure 11. Figures 12, 13 present
the evolutions of the solution for the nonlocal advection model

with time delays (h=7= ﬁ). The dynamic behaviors for «; =
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TABLE 12 Classification of asymptotic behavior («, # a,).

Example @ @, Long time behavior
Example 3-2-5 0.5 1 Unsteady and u, superior
Example 3-2-6 1 0.5 Steady and u, superior

a, and o, # o, are summarized in Tables 11, 12, respectively. For
the symmetric delays in the segregated initial functions, where the
coefficients for hy, and h,, differ, small delays (a; =a, <0.5)
still result in the steady state (see Example 3-2-1 — Example 3-2-
2, Figure 12). On the other hand, larger delays («; = a, > 1) can
lead to unsteady dynamics and extinction (see Example 3-2-3 -
Example 3-2-4, Figure 12). For the case with asymmetric delays, we
see that both two examples are u, superior (see Example 3-2-5 -
Example 3-2-6, Figure 13).

Remark 3.1: We observe that small symmetric delays («; = «,)
result in the steady state. This suggests that ecosystems with balanced
feedback mechanisms (e.g., similar resource recovery times for
competing species) are more likely to maintain biodiversity.
On the other hand, larger symmetric delays (a; =a,) can
lead to unsteady dynamics and extinction, which align with
scenarios where delayed interventions (e.g., pesticide application
or vaccination campaigns) fail to prevent population collapse.
Moreover, asymmetric delay parameters («; # «,) between the two
species tend to confer a competitive advantage to one species. Such
dynamics are relevant in tumor-microenvironment interactions,
where targeting delay mechanisms could alter competitive
outcomes.

4 Conclusion

This study proposes a nonlocal advection model with time
delays to investigate the population dynamics of two competing
species, extending previous frameworks by incorporating delayed
interactions between migration and resource recovery. A positivity-
preserving finite volume scheme is developed to ensure biologically
realistic solutions. Numerical experiments demonstrate that
small symmetric delays («; = «,) are steady, while larger delays
induce unsteady states and potential extinction of one or
both species. Moreover, asymmetric delay parameters between
the two species tend to confer a competitive advantage to
one species. Future work may explore applications to more
complex ecological systems, incorporate stochastic or spatially
heterogeneous delays, and extend the model to multi-species
interactions or adaptive delay mechanisms for deeper insights
into delayed feedback effects in biological processes. As a
future work, we would like to consider the development of
high-dimensional chemotaxis models with time delays, explore
alternative numerical schemes to improve computational efficiency,
and ensure that the system properties (such as positivity
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preservation, conservation laws, and energy dissipation) are
maintained.
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