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Gibbs was the first person to represent a phase interface by a dividing surface. 
He defined the dividing surface as a mathematical surface that has its own 
material properties and internal dynamics. In this paper, an alternative derivation 
to this mathematical surface is provided that generalizes the concept of dividing 
surface to fluid fronts beyond that of just a phase or material interface. Here, 
this extended definition of dividing surface is referred to as the extended 
dividing hypersurface (EDH), as it is not just applicable to a surface front but 
also to a line and a point front. This hypersurface represents a continuum 
approximation of a diffused region, where fluid properties and flow parameters 
vary sharply but continuously across it. This paper shows that the properties and 
equations describing an EDH can be derived from the equations describing the 
diffused region by integrating it in the directions normal to the hypersurface. 
This is equivalent to collapsing the diffused region in the normal direction. 
Hence, ensuring that the EDH is both kinematically and dynamically equivalent 
to that of the diffused region. Various canonical problems are examined to 
demonstrate the EDH’s ability to accurately represent different types of fluid and 
flow fronts, including static and dynamic interfaces, shock fronts, and vortex 
sheets. These examples emphasize the EDH’s capability to represent various 
functionalities within a front, the relationship between the flux of quantities and 
hypersurface quantities, and the importance of considering the mass of the front 
and associated dynamics.

KEYWORDS

fluid front, computational fluid dynamics, dividing surfaces, multiphase flow (CFD), 
vortex sheet, shock front 

 1 Introduction

A front is often accompanied by rapid changes in scales, multiphysics, geometrical 
complexities, and intriguing chemical phenomena, making it an ideal benchmark to 
expand our knowledge beyond the confines of the continuum field. A front refers to 
a boundary separating two or more sets of homogeneous quantities in a continuum 
field. Across the front, one or more of these field quantities are usually discontinuous. 
While some of these quantities pertain to the material properties of the media, others are 
associated with its kinematics and dynamics. Examples of commonly occurring fronts in 
fluid mechanics, across which fluid properties and/or flow parameters are discontinuous, 
are listed in Table 1. These fronts can be categorized into two types. The first type 
is referred to as the physical front, which exhibits sharp gradients in fluid and flow 
parameters at length scales that are below the experimental or numerical observable
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limit [1]. Moreover, the equation of state and thermodynamic 
properties of the physical front differ from those of the surrounding 
homogeneous media [2, 3]. Examples of physical fronts include 
material or phase interface, gravity wave front [4–6], and shock 
front Shapiro [7].

The second type is referred to as the apparent front, 
characterized by gradients that exist at length scales above the 
observable limit but can be approximated as a discontinuity for 
analytical and numerical simplicity. In this case, the equation of 
state and the thermodynamic properties within the front are the 
same as those of the surrounding homogeneous media. Examples 
of apparent fronts include a vortex sheet and an entrainment 
sheet, which are commonly used to describe a boundary layer or 
mixing layer. Among these examples of a front is a well-known 
discontinuity corresponding to the jump in pressure across a curved 
fluid-fluid interface. This jump in pressure is attributed to interfacial 
tension, which is the thermodynamic property of an interface in 
an equilibrium system. This then begs the following questions: (1) 
whether the fluid interface possesses other material properties? (2) 
Does it have any internal dynamics if the interface is in a non-
equilibrium system? And (3) if the material and phase interface can 
have their own properties and internal dynamics, could other fluid 
and flow fronts also possess their own distinct material properties 
and internal dynamics? The fact that a fluid interface could have 
material properties analogous to those of a bulk fluid and its own 
internal dynamics was first recognized by Gibbs [8].

Gibbs introduced the concept of a dividing surface to represent 
a fluid interface, more specifically, a phase interface. The dividing 
surface is a two-dimensional mathematical surface with zero 
thickness, which has its own properties and internal dynamics 
[8–10]. Gibbs proposed a phenomenological description of the 
thermodynamic relations for the dividing surface, which represents 
a phase interface in a body at rest or equilibrium. After nearly 

3 decades, Scriven [9] extended this concept of dividing surface to 
non-equilibrium systems by deriving a model that described the 
internal dynamics of the fluid within the dividing surface [9, 11]. 
Though Scriven accounted for the coupling of the dividing surface 
with its surrounding bulk media, the mass transfer between the 
dividing surface and the bulk fluid surrounding it was ignored. The 
effect of mass transfer was later included in the governing equations 
by Slattery [10]. This was done by expanding Gibbs’ definition of 
homogeneous media to one where the constitutive equations apply 
uniformly. In these three models, the thermodynamic relations [8], 
the transport equations, and the conservation of mass, momentum, 
and energy of the dividing surface [9, 10] were all independently 
defined as a two-dimensional analogue to the corresponding three-
dimensional bulk equations. The last question posed in the previous 
paragraph still remains unanswered: whether a dividing surface 
concept can also describe other fluid fronts.

This paper addresses the question by examining the 
characteristics of fluid fronts. It is asserted that the actual physical 
front is a diffused region with three dimensions and a finite 
thickness. Within this region, fluid and flow parameters exhibit 
sharp but continuous variations across its width. It is important to 
note that the conventional representation of a front as a hypersurface 
in continuum theory is a limiting case of this diffused region. 
As a result, the authors propose a systematic derivation of the 
dividing surface from the 3D bulk conservation equations that 
accurately describe this diffused region. This generalized dividing 
surface is referred to as the extended dividing hypersurface (EDH). 
The EDH equations are derived by collapsing the dimension 
across the width of the diffused region, mathematically achieved 
through integration along its width. This mathematical treatment 
ensures that the EDH is kinematically and dynamically equivalent 
to the diffused region, representing the real physical front
in its entirety.

TABLE 1  List of fronts and corresponding field quantities that are discontinuous across it. The fluid properties or flow parameters that are discontinuous 
are labelled as “D”. Here, ρ is the density, p pressure, T temperature, us tangential component of velocity, un normal component of velocity, and τsn
shear stress.

Types of fronts/Discontinuity ρ p T us un τsn

Physical front

Hydrophilic/Miscible interface D D - - - -

Hydrophobic/Immiscible boundary D D D D - -

Moving contact line D D D D - D

Interface with surface tension gradient D D - - - D

Contact discontinuity D - D D - -

Gravity wave front D - - - D -

Shock front D D D - D -

Apparent (pseudo) front

Vortex sheet D - - D - -

Entrainment sheet1 D - - - D -
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To validate the EDH model and its generalization, the authors 
conduct a comprehensive analysis of canonical problems that 
involve fluid fronts. These problems are (1) stationary fluid with 
varying miscibility, (2) stratified flow through a converging-
diverging section, (3) the shock tube problem, (4) the vortex 
entrainment sheet, and (5) unsteady bubble dynamics.

The selected problems in this study serve four primary purposes. 
Firstly, they demonstrate that the extended dividing hypersurface 
(EDH) is capable of accurately capturing the dynamics of different 
types of fluid and flow fronts, not limited to phase or material 
interfaces. Secondly, they highlight that the EDH can effectively 
represent various functionalities within a front, going beyond 
the commonly described monotonicity distribution in literature, 
resulting in new classes of fronts. Thirdly, they illustrate the 
relationship between the flux of m-dimensional quantities and the 
m-1 dimensional quantities (referred to as hypersurface quantities), 
emphasizing how this coupling can lead to hypersurface dilatation 
even in incompressible hypersurface flows, which is counterintuitive 
to deductions made from continuity equations for bulk fluids. 
Moreover, the study emphasizes the importance of acknowledging 
the mass of the front and capturing the associated dynamics.

The paper is outlined as follows: Section 2 defines a diffused 
region, front, and hypersurface. Here, a brief description is provided 
of how the collapse of dimension is achieved mathematically, along 
with an overview of the methodology used to obtain the governing 
equations of an EDH. Section 3 presents the derivation of equations 
related to EDH. In Section 4, the details of the numerical simulations 
used for validating the EDH model are presented. Finally, the results 
are presented and discussed in Section 5. 

2 Overview of methodology and 
general definitions

Prior to deriving the governing equations for the EDH, it is 
helpful to: 1) introduce key definitions and nomenclature utilized in 
this study, 2) provide an overview of the concept of spatial dimension 
collapse, and 3) outline the adopted methodology for deriving the 
governing equations for the EDH. 

2.1 Defining a diffused region, the 
hypersurface, and the extended dividing 
hypersurface

As previously stated, a front is referred to as a fluid feature 
across which one or more fluid or flow parameters is considered to 
be discontinuous. This can be mathematically and computationally 
represented as a diffused region with finite volume or a hypersurface 
with zero thickness. 

2.1.1 Diffused region
In this paper, a diffused region is defined as a region with 

finite thickness in m-dimensional space, where one or more field 
quantities, such as fluid properties or flow parameters, exhibit 
sharp but continuous variations. The diffused region serves as 
a more realistic representation of a front, as true mathematical 
discontinuities seldom exist in the physical world.

The diffused region is depicted in Figure 1. The boundary of 
the domain containing the homogeneous media and the embedded 
diffused region or hypersurface is represented by ‘S’. ‘S’ is further 
divided into ‘SBulk’ and ‘SDiff’, corresponding to the sections of the 
boundary covering the homogeneous media and the diffused region, 
respectively. The boundaries of the diffused region that separate it 
from the homogeneous media A and B are identified as ΣA and ΣB, 
respectively. The locations of ΣB and ΣA are indicated as n2 and n1, 
respectively. The width of the diffused region is denoted by ϵ. It must 
be noted that these are not sharp, distinct boundaries of the diffused 
region but rather an apparent boundary that is set based on criteria 
of a fluid or flow parameter defined a priori. This is analogous to 
how the velocity boundary layer and its bounds are defined as the 
location where fluid velocity is 99% of the free stream velocity.

2.1.2 Hypersurface
In mathematics, a hypersurface is a manifold of dimension m− 1

that is embedded in a m-dimensional ambient space. In other words, 
referring to Figure 1, the hypersurface in a 3-D space is a surface, 
in a 2-D space is a curve, and in a 1-D space is a point. Hence, in 
contrast to the diffused region, a hypersurface has zero thickness. 
Representing a front as a hypersurface, results in a true mathematical 
discontinuity across it. This approach is commonly employed for 
representing fronts due to its simplicity. 

2.1.3 Extended dividing hypersurface (EDH)
An extended dividing hypersurface is defined as a type 

of hypersurface that accurately represents and encompasses the 
cumulative (integrated in the direction normal to the front) 
kinematics and dynamics of a front as a diffused region. The EDH 
distinguishes itself from a diffuse region by its zero thickness in 
the front normal direction. Across the EDH, the field quantities 
undergo discontinuous changes rather than continuous variations. 
In comparison to a Gibbs’ dividing surface, the EDH separates not 
only two homogeneous media but also the same media at different 
dynamic states. Finally, the EDH serves as an extension to the Gibbs’ 
dividing surface, which was initially limited to representing material 
or phase interfaces. The EDH, in contrast, offers the flexibility to 
represent any fluid front. Examples of such fronts include vortex 
sheets, shock fronts, moving contact lines, and triple points. Hence, 
the term “hypersurface” is preferred over “surface” as it encompasses 
not only geometric surfaces but also fronts that exist as curves, lines, 
and points.

In Figure 1, Σ is used to represent the EDH, with its location 
given by n0. The boundary of the hypersurface is denoted by SHyp. 
The normal vector n̂ to the hypersurface is defined as the direction 
along which sharp variation occurs within the diffused region. Based 
on it, a right-handed orthogonal coordinate system is defined (s,n,b)
on the hypersurface, with ̂s and b̂ as the basis vectors, locally tangent 
to the hypersurface. 

2.2 Overview of collapsing a spatial 
dimension mathematically

The method of collapsing a dimension can be elucidated using 
a schematic, as depicted in Figure 2. We examine two scenarios 
characterized by distinct distributions of an arbitrary parameter ϕ
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FIGURE 1
Schematic illustrating two homogeneous media separated by a diffused region, with an equivalent representation of the media separated by a 
hypersurface. Figures (a)–(c) represent an arbitrary control volume, surface, and line, respectively. The boundary of the domain encompassing the 
homogenous media and the embedded diffused region or the hypersurface, is denoted by ‘S’. The boundary “S” is further divided into “SBulk” and “SDiff”, 
corresponding to the sections of the boundary covering the homogeneous media and the diffused region, respectively. Σ is used to represent the EDH. 
The boundary of the hypersurface is denoted by SHyp. The bounds of the diffused region, separating it from the homogeneous media A and B are named 
as ΣA and ΣB, respectively. The width of the diffused region is denoted by ϵ. The location of the ΣA, ΣB, and Σ are given as n2, n1, and n0, respectively.
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FIGURE 2
Schematic illustrating two cases with identical bulk media states, where the diffused region (with a sharp but continuous variation in ϕ) is collapsed to a 
mathematical hypersurface. Despite identical bulk states, the hypersurfaces differ between the two cases. This collapse in dimension is performed by 
integrating ϕ across the diffused region. The lumped value of ϕ in this lower dimension is hence given as ϕ(m−1) = ∫x2

x1
ϕdx. In the first case (a), ϕ is a 

monotonic function, whereas the (b) second case is not.

within the diffused region, while exhibiting identical jumps in ϕ
across this region. Figure 2a displays a monotonic variation of ϕ
between the two limits, as commonly observed in the literature. 
In Figure 2b, ϕ is not monotonic. In this case, the average is not 
constrained to be within the two limiting values. The latter is 
also a physically plausible distribution, as shall be demonstrated 
for the case of partially miscible fluids (Section 5.1). It can be 
shown that the diffused region can be collapsed by integrating the 
distribution of ϕ across the width of the diffused region (∫x2

x1
ϕdx), 

while simultaneously preserving the total value of ϕ. In other words, 
the dimension can be collapsed by integrating field quantities in the 
direction of the collapsing dimension or in the direction normal to 
the hypersurface. The knowledge of the integrated or lumped value 
of ϕ and its functionality within the diffused region helps uniquely 
identify a front.

2.3 Overview of deriving hypersurface 
equations

The derivation of governing equations for an extended dividing 
hypersurface (EDH) is based on the fundamental objective of 

capturing the cumulative kinematics and dynamics of a front as 
a diffused region. To accomplish this, the equations governing 
the EDH are derived from those of the diffused region. This 
process can be divided into three distinct steps, which are
as follows. 

1. Describe the diffused region (Section 3.1.1). As previously 
mentioned, we view the diffused region of finite thickness, 
in m-dimensional space, as being the closest physical 
representation of the front, Figure 3a. Hence, the first 
step is to present all the necessary equations needed to 
completely and uniquely define a diffused region. This set of 
equations includes governing equations, boundary, and initial
conditions.

2. Derive equations for an actual extended dividing hypersurface, 
by collapsing the diffused region (Section 3.1.2). The diffused 
region is collapsed in dimensions normal to the EDH by 
integrating the equations describing it, along these directions, 
as seen in Figure 3b. This results in a set of equations 
describing an EDH. Therefore, in the EDH, the various flow 
and fluid quantities associated with the diffused region are 
now treated as quantities lumped in the normal direction. 
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FIGURE 3
Schematic depicts the three steps required to derive the equations describing an extended dividing hypersurface from the equations for a diffused 
region. The figure (a) shows the diffused region with a finite thickness. The figure (b) shows the extended dividing hypersurface with zero thickness, 
achieved by collapsing the diffused region and the corresponding void created as a result of it. The figure (c) presents the EDH embedded in a 
homogenous media with the void now being occupied by the two homogeneous media.

In this paper this collapsed diffused region is referred 
to as the actual extended dividing hypersurface. This is 
because often, we are not concerned with just modeling 
the front as an isolated entity, but as an entity embedded 
in a homogeneous media, for which one last step needs
to be done.

3. Derive equations for an effective extended dividing 
hypersurface (Section 3.1.3). As a consequence of the collapse, 
a void is created in the space previously occupied by the 
diffused region. This void is considered to be occupied by 
the adjacent homogeneous media of m-dimensional space 
(Figure 3c). Since we intend to model a homogeneous system 
with an embedded hypersurface, this added homogeneous 
matter and its dynamics needs to be accounted and adjusted 
for. This is done by subtracting the equation describing 
this added matter from the equations for the actual EDH. 
This gives us the equations for what here will be referred 
to as the effective extended dividing hypersurface. This 
ensures that the system of homogeneous media with an 
embedded hypersurface (Figure 3c) is both kinematically and 
dynamically equivalent to that of the homogeneous media with 
the diffused region (Figure 3a).

With this basic framework in mind, the equations for an EDH 
can be derived. In order to completely and properly describe a 
fluid system, a set of governing equations, boundary, and initial 
conditions are required. The governing equations comprise of the 
conservation of mass, momentum, and energy, and the equation of 
state. In order to ensure there is no loss of generality, the equations 
are stated for a region in an arbitrary m-dimensional space. As a 
result, this derivation is not just limited to finding the equations of 
a 2-D dividing surface from a 3-D region, but is also applicable to 
finding equations for a 1-D dividing line or 0-D dividing point. We 
detail out the steps of this derivation in the following section, using 
mass conservation as an example. Similar steps can then be used 
to derive the remaining governing equations, boundary, and initial 
conditions. 

3 Deriving equations for 
hypersurfaces/mathematical 
formulations

3.1 Deriving mass conservation for an 
extended dividing hypersurface

As previously mentioned, the derivation of governing equations 
for an extended dividing hypersurface can be divided into three 
steps. The first of the three steps is describing the diffused region. 

3.1.1 Describing the mass conservation for a 
diffused region

In the case of a fluid media containing a diffused region, a single 
set of governing equation is used to describe the homogeneous 
media and the diffused region in m-D space. This is realized by 
allowing the material properties to vary from one value of the 
homogeneous media to the other, through the diffused region. With 
this in mind, the mass conservation equation for a diffused region is 
presented below in the conservative integral form, Equations 1–3.

d
dt
(M) = Πmass. (1)

Here, M is the total mass in the material region and Πmass is the net 
source of mass when applicable. A relation in terms of field quantities 
is obtained, by writing the total mass of the region in terms of the 
local density, ρ, and the source density term as πm

mass.

d
dt
(∫

m
ρmdxm) = ∫

m
πm

massdxm. (2)

Here, considering an orthogonal coordinate system, ∫m ≡
∫1∫2∫3….∫m and dxm ≡ dx1dx2dx3….dxm. The superscripts (⋅)m

and subscripts (⋅)m, denotes fluid quantities and operators in m-
dimensional space, respectively. Using the Reynolds’ transport 
theorem (Leibniz’s integral rule), the above equation becomes:

∫
m
{∂t (ρm) + ∆m ⋅ (ρu)m = πm

mass}dxm. (3)
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Here, ∂t = ∂/∂t is the derivative with respect to time. This is the most 
fundamental representation of the principle of mass conservation. 
With the mass conservation for a diffused region presented, we next 
move on to derive the mass conservation for an actual extended 
dividing hypersurface. 

3.1.2 Derive mass conservation for an actual 
extended dividing hypersurface, by collapsing the 
diffused region

Our objective is to derive conservation equations for an EDH 
which is kinematically and dynamically equivalent to that for a 
diffused region. The mass conservation equation for the EDH is 
obtained by collapsing the dimensions normal to the hypersurface. 
This is mathematically performed by integrating the conservation 
equation for a diffused region in that direction.

The mass conservation for a hypersurface is evaluated by first 
splitting the gradient operator (∇m) in the mass conservation 
into tangential and normal components (Equation 4). This is 
done, because after the collapse, they will end up corresponding 
to terms representing the flux of hypersurface quantities and 
bulk quantities. For simplicity, the conservation equation in the 
reference coordinate system (Equation 3) is used. Hence, on 
decomposing Equation 3 we obtain:

∫
m
(∂t (ρm) + [(Im − n̂⊗ n̂) ⋅∇m] ⋅ (ρu)m + [(n̂⊗ n̂) ⋅∇m] ⋅ (ρu)m = πm

mass)dxm.

(4)

 Here, (Im − n̂⊗ n̂) and (n̂⊗ n̂) denote the projection tensors in the 
tangent and normal directions to the hypersurface.

The reason for this decomposition of the gradient operator 
can be further explained by using a rectangular diffused region 
as an example, as seen in Figure 4. The tangential component of 
the gradient operator is used to denote the mass flux through 
left and right boundaries of the diffused region (SL

Diff and SR
Diff), 

while the normal component denotes the flux through the top 
and bottom boundaries (ΣA and ΣB). On collapsing the diffused 
region by integrating across it, the flux in the tangential direction 
now corresponds to flux of lumped integral quantities (∫ϕ−s ,∫ϕ

+
s )

through the boundaries of the hypersurface, SL
Hyp and SR

Hyp. It will 
be later identified that the lumped quantities denote hypersurface 
quantities. As for the flux in the normal direction, it will result in the 
mass flux of homogeneous media into the EDH. Hence, the latter 
term results in the coupling between the flow in m-dimensional 
space with the flow in (m− 1)-dimensional space.

With the gradient operator decomposed, the integral 
in the direction normal to the hypersurface can be now 
separated (Equation 5):

∫
(m−1)
[

[
∫

n2

n1

{
{
{

I
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∂t (ρm) +

II
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇m−1
̂s ⋅ (ρu)

m +
III

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇m
n̂ ⋅ (ρu)

m =
IV
⏞⏞⏞⏞⏞⏞⏞⏞⏞πm

mass
}
}
}

dn]

]
dx(m−1).

(5)

Here, ∇m−1
̂s = [(I

m − n̂⊗ n̂) ⋅∇m] is the tangential projection of 
the gradient operator, ∇m

n̂ = [(n̂⊗ n̂) ⋅∇
m] is the normal projection 

of the gradient operator, and n1(s,b, t) and n2(s,b, t) are the location 
of the spatial bounds of the diffused region ΣA and ΣB, respectively 
(Figure 1). The operator ∇m−1

̂s  represents a hypersurface gradient 

operator. The hypersurface gradient is the gradient operator in 
(m− 1)-dimensional space. For the sake of clarity each term in the 
above equation is considered separately. For the first two terms, the 
integral is taken inside the temporal and spatial derivatives using 
Leibniz’s rule (Equations 6, 7).

I ≡ ∫
n2

n1

∂t (ρm)dn = ∂t(∫
n2

n1

ρmdn)−[ρm
n2

∂n2

∂t
− ρm

n1

∂n1

∂t
] (6)

The term (ρ)mn2

∂n2
∂t
− (ρ)mn1

∂n1
∂t

 accounts for the flux due to the 
bounds of the diffused region varying with time. Next, we have.

II ≡ ∫
n2

n1

(∇m−1
̂s ⋅ (ρu)

m)dn

= ∇m−1
̂s ⋅ (∫

n2

n1

(ρu)mdn)− [(ρu)mn2
⋅ (∇m−1
̂s n2) − (ρu)mn1

⋅ (∇m−1
̂s n1)]

(7)

The term −(ρu)mn2
⋅ (∇m−1
̂s n2) + (ρu)mn1

⋅ (∇m−1
̂s n1) accounts for the 

flux due to the spatial variation in the bounds of the diffused region, 
along the hypersurface. In other words, it accounts for the changes 
in the width of the diffused region along the hypersurface. It must 
be mentioned that in the literature, it is usually assumed that the 
bounds are always parallel to the hypersurface (or the width of the 
diffused region is a constant) [8–10] and moving with the same 
velocity as the hypersurface [9, 10]. The third term can be exactly 
evaluated (Equation 8):

III ≡ ∫
n2

n1

∇m
n̂ ⋅ (ρu)

mdn = [[(ρu)m ⋅ n̂]]n2
n1
. (8)

Here, [[(ρu)m]]n2
n1
= (ρu)mn2

− (ρu)mn1
 denotes the mass flux of the 

homogeneous media at the two bounds of the diffused region located 
at n1(s,b, t) and n2(s,b, t), where (ρu)mn1

= (ρu)mA,n1
 and (ρu)mn2

=
(ρu)mB,n2

. This jump, represents a flow of information from the 
homogenous media in m-dimensional space to the EDH in (m− 1)-
dimensional space. Alternatively, this helps in viewing the EDH 
equations as a boundary condition to the homogeneous media in 
m-dimensional space. The difference between the term ∂n

∂t
 in I and 

the term u in II is that the first corresponds to the velocity of the 
interface bounds while the other provides the velocity of the fluid at 
the location of interface bounds. When there is no mass flux through 
either of these locations, then the velocity of the interface bounds 
would match that of the velocity of fluid there. As for the final term, 
it stays the same (Equation 9):

IV ≡ ∫
n2

n1

πm
massdn. (9)

Finally, the diffused region is collapsed in dimensions normal 
to the hypersurface by integrating each term in this direction. 
Collecting terms I, II, III and IV yields the mass conservation 
equation describing an actual hypersurface with zero thickness:

∫
m−1
[∂t (ρ(m−1)

′
) +∇m−1

̂s ⋅ (ρu)
(m−1)′ − π(m−1)

′

mass

− [[ρm ∂n
∂t
]]

n2

n1
− [[(ρu)m ⋅ (∇m−1

̂s (n))]]
n2
n1
+ [[(ρu)m ⋅ n̂]]n2

n1 = 0]dxm−1.

(10)

Here, (⋅)(m−1)
′
= ∫n2

n1
(⋅)mdn denotes actual hypersurface 

quantities. This equation provides the mass conservation 
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FIGURE 4
Schematic of a rectangular diffused region being collapsed in the normal direction to a hypersurface.

for a hypersurface, but excludes any information regarding 
the void created by the collapse of the diffused region 
(referring back to Figure 3). This void in the system is 
addressed next. 

3.1.3 Derive mass conservation for an effective 
extended dividing hypersurface

In this paper it is considered that the void is replaced by the 
homogeneous media adjacent to it. Therefore, an effective EDH 
adjusts for the effect of the dynamics created by the homogeneous 
media that ends up occupying this void. Before evaluating the 
effective EDH, we first present the equation of mass conservation 
for this added homogeneous fluid in lumped form:

∫
m−1
[∂t(ρ
(m−1)′
A ) +∇m−1

̂s ⋅ (ρu)
(m−1)′
A − π(m−1)

′

A

− [[ρm
A

∂n
∂t
]]

n0

n1
− [[(ρu)mA ⋅ (∇

m−1
̂s (n))]]

n0
n1
+ [[(ρu)mA ⋅ n̂]]

n0
n1
= 0]dxm−1.

(11)

Here, the subscripts A denote the hypersurface quantities, 
equivalent to the newly added volume of homogeneous fluid A. The 
region occupied by it extends from n1, the location of the bound 
of the diffused region next to medium A (ΣA), to n0 the location 
of the EDH.

Similarly, for fluid B.

∫
m−1
[∂t(ρ
(m−1)′
B ) +∇m−1

̂s ⋅ (ρu)
(m−1)′
B − π(m−1)

′

B

− [[ρm
B

∂n
∂t
]]

n2

n0
− [[(ρu)mB ⋅ (∇

m−1
̂s (n))]]

n2
n0
+ [[(ρu)mB ⋅ n̂]]

n2
n0
= 0]dxm−1.

(12)

This added material, and the dynamics as a result of it, needs 
to be adjusted for, in order for the homogeneous system with 
an embedded hypersurface to be identical to the system with a 
diffused region, which it is trying capture. Otherwise you would 
be double counting mass. This is taken care of by subtracting this 
additional contribution (Equations 11, 12) from that of the actual 
EDH (Equation 10). The resulting equation (Equation 13) is called 

the mass conservation for an effective EDH or will be referred to here 
as just the mass conservation for an EDH:

∂t (ρ(m−1)) +∇
m−1
̂s ⋅ (ρu)

(m−1) − π(m−1)mass

− [[ρm ∂n
∂t
]]

n0

− [[(ρu)m]]n0
⋅ (∇m−1
̂s (n0)) + [[(ρu)m ⋅ n̂]]n0

= 0.

(13)

Here, [[(⋅)m]]n0
= (⋅)mB,n0
− (⋅)mA,n0

 jump across EDH, the 
superscript (m− 1) corresponds to quantities associated with 
effective EDH. In the literature, the location at which the 
homogeneous quantities in the jump terms are evaluated has 
remained uncertain. Scriven suggested it is evaluated at the bounds 
of the diffused region, ΣA and ΣB, while Slattery suggested it should 
be evaluated at the hypersurface, Σ. Here, we are able to analytically 
show that it is, in fact evaluated at the hypersurface, Σ. In the above 
simplification, it is assumed that the mass flux is continuous across 
ΣA and ΣB, that is, the mass flux on the homogeneous side of ΣA
and ΣB is equal to the mass flux on the side of the diffused region. 
Although this may seem obvious, it is, in fact, an assumption which 
is not always true. For example, when the hypersurface is separating 
a fluid and a solid media, there is a jump in density, [[ρ]]. Another 
example is when velocity slip occurs at the fluid-solid boundary 
[12, 13], then there is a jump in the tangential component of velocity, 
[[u]].

Finally, observing that time derivative of n0 (the location of the 
hypersurface) denotes the velocity of the hypersurface, ∂n0/∂t = v, it 
allows us to rewrite the above equation as (Equation 14)

rateofchangeof
hypersurfacemass

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∂t (ρ(m−1)) +

hypersurfacemass
flux

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇m−1
̂s ⋅ (ρu)

(m−1)

=

sourceof
hypersurfacemass

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞π(m−1)mass +

fluxofbulkmassdueto
relativemotionofhypersurfacebounds

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[[(ρu)m]]n0
⋅ (∇m−1
̂s (n0))

−

netbulkmass
enteringhypersurface

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[[(ρ (u− v))m ⋅ n̂]]n0
. (14)

The first line in the above equation is analogous to the standard 
mass conservation represented in (m− 1)-dimensional space. The 
second line on the other hand, accounts for the net mass flux of 
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homogeneous fluid A and B in m-dimensional space, into the EDH. 
Quantities associated with this effective hypersurface, are commonly 
referred to in the literature as surface quantities, when referring to 
2D dividing surfaces [10]. This forms the basis of Gibbs definition 
for surface quantities which are often referred to as integral of excess 
quantities relative to the corresponding homogeneous quantity [10]. 
This is the final form of mass conservation equation that should 
be used while modeling an EDH embedded in a homogeneous 
fluid. Taking similar steps for momentum and energy equations, 
the conservation equations for effective hypersurface are obtained. 
These conservation equations are stated in the subsequent sections. 

3.2 Momentum conservation for a 
hypersurface

Now that the mass conservation for an EDH has been presented, 
similar steps can be used to obtain the momentum and energy 
conservation equations for an EDH. The principal of momentum 
conservation states that the time rate of change of linear momenta of 
a material region is equal to the sum of forces acting on the region. 
This is mathematically presented as (Equation 15):

d
dt
(P) = Fsurface + Fbody +Πmom, (15)

where P is the total momentum in the material region, Fsurface is the 
total surface force, Fbody is the total body force, and Πmom is the 
source of momentum.

Further, writing in terms of field quantities and using the 
transport equation, we obtain the integral form of conservative 
momentum equation for the diffused region (Equation 16):

∫
m
{∂t(ρu)

m +∇m ⋅ (ρu⊗ u)m = ∇m ⋅Tm + fmbody +π
m
mom}dxm (16)

Here, Fsurface = ∫m (∇
m ⋅Tm)dxm and Tm is the stress tensor, 

Fbody = ∫m (f
m
body)dxm, and Πmom = ∫m (π

m
mom)dxm. In order to 

ensure the generality of the momentum conservation equation, we 
do not substitute the constitutive relation for stress tensor. Which 
for a Newtonian fluid medium in 3-D is, Tm = − pI+ λ(∇ ⋅ u)I+
μ(∇u+∇uT). Here, p is the pressure, λ is the bulk viscosity, and μ
is the dynamic viscosity.

Similar to the mass conservation, the gradient operator 
in the integral form of conservative momentum equation for 
diffuse hypersurface is decomposed into tangential and normal 
components. In addition, the integral normal to the hypersurface is 
separated (Equation 17):

∫
m−1
{∫n2

n1
(∂t(ρu)

mdn) + ∫n2
n1
∇m−1
̂s ⋅ (ρu⊗ u)

mdn+∫n2
n1
∇m
n̂ ⋅ (ρu⊗ u)

mdn

= ∫
n2

n1

∇m−1
̂s ⋅T

mdn+∫
n2

n1

∇m
n̂ ⋅T

m ⋅ n̂dn+∫
n2

n1

fmbodydn+∫
n2

n1

πm
momdn}dxm−1

(17)

Using the Leibniz’s rule and collapsing the diffused region by 
integrating in the direction normal to the EDH, the momentum 
conservation for an actual EDH is derived (Equation 18).

∂t(ρu)(m−1)
′
+∇m−1
̂s ⋅ (ρu⊗ u)

(m−1)′ −∇m−1
̂s ⋅T
(m−1)′ − f(m−1)

′

body −π
(m−1)′
mom

+[[(ρu⊗ u)m ⋅ n̂]] − [[Tm ⋅ n̂]]

+[[(ρu)m
d (n)

dt
]]

n2

n1

−[[(ρu⊗ u)m ⋅ (∇m−1
̂s (n))]]

n2

n1
− [[(T)m ⋅ (∇m−1

̂s (n))]]
n2

n1
= 0, (18)

Finally, adjusting for the effects of the added homogeneous 
media, the momentum conservation for the effective hypersurface 
is presented as.

rateofchangeof
Hypersurface
momentum
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∂t(ρu)(m−1) +

Fluxof
Hypersurfacemomentum

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇m−1
̂s ⋅ (ρu⊗ u)

(m−1) −

Force
at theboundary
ofHypersurface

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇m−1
̂s ⋅T(m−1)

−

hypersurface
bodyforce

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞f(m−1)body −

sourceof
hypersurface
momentum
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞π(m−1)mom

+

jumpin
bulkmomentum

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[[(ρu⊗ (u− v))m ⋅ n̂]]n0
−

jumpin
bulkstress
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[[Tm ⋅ n̂]]n0

−

jumpinbulkmomentumandstress
duetovariationinDivdingHypersurface location

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞{[[(ρu⊗ u)m]]n0
− [[Tm]]n0

} ⋅ (∇m−1
̂s (n0)) = 0 (19)

Here, there are two sets of additional terms to account for the 
flux due to spatial changes in the location of the EDH, referred to 
as ‘jump in bulk momentum and stress due to variation in Dividing 
Hypersurface location’ in Equation 19. One of those term accounts 
for the momentum flux [[(ρu⊗ u)m ⋅ n̂]]n0

 and the other for the jump 
in bulk stress at these bounds [[Tm ⋅ n̂]]n0

. Finally, we derive the 
equations for the conservation of energy. 

3.3 Energy conservation

The principal of conservation of total energy states that the time 
rate of change of total energy of a material region is equal to the net 
energy gained by the system from heat flux through the surface and 
work done on it. This is given as (Equation 20),

d
dt
(E) = Q−W+Πenergy, (20)

where E is the total energy in the material region, Q is the total 
heat flux, W is the total work done on the system, and Πenergy is the 
source of energy.

As previously done for mass and momentum equations, using 
the Reynold’s transport theorem the equation for conservation of 
total energy is given as (Equation 21),

∫
m
{∂t(ρ(e+

u ⋅ u
2
))

m
+∇m ⋅ (ρu(e+ u ⋅ u

2
))

m

= ∇m ⋅ qm −∇m ⋅ (T ⋅ u)m + πm
energy}dxm (21)

Here, total energy E = ρe+ (ρu ⋅ u)/2, ρe is internal energy, 
(ρu ⋅ u)/2 is kinetic energy, q is heat flux, e is the specific internal 
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energy, Q = ∫m(∇
m ⋅ qm)dxm, W = ∫m(∇

m ⋅T ⋅ u)mdxm, and Πenergy =
∫m(π

m
energy)dxm.

Since the steps are similar to that of mass and momentum 
conservation, we skip the intermediate steps and present 
the final relation for the conservation of energy for an 
effective EDH (Equation 22).

rateofchangeof
EDHtotalenergy

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∂t(ρ(e+

u ⋅ u
2
))
(m−1)
+

convectionof
EDHtotalenergy

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇(m−1)̂s ⋅ (ρu(e+

u ⋅ u
2
))
(m−1)

−

gradient in
EDHheat
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇(m−1)̂s ⋅ q(m−1) +

gradient inworkdone
byEDHstress forces

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇(m−1)̂s ⋅ (T ⋅ u)
(m−1) −

sourceof
EDH

totalenergy

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞π(m−1)energy

+

jumpintotalenergy
ofhomogeneousmedia

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[[(ρ (u− v)(e+ u ⋅ u

2
))

m
⋅ n̂]] −

jumpin
bulkheat
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[[qm ⋅ n̂]] +

jumpin
bulktotalworkdone
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[[(T ⋅ u)m ⋅ n̂]]

+

jumpinbulktotalenergy,heatandwork
duetovariationin locationof theEDH

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
{[[(ρu(e+ u ⋅ u

2
))

m
⋅ n̂]] − [[qm ⋅ n̂]] + [[(T ⋅ u)m ⋅ n̂]]} ⋅ (∇(m−1)̂s (n0)) = 0

(22)

Finally, with the conservation equations for an EDH presented, 
the equation of state for the EDH, followed by the boundary and 
initial conditions, are briefly discussed.

If in addition to velocity; density, temperature and pressure are 
also unknown, then an additional relation is required. This is given 
by the equation of state. In this paper it is assumed that the diffused 
region has an equation of state same as that of the homogeneous 
media and the EDH has an equation of state analogous to it. This 
might not necessarily always be the case. After deriving the above 
governing equations for an EDH it would not come as a surprise that 
the equation of state also needs to be re-derived by considering the 
collapse of the dimension. This is beyond the scope of the current 
paper and is a topic that shall be addressed in future work.

Finally, in order to close the system, initial and boundary 
conditions are required. Similar to homogeneous media, the field 
value of hypersurface quantities such as, velocity vector, pressure, 
density and temperature needs to be know at time t = 0. In addition, 
the boundary conditions needs to be known for each of these 
hypersurface variables (SHyp, Figure 1). 

3.4 Defining effective hypersurface 
quantities and identifying the location of 
the extended dividing hypersurface

3.4.1 Defining hypersurface quantities
Following the derivation of the governing equations for the 

extended dividing hypersurface, the next step involves discussing 
the definitions of effective hypersurface quantities as well as the 
location of the EDH itself. When it comes to evaluating the 
hypersurface quantities, especially intensive quantities, it is done so 
by preserving the corresponding extensive quantities in a diffused 
region. That is, velocity is evaluated by preserving momentum, stress 
is computed by preserving the corresponding force, and temperature 
by preserving the heat energy. Therefore, for an arbitrary extensive 

TABLE 2  Hyper-area corresponding to m-dimensional space.

m AH

1 1

2 Perimeter

3 Area

4 Volume

m cross section in (m-1)-D space

or intensive parameter ϕ, the hypersurface quantity is defined as 
(Equations 23, 24).

ϕ(m−1)(s,b)extensive = ∫
n2

n1
(ϕAH)dn− (∫

n0

n1
(ϕA AH)dn+∫

n2

n0
(ϕB AH)dn)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Accounts forvoid

.

(23)

ϕ(m−1)(s,b)intensive =
∫

n2

n1
(ϕAH)dn−(∫

n0

n1
(ϕA AH)dn+∫

n2

n0
(ϕB AH)dn)

Ao
H

.

(24)

This definition is similar to that used to derive the governing 
equation for effective EDH. Here, AH(n) denotes the hyper-area 
bounding the diffused region, ΣA and ΣB. It must be noted that AH(n)
is not the cross-sectional area of the diffused region. A0

H corresponds 
to the hyper-area of the extended dividing hypersurface. Hence, for 
example, referring to Figure 1, hyper-area for a 3-D geometry is the 
area of the surface, for a 2-D geometry is the perimeter of the line, 
and for 1-D geometry is equal to 1, as tabulated in Table 2. In general, 
AH ≠ A0

H, as seen in Figure 5b but for geometries where the left and 
right boundaries of the diffused region, SDiff, are parallel to each 
other, as in Figure 5a, AH = A0

H.
In order to calrify the definition for a hypersurface quantity, the 

evaluation of hypersurface density will be explored. This evaluation 
considers a diffused region associated with both a curved and 
a planar hypersurface of unit depth, as depicted in Figure 5. 
However, before delving into the specific evaluation, a conceptual 
overview will be presented on how the hypersurface quantity 
is computed (Equation 25).

ρ(m−1) (s,b) =
Massof the

diffusedregion − (
MassofmediaA

extrapolated intothevoid,VA
+ MassofmediaB

extrapolated intothevoid,VB
)

Hyper− areaof thehypersurface,Σ
(25)

The definition proposed in this study differs from that used 
by Slattery [10] in terms of defining surface quantities based on 
extensive quantities. The underlying concept behind this approach is 
that the total mass remains constant between a diffused region and 
an extended dividing hypersurface (EDH). However, the magnitude 
of density, whether it is expressed as mass per unit volume, mass per 
unit area, or mass per unit length, may vary. Similarly, the total force 
remains constant between a diffused region and a hypersurface, but 
the stress, whether it is measured as force per unit area or force per 
unit length, may differ. This is the rationale behind preserving the 
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FIGURE 5
Schematic representation of a diffused region corresponding to a, (a) planar and (b) curved diffused region.

extensive quantities between the diffused region and the EDH, while 
the intensive quantities associated with the EDH are then derived 
from their corresponding extensive quantities. Therefore, in the case 
of a planar hypersurface (Figure 5a), AH(n) = A0

H ≡ constant, the 
hypersurface density is computed as (Equation 26):

ρ(m−1) (s,b) =
∫

n2

n1
(ρ (n) AH (n))dn−(∫

n0

n1
(ρA AH (n))dn+∫

n2

n0
(ρB AH (n))dn)

Ao
H

,

= ∫
n2

n1
ρ (n)dn− [ρA (n0 − n1) + ρB (n2 − n0)] . (26)

Here, it is assumed that the homogeneous media have a constant 
density. Hence, the extrapolated density adjacent to fluid A and 
B are ρA and ρB, respectively. In the case of curved hypersurface 
(Figure 5b), AH(n) = RΔθ, where R is the radius of curvature and Δθ
is the angle across which the surface spans (Equation 27).

ρ(m−1) (s,b) =
∫

r2

r1
(ρ (n) AH (n))dn−(∫

r0

r1
(ρA AH (n))dn+∫

r2

r0
(ρB AH (n))dn)

Ao
H

,

=
∫

r2

r1
(ρ (n) R (n)Δθ)dn− (ρA (r

2
0 − r2

1)Δθ+ ρB (r
2
2 − r2

0)Δθ)

r2
0Δθ

,

=
∫

r2

r1
(ρ (n) R (n))dn− (ρA (r

2
0 − r2

1) + ρB (r
2
2 − r2

0))

r2
0

(27)

Hence, in the case of a curved hypersurface, its density depends 
on the radius of curvature of the hypersurface. 

3.4.2 Location of extended dividing hypersurface
From the definition of a hypersurface quantity it can be seen 

that its magnitude is directly dependent on the location of the EDH. 
The question that then remains is where in the diffused region is the 
EDH located? The answer is that the location of EDH is arbitrary. 
It can be any location as long as it is within the diffused region. 
The EDH and its location is not unique to a given diffused region, 
rather it is dependent on (1) a pre-specified criteria and/or (2) the 
flow or fluid quantity the criteria is based on. The clarification of the 
aforementioned concepts is provided below.

Since the exact location of the EDH within the diffused region is 
arbitrary, additional information is required as an initial condition. 
This is provided in the form of criteria on which the location and 
consequently the EDH can be defined. The choice of criteria used to 
determine the location of EDH is based on convenience and does not 
effect the dynamics of the system as a whole, as long as the criteria 

are consistently applied throughout the set of equations describing 
the EDH. For example, Gibbs’ proposed an EDH location based on 
surface tension and also one based on equimolar contributions of 
the two fluids [8]. On the other hand Slattery defined the EDH to be 
located at a position where there is no effective mass of the EDH [10]. 
This dependence of the EDH location on the choice of criteria is no 
different than, for example, trying to identify the center of a ship. The 
center of a ship, can be defined as the center-of-gravity, or the center 
of buoyancy, or the metacenter.

Secondly, it is a common assumption in the literature that the 
EDH location corresponding to its mass, momentum, and total 
energy are the same [8, 10]. This is not always the case. For example, 
if we choose the criteria that EDH is located where the effective 
mass, momentum, and total energy are all zero, then it will result 
in three different locations. Only for the case where the density 
distribution within the diffused region is a constant, will they all 
be at the same location. This dependence of the EDH location 
on a conserved flow quantity is analogous to the definition of 
the boundary layer thickness. For example, the thickness of the 
boundary layer can be based on the mass (displacement-thickness) 
or momentum (momentum-thickness), both of which are not always 
identical.

Considering that the EDH and its location are not unique to a 
diffused interface, the velocity of the EDH is not unique either. This 
is because the velocity of the EDH is computed as the time rate of 
change of its location, v = dn0/dt. It must be noted that um−1 is not 
necessarily the same as v. 

4 Test cases and numerical setup for 
validation

In this paper, canonical example problems are used to validate 
the derived continuum model of an extended dividing hypersurface 
(EDH), which represents a fluid front. In order to validate it 
whenever possible, results are compared to the analytical solutions. 
In instances where an analytical solution is unavailable, a more 
fundamental approach of molecular dynamics (MD) simulations is 
used to create a reference solution for comparison. MD simulations 
are used because of their ability to resolve the front.

In the case of examples using molecular dynamics simulations, 
bulk values from MD simulations at the boundaries of the diffused 
region are used as an input to the EDH equations. In the case of 
the example problem with an analytical solution, both the EDH 
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TABLE 3  List of different test cases. Here, ϵ and σ are the characteristic energy and length scales, respectively. ρ∗ is the number density.

Case fluidA-fluid A fluidB-fluid B Fluid A-fluid B

ϵAA/ϵ σAA/σ ρ∗ ϵBB/ϵ σBB/σ ρ∗ ϵAB/ϵ σAB/σ rc/σ

1 1.00 1.00 0.78 1.00 1.00 0.78 0.01 4.00 7.00

2 1.00 1.00 0.82 1.00 1.00 0.82 0.01 1.00 2.50

3 1.00 1.00 0.78 1.00 1.00 0.78 0.01 1.00 2.50

4 0.75 1.25 0.18 1.50 1.00 0.78 0.75 1.25 2.50

5 0.75 1.25 0.18 1.50 1.00 0.78 0.50 1.50 4.00

6 1.00 1.00 0.81 1.00 1.00 0.81 0.20 3.00 5.00

equation and bulk equations are solved simultaneously. In this 
section, the problem geometry is described for each example, along 
with details of the simulations. 

4.1 Molecular dynamics simulations

The LAMMPS package is used to perform molecular dynamics 
(MD) simulations [14].

Here, the pairwise interaction of molecules, separated 
by a distance r, is modeled by the Lennard-Jones (LJ) 
potential (Equation 28)

VLJ = 4ϵ[(σ
r
)

12
−(σ

r
)

6
] . (28)

Here, ϵ and σ are the characteristic energy and length scales, 
respectively. The potential is set to zero for r > rc, where rc is the 
cutoff radius. rc = 2.5σ, unless otherwise specified.

The temperature is maintained using a Langevin thermostat 
with a damping coefficient of Γ = 0.1τ−1, where τ = √mσ2/ϵ is the 
characteristic time and m is the mass of the fluid molecule. As only 
2D problems are simulated, the damping term is only applied to the z
direction to avoid biasing the flow. The equation of motion of a fluid 
atom of mass m along the z component is therefore given as follows 
(Equation 29)

m ̈zi =∑
j≠i

∂Vij
∂zi
−mΓ ̇zi + ηi. (29)

Here, ∑j≠i denotes the sum over all interactions and ηi is a Gaussian 
distributed random force. The LJ coefficients and number density of 
the various cases simulated are listed in Table 3.

The equations of motion were integrated using the 
Verlet algorithm [15, 16] with a time step Δt = 0.002τ. The molecular 
mass of individual atoms is 1. Hence mass density is equal to number 
density. Each specific problem simulated using MD is detailed next. 

4.1.1 Stationary fluids with varying miscibility
Two stationary immiscible or partially miscible fluids 

at a constant temperature and pressure are simulated 
as shown in Figure 6. The domain is periodic in all directions.

The domain size is 50σ× 30σ× 30σ. The Lennard Jones 
parameters for interatomic interactions and density of media 

FIGURE 6
Schematic of two stationary fluids.

used are listed in Table 3, Case 1–4. It took the system 100000
steps to reach equilibrium. After which relevant data were 
extracted using spatial and temporal averaging. The data was 
averaged for 100000 steps and the bin size for spatial averaging
was 0.5σ× 30σ× 30σ. 

4.1.2 Stratified flow through a converging 
diverging section

In this test case, a varying cross sectional area is modeled by a 
converging-diverging section in the channel, with a periodic domain 
in the x and z directions. Two immmiscible fluids are subjected to a 
constant body force of 0.01ϵσ−1in the x direction. The schematic of 
the problem is presented in Figure 7.

The domain size is 127.43σ× 55.90σ× 27.58σ. Each wall is 
comprised of at least two layers of molecules oriented along the (111) 
plane of a face centered cubic (fcc) lattice, with the molecules fixed to 
their respective lattice sites. The wall number density is 3.24σ−3. The 
LJ parameters for wall-fluid interactions for both the fluids are ϵwf =
0.2ϵ and σwf = 2.0σ, with a cut-off radius of rc = 5σ. The LJ parameter 
for fluid-fluid interactions are given by Case 6 in Table 3. It took 
the system 50000 steps to reach equilibrium. The extracted data was 
averaged for 10000000 steps and the bin size for spatial averaging 
was ≈1.0σ× 1.0σ× 27.58σ. 
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FIGURE 7
Schematic of a stratified flow through a converging-diverging channel.

FIGURE 8
Schematic of a shock tube problem.

4.1.3 Shock tube problem
The canonical shock tube problem considered here is a long 

tube which is closed at both ends. A diaphragm separates the 
region of high-pressure fluid on the right from the region of 
low-pressure fluid on the left. When the diaphragm is broken 
at t = 0 a shock wave propagates into the low pressure region, 
towards the left, and an expansion wave propagates towards the 
right, as illustrated in the schematic in Figure 8. The diaphragm 
is simulated in MD by two layers of wall atoms which are 
removed at time t = 0 to initiate the propagation of shock and
expansion waves.

The domain size is 298.11σ× 231.92σ× 210.09σ. Each wall is 
comprised of at least two layers of molecules oriented along the 
(111) plane of a face centered cubic (fcc) lattice, with the molecules 
fixed to their respective lattice sites. The wall number density is 
3.24σ−3. The LJ parameters for wall-fluid interactions for both the 
fluids are ϵwf = 0.1ϵ and σwf = 1.0σ. It took the system 100000 steps 
to reach equilibrium. After which the membrane dividing the fluid 
in two different state is removed by deletion and the spatial and 
temporal average was performed. The data was averaged for 500 
steps and the bin size for spatial averaging was ≈1.0σ× 231.92σ×
210.09σ. 

4.2 Example with an analytical solution

4.2.1 Bubble dynamics
The last example problem looks at the evolution of a bubble when 

subjected to a non-equilibrium initial condition, as illustrated in the 

FIGURE 9
Schematic of the unsteady bubble dynamics problem.

schematic in Figure 9. The non-equilirbium condition is initiated 
by a high pressure at infinity. The radial evolution of an unstable 
bubble in an unbounded liquid is given by the Rayliegh-Plesset 
equation [17–19]. In this paper, the Rayleigh-Plesset equation is 
modified by considering the physical interface having a finite mass 
and thickness.

In this example problem, the actual hypersurface description 
of the EDH is used. The hypersurface is considered to be located 
(R) at the geometric mean (center) of the bounds of the diffused 
interface. The locations of the inner and outer bounds are given as 
R1 and R2. Hence, R = (R1 +R2)/2. Since the physical thickness of the 
interface needs to be accounted for, the Rayleigh-Plesset equation is 
modified as (Equation 30),

pb,(r=R1)
− p∞ =

2γ
R0
+ 4μ

u(r=R2)

R3
2
+Rout

∂u(r=R2)

∂t
−

ρ
2

u2
(r=R2)

(30)

Here, using ideal gas law, the pressure within the bubble, pb, 
is computed for a radius of R1. In addition, it is assumed 
that hypersurface (interface) momentum, (ρu)s does not 
change with time.

In order to compute hypersurface quantities, such as 
hypersurface mass, it is considered that the density sequence 
(function), describing the density within the interface, is a 4th-
order polynomial. In addition, it is assumed that the magnitude and 
the gradient of density in the radial direction are continuous at the 
bounds of the interfacial region. This is used to evaluate interfacial 
quantities analytically.

The evolution of bubble radius is found by simultaneously 
solving the mass conservation of the hypersurface and the Rayleigh-
Plesset equation. This modified system of equations is solved 
numerically. It must be noted as a means of validating and 
demonstrating the implementation of the EDH equations, only 
the hypersurface mass conservation is used for this example. The 
momentum conservation will be incorporated in future work.

The non-dimensional parameters and initial conditions chosen 
for this parametric numerical study are γ = 1.4 coefficient of 
polytropic expansion, the viscosity of the liquid μl = 4000, the 
density of the liquid ρl = 10, the density of gas within the bubble 
ρg = 0.01ρl, surface tension σ = 3, pressure at infinity is 100× Pin, 
the initial radius of the bubble R0 = 1 initial thickness of interface 
1/20R0, and initial pressure inside the bubble 106. 
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5 Results and discussion

The primary objective of this paper is to expand upon the 
concept of a dividing surface initially introduced by Gibbs. The aim 
is to generalize this concept to encompass any fluid and flow front, 
going beyond just the phase interface. In order to achieve this goal, 
the authors examine a series of canonical problems involving fluid 
and/or flow fronts.

These problems serve four main purposes. 

1. They illustrate that the extended dividing hypersurface (EDH) 
has the capability to accurately capture the dynamics of not 
only phase or material interfaces but also other types of fluid 
and flow fronts, specifically shock front (physical front) and 
vortex sheet (apparent front).

2. They emphasize that the distribution of monotonicity within a 
front, as commonly described in literature, is just one of several 
possible functionalities that the EDH can capture.

3. They demonstrate the relationship between the flux of m-
dimensional quantities and the m-1 dimensional quantities 
(hypersurface quantities), highlighting how this coupling 
can lead to hypersurface dilatation even in incompressible 
hypersurface flows. This finding contradicts deductions made 
from continuity equations for a bulk fluid.

4. They underscore the importance of acknowledging the mass 
of the front and consequently demonstrating its impact on the 
dynamics of the front.

5.1 Stationary fluids with varying miscibility

We start with the simplest example of two stationary fluids 
adjacent to each other, see Figure 6. As a result of the fluids being 
stationary the EDH has no dynamics. Hence, the only non-zero 
quantity associated with the EDH are the thermodynamic quantities. 
Furthermore, since we consider a system with a planar EDH and 
a constant temperature, the only thermodynamic quantity that is 
discontinuous across the EDH is density. As we have done through 
the course of this paper, looking at density or mass of the EDH serves 
as the best starting example to understand hypersurface quantities.

Different test cases with varying density ratios and miscibilities 
are presented. This helps us demonstrate various nuances of 
hypersurface quantities and the common assumptions (explicit or 
implicit) made about them in the literature. We first put to test the 
assumption that the density profile is monotonic across the diffused 
region and the local value being never greater or less than the value 
of bulk densities as was shown in Figure 2. This is especially true, 
when numerically modeling a material or a phase interface (front-
tracking, level-set, phase field methods [20]). Referring to Figure 10, 
it is seen that in the first two cases the individual density distribution 
is monotonic, but the combined densities are not. The behavior of 
both individual and combined density profiles in case (c), is closest 
to the monotonic assumption made in literature, but it also happens 
to be a trivial solution. As for the last example, of a stationary gas 
next to a liquid, case (d), the local density distribution of fluid A, is 
also not monotonic.

Next, we look at the actual and effective hypersurface mass, 
which is evaluated as per the definition presented in Equation 23. 

Here, we consider the EDH to be located where the density profiles of 
the two fluids intersect, as seen in Figure 10 and denoted by a dashed 
line. Bold line shows the extrapolated bulk density of individual 
fluids. Hence, the effective hypersurface mass, or as Gibbs calls it, 
the excess mass, is given by the hatched region in the figure. It can 
be seen that figures (a), (b) and (c) give a negative, positive and zero 
effective mass, respectively. This is contrary to what is commonly 
assumed in literature. It is commonly assumed that the interface has 
no mass, when considering perfectly immiscible fluids in continuum 
simulations [20], whereas results from MD, presented here, show 
that it can in fact have both a positive and negative effective mass. 
The hypersurface density is not separately discussed, because as 
mentioned in section 3.4, it is derived from hypersurface mass.

In the static case, with no curvature, an argument can be 
made that because the relative thickness of the diffused region 
is negligible compared to the length scale of the homogeneous 
media, the zero hypersurface mass is a good assumption. While 
this is true for effective mass, the same cannot be always said 
for effective momentum, energy or stress. For instance, effective 
hypersurface linear stress gives the hypersurface pressure, which is 
nothing but the mechanical surface tension, which we know not to 
be negligible. Hence, from MD simulation results and definition of 
hypersurface quantities presented in Section 3.4 a case is made that 
the assumptions. 

1. That distribution across a diffused region is monotonic,
2. The local value within this region lies always within the range 

of the corresponding bulk values, and
3. The effective hypersurface mass is zero, are not always true.

5.2 Stratified flow through a converging 
diverging section

In the previous example since there was no gradient along the 
EDH, there were no internal dynamics or viscous stresses in the 
EDH. In this section a 2D stratified fluid flow through a section with 
varying cross sectional area is considered. The varying cross-section 
of the channel results in accelerating the flow. This example is used 
to demonstrate the relationship between the mass flux of the bulk 
fluid into the EDH and the hypersurface dilatation. This relation is 
directly obtained from the mass conservation equation for the EDH, 
and as such also acts as its validation. In addition, we discuss the 
recent finding by Thalakkottor and Mohseni [21], suggesting the 
deviation of mechanical and thermodynamic surface tension in the 
presence of hypersurface dilatation.

In the case of a stratified Couette flow the list of relevant 
assumptions made are as follows. 

1. Steady state, no time rate of change of hypersurface quantities.
2. No source of hypersurface mass or momentum.
3. No hypersurface body force.
4. Location of the bounds of the boundary layer (or width) does 

not change with time and space.
5. Since we are considering a periodic or 2D problem, there is no 

surface shear T(m−1)
′

sn = 0.
6. We assume that there is no surface dilatation, ∇m−1 ⋅ u(m−1)

′
=

0.
7. There is no surface gradient in surface pressure.
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FIGURE 10
Compares the density distribution of individual fluids along with the total density, across the diffused region for four different types of interfaces. (a–c)
Considers the two fluid to have identical density but varying miscibilities. Here individual density profiles show a monotonic behavior. (d) Considers a 
case with the two fluids having two different densities, with one of the fluid showing a non-monotonic behavior.

Applying these assumptions, the governing equations for the 
actual extended dividing hypersurface become (Equations 31, 32):

Mass conservation,
∇m−1
̂s ⋅ (ρu)

(m−1)′ + [[(ρu)m ⋅ n̂]]n2
n1
= 0 (31)

Momentum conservation,

∇m−1
̂s ⋅ (ρu⊗ u)

(m−1)′ −∇m−1
̂s ⋅T
(m−1)′ + [[(ρu⊗ u)m ⋅ n̂]]n2

n1 − [[T
m ⋅ n̂]]n2

n1 = 0.
(32)

Similarly, the conservation equations for the effective extended 
dividing hypersurface reduce to (Equations 33, 34):

Mass conservation,
∇m−1
̂s ⋅ (ρu)

(m−1) + [[(ρu)m ⋅ n̂]]n0
= 0 (33)

Momentum conservation,

∇m−1
̂s ⋅ (ρu⊗ u)

(m−1) −∇m−1
̂s ⋅T
(m−1) + [[(ρu⊗ u)m ⋅ n̂]]n0

− [[Tm ⋅ n̂]]n0
= 0.
(34)

Recalling that the conservation of mass for an EDH is obtained 
by collapsing the dimension and integrating the conservation 
equation of the homogeneous media in the normal direction. When 
the dimension is collapsed, the term ∆⋅ u, that represents the flux 
of mass from one region to another, transforms into a relation that 

represents the flux of mass from a higher dimension to a lower 
dimension, given by the jump, [[(ρu)m ⋅ n̂]]. While for a bulk fluid, 
in 3D space, the incompressible condition (Dρ/Dt = 0) results in 
the flow having no dilatation ( ∆⋅ u = 0), for an EDH, in 2D space, 
there can be surface dilatation even though the surface fluid is 
incompressible. This is because the surface dilatation can still be 
caused by the bulk mass flux into or out of the EDH. This fact which 
is represented in Equations 31, 32, is further validated by looking 
at MD results depicting the net mass flux from the homogeneous 
media in 3D into or out of the EDH (represented by [[(ρu)m ⋅ n̂]]) 
and the hypersurface mass flux within the EDH (given by ∇m−1

̂s ⋅
(ρu)(m−1)), as shown in Figure 11.

Another important consequence of the surface dilatation is 
that the mechanical surface tension is no longer equal to the 
thermodynamics surface tension. Recently [21], presented that 
analogous to the relation between mechanical and thermodynamic 
pressure, mechanical and thermodynamic surface tension are 
related as γm = γt + (λs + μs)∇(m−1) ⋅ u

(m−1), where γm is the 
mechanical surface tension, γt is the thermodynamic surface 
tension, λs and μs is the first and second surface viscosities. The 
major difference, is the fact that in the EDH (2D), hypersurface 
dilatation can also be caused by mass flux of bulk homogeneous 
fluid into or out the EDH. In Figure 12 we plot the distribution 
of local mechanical surface tension along the length of the EDH, 
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FIGURE 11
Comparing of hypersuface mass flux within the EDH (or surface 
dilatation) with the jump in mass flux of the homogenous bulk media 
across the EDH. These results from MD simulation help confirm the 
EDH mass conservation equation, Equation 41. The black dash-dot 
line represent the location of the throat of the channel.

FIGURE 12
Deviation of local mechanical surface tension value from the 
thermodynamic surface tension. The black dash-dot line represent the 
location of the throat of the channel.

for the case where the force acting on the fluid is f = 0.02. The 
deviation of the mechanical surface tension from the constant value 
of a thermodynamic surface tension is clearly visible.

5.3 Blasius boundary layer

So far all test cases have been where material/phase interfaces 
have been represented as an EDH. Here, we demonstrate that the 
EDH can be used to model a viscous boundary or shear layer. 
This is done by showing that the vortex-entrainment sheet, recently 
introduced by DeVoria and Mohseni [22]; Xia and Mohseni [23] is 
just a limiting case of the EDH presented here. The sheet differs from 

the conventional vortex sheet by allowing mass and consequently 
momentum in the sheet.

To demonstrate a boundary layer, the Blasius boundary layer is 
considered which is a special case of flat plate boundary layer. Here, 
the boundary layer is formed on a semi-infinite flat plate, with a 
constant free-stream flow. This requires the following assumptions 
to be made. 

1. Steady state, no time rate of change of hypersurface quantities.
2. No source of hypersurface mass or momentum.
3. No hypersurface body force.
4. Location of the bounds of the boundary layer (or width) does 

not change with time.
5. Velocity on the side of EDH next to the stationary wall is zero, 

u|n1
= 0, because of no-slip and no-penetration condition.

6. The fluid outside the boundary layer is assumed to be 
irrotational. Therefore, jump in shear stress [[Tm

sn]] = 0− τw, 
where τw is the shear at the wall.

7. Since we are considering a periodic or 2D problem, there is no 
surface shear T(m−1)

′

sn = 0.
8. There is no surface dilatation, ∇m−1 ⋅ u(m−1)

′
= 0.

9. Also there is no surface gradient in surface pressure.

By considering these assumptions the actual extended dividing 
hypersurface reduces to (Equations 35, 36):

Mass conservation
∇m−1
̂s ⋅ (ρu)

(m−1)′ + (ρu)mn2
⋅ (∇m−1
̂s (n2)) + (ρu)m ⋅ n̂|n2

= 0 (35)

Momentum conservation
∇m−1
̂s ⋅ (ρu⊗ u)

(m−1)′ + (ρu⊗ u)m ⋅ n̂|n2 − (Tm ⋅ n̂|n2 −Tm ⋅ n̂|n1
)

(ρu⊗ u)mn2
⋅ (∇m−1
̂s (n2)) − (T)

m
n2
⋅ (∇m−1
̂s (n2)) = 0. (36)

Similarly, choosing the location of hypersurface to be at the wall, 
the Mass conservation of effective extended dividing hypersurface 
reduces to (Equation 37),

∇m−1
̂s ⋅ (ρu)

(m−1) + (ρu)m ⋅ n̂|
n0
= 0 (37)

for a vortex sheet fixed to a stationary wall, since n0 is not varying 
with space. Here, one thing to note is that (ρu)(m−1) ≠ ∫(ρu)dn
but rather it accounts for the bulk fluid added in the void region 
(∫(ρu)Bdn). Hence, (ρu)(m−1) = ∫(ρu)dn−∫(ρu)Bdn.

momentum conservation (Equation 38)
∇m−1
̂s ⋅ (ρu⊗ u)

(m−1) + (ρu⊗ u)m ⋅ n̂|
n0
− [[Tm ⋅ n̂]]n0

= 0. (38)

Decomposing into normal and tangential components 
(Equations 39, 40).

∂
∂s
(ρusun)

(m−1) + (ρu2
n)

m|
n0

− [[p]]n0
= 0. (39)

∂
∂s
(ρu2

s )
(m−1) + (ρunus)

m|
n0

+ τw = 0. (40)

Assuming flow to be incompressible, Tm ⋅ n̂ = pI. The mass and 
momentum conservation equation presented here for an effective 
EDH, is same as the equation for the vortex-entrainment sheet 
presented by DeVoria and Mohseni [22]. Thereby, we see that the 
vortex-entrainment sheet is just a special case of the EDH.

The region of validity of the vortex-entrainment sheet was, 
Rex > 100. From the equations for the EDH, it can be seen that 
the region of validity of EDH can be extended all the way till the 
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leading edge, if appropriate assumptions are relaxed. As for the 
leading edge, in order to capture that we would need to consider 
an extended dividing hypersurface in 1D space. That is the EDH 
equations describing the leading edge will need to be computed by 
collapsing the dimension twice in the directions normal to the line 
of discontinuity. 

5.4 Shock tube problem

In all the test cases considered so far, the extended dividing 
hypersurface had no normal velocity, u ⋅ n̂ = 0. In the case of the 
shock tube problem, the shock wave falls under the classification of a 
physical front. Hence, the shock wave can be represented by an EDH, 
which propagates in a direction normal to it.

As done before, we first list all the assumptions. 

1. Steady state, no time rate of change of hypersurface quantities.
2. 1D flow, no spatial gradients along the length of the EDH.
3. No source of hypersurface mass and momentum.
4. No hypersurface body force.
5. Thickness of the shock front does not change with time.

By considering these assumptions the actual extended dividing 
hypersurface reduces to (Equations 41, 42):

Mass conservation
−[[(ρv)m ⋅ n̂]]n2

n1
+ [[(ρu)m ⋅ n̂]]n2

n1
= 0 (41)

Momentum conservation
[[(ρu⊗ u)m ⋅ n̂]]n2

n1
− [[Tm ⋅ n̂]]n2

n1
+ [[(ρu)m dh

dt
]]

n2

n1

= 0, (42)

The mass conservation equation reduces to the Rankine-
Hugoniot condition (Equation 43).

[[(ρ (u− v))m ⋅ n̂]]n2
n1
= 0 (43)

Since, the two edges of the shock wave are considered to move 
with the same speed, after reaching steady state. The equation can be 
rewritten as (Equation 44),

−[[(ρ)m]]n2
n1
(v ⋅ n̂) + [[(ρu)m ⋅ n̂]]n2

n1
= 0. (44)

Hence, if we know the bulk density and velocity, on the two sides 
of the shock front, we can then evaluate the speed of the shock wave 
(v ⋅ n̂). Figure 13, compares the result for the displacement of shock 
front with time obtained from MD to that obtained using the above 
EDH equation. The displacement of shock front obtained from EDH 
equation agrees well with the MD data. Preliminary work related 
to representing a shock wave as an EDH was done by Thalakkottor 
and DeVoria [24].

Although the validity of EDH to represent a shock front is 
being shown for the canonical normal shock, it has the ability to 
accommodate more general problems. 

5.5 Collapsing bubble

This example investigates the evolution of a bubble under 
an unstable condition of high pressure at infinity. Specifically, 
it examines the radial evolution of an unstable bubble in an 
unbounded liquid, which is described by the Rayleigh-Plesset 

FIGURE 13
Comparison of displacement x versus time t from molecular dynamics 
(MD) simulations and surface mass conservation equations. The MD 
simulation resolves the shock front, providing details on the left and 
right faces of the front and the shockwave thickness. Both x and t are 
expressed in corresponding Lennard–Jones (LJ) units.

equation Plesset [18]; Plesset and Prosperetti [25]; Brenner et al. 
[26]; Brennen [27]; Leal [28]. The evolution of a collapsing bubble 
is extensively studied in the field of cavitation and multiphase 
flows. All preceding examples have focused on examining planar 
interfaces in a steady-state condition. However, this particular 
example investigates a curved interface within an unsteady state.

The Rayleigh-Plesset (RP) equation is employed to model 
the time-dependent behaviour of the bubble. However, in typical 
multiphase flow formulations, the RP equation only considers 
surface tension as the interfacial property and incorporates the 
corresponding pressure jump. Consequently, it neglects the interface 
mass and associated dynamics. In this study, we demonstrate that by 
incorporating the conservation equation for interfacial (front) mass 
in conjunction with the Rayleigh-Plesset equation, the evolution of 
the interface undergoes significant changes.

The Rayleigh-Plesset equation is written as (Equation 45):

pb − p∞ =
2γ
R
+ ρlR

d2R
dt2 + ρl

3
2
(dR

dt
)

2
+ 4μl

1
R

dR
dt

(45)

Here, pb is pressure within the bubble, p∞ pressure in the liquid 
at infinity, ρl density of liquid, μl dynamic viscosity of the liquid, 
and R is the radius of the bubble or location of the hypersurface 
(interface). This can be re-written in terms of velocity of the 
interface, where u = dR/dt (Equation 46).

pb − p∞ =
2γ
R
+ ρlR

du
dt
+ ρl

3
2
(u)2 + 4μl

1
R

u (46)

Next, we consider that the interface has a finite mass. The 
interface mass conservation equation for a system without any mass 
flux across the interface reduces to (Equation 47):

dt (M) = ∫
S
dt (ρm−1)dS = 0 (47)

The evolution of the bubble is shown in Figure 14. Comparing 
the standard RP to EDH RP, which accounts for interface mass and 
thickness, distinct differences between the evolution of the bubble 
radius for these two cases are observed. While the rate of the first 
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FIGURE 14
Comparing the evolution of bubble obtained from EDH RP and standard RP. Evolution of (a) bubble radius and (b) interface thickness.

collapse looks identical between the two models, the first major 
distinction is in the minimum radius attained. The minimum radius 
of modified RP equation is larger than that of the RP equation, 
leading to an improved agreement with experimental results [29, 
30]. This increase is directly a result of the interface having a finite 
mass and thickness. In order to better understand the cause of 
this difference it is best to look at Figure 14a in conjunction with 
14(b). As the bubble radius decreases, mass conservation dictates 
that the interface thickness must increase in order to compensate 
for the reduction in the surface area of the bubble. In other words, 
geometric expansion dictates the increase in interface thickness, as 
there is no mass flux into the interface. This means that when the 
EDH (interface) reaches its minimum radius (red dashed line), the 
corresponding location of the inner bounds of the interface (green 
dashed line), would have, in fact, reached the same location as that 
of a standard RP equation. So, in both the standard and modified 
RP models, the maximum pressure attained inside the bubble is the 
same, but since the interface thickness is not the same the bubble 
radius ends up being different.

It must be noted that the interface thickness is analytically 
computed from the initial condition of initial interface thickness 
and the density sequence (functionality). Hence, in the case of a 
numerical simulation various fluid and flow properties do no need 
to be resolved across the interface thickness.

If, in addition to mass conservation, we were to include the 
momentum conservation of the interface as well, the new RP 
equation would be (Equation 48).

pb − p∞ =
2γ
R0
+ 4μ

u(r=R2)

R3
2
+R2

∂u(r=R2)

∂t
−

ρ
2

u2
(r=R2)
+

∂(ρu)s

∂t
+

2(ρuu)s

R0
(48)

This is outside of the scope of this paper and will be explored in 
detail in a future work.

It is asserted that the actual physical front is a diffused region 
with three dimensions and a finite thickness. Within this region, 
fluid and flow parameters exhibit sharp but continuous variations 
across its width. It is important to note that the conventional 
representation of a front as a hypersurface in continuum theory is a 
limiting case of this diffused region. As a result, the authors propose 
a systematic derivation of the dividing surface from the 3D bulk 

conservation equations that accurately describe this diffused region. 
This generalized dividing surface is referred to as the extended 
dividing hypersurface (EDH). The EDH equations are derived by 
collapsing the dimension across the width of the diffused region, 
mathematically achieved through integration along its width. This 
mathematical treatment ensures that the EDH is kinematically and 
dynamically equivalent to the diffused region, representing the real 
physical front in its entirety. 

6 Conclusion

Gibbs was the first to represent a phase interface by a dividing 
surface, a mathematical surface that has its own material properties 
and internal dynamics. In this paper, an alternative derivation of 
Gibbs’ dividing surface is presented, which generalizes the concept 
of a dividing surface to fluid fronts beyond those of a phase or 
material interface. It is asserted that the actual physical front is 
a diffused region with three dimensions and a finite thickness. 
Within this region, fluid and flow parameters exhibit sharp but 
continuous variations across its width. It is important to note that 
the conventional representation of a front as a hypersurface in 
continuum theory is a limiting case of this diffused region. As a 
result, a systematic derivation of the governing equations describing 
the dividing surface from the 3D bulk conservation equations is 
proposed in this work. This generalized dividing surface is referred 
to as the extended dividing hypersurface (EDH). The EDH equations 
are derived by collapsing the dimension across the width of the 
diffused region, mathematically achieved through integration along 
its width. This mathematical treatment ensures that the EDH is 
kinematically and dynamically equivalent to the diffused region, 
representing the real physical front in its entirety.

To demonstrate the validity of the EDH model and its 
generalization, the four canonical problems involving fluid fronts 
are considered. These problems are (1) stationary fluid with varying 
miscibility, (2) stratified flow through a converging-diverging 
section, (3) the shock tube problem, (4) the vortex entrainment 
sheet, and (5) unsteady bubble dynamics. The selected example 
problems in this study serve four main purposes within the 
context of the extended dividing hypersurface (EDH): Firstly, they
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demonstrate that the EDH can accurately capture the dynamics of 
not only phase or material interfaces, but also other types of fluid and 
flow fronts. This highlights the versatility of the EDH in representing 
a wide range of dynamic phenomena. Secondly, the problems 
emphasize that the distribution of monotonicity within a front, as 
commonly described in existing literature, is just one of several 
possible functionalities that the EDH can effectively represent. This 
implies that the EDH can offer alternative representations of fluid 
fronts that may differ from the conventional understanding of 
monotonicity distribution. Thirdly, the selected problems illustrate 
the relationship between the flux of m-dimensional quantities and 
the (m-1)-dimensional quantities, known as hypersurface quantities. 
This highlights how the coupling between these quantities can 
lead to hypersurface dilatation, even in incompressible hypersurface 
flows. This thereby reveals a counterintuitive aspect of hypersurface 
dynamics. Finally, these problems highlight the importance of 
recognizing the mass of the front and its influence on the dynamics 
of the front and the adjacent bulk media. By capturing the 
dynamics of the front, the EDH model provides a comprehensive 
understanding of the system under consideration.

In conclusion, this study establishes the framework for 
extending Gibbs’ dividing surface by systematically deriving the 
governing equations. This allows the extension of the dividing 
surface concept, referred to here as the extended dividing 
hypersurface (EDH). It demonstrates the capability of the extended 
dividing hypersurface (EDH) to accurately represent various 
fluid and flow fronts beyond traditional interfaces. Through the 
examination of canonical problems, the authors validate the EDH 
model and its generalization, contributing valuable insights into its 
ability to capture the dynamics of the front and the surrounding 
bulk fluid.
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