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Capturing the kinematics and
dynamics of fluid fronts
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!Leslie A. Rose Department of Mechanical Engineering, South Dakota School of Mines and
Technology, Rapid City, SD, United States, °Department of Mechanical and Aerospace Engineering,
University of Florida, Gainesville, FL, United States, *Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL, United States

Gibbs was the first person to represent a phase interface by a dividing surface.
He defined the dividing surface as a mathematical surface that has its own
material properties and internal dynamics. In this paper, an alternative derivation
to this mathematical surface is provided that generalizes the concept of dividing
surface to fluid fronts beyond that of just a phase or material interface. Here,
this extended definition of dividing surface is referred to as the extended
dividing hypersurface (EDH), as it is not just applicable to a surface front but
also to a line and a point front. This hypersurface represents a continuum
approximation of a diffused region, where fluid properties and flow parameters
vary sharply but continuously across it. This paper shows that the properties and
equations describing an EDH can be derived from the equations describing the
diffused region by integrating it in the directions normal to the hypersurface.
This is equivalent to collapsing the diffused region in the normal direction.
Hence, ensuring that the EDH is both kinematically and dynamically equivalent
to that of the diffused region. Various canonical problems are examined to
demonstrate the EDH's ability to accurately represent different types of fluid and
flow fronts, including static and dynamic interfaces, shock fronts, and vortex
sheets. These examples emphasize the EDH’s capability to represent various
functionalities within a front, the relationship between the flux of quantities and
hypersurface quantities, and the importance of considering the mass of the front
and associated dynamics.

KEYWORDS

fluid front, computational fluid dynamics, dividing surfaces, multiphase flow (CFD),
vortex sheet, shock front

1 Introduction

A front is often accompanied by rapid changes in scales, multiphysics, geometrical
complexities, and intriguing chemical phenomena, making it an ideal benchmark to
expand our knowledge beyond the confines of the continuum field. A front refers to
a boundary separating two or more sets of homogeneous quantities in a continuum
field. Across the front, one or more of these field quantities are usually discontinuous.
While some of these quantities pertain to the material properties of the media, others are
associated with its kinematics and dynamics. Examples of commonly occurring fronts in
fluid mechanics, across which fluid properties and/or flow parameters are discontinuous,
are listed in Table 1. These fronts can be categorized into two types. The first type
is referred to as the physical front, which exhibits sharp gradients in fluid and flow
parameters at length scales that are below the experimental or numerical observable
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limit [1]. Moreover, the equation of state and thermodynamic
properties of the physical front differ from those of the surrounding
homogeneous media [2, 3]. Examples of physical fronts include
material or phase interface, gravity wave front [4-6], and shock
front Shapiro [7].

The second type is referred to as the apparent front,
characterized by gradients that exist at length scales above the
observable limit but can be approximated as a discontinuity for
analytical and numerical simplicity. In this case, the equation of
state and the thermodynamic properties within the front are the
same as those of the surrounding homogeneous media. Examples
of apparent fronts include a vortex sheet and an entrainment
sheet, which are commonly used to describe a boundary layer or
mixing layer. Among these examples of a front is a well-known
discontinuity corresponding to the jump in pressure across a curved
fluid-fluid interface. This jump in pressure is attributed to interfacial
tension, which is the thermodynamic property of an interface in
an equilibrium system. This then begs the following questions: (1)
whether the fluid interface possesses other material properties? (2)
Does it have any internal dynamics if the interface is in a non-
equilibrium system? And (3) if the material and phase interface can
have their own properties and internal dynamics, could other fluid
and flow fronts also possess their own distinct material properties
and internal dynamics? The fact that a fluid interface could have
material properties analogous to those of a bulk fluid and its own
internal dynamics was first recognized by Gibbs [8].

Gibbs introduced the concept of a dividing surface to represent
a fluid interface, more specifically, a phase interface. The dividing
surface is a two-dimensional mathematical surface with zero
thickness, which has its own properties and internal dynamics
[8-10]. Gibbs proposed a phenomenological description of the
thermodynamic relations for the dividing surface, which represents
a phase interface in a body at rest or equilibrium. After nearly

10.3389/fphy.2025.1652090

3 decades, Scriven [9] extended this concept of dividing surface to
non-equilibrium systems by deriving a model that described the
internal dynamics of the fluid within the dividing surface [9, 11].
Though Scriven accounted for the coupling of the dividing surface
with its surrounding bulk media, the mass transfer between the
dividing surface and the bulk fluid surrounding it was ignored. The
effect of mass transfer was later included in the governing equations
by Slattery [10]. This was done by expanding Gibbs’ definition of
homogeneous media to one where the constitutive equations apply
uniformly. In these three models, the thermodynamic relations [8],
the transport equations, and the conservation of mass, momentum,
and energy of the dividing surface [9, 10] were all independently
defined as a two-dimensional analogue to the corresponding three-
dimensional bulk equations. The last question posed in the previous
paragraph still remains unanswered: whether a dividing surface
concept can also describe other fluid fronts.

This paper addresses the question by examining the
characteristics of fluid fronts. It is asserted that the actual physical
front is a diffused region with three dimensions and a finite
thickness. Within this region, fluid and flow parameters exhibit
sharp but continuous variations across its width. It is important to
note that the conventional representation of a front as a hypersurface
in continuum theory is a limiting case of this diffused region.
As a result, the authors propose a systematic derivation of the
dividing surface from the 3D bulk conservation equations that
accurately describe this diffused region. This generalized dividing
surface is referred to as the extended dividing hypersurface (EDH).
The EDH equations are derived by collapsing the dimension
across the width of the diffused region, mathematically achieved
through integration along its width. This mathematical treatment
ensures that the EDH is kinematically and dynamically equivalent
to the diffused region, representing the real physical front
in its entirety.

TABLE 1 List of fronts and corresponding field quantities that are discontinuous across it. The fluid properties or flow parameters that are discontinuous
are labelled as "D". Here, p is the density, p pressure, T temperature, u; tangential component of velocity, u,, normal component of velocity, and 7,

shear stress.

Types of fronts/Discontinuity

Physical front

Hydrophilic/Miscible interface D D - - - -
Hydrophobic/Immiscible boundary D D D D - -
Moving contact line D D D D - D
Interface with surface tension gradient D D - - D
Contact discontinuity D - D D - -
Gravity wave front D - - - D -
Shock front D D D - D -

Apparent (pseudo) front
Vortex sheet D - D - -
Entrainment sheet! D - - - D -
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To validate the EDH model and its generalization, the authors
conduct a comprehensive analysis of canonical problems that
involve fluid fronts. These problems are (1) stationary fluid with
varying miscibility, (2) stratified flow through a converging-
diverging section, (3) the shock tube problem, (4) the vortex
entrainment sheet, and (5) unsteady bubble dynamics.

The selected problems in this study serve four primary purposes.
Firstly, they demonstrate that the extended dividing hypersurface
(EDH) is capable of accurately capturing the dynamics of different
types of fluid and flow fronts, not limited to phase or material
interfaces. Secondly, they highlight that the EDH can effectively
represent various functionalities within a front, going beyond
the commonly described monotonicity distribution in literature,
resulting in new classes of fronts. Thirdly, they illustrate the
relationship between the flux of m-dimensional quantities and the
m-1 dimensional quantities (referred to as hypersurface quantities),
emphasizing how this coupling can lead to hypersurface dilatation
even in incompressible hypersurface flows, which is counterintuitive
to deductions made from continuity equations for bulk fluids.
Moreover, the study emphasizes the importance of acknowledging
the mass of the front and capturing the associated dynamics.

The paper is outlined as follows: Section 2 defines a diffused
region, front, and hypersurface. Here, a brief description is provided
of how the collapse of dimension is achieved mathematically, along
with an overview of the methodology used to obtain the governing
equations of an EDH. Section 3 presents the derivation of equations
related to EDH. In Section 4, the details of the numerical simulations
used for validating the EDH model are presented. Finally, the results
are presented and discussed in Section 5.

2 Overview of methodology and
general definitions

Prior to deriving the governing equations for the EDH, it is
helpful to: 1) introduce key definitions and nomenclature utilized in
this study, 2) provide an overview of the concept of spatial dimension
collapse, and 3) outline the adopted methodology for deriving the
governing equations for the EDH.

2.1 Defining a diffused region, the
hypersurface, and the extended dividing
hypersurface

As previously stated, a front is referred to as a fluid feature
across which one or more fluid or flow parameters is considered to
be discontinuous. This can be mathematically and computationally
represented as a diffused region with finite volume or a hypersurface
with zero thickness.

2.1.1 Diffused region

In this paper, a diffused region is defined as a region with
finite thickness in m-dimensional space, where one or more field
quantities, such as fluid properties or flow parameters, exhibit
sharp but continuous variations. The diffused region serves as
a more realistic representation of a front, as true mathematical
discontinuities seldom exist in the physical world.
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The diffused region is depicted in Figure 1. The boundary of
the domain containing the homogeneous media and the embedded
diffused region or hypersurface is represented by S’ ‘S’ is further
divided into ‘g’ and Sy, corresponding to the sections of the
boundary covering the homogeneous media and the diffused region,
respectively. The boundaries of the diffused region that separate it
from the homogeneous media A and B are identified as X, and X,
respectively. The locations of £y and X, are indicated as n, and #n;,
respectively. The width of the diffused region is denoted by ¢. It must
be noted that these are not sharp, distinct boundaries of the diffused
region but rather an apparent boundary that is set based on criteria
of a fluid or flow parameter defined a priori. This is analogous to
how the velocity boundary layer and its bounds are defined as the
location where fluid velocity is 99% of the free stream velocity.

2.1.2 Hypersurface

In mathematics, a hypersurface is a manifold of dimension m — 1
that is embedded in a m-dimensional ambient space. In other words,
referring to Figure 1, the hypersurface in a 3-D space is a surface,
in a 2-D space is a curve, and in a 1-D space is a point. Hence, in
contrast to the diffused region, a hypersurface has zero thickness.
Representing a front as a hypersurface, results in a true mathematical
discontinuity across it. This approach is commonly employed for
representing fronts due to its simplicity.

2.1.3 Extended dividing hypersurface (EDH)

An extended dividing hypersurface is defined as a type
of hypersurface that accurately represents and encompasses the
cumulative (integrated in the direction normal to the front)
kinematics and dynamics of a front as a diffused region. The EDH
distinguishes itself from a diffuse region by its zero thickness in
the front normal direction. Across the EDH, the field quantities
undergo discontinuous changes rather than continuous variations.
In comparison to a Gibbs’ dividing surface, the EDH separates not
only two homogeneous media but also the same media at different
dynamic states. Finally, the EDH serves as an extension to the Gibbs’
dividing surface, which was initially limited to representing material
or phase interfaces. The EDH, in contrast, offers the flexibility to
represent any fluid front. Examples of such fronts include vortex
sheets, shock fronts, moving contact lines, and triple points. Hence,
the term “hypersurface” is preferred over “surface” as it encompasses
not only geometric surfaces but also fronts that exist as curves, lines,
and points.

In Figure 1, ¥ is used to represent the EDH, with its location
given by . The boundary of the hypersurface is denoted by Sy,
The normal vector 1i to the hypersurface is defined as the direction
along which sharp variation occurs within the diffused region. Based
on it, a right-handed orthogonal coordinate system is defined (s, n, b)
on the hypersurface, with § and b as the basis vectors, locally tangent
to the hypersurface.

2.2 Overview of collapsing a spatial
dimension mathematically

The method of collapsing a dimension can be elucidated using
a schematic, as depicted in Figure 2. We examine two scenarios
characterized by distinct distributions of an arbitrary parameter ¢

frontiersin.org
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FIGURE 1

Schematic illustrating two homogeneous media separated by a diffused region, with an equivalent representation of the media separated by a
hypersurface. Figures (a)—(c) represent an arbitrary control volume, surface, and line, respectively. The boundary of the domain encompassing the
homogenous media and the embedded diffused region or the hypersurface, is denoted by 'S". The boundary "S" is further divided into “Sg,, " and “Sp;¢",
corresponding to the sections of the boundary covering the homogeneous media and the diffused region, respectively. X is used to represent the EDH.
The boundary of the hypersurface is denoted by Sy .. The bounds of the diffused region, separating it from the homogeneous media A and B are named
as X, and Zg, respectively. The width of the diffused region is denoted by ¢. The location of the £,, 5, and X are given as n,, ny, and ng, respectively.
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Schematic illustrating two cases with identical bulk media states, where the diffused region (with a sharp but continuous variation in ¢) is collapsed to a
mathematical hypersurface. Despite identical bulk states, the hypersurfaces differ between the two cases. This collapse in dimension is performed by
integrating ¢ across the diffused region. The lumped value of ¢ in this lower dimension is hence given as ¢/ = _[i’gbdx. In the first case (a), ¢ is a

1

monotonic function, whereas the (b) second case is not.

within the diffused region, while exhibiting identical jumps in ¢
across this region. Figure 2a displays a monotonic variation of ¢
between the two limits, as commonly observed in the literature.
In Figure 2b, ¢ is not monotonic. In this case, the average is not
constrained to be within the two limiting values. The latter is
also a physically plausible distribution, as shall be demonstrated
for the case of partially miscible fluids (Section 5.1). It can be
shown that the diffused region can be collapsed by integrating the
distribution of ¢ across the width of the diffused region (K?(/)dx),
while simultaneously preserving the total value of ¢. In other words,
the dimension can be collapsed by integrating field quantities in the
direction of the collapsing dimension or in the direction normal to
the hypersurface. The knowledge of the integrated or lumped value
of ¢ and its functionality within the diffused region helps uniquely
identify a front.

2.3 Overview of deriving hypersurface
equations

The derivation of governing equations for an extended dividing
hypersurface (EDH) is based on the fundamental objective of

Frontiers in Physics

capturing the cumulative kinematics and dynamics of a front as
a diffused region. To accomplish this, the equations governing
the EDH are derived from those of the diffused region. This
process can be divided into three distinct steps, which are
as follows.

1. Describe the diffused region (Section 3.1.1). As previously
mentioned, we view the diffused region of finite thickness,
in m-dimensional space, as being the closest physical
representation of the front, Figure 3a. Hence, the first
step is to present all the necessary equations needed to
completely and uniquely define a diffused region. This set of
equations includes governing equations, boundary, and initial
conditions.

2. Derive equations for an actual extended dividing hypersurface,
by collapsing the diffused region (Section 3.1.2). The diffused
region is collapsed in dimensions normal to the EDH by
integrating the equations describing it, along these directions,
as seen in Figure 3b. This results in a set of equations
describing an EDH. Therefore, in the EDH, the various flow
and fluid quantities associated with the diffused region are
now treated as quantities lumped in the normal direction.

frontiersin.org
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a) Homogeneous media b) Homogeneous media c) Extrapolated
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FIGURE 3

Schematic depicts the three steps required to derive the equations describing an extended dividing hypersurface from the equations for a diffused
region. The figure (a) shows the diffused region with a finite thickness. The figure (b) shows the extended dividing hypersurface with zero thickness,
achieved by collapsing the diffused region and the corresponding void created as a result of it. The figure (c) presents the EDH embedded in a
homogenous media with the void now being occupied by the two homogeneous media.

In this paper this collapsed diffused region is referred
to as the actual extended dividing hypersurface. This is
because often, we are not concerned with just modeling
the front as an isolated entity, but as an entity embedded
in a homogeneous media, for which one last step needs
to be done.
3. Derive equations for an effective extended dividing
hypersurface (Section 3.1.3). As a consequence of the collapse,
a void is created in the space previously occupied by the
diffused region. This void is considered to be occupied by
the adjacent homogeneous media of m-dimensional space
(Figure 3c). Since we intend to model a homogeneous system
with an embedded hypersurface, this added homogeneous
matter and its dynamics needs to be accounted and adjusted
for. This is done by subtracting the equation describing
this added matter from the equations for the actual EDH.
This gives us the equations for what here will be referred
to as the effective extended dividing hypersurface. This
ensures that the system of homogeneous media with an
embedded hypersurface (Figure 3¢) is both kinematically and
dynamically equivalent to that of the homogeneous media with
the diffused region (Figure 3a).

With this basic framework in mind, the equations for an EDH
can be derived. In order to completely and properly describe a
fluid system, a set of governing equations, boundary, and initial
conditions are required. The governing equations comprise of the
conservation of mass, momentum, and energy, and the equation of
state. In order to ensure there is no loss of generality, the equations
are stated for a region in an arbitrary m-dimensional space. As a
result, this derivation is not just limited to finding the equations of
a 2-D dividing surface from a 3-D region, but is also applicable to
finding equations for a 1-D dividing line or 0-D dividing point. We
detail out the steps of this derivation in the following section, using
mass conservation as an example. Similar steps can then be used
to derive the remaining governing equations, boundary, and initial
conditions.

Frontiers in Physics

3 Deriving equations for
hypersurfaces/mathematical
formulations

3.1 Deriving mass conservation for an
extended dividing hypersurface

As previously mentioned, the derivation of governing equations
for an extended dividing hypersurface can be divided into three
steps. The first of the three steps is describing the diffused region.

3.1.1 Describing the mass conservation for a
diffused region

In the case of a fluid media containing a diffused region, a single
set of governing equation is used to describe the homogeneous
media and the diffused region in m-D space. This is realized by
allowing the material properties to vary from one value of the
homogeneous media to the other, through the diffused region. With
this in mind, the mass conservation equation for a diffused region is
presented below in the conservative integral form, Equations 1-3.

d \n_
a (M) = Hmass' (1)

Here, M is the total mass in the material region and IT is the net

mass
source of mass when applicable. A relation in terms of field quantities
is obtained, by writing the total mass of the region in terms of the

local density, p, and the source density term as 7p.,.

% (Jmpmdxm> = Jmnf:‘lassdxm. (2)

Here, considering an orthogonal coordinate system, Im =
-[1-[2-[3""-!-m and dx,, = dx,dx,dx; ... .dx,,. The superscripts (-)"
and subscripts (-),,, denotes fluid quantities and operators in m-
dimensional space, respectively. Using the Reynolds’ transport
theorem (Leibniz’s integral rule), the above equation becomes:

| ot vmtow =, 3)
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Here, 0, = d/dt is the derivative with respect to time. This is the most
fundamental representation of the principle of mass conservation.
With the mass conservation for a diffused region presented, we next
move on to derive the mass conservation for an actual extended
dividing hypersurface.

3.1.2 Derive mass conservation for an actual
extended dividing hypersurface, by collapsing the
diffused region

Our objective is to derive conservation equations for an EDH
which is kinematically and dynamically equivalent to that for a
diffused region. The mass conservation equation for the EDH is
obtained by collapsing the dimensions normal to the hypersurface.
This is mathematically performed by integrating the conservation
equation for a diffused region in that direction.

The mass conservation for a hypersurface is evaluated by first
splitting the gradient operator (V™) in the mass conservation
into tangential and normal components (Equation 4). This is
done, because after the collapse, they will end up corresponding
to terms representing the flux of hypersurface quantities and
bulk quantities. For simplicity, the conservation equation in the
reference coordinate system (Equation3) is used. Hence, on
decomposing Equation 3 we obtain:

J (3, (™) + (1" - A®R) - V"] - (pu)" + [(R@R) - V"] - (o)™ = A ) dx,.
(4)

Here, (I" —n®n) and (A®n) denote the projection tensors in the
tangent and normal directions to the hypersurface.

The reason for this decomposition of the gradient operator
can be further explained by using a rectangular diffused region
as an example, as seen in Figure 4. The tangential component of
the gradient operator is used to denote the mass flux through
left and right boundaries of the diffused region (S]LDiff and Sﬁiff)’
while the normal component denotes the flux through the top
and bottom boundaries (X, and Xj3). On collapsing the diffused
region by integrating across it, the flux in the tangential direction
now corresponds to flux of lumped integral quantities (f ¢ j gb:)
through the boundaries of the hypersurface, Sﬁyp and Sﬁ[yp' It will
be later identified that the lumped quantities denote hypersurface
quantities. As for the flux in the normal direction, it will result in the
mass flux of homogeneous media into the EDH. Hence, the latter
term results in the coupling between the flow in m-dimensional
space with the flow in (m — 1)-dimensional space.

With the gradient operator decomposed, the integral
in the direction normal to the hypersurface can be now
separated (Equation 5):

. I jis 1 W

2 ——

J( H |:J {az (p™) + V;"*l -(pw)” + V'ﬁ" S(pu)™ = nﬁm} dn:| dx(m—l)-
m—

(5)

Here, Vg”"l = [(I" -n®n)-V™] is the tangential projection of
the gradient operator, VZ' = [(A® 1) - V"] is the normal projection
of the gradient operator, and #, (s, b,t) and n,(s, b, t) are the location
of the spatial bounds of the diffused region ¥, and Xy, respectively
(Figure 1). The operator V""" represents a hypersurface gradient
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operator. The hypersurface gradient is the gradient operator in
(m — 1)-dimensional space. For the sake of clarity each term in the
above equation is considered separately. For the first two terms, the
integral is taken inside the temporal and spatial derivatives using
Leibniz’s rule (Equations 6, 7).

n 01

ny m ny m m8n2
1= "3 man=a,( ["pran ) - |pn 22 - 5| @

The term (p);':% - (p):ﬁ% accounts for the flux due to the

bounds of the diffused region varying with time. Next, we have.
ny
n

1= [ (0 o))

= vyt <j"z<pu>r"dn> =[Gpwy: - (V2 ) = (puy - (V)|
™

The term —(pu); - (V;“’lnz) +(pu)y - (Vg’“’lnl) accounts for the
flux due to the spatial variation in the bounds of the diffused region,
along the hypersurface. In other words, it accounts for the changes
in the width of the diffused region along the hypersurface. It must
be mentioned that in the literature, it is usually assumed that the
bounds are always parallel to the hypersurface (or the width of the
diffused region is a constant) [8-10] and moving with the same
velocity as the hypersurface [9, 10]. The third term can be exactly
evaluated (Equation 8):

1= rzvﬁm (pu)™dn = [(pu)" - A]2. @®)
ny
Here, H(pu)m]]Zf = (pu);'; - (pu);"l denotes the mass flux of the
homogeneous media at the two bounds of the diffused region located
at n,(s,b,t) and n,(s,b,t), where (pu);”1 = (pu):’,;11 and (pu)n”’2 =
(pu)g‘,nz. This jump, represents a flow of information from the
homogenous media in m-dimensional space to the EDH in (m — 1)-
dimensional space. Alternatively, this helps in viewing the EDH
equations as a boundary condition to the homogeneous media in
m-dimensional space. The difference between the term 2 in I and
the term u in II is that the first corresponds to the velocity of the
interface bounds while the other provides the velocity of the fluid at
the location of interface bounds. When there is no mass flux through
either of these locations, then the velocity of the interface bounds
would match that of the velocity of fluid there. As for the final term,
it stays the same (Equation 9):
ny
1= [ ©)
n

mass
1

Finally, the diffused region is collapsed in dimensions normal
to the hypersurface by integrating each term in this direction.
Collecting terms I, II, III and IV yields the mass conservation
equation describing an actual hypersurface with zero thickness:

—1) _ _1\ -1
[ [aom ) ot o sl
m—1

[ Y - lpw - (w7t )]+ w8 = o],
‘ (10)

Here, (-)(m’l),z_fnz(-)mdn denotes actual hypersurface
el

quantities. This equation provides the mass conservation
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Schematic of a rectangular diffused region being collapsed in the normal direction to a hypersurface.

for a hypersurface, but excludes any information regarding
the void created by the collapse of the diffused region
(referring back to Figure3). This void in the system is
addressed next.

3.1.3 Derive mass conservation for an effective
extended dividing hypersurface

In this paper it is considered that the void is replaced by the
homogeneous media adjacent to it. Therefore, an effective EDH
adjusts for the effect of the dynamics created by the homogeneous
media that ends up occupying this void. Before evaluating the
effective EDH, we first present the equation of mass conservation
for this added homogeneous fluid in lumped form:

! ! !
J l[af (pl(qul) ) +V§"“-(pu)§§m’l) 77_[5:1—1)
e

[[er 5 17 - Lowz (72 o)+ Moy a1 =] dxm_(l. |
11

Here, the subscripts A denote the hypersurface quantities,
equivalent to the newly added volume of homogeneous fluid A. The
region occupied by it extends from n,, the location of the bound
of the diffused region next to medium A (Z,), to n, the location
of the EDH.

Similarly, for fluid B.

—1) 1\ 1y
[ ) e ool
m—

_ [[pg%“: ~ltpwy - (v o0) ]2+ Tpury-a]12 = 0] dx,,.
(12)

This added material, and the dynamics as a result of it, needs
to be adjusted for, in order for the homogeneous system with
an embedded hypersurface to be identical to the system with a
diffused region, which it is trying capture. Otherwise you would
be double counting mass. This is taken care of by subtracting this
additional contribution (Equations 11, 12) from that of the actual
EDH (Equation 10). The resulting equation (Equation 13) is called

Frontiers in Physics

the mass conservation for an effective EDH or will be referred to here
as just the mass conservation for an EDH:

- — — -1
3, (V) + VIt (pw) Y — )

2] -t o ) a0
! (13)

Here, [[(-)'”]]n0 = (-)g’)n0 - (-)X‘,nn jump across EDH, the
superscript (m—1) corresponds to quantities associated with
effective EDH. In the literature, the location at which the
homogeneous quantities in the jump terms are evaluated has
remained uncertain. Scriven suggested it is evaluated at the bounds
of the diffused region, X, and X, while Slattery suggested it should
be evaluated at the hypersurface, X. Here, we are able to analytically
show that it is, in fact evaluated at the hypersurface, 2. In the above
simplification, it is assumed that the mass flux is continuous across
>, and X, that is, the mass flux on the homogeneous side of X,
and X is equal to the mass flux on the side of the diffused region.
Although this may seem obvious, it is, in fact, an assumption which
is not always true. For example, when the hypersurface is separating
a fluid and a solid media, there is a jump in density, [p]]. Another
example is when velocity slip occurs at the fluid-solid boundary
[12, 13], then there is a jump in the tangential component of velocity,
[e].

Finally, observing that time derivative of 7, (the location of the
hypersurface) denotes the velocity of the hypersurface, on, /ot = v, it
allows us to rewrite the above equation as (Equation 14)

rate of change of hypersurface mass
hypersurface mass flux
— -1 —
9 (pm V) + V- (pu) Y
source of flux ofbulk mass due to
hypersurface mass relative motion of hypersurface bounds
(m=1)
m— m—1
= Tlmass + H(Pu)m]]no : (Vg (nO))
netbulkmass
entering hypersurface
—_—
- [(p(-v))"-n], . (14)

The first line in the above equation is analogous to the standard
mass conservation represented in (m — 1)-dimensional space. The
second line on the other hand, accounts for the net mass flux of
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homogeneous fluid A and B in m-dimensional space, into the EDH.
Quantities associated with this effective hypersurface, are commonly
referred to in the literature as surface quantities, when referring to
2D dividing surfaces [10]. This forms the basis of Gibbs definition
for surface quantities which are often referred to as integral of excess
quantities relative to the corresponding homogeneous quantity [10].
This is the final form of mass conservation equation that should
be used while modeling an EDH embedded in a homogeneous
fluid. Taking similar steps for momentum and energy equations,
the conservation equations for effective hypersurface are obtained.
These conservation equations are stated in the subsequent sections.

3.2 Momentum conservation for a
hypersurface

Now that the mass conservation for an EDH has been presented,
similar steps can be used to obtain the momentum and energy
conservation equations for an EDH. The principal of momentum
conservation states that the time rate of change of linear momenta of
a material region is equal to the sum of forces acting on the region.
This is mathematically presented as (Equation 15):

d

& (P)= Fsurface + Fbody + I-Imom’ (15)
where P is the total momentum in the material region, Fg . is the
total surface force, Fy,q, is the total body force, and II,,,, is the

source of momentum.

Further, writing in terms of field quantities and using the
transport equation, we obtain the integral form of conservative
momentum equation for the diffused region (Equation 16):

=V T+ £+l

body " Fmom

(16)

m

Jm {at(pu)”’+vm-(pu®u)m }dx

Here, F e = Im(Vm~Tm)dxm and T™ is the stress tensor,
Fooay = jm (f’g’ody) dx,, and IL, = Im (nlom)dx,,. In order to
ensure the generality of the momentum conservation equation, we
do not substitute the constitutive relation for stress tensor. Which
-pI+A(V-uw)l+

U (Vu + VuT). Here, p is the pressure, A is the bulk viscosity, and y

for a Newtonian fluid medium in 3-D is, T" =
is the dynamic viscosity.

Similar to the mass conservation, the gradient operator
in the integral form of conservative momentum equation for
diffuse hypersurface is decomposed into tangential and normal
components. In addition, the integral normal to the hypersurface is
separated (Equation 17):

J B “ZT (9,(pu)™dn) + I:Tvg”’l “(pu®u)"dn + f:?V;‘" (pu®u)"dn

ny ny
:I vl 4 J £ dn+
g n body

m

n
J V;"~Tm-ﬁdn+

ny
m
J T[momdn} dxm—l
m m

(17)

Using the Leibniz’s rule and collapsing the diffused region by
integrating in the direction normal to the EDH, the momentum
conservation for an actual EDH is derived (Equation 18).

(m-1)'
~ Tmom

—1) _ 1) _ 1\ -1)
0,(pw) ™+ I (pueu) " vyt g
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+[(puew)™-A] - [T"-A]
|

tuew™- (vt )~ [l (v )] = 0. a8)

d(n)1]"™

+[[(pu)m7:l

ny

Finally, adjusting for the effects of the added homogeneous
media, the momentum conservation for the effective hypersurface
is presented as.

rate of change of Force
Hypersurface Flux of attheboundary
momentum Hypersurface momentum of Hypersurface

9,(pu)m-1 4 V;"’l “(pu®u) — V;”’l - Tm=1)

b f source of
YpErsuriace  hypersurface
bodyforce momentum

P ——
o dmen o (me1)
body mom
jumpin jumpin
bulkmomentum bulkstress

+I(pue@-v)"-al, - [T al,,

jump inbulk momentumand stress
duetovariationin Divding Hypersurfacelocation

~{lpuewr, - 1171, } (V2 (1)) =0

(19)

Here, there are two sets of additional terms to account for the
flux due to spatial changes in the location of the EDH, referred to
as jump in bulk momentum and stress due to variation in Dividing
Hypersurface location’ in Equation 19. One of those term accounts
for the momentum flux [(pu®u)™ - @] 1, and the other for the jump
in bulk stress at these bounds [T" -], . Finally, we derive the
equations for the conservation of energy.

3.3 Energy conservation

The principal of conservation of total energy states that the time
rate of change of total energy of a material region is equal to the net
energy gained by the system from heat flux through the surface and
work done on it. This is given as (Equation 20),

d

LB =Q-w+II

energy> (20)
where E is the total energy in the material region, Q is the total
is the

energy

heat flux, W is the total work done on the system, and IT
source of energy.

As previously done for mass and momentum equations, using
the Reynold’s transport theorem the equation for conservation of

)

Here, total energy E=pe+ (pu-u)/2, pe is internal energy,
(pu-u)/2 is kinetic energy, q is heat flux, e is the specific internal

total energy is given as (Equation 21),

[l 22)) ool

=V =V (T )" + g (21)
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energy, Q = jm(V”’ -q"M)dx,,, W = jm(V”’ -T-u)"dx,,,and I

J—m(ﬂgl"lergy)dxm'
Since the steps are similar to that of mass and momentum

energy —

conservation, we skip the intermediate steps and present
the final relation for the conservation of energy for an
effective EDH (Equation 22).

rate of change of
EDH total energy

. (m-1) _ .
op(er252))" v (ou (e 25

convection of
EDH total energy

)"

- source of
gradientin gradientinwork done EDH
EDH heat by EDH stress forces total energy
(m-1) _ (m-1) 1 (m-1)
-V -qm=D + v, (T -u)m=D — Tenergy
jumpintotal energy
ofhomogeneous media jumpin jumpin
bulk heat bulktotal work done

u-u

+[[(P(U—V)<e+ ))m'ﬁﬂ—[[qm-ﬁ]]+ [(T-uw)™-a]

jumpinbulktotal energy, heatand work
duetovariationinlocation ofthe EDH

+{[[<pu(e+ %))m ﬁ]] - [q™-a] + [[(T-u)”’~ﬁ]]} . (V;m%)(no)) =0
(22)

Finally, with the conservation equations for an EDH presented,
the equation of state for the EDH, followed by the boundary and
initial conditions, are briefly discussed.

If in addition to velocity; density, temperature and pressure are
also unknown, then an additional relation is required. This is given
by the equation of state. In this paper it is assumed that the diffused
region has an equation of state same as that of the homogeneous
media and the EDH has an equation of state analogous to it. This
might not necessarily always be the case. After deriving the above
governing equations for an EDH it would not come as a surprise that
the equation of state also needs to be re-derived by considering the
collapse of the dimension. This is beyond the scope of the current
paper and is a topic that shall be addressed in future work.

Finally, in order to close the system, initial and boundary
conditions are required. Similar to homogeneous media, the field
value of hypersurface quantities such as, velocity vector, pressure,
density and temperature needs to be know at time ¢ = 0. In addition,
the boundary conditions needs to be known for each of these
hypersurface variables (S, Figure 1).

3.4 Defining effective hypersurface
quantities and identifying the location of
the extended dividing hypersurface

3.4.1 Defining hypersurface quantities

Following the derivation of the governing equations for the
extended dividing hypersurface, the next step involves discussing
the definitions of effective hypersurface quantities as well as the
location of the EDH itself. When it comes to evaluating the
hypersurface quantities, especially intensive quantities, it is done so
by preserving the corresponding extensive quantities in a diffused
region. That is, velocity is evaluated by preserving momentum, stress
is computed by preserving the corresponding force, and temperature
by preserving the heat energy. Therefore, for an arbitrary extensive

Frontiers in Physics

10

10.3389/fphy.2025.1652090

TABLE 2 Hyper-area corresponding to m-dimensional space.

m Ay

1 1

2 Perimeter

3 Area

4 Volume

m cross section in (m-1)-D space

or intensive parameter ¢, the hypersurface quantity is defined as
(Equations 23, 24).

AV (5,b) s tensive = J:z (pAp)dn— (I:o (g4 Ap)dn+ I:Z ($54n) d”) .

Accounts forvoid

23)
[ @aman-( " 0y amins [ @yn)an
#"5 Dntensve = — — = :
AH

(24

This definition is similar to that used to derive the governing
equation for effective EDH. Here, Ay(n) denotes the hyper-area
bounding the diffused region, X, and 2. It must be noted that A ;;(n)
is not the cross-sectional area of the diffused region. AY, corresponds
to the hyper-area of the extended dividing hypersurface. Hence, for
example, referring to Figure 1, hyper-area for a 3-D geometry is the
area of the surface, for a 2-D geometry is the perimeter of the line,
and for 1-D geometry is equal to 1, as tabulated in Table 2. In general,
Ay # A}, as seen in Figure 5b but for geometries where the left and
right boundaries of the diffused region, Spyg, are parallel to each
other, as in Figure 5a, A = A?{.

In order to calrify the definition for a hypersurface quantity, the
evaluation of hypersurface density will be explored. This evaluation
considers a diffused region associated with both a curved and
a planar hypersurface of unit depth, as depicted in Figure 5.
However, before delving into the specific evaluation, a conceptual
overview will be presented on how the hypersurface quantity
is computed (Equation 25).

Mass ofthe
diffused region

Massofmedia A

_ + MassofmediaB
extrapolated into thevoid, V,

extrapolated into the void,Vy

P (s,b) =

Hyper —areaof thehypersurface, >
(25)

The definition proposed in this study differs from that used
by Slattery [10] in terms of defining surface quantities based on
extensive quantities. The underlying concept behind this approach is
that the total mass remains constant between a diffused region and
an extended dividing hypersurface (EDH). However, the magnitude
of density, whether it is expressed as mass per unit volume, mass per
unit area, or mass per unit length, may vary. Similarly, the total force
remains constant between a diffused region and a hypersurface, but
the stress, whether it is measured as force per unit area or force per
unit length, may differ. This is the rationale behind preserving the
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Schematic representation of a diffused region corresponding to a, (a) planar and (b) curved diffused region.

extensive quantities between the diffused region and the EDH, while
the intensive quantities associated with the EDH are then derived
from their corresponding extensive quantities. Therefore, in the case
of a planar hypersurface (Figure 5a), Ag(n) = A(})I = constant, the
hypersurface density is computed as (Equation 26):

[ o) Ay dn-

no
n1 2t

(" Ganmrane [ oy antmyan)
"0

PV (s,b) =

Ay

= [ pndn=lor(ro=m) +pura —no). (26)

Here, it is assumed that the homogeneous media have a constant
density. Hence, the extrapolated density adjacent to fluid A and
B are p, and py, respectively. In the case of curved hypersurface
(Figure 5b), Ag(n) = RAO, where R is the radius of curvature and A9
is the angle across which the surface spans (Equation 27).

j'z (p(n) Agy (m))dn—

<J’YU (PAAH(”))d”JrJr (PBAH(”))d”>
P s b) = = - ,

2
0

Ay

[ 00 RG» A& (5, (- 72) 80 py (12 - 1) 86)
Tl

- 270
j” (p(n) Rm)dn —(p, (72~ 72) + ps (%~ 12))
_in > (27)

0

Hence, in the case of a curved hypersurface, its density depends
on the radius of curvature of the hypersurface.

3.4.2 Location of extended dividing hypersurface

From the definition of a hypersurface quantity it can be seen
that its magnitude is directly dependent on the location of the EDH.
The question that then remains is where in the diffused region is the
EDH located? The answer is that the location of EDH is arbitrary.
It can be any location as long as it is within the diffused region.
The EDH and its location is not unique to a given diffused region,
rather it is dependent on (1) a pre-specified criteria and/or (2) the
flow or fluid quantity the criteria is based on. The clarification of the
aforementioned concepts is provided below.

Since the exact location of the EDH within the diffused region is
arbitrary, additional information is required as an initial condition.
This is provided in the form of criteria on which the location and
consequently the EDH can be defined. The choice of criteria used to
determine the location of EDH is based on convenience and does not
effect the dynamics of the system as a whole, as long as the criteria
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are consistently applied throughout the set of equations describing
the EDH. For example, Gibbs’ proposed an EDH location based on
surface tension and also one based on equimolar contributions of
the two fluids [8]. On the other hand Slattery defined the EDH to be
located at a position where there is no effective mass of the EDH [10].
This dependence of the EDH location on the choice of criteria is no
different than, for example, trying to identify the center of a ship. The
center of a ship, can be defined as the center-of-gravity, or the center
of buoyancy, or the metacenter.

Secondly, it is a common assumption in the literature that the
EDH location corresponding to its mass, momentum, and total
energy are the same [8, 10]. This is not always the case. For example,
if we choose the criteria that EDH is located where the effective
mass, momentum, and total energy are all zero, then it will result
in three different locations. Only for the case where the density
distribution within the diffused region is a constant, will they all
be at the same location. This dependence of the EDH location
on a conserved flow quantity is analogous to the definition of
the boundary layer thickness. For example, the thickness of the
boundary layer can be based on the mass (displacement-thickness)
or momentum (momentum-thickness), both of which are not always
identical.

Considering that the EDH and its location are not unique to a
diffused interface, the velocity of the EDH is not unique either. This
is because the velocity of the EDH is computed as the time rate of
change of its location, v = dn,/dt. It must be noted that u”"! is not
necessarily the same as v.

4 Test cases and numerical setup for
validation

In this paper, canonical example problems are used to validate
the derived continuum model of an extended dividing hypersurface
(EDH), which represents a fluid front. In order to validate it
whenever possible, results are compared to the analytical solutions.
In instances where an analytical solution is unavailable, a more
fundamental approach of molecular dynamics (MD) simulations is
used to create a reference solution for comparison. MD simulations
are used because of their ability to resolve the front.

In the case of examples using molecular dynamics simulations,
bulk values from MD simulations at the boundaries of the diffused
region are used as an input to the EDH equations. In the case of
the example problem with an analytical solution, both the EDH
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TABLE 3 List of different test cases. Here, € and o are the characteristic energy and length scales, respectively. p= is the number density.

fluidA-fluid A

fluidB-fluid B

Fluid A-fluid B

M /e oM /o P8 /o & Ble *B/o
1 1.00 1.00 0.78 1.00 1.00 0.78 0.01 4.00 7.00
2 1.00 1.00 0.82 1.00 1.00 0.82 0.01 1.00 2.50
3 1.00 1.00 0.78 1.00 1.00 0.78 0.01 1.00 2.50
4 0.75 1.25 0.18 1.50 1.00 0.78 0.75 1.25 2.50
5 0.75 1.25 0.18 1.50 1.00 0.78 0.50 1.50 4.00
6 1.00 1.00 0.81 1.00 1.00 0.81 0.20 3.00 5.00
equation and bulk equations are solved simultaneously. In this
section, the problem geometry is described for each example, along
with details of the simulations.
4.1 Molecular dynamics simulations
Fluid A Fluid B
The LAMMPS package is used to perform molecular dynamics
(MD) simulations [14].
Here, the pairwise interaction of molecules, separated
by a distance r, is modeled by the Lennard-Jones (LJ) Y
potential (Equation 28)
. o\12 [ g\6 x
Vf=4([(—) —(—) ] (28)
r r
FIGURE 6 ) ) )
Here, ¢ and o are the characteristic energy and length scales, Schematic of two stationary fluids.

respectively. The potential is set to zero for r > r., where r, is the
cutoft radius. r, = 2.50, unless otherwise specified.

The temperature is maintained using a Langevin thermostat
with a damping coefficient of ' = 0.177!, where 7= \/mo?/e is the
characteristic time and m is the mass of the fluid molecule. As only
2D problems are simulated, the damping term is only applied to the z
direction to avoid biasing the flow. The equation of motion of a fluid
atom of mass m along the z component is therefore given as follows
(Equation 29)

§ oVij .
mz; = Z i mIZ;+1,. (29)
J#i
Here, }',,; denotes the sum over all interactions and 7, is a Gaussian

distributed random force. The L] coeflicients and number density of
the various cases simulated are listed in Table 3.

The equations of motion were integrated using the
Verlet algorithm [15, 16] with a time step At = 0.0027. The molecular
mass of individual atoms is 1. Hence mass density is equal to number
density. Each specific problem simulated using MD is detailed next.

4.1.1 Stationary fluids with varying miscibility

Two stationary immiscible or partially miscible fluids
at a constant temperature and pressure are simulated
as shown in Figure 6. The domain is periodic in all directions.

The domain size is 500%300%x300. The Lennard Jones

parameters for interatomic interactions and density of media
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used are listed in Table 3, Case 1-4. It took the system 100000
steps to reach equilibrium. After which relevant data were
extracted using spatial and temporal averaging. The data was
averaged for 100000 steps and the bin size for spatial averaging
was 0.50 X 300 X 300.

4.1.2 Stratified flow through a converging
diverging section

In this test case, a varying cross sectional area is modeled by a
converging-diverging section in the channel, with a periodic domain
in the x and z directions. Two immmiscible fluids are subjected to a
constant body force of 0.01cc™'in the x direction. The schematic of
the problem is presented in Figure 7.

The domain size is 127.430x 55.900 % 27.580. Each wall is
comprised of at least two layers of molecules oriented along the (111)
plane of a face centered cubic (fcc) lattice, with the molecules fixed to
their respective lattice sites. The wall number density is 3.2407>. The
L] parameters for wall-fluid interactions for both the fluids are ¢*/ =
0.2¢and 0"/ = 2.00, with a cut-off radius of , = 50. The LJ parameter
for fluid-fluid interactions are given by Case 6 in Table 3. It took
the system 50000 steps to reach equilibrium. The extracted data was
averaged for 10000000 steps and the bin size for spatial averaging
was ~1.00x 1.00 % 27.580.
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FIGURE 7
Schematic of a stratified flow through a converging-diverging channel.
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FIGURE 8
Schematic of a shock tube problem.

4.1.3 Shock tube problem

The canonical shock tube problem considered here is a long
tube which is closed at both ends. A diaphragm separates the
region of high-pressure fluid on the right from the region of
low-pressure fluid on the left. When the diaphragm is broken
at t=0 a shock wave propagates into the low pressure region,
towards the left, and an expansion wave propagates towards the
right, as illustrated in the schematic in Figure 8. The diaphragm
is simulated in MD by two layers of wall atoms which are
removed at time t=0 to initiate the propagation of shock and
expansion waves.

The domain size is 298.110x 231.920 % 210.090. Each wall is
comprised of at least two layers of molecules oriented along the
(111) plane of a face centered cubic (fcc) lattice, with the molecules
fixed to their respective lattice sites. The wall number density is
3.2407°. The L] parameters for wall-fluid interactions for both the
fluids are ¢/ = 0.1¢ and 0™/ = 1.00. It took the system 100000 steps
to reach equilibrium. After which the membrane dividing the fluid
in two different state is removed by deletion and the spatial and
temporal average was performed. The data was averaged for 500
steps and the bin size for spatial averaging was =1.00x 231.920 %
210.090.

4.2 Example with an analytical solution

4.2.1 Bubble dynamics

The last example problem looks at the evolution of a bubble when
subjected to a non-equilibrium initial condition, as illustrated in the
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FIGURE 9
Schematic of the unsteady bubble dynamics problem.

schematic in Figure 9. The non-equilirbium condition is initiated
by a high pressure at infinity. The radial evolution of an unstable
bubble in an unbounded liquid is given by the Rayliegh-Plesset
equation [17-19]. In this paper, the Rayleigh-Plesset equation is
modified by considering the physical interface having a finite mass
and thickness.

In this example problem, the actual hypersurface description
of the EDH is used. The hypersurface is considered to be located
(R) at the geometric mean (center) of the bounds of the diffused
interface. The locations of the inner and outer bounds are given as
R, and R,. Hence, R = (R, + R,)/2. Since the physical thickness of the
interface needs to be accounted for, the Rayleigh-Plesset equation is
modified as (Equation 30),

2y

au(,:Rz)
Pur=r) ~Poo = R, +4u

ot

u(r:Rz)
3
RZ

P

=Ry

+R (30)

out

Here, using ideal gas law, the pressure within the bubble, p,,
is computed for a radius of R;. In addition, it is assumed
that (pu)*
change with time.

hypersurface (interface) momentum, does not

In order to compute hypersurface quantities, such as
hypersurface mass, it is considered that the density sequence
(function), describing the density within the interface, is a 4th-
order polynomial. In addition, it is assumed that the magnitude and
the gradient of density in the radial direction are continuous at the
bounds of the interfacial region. This is used to evaluate interfacial
quantities analytically.

The evolution of bubble radius is found by simultaneously
solving the mass conservation of the hypersurface and the Rayleigh-
Plesset equation. This modified system of equations is solved
numerically. It must be noted as a means of validating and
demonstrating the implementation of the EDH equations, only
the hypersurface mass conservation is used for this example. The
momentum conservation will be incorporated in future work.

The non-dimensional parameters and initial conditions chosen
for this parametric numerical study are y=1.4 coefficient of
polytropic expansion, the viscosity of the liquid g, =4000, the
density of the liquid p, = 10, the density of gas within the bubble
pe=0.01p;, surface tension ¢ = 3, pressure at infinity is 100 x P;,,
the initial radius of the bubble R, =1 initial thickness of interface
1/20R,, and initial pressure inside the bubble 10°.
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5 Results and discussion

The primary objective of this paper is to expand upon the
concept of a dividing surface initially introduced by Gibbs. The aim
is to generalize this concept to encompass any fluid and flow front,
going beyond just the phase interface. In order to achieve this goal,
the authors examine a series of canonical problems involving fluid
and/or flow fronts.

These problems serve four main purposes.

1. They illustrate that the extended dividing hypersurface (EDH)
has the capability to accurately capture the dynamics of not
only phase or material interfaces but also other types of fluid
and flow fronts, specifically shock front (physical front) and
vortex sheet (apparent front).

. They emphasize that the distribution of monotonicity within a
front, as commonly described in literature, is just one of several
possible functionalities that the EDH can capture.

3. They demonstrate the relationship between the flux of m-
dimensional quantities and the m-1 dimensional quantities
(hypersurface quantities), highlighting how this coupling
can lead to hypersurface dilatation even in incompressible
hypersurface flows. This finding contradicts deductions made
from continuity equations for a bulk fluid.

. They underscore the importance of acknowledging the mass
of the front and consequently demonstrating its impact on the
dynamics of the front.

5.1 Stationary fluids with varying miscibility

We start with the simplest example of two stationary fluids
adjacent to each other, see Figure 6. As a result of the fluids being
stationary the EDH has no dynamics. Hence, the only non-zero
quantity associated with the EDH are the thermodynamic quantities.
Furthermore, since we consider a system with a planar EDH and
a constant temperature, the only thermodynamic quantity that is
discontinuous across the EDH is density. As we have done through
the course of this paper, looking at density or mass of the EDH serves
as the best starting example to understand hypersurface quantities.

Different test cases with varying density ratios and miscibilities
are presented. This helps us demonstrate various nuances of
hypersurface quantities and the common assumptions (explicit or
implicit) made about them in the literature. We first put to test the
assumption that the density profile is monotonic across the diffused
region and the local value being never greater or less than the value
of bulk densities as was shown in Figure 2. This is especially true,
when numerically modeling a material or a phase interface (front-
tracking, level-set, phase field methods [20]). Referring to Figure 10,
itis seen that in the first two cases the individual density distribution
is monotonic, but the combined densities are not. The behavior of
both individual and combined density profiles in case (c), is closest
to the monotonic assumption made in literature, but it also happens
to be a trivial solution. As for the last example, of a stationary gas
next to a liquid, case (d), the local density distribution of fluid A, is
also not monotonic.

Next, we look at the actual and effective hypersurface mass,
which is evaluated as per the definition presented in Equation 23.
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Here, we consider the EDH to be located where the density profiles of
the two fluids intersect, as seen in Figure 10 and denoted by a dashed
line. Bold line shows the extrapolated bulk density of individual
fluids. Hence, the effective hypersurface mass, or as Gibbs calls it,
the excess mass, is given by the hatched region in the figure. It can
be seen that figures (a), (b) and (c) give a negative, positive and zero
effective mass, respectively. This is contrary to what is commonly
assumed in literature. It is commonly assumed that the interface has
no mass, when considering perfectly immiscible fluids in continuum
simulations [20], whereas results from MD, presented here, show
that it can in fact have both a positive and negative effective mass.
The hypersurface density is not separately discussed, because as
mentioned in section 3.4, it is derived from hypersurface mass.

In the static case, with no curvature, an argument can be
made that because the relative thickness of the diffused region
is negligible compared to the length scale of the homogeneous
media, the zero hypersurface mass is a good assumption. While
this is true for effective mass, the same cannot be always said
for effective momentum, energy or stress. For instance, effective
hypersurface linear stress gives the hypersurface pressure, which is
nothing but the mechanical surface tension, which we know not to
be negligible. Hence, from MD simulation results and definition of
hypersurface quantities presented in Section 3.4 a case is made that
the assumptions.

1. That distribution across a diffused region is monotonic,

2. The local value within this region lies always within the range
of the corresponding bulk values, and

3. The effective hypersurface mass is zero, are not always true.

5.2 Stratified flow through a converging
diverging section

In the previous example since there was no gradient along the
EDH, there were no internal dynamics or viscous stresses in the
EDH. In this section a 2D stratified fluid flow through a section with
varying cross sectional area is considered. The varying cross-section
of the channel results in accelerating the flow. This example is used
to demonstrate the relationship between the mass flux of the bulk
fluid into the EDH and the hypersurface dilatation. This relation is
directly obtained from the mass conservation equation for the EDH,
and as such also acts as its validation. In addition, we discuss the
recent finding by Thalakkottor and Mohseni [21], suggesting the
deviation of mechanical and thermodynamic surface tension in the
presence of hypersurface dilatation.

In the case of a stratified Couette flow the list of relevant
assumptions made are as follows.

. Steady state, no time rate of change of hypersurface quantities.
. No source of hypersurface mass or momentum.

. No hypersurface body force.

. Location of the bounds of the boundary layer (or width) does

BW N

not change with time and space.

. Since we are considering a periodic or 2D problem, there is no
surface shear Tﬁn’”’”’ =0.

. We assume that there is no surface dilatation, V"' -
0.

. There is no surface gradient in surface pressure.

um=1"
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FIGURE 10
Compares the density distribution of individual fluids along with the total density, across the diffused region for four different types of interfaces. (a—c)
Considers the two fluid to have identical density but varying miscibilities. Here individual density profiles show a monotonic behavior. (d) Considers a
case with the two fluids having two different densities, with one of the fluid showing a non-monotonic behavior.

Applying these assumptions, the governing equations for the
actual extended dividing hypersurface become (Equations 31, 32):
Mass conservation,

VIt (pw) ™' [[(pw)™ 2 = 0 G

Momentum conservation,

-1 m-1)' -1 (m-1)’ m_ =qh m =2 _
vl (puew) ™) -yl D [(puew)™ - &l - [T ~n]],,§_(3oi)

Similarly, the conservation equations for the effective extended
dividing hypersurface reduce to (Equations 33, 34):
Mass conservation,

VI (o)™ o)™ &, =0 G

Momentum conservation,

v (puew) ™) - vl T o [(puew)” Al — [T 8], = 0.
(34)

Recalling that the conservation of mass for an EDH is obtained
by collapsing the dimension and integrating the conservation
equation of the homogeneous media in the normal direction. When
the dimension is collapsed, the term V -u, that represents the flux
of mass from one region to another, transforms into a relation that
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represents the flux of mass from a higher dimension to a lower
dimension, given by the jump, [(pu)” - fi]]. While for a bulk fluid,
in 3D space, the incompressible condition (Dp/Dt = 0) results in
the flow having no dilatation (V-u = 0), for an EDH, in 2D space,
there can be surface dilatation even though the surface fluid is
incompressible. This is because the surface dilatation can still be
caused by the bulk mass flux into or out of the EDH. This fact which
is represented in Equations 31, 32, is further validated by looking
at MD results depicting the net mass flux from the homogeneous
media in 3D into or out of the EDH (represented by [(pu)” - fi]])
and the hypersurface mass flux within the EDH (given by V}''-
(pu)("”l)), as shown in Figure 11.

Another important consequence of the surface dilatation is
that the mechanical surface tension is no longer equal to the
thermodynamics surface tension. Recently [21], presented that
analogous to the relation between mechanical and thermodynamic
pressure, mechanical and thermodynamic surface tension are
related as y, =y, + A +p )V, u™ D, where y, is the
mechanical surface tension, y, is the thermodynamic surface
tension, A; and y_ is the first and second surface viscosities. The
major difference, is the fact that in the EDH (2D), hypersurface
dilatation can also be caused by mass flux of bulk homogeneous
fluid into or out the EDH. In Figure 12 we plot the distribution
of local mechanical surface tension along the length of the EDH,
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FIGURE 11

Comparing of hypersuface mass flux within the EDH (or surface
dilatation) with the jump in mass flux of the homogenous bulk media
across the EDH. These results from MD simulation help confirm the
EDH mass conservation equation, Equation 41. The black dash-dot
line represent the location of the throat of the channel.
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FIGURE 12
Deviation of local mechanical surface tension value from the

thermodynamic surface tension. The black dash-dot line represent the
location of the throat of the channel.

for the case where the force acting on the fluid is f=0.02. The
deviation of the mechanical surface tension from the constant value
of a thermodynamic surface tension is clearly visible.

5.3 Blasius boundary layer

So far all test cases have been where material/phase interfaces
have been represented as an EDH. Here, we demonstrate that the
EDH can be used to model a viscous boundary or shear layer.
This is done by showing that the vortex-entrainment sheet, recently
introduced by DeVoria and Mohseni [22]; Xia and Mohseni [23] is
just a limiting case of the EDH presented here. The sheet differs from
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the conventional vortex sheet by allowing mass and consequently
momentum in the sheet.

To demonstrate a boundary layer, the Blasius boundary layer is
considered which is a special case of flat plate boundary layer. Here,
the boundary layer is formed on a semi-infinite flat plate, with a
constant free-stream flow. This requires the following assumptions
to be made.

. Steady state, no time rate of change of hypersurface quantities.
. No source of hypersurface mass or momentum.
. No hypersurface body force.

BwW N

. Location of the bounds of the boundary layer (or width) does
not change with time.

5. Velocity on the side of EDH next to the stationary wall is zero,

u|, =0, because of no-slip and no-penetration condition.

6. The fluid outside the boundary layer is assumed to be
irrotational. Therefore, jump in shear stress [T%] =0-1,,
where 7,, is the shear at the wall.

. Since we are considering a periodic or 2D problem, there is no
surface shear Tinm_l), =0.

8. There is no surface dilatation, v""~! - 4"~ = 0,

9. Also there is no surface gradient in surface pressure.

By considering these assumptions the actual extended dividing
hypersurface reduces to (Equations 35, 36):
Mass conservation

Vi pu ™ oy (VI 1) + (pw 8| =0

s

(35)

Momentum conservation
-1 -1) = = &
v ~(pu®u)(’“ ) +(pu®u)"’-n|”2—(T’“-nl”z—T"’-n|nl)

(puow)y - (V7" (ny) = (T)3 - (V" (ny)) = 0. (36)

Similarly, choosing the location of hypersurface to be at the wall,
the Mass conservation of effective extended dividing hypersurface
reduces to (Equation 37),

Vg“’l S(pw)™ Y 1 (pu)™ -ﬁ| =0

o

(37)

for a vortex sheet fixed to a stationary wall, since r; is not varying
with space. Here, one thing to note is that (pu)('”’l) + .[(pu) dn
but rather it accounts for the bulk fluid added in the void region
(_[ (pu)Bdn). Hence, (pu)(’”_l) = I (pu)dn— _[ (pw)gdn.

momentum conservation (Equation 38)

vl (puew)™ ) + (pugu)” ~ﬁ|n0 -[T"-a], =0.  (38)

Decomposing into normal

(Equations 39, 40).

and tangential components

d m— m

g(Pusun)( b + (puﬁ) - [[P]]”o =0. (39)
9 a\(m-1) m
g(pus) + (Punus) +7, = 0. (40)

)

Assuming flow to be incompressible, T" - ii = pI. The mass and
momentum conservation equation presented here for an effective
EDH, is same as the equation for the vortex-entrainment sheet
presented by DeVoria and Mohseni [22]. Thereby, we see that the
vortex-entrainment sheet is just a special case of the EDH.

The region of validity of the vortex-entrainment sheet was,
Re, > 100. From the equations for the EDH, it can be seen that
the region of validity of EDH can be extended all the way till the
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leading edge, if appropriate assumptions are relaxed. As for the
leading edge, in order to capture that we would need to consider
an extended dividing hypersurface in 1D space. That is the EDH
equations describing the leading edge will need to be computed by
collapsing the dimension twice in the directions normal to the line
of discontinuity.

5.4 Shock tube problem

In all the test cases considered so far, the extended dividing
hypersurface had no normal velocity, u-n=0. In the case of the
shock tube problem, the shock wave falls under the classification of a
physical front. Hence, the shock wave can be represented by an EDH,
which propagates in a direction normal to it.

As done before, we first list all the assumptions.

Steady state, no time rate of change of hypersurface quantities.
1D flow, no spatial gradients along the length of the EDH.

No source of hypersurface mass and momentum.

No hypersurface body force.

SAREaE o e

Thickness of the shock front does not change with time.

By considering these assumptions the actual extended dividing
hypersurface reduces to (Equations 41, 42):
Mass conservation

~[pv)" Al + [(pw)™ Al =0 (41)
Momentum conservation .
lpusw™ all; - [rmali: + [[ow " <0, (a2

ny

The mass conservation equation reduces to the Rankine-
Hugoniot condition (Equation 43).

[(p (=)™ -all,> =0 (43)

Since, the two edges of the shock wave are considered to move
with the same speed, after reaching steady state. The equation can be
rewritten as (Equation 44),

0" 1 (v-8) + [(pw)™ A1 = 0. (44)

Hence, if we know the bulk density and velocity, on the two sides
of the shock front, we can then evaluate the speed of the shock wave
(v-1). Figure 13, compares the result for the displacement of shock
front with time obtained from MD to that obtained using the above
EDH equation. The displacement of shock front obtained from EDH
equation agrees well with the MD data. Preliminary work related
to representing a shock wave as an EDH was done by Thalakkottor
and DeVoria [24].

Although the validity of EDH to represent a shock front is
being shown for the canonical normal shock, it has the ability to
accommodate more general problems.

5.5 Collapsing bubble

This example investigates the evolution of a bubble under
an unstable condition of high pressure at infinity. Specifically,
it examines the radial evolution of an unstable bubble in an
unbounded liquid, which is described by the Rayleigh-Plesset
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FIGURE 13

Comparison of displacement x versus time t from molecular dynamics
(MD) simulations and surface mass conservation equations. The MD
simulation resolves the shock front, providing details on the left and
right faces of the front and the shockwave thickness. Both x and t are
expressed in corresponding Lennard—Jones (LJ) units.

equation Plesset [18]; Plesset and Prosperetti [25]; Brenner et al.
[26]; Brennen [27]; Leal [28]. The evolution of a collapsing bubble
is extensively studied in the field of cavitation and multiphase
flows. All preceding examples have focused on examining planar
interfaces in a steady-state condition. However, this particular
example investigates a curved interface within an unsteady state.

The Rayleigh-Plesset (RP) equation is employed to model
the time-dependent behaviour of the bubble. However, in typical
multiphase flow formulations, the RP equation only considers
surface tension as the interfacial property and incorporates the
corresponding pressure jump. Consequently, it neglects the interface
mass and associated dynamics. In this study, we demonstrate that by
incorporating the conservation equation for interfacial (front) mass
in conjunction with the Rayleigh-Plesset equation, the evolution of
the interface undergoes significant changes.

The Rayleigh-Plesset equation is written as (Equation 45):

2 2 2

Pp—Poo = % +P1R% +Pz§(§) + uz;;% (45)

Here, p,, is pressure within the bubble, p_ pressure in the liquid
at infinity, p; density of liquid, y; dynamic viscosity of the liquid,
and R is the radius of the bubble or location of the hypersurface
(interface). This can be re-written in terms of velocity of the
interface, where u = dR/dt (Equation 46).

2y du
Pr=Po=7% +pR—

dt (46)

3,0, 1
+p=(u) +4u,—u
prs W)+ 4y

Next, we consider that the interface has a finite mass. The
interface mass conservation equation for a system without any mass
flux across the interface reduces to (Equation 47):

d,(M) = jsdt (p"1)ds=0 (47)

The evolution of the bubble is shown in Figure 14. Comparing
the standard RP to EDH RP, which accounts for interface mass and
thickness, distinct differences between the evolution of the bubble
radius for these two cases are observed. While the rate of the first
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Comparing the evolution of bubble obtained from EDH RP and standard RP. Evolution of (a) bubble radius and (b) interface thickness.

collapse looks identical between the two models, the first major
distinction is in the minimum radius attained. The minimum radius
of modified RP equation is larger than that of the RP equation,
leading to an improved agreement with experimental results [29,
30]. This increase is directly a result of the interface having a finite
mass and thickness. In order to better understand the cause of
this difference it is best to look at Figure 14a in conjunction with
14(b). As the bubble radius decreases, mass conservation dictates
that the interface thickness must increase in order to compensate
for the reduction in the surface area of the bubble. In other words,
geometric expansion dictates the increase in interface thickness, as
there is no mass flux into the interface. This means that when the
EDH (interface) reaches its minimum radius (red dashed line), the
corresponding location of the inner bounds of the interface (green
dashed line), would have, in fact, reached the same location as that
of a standard RP equation. So, in both the standard and modified
RP models, the maximum pressure attained inside the bubble is the
same, but since the interface thickness is not the same the bubble
radius ends up being different.

It must be noted that the interface thickness is analytically
computed from the initial condition of initial interface thickness
and the density sequence (functionality). Hence, in the case of a
numerical simulation various fluid and flow properties do no need
to be resolved across the interface thickness.

If, in addition to mass conservation, we were to include the
momentum conservation of the interface as well, the new RP
equation would be (Equation 48).

2y Me=my o OMg=p) p Apu)*  2(pun)’

pb_poo:R—0+4y Ig +R, o _E”(ﬁRz)Jr py + R,
2

(48)

This is outside of the scope of this paper and will be explored in
detail in a future work.

It is asserted that the actual physical front is a diffused region
with three dimensions and a finite thickness. Within this region,
fluid and flow parameters exhibit sharp but continuous variations
across its width. It is important to note that the conventional
representation of a front as a hypersurface in continuum theory is a
limiting case of this diffused region. As a result, the authors propose
a systematic derivation of the dividing surface from the 3D bulk
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conservation equations that accurately describe this diffused region.
This generalized dividing surface is referred to as the extended
dividing hypersurface (EDH). The EDH equations are derived by
collapsing the dimension across the width of the diffused region,
mathematically achieved through integration along its width. This
mathematical treatment ensures that the EDH is kinematically and
dynamically equivalent to the diffused region, representing the real
physical front in its entirety.

6 Conclusion

Gibbs was the first to represent a phase interface by a dividing
surface, a mathematical surface that has its own material properties
and internal dynamics. In this paper, an alternative derivation of
Gibbs’ dividing surface is presented, which generalizes the concept
of a dividing surface to fluid fronts beyond those of a phase or
material interface. It is asserted that the actual physical front is
a diffused region with three dimensions and a finite thickness.
Within this region, fluid and flow parameters exhibit sharp but
continuous variations across its width. It is important to note that
the conventional representation of a front as a hypersurface in
continuum theory is a limiting case of this diffused region. As a
result, a systematic derivation of the governing equations describing
the dividing surface from the 3D bulk conservation equations is
proposed in this work. This generalized dividing surface is referred
to as the extended dividing hypersurface (EDH). The EDH equations
are derived by collapsing the dimension across the width of the
diffused region, mathematically achieved through integration along
its width. This mathematical treatment ensures that the EDH is
kinematically and dynamically equivalent to the diffused region,
representing the real physical front in its entirety.

To demonstrate the validity of the EDH model and its
generalization, the four canonical problems involving fluid fronts
are considered. These problems are (1) stationary fluid with varying
miscibility, (2) stratified flow through a converging-diverging
section, (3) the shock tube problem, (4) the vortex entrainment
sheet, and (5) unsteady bubble dynamics. The selected example
problems in this study serve four main purposes within the
context of the extended dividing hypersurface (EDH): Firstly, they
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demonstrate that the EDH can accurately capture the dynamics of
not only phase or material interfaces, but also other types of fluid and
flow fronts. This highlights the versatility of the EDH in representing
a wide range of dynamic phenomena. Secondly, the problems
emphasize that the distribution of monotonicity within a front, as
commonly described in existing literature, is just one of several
possible functionalities that the EDH can effectively represent. This
implies that the EDH can offer alternative representations of fluid
fronts that may differ from the conventional understanding of
monotonicity distribution. Thirdly, the selected problems illustrate
the relationship between the flux of m-dimensional quantities and
the (m-1)-dimensional quantities, known as hypersurface quantities.
This highlights how the coupling between these quantities can
lead to hypersurface dilatation, even in incompressible hypersurface
flows. This thereby reveals a counterintuitive aspect of hypersurface
dynamics. Finally, these problems highlight the importance of
recognizing the mass of the front and its influence on the dynamics
of the front and the adjacent bulk media. By capturing the
dynamics of the front, the EDH model provides a comprehensive
understanding of the system under consideration.

In conclusion, this study establishes the framework for
extending Gibbs’ dividing surface by systematically deriving the
governing equations. This allows the extension of the dividing
surface concept, referred to here as the extended dividing
hypersurface (EDH). It demonstrates the capability of the extended
dividing hypersurface (EDH) to accurately represent various
fluid and flow fronts beyond traditional interfaces. Through the
examination of canonical problems, the authors validate the EDH
model and its generalization, contributing valuable insights into its
ability to capture the dynamics of the front and the surrounding
bulk fluid.
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