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Competitive interactions between multiple cell populations are crucial for 
modeling biological processes such as tumor growth and tissue regeneration. 
In this study, we investigate the nonlocal advection model for two-species 
competition, which characterizes cell growth and dispersion phenomena in co-
culture experiments. To capture realistic phenomena in biology, we introduce 
the time delay representing population migration and resources recovering 
time. The primary objectives are to investigate the impact of time delays 
on competitive dynamics under various parameter settings and to develop 
numerical methods that ensure biological feasibility of solutions. Accordingly, 
we design a positivity-preserving finite volume scheme based on an upwind 
flux approach, guaranteeing non-negative population densities and discrete 
conservation properties. We examine the convergence orders of the scheme 
through the numerical experiments and explore the effects of time delays on 
species competition dynamics under different parameter settings.
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 1 Introduction

The mathematical modeling of multi-species population dynamics provides a theoretical 
framework for studying species interactions in biological and ecological systems [1, 2]. 
In biochemical research, scientists employ co-culture systems to elucidate competitive 
relationships between distinct cell types, such as cancer cells and normal cells [3]. Early 
models included nonlinear diffusion and reaction-diffusion systems [4, 5, 6], revealing that 
spatial segregation can promote species coexistence by mitigating interspecific competition. 
A key approach in modern models involves nonlocal advection systems [7, 8], where 
population movement is influenced by long-range interactions instead of purely local 
diffusion. These models are often associated with chemotaxis, the directed movement of cells 
or organisms along chemical concentration gradients [9, 10, 11, 12]. The well-posedness 
of nonlocal advection models for two species (or a single species) has been studied in 
[7, 8, 13, 14]. Moreover, nonlocal advection systems are closely connected to continuum 
models of pedestrian dynamics, where an individual’s velocity is influenced not only by local 
density but also by spatially distributed crowd information [15, 16]. Extensions considering 
anisotropic interactions and domain boundaries further demonstrate the relevance of 
nonlocal frameworks to realistic crowd flow modeling [17, 18].

Time delays capture the inherent non-instantaneous nature of biological processes, 
yielding more realistic models that can exhibit oscillatory, bifurcation, and stability
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behaviors observed in real systems [19, 20]. Following the 
pioneering work of [21], numerous studies have introduced 
time delays in population dynamics models. In single species 
models such as the delayed logistic model [22, 23, 24], the 
delay represents the maturation time before individuals become 
reproductively active and can destabilize population dynamics 
by inducing oscillations or periodic behavior once it exceeds a 
critical threshold. The time delayed Lotka–Volterra predator-prey 
model [25, 23, 26] incorporates the predator’s delayed response to 
changes in prey population, enabling more accurate simulations 
of periodic oscillations and stability shifts in ecosystems. Time 
lags in competition models [27, 28] physically represent ecological 
processes such as resource recovery or interspecific interaction lags, 
and they can destabilize equilibrium states to induce stable periodic 
oscillations or even chaotic dynamics through Hopf bifurcation or 
period-doubling bifurcations.

This study aims to extend the existing nonlocal advection model 
for two competing species by incorporating time delays. Previous 
studies focused on population mobility and interactions, while our 
study introduces time delays to characterize the interaction between 
population migration and resource recovery. To ensure biologically 
realistic population densities, we develop a positivity-preserving 
finite volume scheme. We conduct extensive numerical experiments 
to: (1) examine the numerical convergence orders; (2) investigate 
the influence of time delays on competitive dynamics under various 
parameter settings.

In this work, we first introduce the mathematical model—the 
two species hyperbolic Keller–Segel system with time delays, and 
then design a finite volume scheme satisfying the positivity-
preserving property, where we adopt the upwind type flux similar to 
[29–32, 33]. We investigate the experimental convergence orders of 
the proposed scheme. According to the numerical simulation, under 
various parameter settings, we find that small, identical delays in 
both species lead to a steady state, whereas larger delays may induce 
unsteady and potentially the extinction of one or both species. 
Moreover, asymmetric delay parameters between the two species 
tend to confer a competitive advantage to one species.

The rest of this paper is organized as follows. In Section 2, we 
extend the nonlocal advection Keller–Segel model by incorporating 
time delay and develop a positivity-preserving finite volume method 
that also satisfies discrete conservation laws. Numerical examples are 
presented in Section 3. 

2 The mathematical model and the 
finite volume scheme

In this section, we introduce the time delay to the classical 
hyperbolic Keller–Segel system and design a positivity-preserving 
finite volume scheme. 

2.1 PDE model

We consider the nonlocal advection system for two competing 
species with time delays in an interval I = [a,b]. We denote by 
uj(t,x) (j = 1,2) the density of two species. The PDE model is stated 

as follows.

∂tu1 − d1∂x (u1∂xp) = u1h1,α1
(u1,u2) in (0,T] × I, (2.1a)

∂tu2 − d2∂x (u2∂xp) = u2h2,α2
(u1,u2) in (0,T] × I, (2.1b)

(I− χΔ)p = u1 + u2 in (0,T] × I, (2.1c)

∂xp (t,a) = ∂xp (t,b) = 0 on (0,T] , (2.1d)

u1 (t,x) = u1,0 (x) in I, t ≤ 0, (2.1e)

u2 (t,x) = u2,0 (x) in I, t ≤ 0, (2.1f)

where ν is the outward normal vector, dj (j = 1,2) is the dispersion 
coefficient, χ is the sensing coefficient. The function p(t,x), 
which represents the pressure or chemical potential field induced 
by species densities, satisfies the elliptic Equations 2.1c, 2.1d, 
and its gradient ∂xp influences the movement direction of the
species uj (j = 1,2). We set, for α1,α2 ≥ 0,

h1,α1
((u1,u2) (t,x)) = b1 − δ1 − (a11u1 (t− α1,x) + a12u2 (t,x)) ,

(2.2a)

h2,α2
((u1,u2) (t,x)) = b2 − δ2 − (a21u1 (t,x) + a22u2 (t− α2,x)) ,

(2.2b)

where bj > 0 (j = 1,2) are the growth rates, ajj ≥ 0 (j = 1,2) represent 
the intraspecific competition coefficients, reflecting competition 
between individuals of the same species, a12,a21 ≥ 0 denote 
the interspecific competition coefficients between species, αj ≥
0 (j = 1,2) represent the delay parameters, and δj (j = 1,2) are the 
additional mortality rates caused by drug treatment. The delay 
parameters αj in hj,αj

(j = 1,2) represent time lags in intraspecific 
competition of species uj (j = 1,2), reflecting delayed self-density 
feedback from migration and resource recovery. When α1 =
α2 = 0, Equations 2.1a–2.1f is the hyperbolic Keller–Segel system 
proposed in [14].

2.2 The finite volume scheme

We introduce the fully discrete finite volume scheme for problem 
Equations 2.1a–2.1f. We hereafter denote by |ω| the measure of the 
interval ω in ℝ. 

2.2.1 The finite volume scheme
For simplicity, we divide the computational domain I = [a,b]

into Nc cells (see Figure 1):

Ci = {x: xi− 1
2
≤ x ≤ xi+ 1

2
} , 1 ≤ i ≤ Nc,

where

a = x 1
2
< x 3

2
<⋯ < xNc+

1
2
= b.

We denote by xi = (xi+ 1
2
+ xi− 1

2
)/2 the center of the cell Ci, and set

hi = xi+ 1
2
− xi− 1

2
(1 ≤ i ≤ Nc) , h = max

1≤i≤Nc
hi.
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FIGURE 1
The mesh for the interval I.

TABLE 1  Experimental errors and convergence order of h for α1 = α2 = 0 (Example 1-1).

h ‖uN
1,ref −u

N
1,h‖L2(I),Vh

rate ‖uN
2,ref −u

N
2,h‖L2(I),Vh

rate ‖pN
ref −p

N
h ‖H1(I),Vh

rate

1/80 1.29E-01 - 3.02E-02 - 1.11E-02 -

1/160 8.23E-02 0.64 1.78E-02 0.76 5.90E-03 0.90

1/320 4.81E-02 0.78 9.80E-03 0.86 3.00E-03 1.01

1/640 2.38E-02 1.01 4.70E-03 1.07 1.30E-03 1.21

TABLE 2  Experimental errors and convergence order of h for α1 = α2 = 0.5 (Example 1-2-2).

h ‖uN
1,ref −u

N
1,h‖L2(I),Vh

rate ‖uN
2,ref −u

N
2,h‖L2(I),Vh

rate ‖pN
ref −p

N
h ‖H1(I),Vh

rate

1/80 1.35E-01 - 3.25E-02 - 1.20E-02 -

1/160 8.55E-02 0.66 1.89E-02 0.78 6.40E-03 0.90

1/320 4.95E-02 0.79 1.03E-02 0.88 3.20E-03 1.02

1/640 2.43E-02 1.03 4.80E-03 1.08 1.40E-03 1.22

FIGURE 2
The numerical solution for α1 = α2 = 0 (Example 1-1). (a–d) show the evaluation of the numerical solution at different times.

We introduce the space of the piecewise constant function:

Vh = {vh ∈ L∞ (I) :vh|Ci
∈ P0 (Ci) for all Ci} ,

where P0(Ci) represents the set of constant functions in cell Ci.
We assume that there are two integers M1 and M2 such that the 

delay parameters satisfy α2 = (M2/M1)α1. Let τ = α1/(KM1) for some 
integer K. We can take the integers m1 = KM1, m2 = KM2. Then we 
see that α1 =m1τ, α2 =m2τ.

Let N be the smallest integer such that Nτ ≥ T. The time interval 
is divided into N segments:

0 = t0 < t1 <⋯ < tn < tn+1 <⋯ < tN, with tn = nτ,

and we use the backward Euler to approximate time-differential, i.e.,

∂τvn ≔ vn − vn−1

τ
≈ vt (tn) (vn = v(tn)) .

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1657967
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zeng et al. 10.3389/fphy.2025.1657967

FIGURE 3
The numerical solution (Examples 1-2-1, 1-2-2). (a–c) show the evaluation of the numerical solution at different times.

Let pn
h,u

n
1,h,u

n
2,h ∈ Vh be the numerical approximation to 

p(tn,x),u1(tn,x),u2(tn,x) (n = 0,1,…,N). The proposed scheme is 
described below.

By integrating Equations 2.1a–2.1c on each cell Ci and applying 
integration by parts, we obtain the following implicit scheme at t =
tn using the backward Euler method:

∫
Ci

p(tn,x) dx− (χ∂xp(tn,x))|
x

i+ 1
2

x
i− 1

2

= ∫
Ci
(u1 (tn−1,x) + u2 (tn−1,x)) dx,

∫
Ci

∂tu1 (tn,x) dx− (d1u1 (tn,x)∂xp(tn,x))|
x

i+ 1
2

x
i− 1

2

= ∫
Ci

u1 (tn,x)h1,α1 ((u1,u2) (tn−1,x)) dx,

∫
Ci

∂tu2 (tn,x) dx− (d2u2 (tn,x)∂xp(tn,x))|
x

i+ 1
2

x
i− 1

2

= ∫
Ci

u2 (tn,x)h2,α2 ((u1,u2) (tn−1,x)) dx.

 Using pn(x) ≈ pn
h(xi) ≔ pn

i ,u
n
1(x) ≈ un

1,h(xi) ≔ un
1,i,u

n
2(x) ≈ un

2,h(xi) ≔
un

2,i on Ci, we get:

∫
Ci

p(tn,x) dx ≈ |Ci|p
n
i , ∂xp(tn,x)|

xi+ 1
2

xi− 1
2

= ∂xp(tn,xi+ 1
2
)− ∂xp(tn,xi− 1

2
),

∫
Ci
(u1 (tn−1,x) + u2 (tn−1,x)) dx ≈ |Ci| (u

n−1
1,i + un−1

2,i ) ,

∫
Ci

∂tuj (tn) dx ≈ ∫
Ci

∂tu
n
j,h (xi) dx = |Ci|∂tu

n
j,i = |Ci|

un
j,i − un−1

j,i

τ
(j = 1,2) ,

∫
Ci

uj (tn,x)hj,αj
((u1,u2) (tn−1,x)) dx ≈ |Ci|u

n
j,ihj,αj
(un−1

1,i ,u
n−1
2,i ) (j = 1,2) .

 We use the approximation:

Pn
i− 1

2

≔ ∂xp(tn,xi− 1
2
) ≈
{{
{{
{

pn
i − pn

i−1

|xi − xi−1|
2 ≤ i ≤ Nc,

0 i ∈ {1,Nc + 1}
(2.3)

(by Equation 2.1d)
We apply the upwind discretization to treat the flux: for j = 1,2,

−(djuj (tn,x)∂xp(tn,x))|
xi+ 1

2
xi− 1

2

≈ Fn
j,i+ 1

2

− Fn
j,i− 1

2

,

Fn
j,i− 1

2

≔ un
j,i−1[−djP

n
i− 1

2

]
+
− un

j,i[−djP
n
i− 1

2

]
−
,

where [r]+ = max {r,0} and [r]− = max {−r,0}. The upwind type 
numerical flux can be understood as follows. If the “flux” is from 
Ci−1 towards Ci (i.e., −djP

n
i− 1

2

> 0), then the numerical flux for Fn
j,i− 1

2
is chosen as un

j,i−1(−djP
n
i− 1

2

); otherwise, we take un
j,i(−djP

n
i− 1

2

).
For simplicity, we set the notations:

Gn−1
i ≔ un−1

1,i + un−1
2,i , En

j,i ≔ un
j,ihj,αj
(un−1

1,i ,u
n−1
2,i ) (j = 1,2) .

The time delay terms hj,αj
(un−1

1,i ,u
n−1
2,i )(j = 1,2) are approximated by

h1,α1
(un−1

1,i ,u
n−1
2,i ) = b1 − δ1 − (a11un−1−m1

1,i + a12un−1
2,i ) ,

h2,α2
(un−1

1,i ,u
n−1
2,i ) = b2 − δ2 − (a21un−1

1,i + a22un−1−m2
2,i ) ,

where the integers mj(j = 1,2) satisfy

tn−1 − αj = (n− 1−mj)τ.
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FIGURE 4
The numerical solution (Examples 1-2-3, 1-2-4, 1-2-5). (a–c) show the evaluation of the numerical solution at different times.

For 1 ≤ i ≤ Nc, by the fact that |Ci| = hi, we get the finite volume 
scheme (FVM) scheme.

pn
i −

χ
hi
(Pn

i+ 1
2

−Pn
i− 1

2

) = Gn−1
i , (2.4a)

un
1,i +

τ
hi
(Fn

1,i+ 1
2

− Fn
1,i− 1

2

)+ τEn
1,i = un−1

1,i , (2.4b)

un
2,i +

τ
hi
(Fn

2,i+ 1
2

− Fn
2,i− 1

2

)+ τEn
2,i = un−1

2,i . (2.4c)

2.2.2 Positivity-preserving property
In this section, we show the positivity-preserving for the discrete 

solutions. We set un
j,h = (u

n
j,1,…,u

n
j,Nc
)⊤.

Theorem 2.1: Assume that uk
j,h (k ≤ n− 1, j = 1,2) are nonnegative 

and not identically zero. If  τ is sufficiently small such that τ <
min { 1

b1−δ1
, 1

b2−δ2
}, then we have:

un
1,h ≥ 0, un

2,h ≥ 0 (∀n ≥ 1) .

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1657967
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zeng et al. 10.3389/fphy.2025.1657967

FIGURE 5
The numerical solution (Examples 1-2-6, 1-2-7). (a–c) show the evaluation of the numerical solution at different times.

FIGURE 6
The numerical solution (Examples 1-2-8, 1-2-9). (a–c) show the evaluation of the numerical solution at different times.
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TABLE 3  Classification of asymptotic behavior (α1 = α2).

Example α1 = α2 Steady state Long time behavior

Example 1-2-1 0.1 Steady state Both non-vanishing and steady

Example 1-2-2 0.5 Steady state Both non-vanishing and steady

Example 1-2-3 1.5 No steady state Both non-vanishing and unsteady

Example 1-2-4 2 No steady state One vanished and the other one is unsteady

Example 1-2-5 5 No steady state Both vanished

TABLE 4  Classification of asymptotic behavior (α1 ≠ α2).

Example α1 α2 Long time behavior

Example 1-2-6 0.5 1 Steady and u2 superior

Example 1-2-7 1 0.5 Steady and u1 superior

Example 1-2-8 0.5 1.5 Steady and u2 superior

Example 1-2-9 1.5 0.5 Steady and u1 superior

Proof. The discrete system Equations 2.4b, 2.4c can be rewritten into 
the matrix forms:

An
j u

n
j,h = u

n−1
j,h (j = 1,2) ,

where An
j = (aj;i,s)1≤i,s≤Nc

,

aj;i,s =

{{{{{{{{{{{
{{{{{{{{{{{
{

1+ τ
hi
[−djP

n
i+ 1

2
]
+
+ τ

hi
[−djP

n
i− 1

2
]
−
− τhj,αj
(un−1

1,i ,u
n−1
2,i ) s = i,

− τ
hi
[−djP

n
i+ 1

2
]
−

s = i+ 1,

− τ
hi
[−djP

n
i− 1

2
]
+

s = i− 1,

0 otherwise.

We assume that uk
j,h ≥ 0,≠ 0 (k ≤ n− 1, j = 1,2). In view of 

Equations 2.2a, 2.2b, we see that hj,αj
(un−1

1,i ,u
n−1
2,i ) ≤ bj − δj (j = 1,2). 

If we choose τ < min { 1
b1−δ1
, 1

b2−δ2
}, then we obtain:

1− τhj,αj
(un−1

1,i ,u
n−1
2,i ) ≥ 1− τ(bj − δj) > 0 (j = 1,2) .

The following statements hold for An
j . 

1. An
j  has positive diagonal entries, i.e., for j = 1,2 and 1 ≤ i ≤ Nc,

1+ τ
hi
[−djP

n
i+ 1

2

]
+
+ τ

hi
[−djP

n
i− 1

2

]
−
− τhj,αj
(un−1

1,i ,u
n−1
2,i ) > 0.

2. An
j  has non-positive off-diagonal entries, i.e., for j = 1,2 and 

1 ≤ i ≤ Nc,

− τ
hi
[−djP

n
i+ 1

2

]
−
≤ 0, − τ

hi
[−djP

n
i− 1

2

]
+
≤ 0.

3. All the column sums of An
j  are positive, i.e., for j = 1,2 and 1 ≤

i ≤ Nc,

aj;i−1,i + aj;i,i + aj;i+1,i = 1− τhj,αj
(un−1

1,i ,u
n−1
2,i ) ≥ 1− τ(bj − δj) > 0.

According to a convenient sufficient but not necessary condition
of M-matrices (cf. [5, Appendix]), we conclude that An

j  is an M-
matrix.

According to the properties of M-matrices, this implies that 
(An

j )
−1 > 0 (j = 1,2). Noting that uk

j,h ≥ 0,≠ 0 (k ≤ n− 1, j = 1,2), we 
have un

j,h = (A
n
j )
−1un−1

j,h ≥ 0. By induction, we conclude that un
j,h ≥ 0

(j = 1,2) for all n. 

2.2.3 The discrete conservation laws
The purpose of this section is to establish the mass conservation 

property of the (FVM) scheme (see Equations 2.4a–2.4c).

Theorem 2.2: Let un
j,h (j = 1,2) be the solution of (FVM). Then, we 

have the discrete conservation law:
Nc

∑
i=1

un
j,i −

Nc

∑
i=1

un−1
j,i =

Nc

∑
i=1

τEn
j,i (j = 1,2) .

Moreover, under the assumptions that hj,αj
= 0 (j = 1,2), it 

follows that
Nc

∑
i=1

un
j,i =

Nc

∑
i=1

u0
j,i (j = 1,2) .

Proof. Summing up Equations 2.4b, 2.4c with respect to i, we obtain
Nc

∑
i=1

un
j,i +

Nc

∑
i=1

τ
hi
(Fn

j,i+ 1
2

− Fn
j,i− 1

2

)+
Nc

∑
i=1

τEn
j,i =

Nc

∑
i=1

un−1
j,i (j = 1,2) .

We see that
Nc

∑
i=1

τ
hi
(Fn

j,i+ 1
2

− Fn
j,i− 1

2

) = τ
hi
(Fn

j,Nc+
1
2

− Fn
j, 1

2

) (j = 1,2) ,

where

Fn
j, 1

2

= un
j,0[−djP

n
1
2

]
+
− un

j,1[−djP
n
1
2

]
−
= 0

Fn
j,Nc+

1
2

= un
j,Nc
[−djP

n
Nc+

1
2

]
+
− un

j,Nc+1
[−djP

n
Nc+

1
2

]
−
= 0

(by Equation 2.3).
Hence, we have

Nc

∑
i=1

un
j,i −

Nc

∑
i=1

un−1
j,i =

Nc

∑
i=1

τEn
j,i (j = 1,2) .
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TABLE 5  Experimental errors and convergence order of h for α1 = α2 = 0 (Example 2-1).

h ‖uN
1,ref −u

N
1,h‖L2(I),Vh

rate ‖uN
2,ref −u

N
2,h‖L2(I),Vh

rate ‖pN
ref −p

N
h ‖H1(I),Vh

rate

1/80 6.10E-02 - 6.10E-02 - 2.24E-02 -

1/160 3.53E-02 0.79 3.56E-02 0.78 1.13E-02 0.99

1/320 1.95E-02 0.86 1.97E-02 0.85 5.37E-03 1.07

1/640 9.58E-03 1.02 9.70E-03 1.02 2.25E-03 1.26

TABLE 6  Experimental errors and convergence order of h for α1 = α2 = 0.5 (Example 2-2-2).

h ‖uN
1,ref −u

N
1,h‖L2(I),Vh

rate ‖uN
2,ref −u

N
2,h‖L2(I),Vh

rate ‖pN
ref −p

N
h ‖H1(I),Vh

rate

1/80 6.14E-02 - 6.14E-02 - 2.28E-02 -

1/160 3.54E-02 0.79 3.58E-02 0.78 1.14E-02 1.00

1/320 1.94E-02 0.87 1.97E-02 0.86 5.40E-03 1.08

1/640 9.50E-03 1.04 9.60E-03 1.03 2.20E-03 1.27

FIGURE 7
The numerical solution for α1 = α2 = 0 (Example 2-1). (a–d) show the evaluation of the numerical solution at different times.

Moreover, if we assume that hj,αj
= 0 (i.e., En

j,i = 0), then we have

Nc

∑
i=1

un
j,i =

Nc

∑
i=1

un−1
j,i =

Nc

∑
i=1

u0
j,i (j = 1,2) .

Hence the proof is complete.

Remark 2.3: For hyperbolic systems, there exist other positivity-
preserving strategies, such as the linear scaling limiter [35, 36], 
which enforces bounds in finite volume and discontinuous 
Galerkin methods through constraints at Legendre Gauss-Lobatto
points. 

3 Numerical experiments

In this section, we conduct extensive numerical experiments, 
where we examine the numerical convergence orders, compare 
the results with the classical hyperbolic Keller–Segel system, and 
investigate the influence of time delays on competitive dynamics 

under various parameter settings. We take δj = 0 (j = 1,2) in this 
section. We set.

‖v‖L2(I),Vh
= (

Nc

∑
i=1
|v(xi) |2|Ci|)

1
2

∀v ∈ Vh,

|v|H1(I),Vh
= (

Nc

∑
i=1

|v(xi) − v(xi−1) |2

|xi − xi−1|
)

1
2

∀v ∈ Vh,

‖v‖H1(I),Vh
= (‖v‖2L2(I),Vh

+ |v|2H1(I),Vh
)

1
2 ∀v ∈ Vh.

 

3.1 Example 1 (non-segregated initial 
functions)

We set I = [−2,2], χ = 1, d1 = 4, d2 = 1, and

h1,α1
((u1,u2) (t,x)) = 1− u1 (t− α1,x) − 2u2 (t,x) ,

h2,α2
((u1,u2) (t,x)) = 1− 2u1 (t,x) − u2 (t− α2,x) .
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FIGURE 8
The numerical solution (Examples 2-2-1 through 2-2-4). (a–c) show the evaluation of the numerical solution at different times.
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FIGURE 9
The numerical solution (Examples 2-2-5, 2-2-6). (a–c) show the evaluation of the numerical solution at different times.

The initial conditions are chosen as follows:

u1 (t,x) = {
0.25− x2 − 0.5 ≤ x ≤ 0.5

0 otherwise
for all t ≤ 0,

u2 (t,x) = {
2(0.25− x2) − 0.5 ≤ x ≤ 0.5

0 otherwise
for all t ≤ 0.

To examine the influence of time delays on competitive dynamics 
under varying parameter settings, the following cases are 
considered. 

1. the classical hyperbolic Keller–Segel system 
• Example 1-1: α1 = α2 = 0;

2. α1 = α2
• Example 1-2-1: α1 = α2 = 0.1;
• Example 1-2-2: α1 = α2 = 0.5;
• Example 1-2-3: α1 = α2 = 1.5;
• Example 1-2-4: α1 = α2 = 2;
• Example 1-2-5: α1 = α2 = 5;

3. α1 ≠ α2
• Example 1-2-6: α1 = 0.5,α2 = 1;
• Example 1-2-7: α1 = 1,α2 = 0.5;
• Example 1-2-8: α1 = 0.5,α2 = 1.5;
• Example 1-2-9: α1 = 1.5,α2 = 0.5.

To obtain the experimental convergence order of the mesh 
size h, we fix τ = 1

2000
, use the numerical solution with h =

1
2000

 at T = 1 as the reference solution (denoted by (uN
1,re f , uN

2,re f , 

pN
ref)), and compute the errors for different mesh sizes h =

1
80
, 1

160
, 1

320
, 1

640
. For the classical hyperbolic Keller–Segel system (i.e., 

α1 = α2 = 0), the experimental errors are shown in Table 1. For the 
system with time delay (α1 = α2 = 0.5), the experimental errors are 
presented in Table 2. We observe the first-order convergence with 
respect to the mesh size h for ‖uN

j,re f − uN
j,h‖L2(I),Vh

(j = 1,2) and ‖pN
ref −

pN
h ‖H1(I),Vh

.
The evolution of the solutions for the classical hyperbolic 

Keller–Segel system (i.e., α1 = α2 = 0) with h = τ = 1
1000

 is shown 
in Figure 2. The solution dynamics of the time-delayed nonlocal 
advection model with h = τ = 1

1000
 are presented in Figures 3–6. We 

classify the dynamic behaviors for α1 = α2 and α1 ≠ α2 in Tables 3, 
4, respectively. For the non-segregated initial function cases, small 
symmetric delays (α1 = α2 ≤ 0.5) lead to steady coexistence (see 
Example 1-2-1 – Example 1-2-2, Figure 3), while larger delays 
(α1 = α2 ≥ 1.5) cause unsteady dynamics and potential extinction 
of one or both species (see Example 1-2-3 – Example 1-2-5, 
Figure 4). When the time delay is identical for both species (i.e., 
α1 = α2) and sufficiently large, the delayed competitive feedback 
leads to an unsteady system. The populations overreact to outdated 
density information, causing oscillations that eventually drive both 
species to extinction, as seen in the numerical results. For the 
case with asymmetric delays, we observe that the species with the 
larger delay is dominance in the competition (e.g., u2 dominates 
when α1 < α2, or vice versa (see Example 1-2-6 – Example 1-2-9,
Figures 5, 6)). 
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FIGURE 10
The numerical solution (Examples 2-2-7, 2-2-8). (a–c) show the evaluation of the numerical solution at different times.

TABLE 7  Classification of asymptotic behavior (α1 = α2).

Example α1 = α2 Steady state Long time behavior

Example 2-2-1 0.1 Steady state Both non-vanishing and steady

Example 2-2-2 0.5 Steady state Both non-vanishing and steady

Example 2-2-3 1 No steady state Both non-vanishing and unsteady

Example 2-2-4 1.5 No steady state One vanished and the other one is unsteady

Example 2-2-5 2 No steady state Both vanished

Example 2-2-6 2.5 No steady state Both vanished

TABLE 8  Classification of asymptotic behavior (α1 ≠ α2).

Example α1 α2 Long time behavior

Example 2-2-7 0.5 1 Unsteady and u2 superior

Example 2-2-8 1 0.5 Unsteady and u1 superior

3.2 Example 2 (segregated initial functions)

Set I = [0,1], χ = 1, d1 = 1, d2 = 1, and

h1,α1
((u1,u2) (t,x)) = 2− u1 (t− α1,x) − u2 (t,x) ,

h2,α2
((u1,u2) (t,x)) = 2− u1 (t,x) − u2 (t− α2,x) .
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TABLE 9  Experimental errors and convergence order of h for α1 = α2 = 0 (Example 3-1).

h ‖uN
1,ref −u

N
1,h‖L2(I),Vh

rate ‖uN
2,ref −u

N
2,h‖L2(I),Vh

rate ‖pN
ref −p

N
h ‖H1(I),Vh

rate

1/80 6.28E-02 - 6.25E-02 - 2.12E-02 -

1/160 3.61E-02 0.80 3.69E-02 0.76 1.07E-02 0.99

1/320 1.99E-02 0.86 2.05E-02 0.84 5.12E-03 1.07

1/640 9.77E-03 1.03 1.02E-02 1.01 2.15E-03 1.25

TABLE 10  Experimental errors and convergence order of h for α1 = α2 = 0.5 (Example 3-2-2).

h ‖uN
1,ref −u

N
1,h‖L2(I),Vh

rate ‖uN
2,ref −u

N
2,h‖L2(I),Vh

rate ‖pN
ref −p

N
h ‖H1(I),Vh

rate

1/80 6.46E-02 - 6.27E-02 - 2.20E-02 -

1/160 3.71E-02 0.80 3.68E-02 0.77 1.10E-02 0.99

1/320 2.04E-02 0.86 2.03E-02 0.86 5.20E-03 1.08

1/640 1.01E-02 1.02 1.00E-02 1.03 2.20E-03 1.27

FIGURE 11
The numerical solution for α1 = α2 = 0 (Example 3-1). (a–d) show the evaluation of the numerical solution at different times.

The initial conditions are set to

u1 (t,x) = {
− 10x (x− 0.3) 0 ≤ x ≤ 0.3

0 otherwise
for all t ≤ 0,

u2 (t,x) = {
− 10 (1− x) (0.7− x) 0.7 ≤ x ≤ 1

0 otherwise
for all t ≤ 0.

We consider the following settings. 

1. the classical hyperbolic Keller–Segel system 
• Example 2-1: α1 = α2 = 0;

2. α1 = α2
• Example 2-2-1: α1 = α2 = 0.1,
• Example 2-2-2: α1 = α2 = 0.5,
• Example 2-2-3: α1 = α2 = 1,
• Example 2-2-4: α1 = α2 = 1.5,
• Example 2-2-5: α1 = α2 = 2,
• Example 2-2-6: α1 = α2 = 2.5;

3. α1 ≠ α2
• Example 2-2-7: α1 = 0.5,α2 = 1,

• Example 2-2-8: α1 = 1,α2 = 0.5.

We fix τ = 1
2000

, take the numerical solution with h = 1
2000

 at 
T = 1 as the reference solution, and compute the errors for mesh 
sizes h = 1

80
, 1

160
, 1

320
, 1

640
. The experimental errors for α1 = α2 = 0 and 

α1 = α2 = 0.5, shown in Tables 5, 6, respectively, indicate first-order 
convergence with respect to the mesh size h for ‖uN

j,re f − uN
j,h‖L2(I),Vh

(j = 1,2) and ‖pN
ref − pN

h ‖H1(I),Vh
.

Figure 7 displays the evolution of solutions for the classical 
Keller–Segel system with h = τ = 1

2000
. Figures 8–10 illustrate the 

dynamic behavior of the time-delayed nonlocal advection model 
with h = τ = 1

1000
. Tables 7, 8 summarize the dynamic behaviors 

corresponding to the cases α1 = α2 and α1 ≠ α2, respectively. 
Symmetric delays in segregated initial functions, where the 
coefficients for h1,α1

 and h2,α2
 are the same, demonstrate that small 

delays (α1 = α2 ≤ 0.5) can support steady coexistence. However, 
larger delays (α1 = α2 ≥ 1) may result in unsteady states or 
extinction. In Figure 10, we consider the case where α1 ≠ α2, 
revealing that the species with the larger delay often gain a 
competitive advantage. 
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FIGURE 12
The numerical solution (Examples 3-2-1 through 3-2-4). (a–c) show the evaluation of the numerical solution at different times.
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FIGURE 13
The numerical solution (Examples 3-2-5, 3-2-6). (a–c) show the evaluation of the numerical solution at different times.

TABLE 11  Classification of asymptotic behavior (α1 = α2).

Example α1 = α2 Steady state Long time behavior

Example 3-2-1 0.1 Steady state One vanished and the other one is steady

Example 3-2-2 0.5 Steady state One vanished and the other one is steady

Example 3-2-3 1 No steady state One vanished and the other one is unsteady

Example 2-2-4 4 No steady state Both vanished

3.3 Example 3 (segregated initial functions)

The settings are the same as those in Example 2, except 
that we choose

h1,α1
((u1,u2) (t,x)) = 2− 2u1 (t− α1,x) − 2u2 (t,x) ,

h2,α2
((u1,u2) (t,x)) = 2− u1 (t,x) − u2 (t− α2,x) .

The following parameters are considered. 

1. the classical hyperbolic Keller–Segel system 
• Example 3-1: α1 = α2 = 0;

2. α1 = α2
• Example 3-2-1: α1 = α2 = 0.1,
• Example 3-2-2: α1 = α2 = 0.5,
• Example 3-2-3: α1 = α2 = 1,

• Example 3-2-4: α1 = α2 = 4;
3. α1 ≠ α2
• Example 3-2-5: α1 = 0.5,α2 = 1,
• Example 3-2-6: α1 = 1,α2 = 0.5.

We fix τ = 1
2000

, take the numerical solution with h = 1
2000

 at 
T = 1 as the reference solution, and compute the errors for mesh 
sizes h = 1

80
, 1

160
, 1

320
, 1

640
. First-order convergence with respect to the 

mesh size h is observed for ‖uN
j,re f − uN

j,h‖L2(I),Vh
(j = 1,2) and ‖pN

ref −
pN

h ‖H1(I),Vh
, as shown in Table 9 for α1 = α2 = 0, and Table 10 for α1 =

α2 = 0.5.
The evolutions of the solution for the classical Keller–Segel 

system (h = τ = 1
5000
) are shown in Figure 11. Figures 12, 13 present 

the evolutions of the solution for the nonlocal advection model 
with time delays (h = τ = 1

5000
). The dynamic behaviors for α1 =
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TABLE 12  Classification of asymptotic behavior (α1 ≠ α2).

Example α1 α2 Long time behavior

Example 3-2-5 0.5 1 Unsteady and u2 superior

Example 3-2-6 1 0.5 Steady and u2 superior

α2 and α1 ≠ α2 are summarized in Tables 11, 12, respectively. For 
the symmetric delays in the segregated initial functions, where the 
coefficients for h1,α1

 and h2,α2
 differ, small delays (α1 = α2 ≤ 0.5)

still result in the steady state (see Example 3-2-1 – Example 3-2-
2, Figure 12). On the other hand, larger delays (α1 = α2 ≥ 1) can 
lead to unsteady dynamics and extinction (see Example 3-2-3 – 
Example 3-2-4, Figure 12). For the case with asymmetric delays, we 
see that both two examples are u2 superior (see Example 3-2-5 – 
Example 3-2-6, Figure 13).

Remark 3.1: We observe that small symmetric delays (α1 = α2)
result in the steady state. This suggests that ecosystems with balanced 
feedback mechanisms (e.g., similar resource recovery times for 
competing species) are more likely to maintain biodiversity. 
On the other hand, larger symmetric delays (α1 = α2) can 
lead to unsteady dynamics and extinction, which align with 
scenarios where delayed interventions (e.g., pesticide application 
or vaccination campaigns) fail to prevent population collapse. 
Moreover, asymmetric delay parameters (α1 ≠ α2) between the two 
species tend to confer a competitive advantage to one species. Such 
dynamics are relevant in tumor-microenvironment interactions, 
where targeting delay mechanisms could alter competitive
outcomes. 

4 Conclusion

This study proposes a nonlocal advection model with time 
delays to investigate the population dynamics of two competing 
species, extending previous frameworks by incorporating delayed 
interactions between migration and resource recovery. A positivity-
preserving finite volume scheme is developed to ensure biologically 
realistic solutions. Numerical experiments demonstrate that 
small symmetric delays (α1 = α2) are steady, while larger delays 
induce unsteady states and potential extinction of one or 
both species. Moreover, asymmetric delay parameters between 
the two species tend to confer a competitive advantage to 
one species. Future work may explore applications to more 
complex ecological systems, incorporate stochastic or spatially 
heterogeneous delays, and extend the model to multi-species 
interactions or adaptive delay mechanisms for deeper insights 
into delayed feedback effects in biological processes. As a 
future work, we would like to consider the development of 
high-dimensional chemotaxis models with time delays, explore 
alternative numerical schemes to improve computational efficiency, 
and ensure that the system properties (such as positivity 

preservation, conservation laws, and energy dissipation) are 
maintained.
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