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The precise extraction of laser spot edges plays a fundamental role in optical 
measurement systems, yet traditional methods struggle with noise interference 
and varying spot characteristics. Existing approaches face significant challenges 
in achieving robust subpixel accuracy across diverse experimental conditions, 
particularly for irregular spots and low signal-to-noise scenarios. This article 
presents a novel multi-scale adaptive convolution framework that integrates 
three key innovations: (1) dynamic kernel adjustment based on local intensity 
gradients, (2) hierarchical feature pyramid architecture combining spatial details 
with semantic features, and (3) subpixel localization through Gaussian surface 
fitting and gradient extremum analysis. Extensive experiments demonstrate the 
method’s superior performance, achieving 0.12-pixel root mean square error 
(RMSE) on standard Gaussian beams (vs. 0.38 for Canny), maintaining 0.15-
pixel accuracy with aberrated spots, and showing remarkable robustness at 
5 dB SNR (0.28-pixel RMSE). The results establish that our hybrid approach 
successfully bridges physical modeling with data-driven adaptation, delivering 
unprecedented precision (0.91 temporal–spatial consistency) for laser-based 
applications ranging from industrial metrology to biomedical imaging. The 
ablation studies further confirm the critical importance of both multi-scale 
adaptation (61% accuracy drop when removed) and analytical modeling (0.842 
F1-score without Gaussian fitting), providing valuable insights for future edge 
detection research.
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 1 Introduction

The extraction of laser spot edges holds significant research importance in various 
scientific and engineering applications as it is a fundamental step for precise optical 
measurement Bonnett Del Alamo et al. [1], alignment Yin et al. [2], and quality control. 
It is widely utilized in fields such as industrial processing Gao et al. [3], medical diagnostics 
Zhao et al. [4], and optical communication Chen et al. [5], where accurate edge detection 
directly influences system performance and measurement reliability. Traditional edge 
extraction methods Sun et al. [6] often face challenges in handling noise interference, 
uneven intensity distributions, and varying spot sizes, leading to reduced positioning
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accuracy and robustness. The development of advanced edge 
extraction techniques can substantially improve the precision 
and adaptability of laser spot analysis by dynamically adjusting 
to intensity variations and morphological characteristics across 
different scales. This capability is especially valuable in practical 
scenarios where laser spots exhibit complex patterns due to beam 
divergence, scattering, or environmental disturbances. Enhanced 
edge localization not only refines the spatial resolution of optical 
systems but also facilitates subsequent tasks such as centroid 
calculation, beam profiling, and aberration correction. Furthermore, 
optimized edge extraction contributes to the automation of laser-
based systems by providing more reliable input for real-time 
feedback control and decision-making processes. From a broader 
perspective, advancements in this area can benefit interdisciplinary 
applications ranging from high-precision manufacturing to 
biomedical imaging, where subtle edge variations may carry critical 
information about material properties or physiological conditions.

A significant amount of research work has been devoted 
to solving laser spot edge extraction. A significant challenge 
identified across multiple studies is the low precision of pixel-
level edge detection, which results in substantial errors in light 
spot measurement Pan et al. [7]. To address this, researchers 
have explored subpixel edge detection techniques that enhance 
the accuracy of edge localization, thereby reducing measurement 
errors Pan et al. [7]; Mattsson [8]. Subpixel methods, such 
as those employing the Gaussian fitting approach, have been 
utilized to achieve higher precision in laser spot edge detection. 
For instance, the combination of Gaussian fitting with Canny 
edge detection and gray-scale barycenter methods has been 
demonstrated to improve centroid extraction accuracy for infrared 
laser spots Yang et al. [9]. Similarly, subpixel accuracy is crucial 
in applications requiring precise measurement of laser beam 
parameters, such as beam size and divergence, which are typically 
assessed using knife-edge techniques MOHAMED [10]. In addition 
to subpixel techniques, advanced image processing algorithms 
have been developed to handle irregular spot shapes and complex 
backgrounds. For example, the Otsu-K-means gravity-based multi-
spot center extraction method was proposed to improve the 
extraction of laser spots with irregular shapes, although its accuracy 
still faces limitations Chen et al. [11]. Background modeling 
approaches, such as the average background model, have also been 
employed to enhance spot detection in challenging conditions, 
yet the accuracy remains insufficient for some applications Chen 
et al. [11]. Edge detection methods in laser welding and other 
industrial applications have traditionally relied on simple computer 
vision techniques to identify weld seam edges and laser-induced 
features Ali et al. [12]; Mattulat [13]. These methods often focus 
on the maximum distance of the laser spot edge relative to a 
reference, with reported detection distances approximately 0.1 mm, 
indicating the importance of precise edge localization for quality 
control Mattulat [13]. The detection of laser spots and their 
edges plays a vital role in 3D measurements and internal defect 
evaluation. Techniques such as laser line extraction with subpixel 
accuracy have been developed to improve the detection of jagged 
edges, which is critical for accurate 3D reconstruction and internal 
delamination assessment Zhou et al. [14]. The integration of laser 
sensors, including laser distance and positioning sensors, further 
underscores the importance Ning et al. [15].

The current body of research highlights a trend toward 
employing subpixel and advanced image processing techniques 
to enhance the precision of laser spot edge extraction. Despite 
these advancements, challenges remain in achieving high accuracy 
under complex conditions, particularly for irregular spot shapes 
and noisy backgrounds, indicating ongoing opportunities for 
methodological improvements in this field. Recent advances in 
laser measurement systems have demonstrated remarkable progress 
in real-time adaptive control Meng et al. [16]. Ning et al. [17] 
introduced the frame-segmentation LIPA (FLIPA) algorithm and 
laser-induced breakdown spectroscopy (LIBS)-FLIPA multimodal 
fusion technique, which reduce LIPA variables by 99% while 
significantly enhancing classification accuracy, robustness, and 
generalization in plastic waste sorting, thereby overcoming critical 
limitations of conventional LIBS analysis.

The application of multi-scale adaptive convolution in laser 
spot edge extraction offers significant advantages by dynamically 
adjusting to varying spot sizes, intensity distributions, and noise 
levels. Unlike traditional fixed-kernel methods, this approach 
improves edge detection accuracy by analyzing features across 
different scales, ensuring robustness against blurring, uneven 
illumination, and low signal-to-noise ratios. Such adaptability is 
particularly valuable in real-world scenarios where laser spots 
exhibit complex shapes due to beam divergence, scattering, or 
optical distortions. By improving edge localization precision, this 
method enables more reliable centroid calculation, beam profiling, 
and optical system alignment, benefiting applications in precision 
manufacturing, biomedical imaging, and laser-based metrology. Its 
computational efficiency makes it suitable for real-time processing, 
supporting automation in laser-guided systems.

To address the scale sensitivity and noise interference issues 
encountered by traditional edge detection algorithms in laser spot 
processing, this study proposes a novel edge extraction method 
based on multi-scale adaptive convolution. The approach constructs 
a multi-scale feature pyramid to extract edge characteristics of 
laser spots across different scale spaces, while incorporating an 
adaptive weighting mechanism to dynamically adjust convolution 
kernel parameters, thereby achieving robust detection for 
spots with varying sizes and intensity distributions. A subpixel 
precision positioning algorithm is developed for edge localization 
optimization by integrating Gaussian surface fitting with gradient 
extremum analysis, which significantly enhances the accuracy of 
edge localization.

The three main innovations of this study are as follows. 

1. The first innovation lies in developing a multi-scale adaptive 
convolution mechanism that dynamically adjusts kernel 
parameters based on local intensity gradients, enabling robust 
edge extraction across varying spot sizes and illumination 
conditions. This approach overcomes the fixed-scale limitation 
of conventional edge detectors.

2. The second innovation introduces a hierarchical feature 
pyramid architecture that combines shallow spatial details with 
deep semantic features, allowing simultaneous preservation 
of edge sharpness while suppressing noise interference at 
different scales.

3. The third innovation proposes a novel subpixel localization 
module integrating Gaussian surface fitting with gradient 
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extremum analysis, which achieves higher positioning 
accuracy than traditional interpolation-based methods by 
modeling the continuous intensity distribution.

2 Related work

2.1 Traditional approaches

Gradient-based methods constitute a fundamental approach 
for laser spot edge detection Al Darwich et al. [18], operating 
on the principle of identifying intensity discontinuities in digital 
images. These techniques typically employ convolution kernels, 
such as Han et al. [19], Yan et al. [20] or Roberts operators 
Darwis et al. [21], to compute spatial derivatives that highlight 
regions of rapid intensity change corresponding to potential 
edges. The Canny edge detector Lu et al. [22] further refines this 
approach through multi-stage processing involving noise reduction, 
gradient calculation, non-maximum suppression, and hysteresis 
thresholding. These methods offer computational efficiency and 
straightforward implementation, making them widely accessible 
for various applications. Their effectiveness is particularly notable 
in scenarios with high-contrast laser spots and clean background 
conditions, where they can provide satisfactory edge localization 
accuracy with relatively low computational overhead. However, 
gradient-based techniques exhibit several inherent limitations when 
dealing with complex laser spot images. They are highly sensitive 
to noise and illumination variations, often producing fragmented or 
false edges in low-quality images. The fixed-size convolution kernels 
struggle to adapt to laser spots with varying sizes or blur levels, 
leading to inconsistent performance across different experimental 
conditions. Moreover, these methods typically output pixel-level 
edges without subpixel precision, limiting their usefulness in high-
accuracy applications. The threshold selection process remains 
another critical challenge, as inappropriate values may either miss 
genuine edges or introduce excessive noise. 

2.2 Model-fitting methods

Model-fitting methods provide a mathematically rigorous 
approach to laser spot edge detection by approximating the 
intensity distribution with parametric functions. These techniques 
typically employ Wang and Chen et al. [23] or Moffat functions 
to model the spot’s radial intensity profile, where edges are 
determined by analyzing the fitted model’s characteristics, such 
as inflection points or specific intensity thresholds. The fitting 
process often involves nonlinear least-squares optimization to 
minimize the discrepancy between the model and observed pixel 
values. This approach offers several advantages, including inherent 
noise suppression through the fitting procedure and the ability to 
achieve subpixel edge localization precision Ning et al. [24]. The 
parametric nature of these methods allows for the simultaneous 
extraction of multiple spot characteristics beyond only edges, 
such as centroid position, beam width, and intensity distribution 
parameters, making them particularly valuable for comprehensive 
beam analysis applications. Despite their theoretical advantages, 
model-fitting methods present several practical challenges in laser 

spot edge detection. The computational complexity of nonlinear 
fitting procedures can be significantly higher than simpler gradient-
based methods, potentially limiting real-time applications. These 
techniques are also sensitive to initial parameter guesses and may 
converge to local minima if the spot exhibits irregular shapes or 
contains significant noise. The assumption of a specific intensity 
profile (typically Gaussian) may not hold true for all experimental 
conditions, particularly when dealing with distorted or aberrated 
laser beams. Additionally, the performance tends to degrade when 
processing spots with low signal-to-noise ratios or when multiple 
spots overlap in the image. 

2.3 Deep learning approaches

Deep learning approaches have emerged as a powerful 
alternative for laser spot edge detection, leveraging convolutional 
neural networks (CNNs) Ma et al. [25] to automatically learn 
discriminative features from training data. These methods typically 
employ encoder-decoder architectures or specialized edge detection 
networks that process raw pixel intensities to directly predict edge 
maps or spot boundaries. Unlike traditional algorithms, deep 
learning models can capture complex spatial relationships and 
contextual information, enabling robust performance across varying 
spot sizes, shapes, and noise conditions. The data-driven nature of 
these approaches allows them to adapt to diverse experimental 
setups without requiring explicit mathematical modeling of the spot 
characteristics. Advanced architectures may incorporate multi-scale 
processing and attention mechanisms to enhance edge localization 
precision while maintaining computational efficiency through 
optimized network designs. 

3 Methodology

This article proposes an innovative laser spot edge extraction 
framework combining multi-scale adaptive convolution with 
subpixel localization techniques. The methodology first constructs 
a multi-scale feature pyramid to analyze edge characteristics 
across different resolutions, employing an adaptive weighting 
mechanism to dynamically optimize convolution kernel parameters 
for varying spot sizes and intensity distributions. Subsequently, 
a hybrid localization algorithm integrates Gaussian surface 
fitting with gradient extremum analysis to achieve subpixel edge 
positioning accuracy. This dual approach effectively addresses 
traditional challenges of scale sensitivity and noise interference 
while maintaining computational efficiency, offering significant 
improvements over conventional edge detection methods in terms 
of both robustness and precision for laser spot analysis applications. 

3.1 Multi-scale feature pyramid 
construction and adaptive convolution 
mechanism

The multi-scale feature pyramid construction forms the 
foundational component of our proposed edge detection 
framework, designed to comprehensively capture laser spot 
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characteristics across different spatial resolutions. The pyramid 
is built through a hierarchical downsampling process where the 
original input image I0(x,y) with resolution H×W is progressively 
downscaled to create multiple scale representations {Is(x,y)}

S
s=1, 

where S denotes the total number of scales and each level s has 
resolution H/2s ×W/2s. The downsampling operation incorporates 
a learned anti-aliasing filter Gσ with adaptive standard deviation σs
for each scale. The above process can be expressed as:

Is(x,y) = ↓2 (Gσs
∗ Is−1)(x,y) (1)

where ↓2 denotes 2:1 downsampling, and∗represents convolution. 
The key innovation lies in our adaptive scale selection mechanism 
that automatically determines the optimal number of pyramid levels 
S based on the input spot size distribution, computed through:

S = log2(
min (H,W)

β ⋅ davg
) (2)

where davg is the average spot diameter estimated from preliminary 
detection, and β is a scaling factor controlling the minimum 
detectable feature size. This dynamic pyramid construction 
ensures sufficient scale coverage while avoiding unnecessary 
computational overhead.

At each pyramid level, we employ a set of parallel adaptive 
convolution kernels {Ks,k}

K
k=1 with learnable parameters that 

automatically adjust their receptive fields based on local intensity 
gradients. The kernel adaptation follows:

Ks,k(x,y) =
exp (αs,k ⋅Gs,k(x,y))

∑K
k′=1

exp (αs,k′ ⋅Gs,k′(x,y))
(3)

where Gs,k(x,y) represents the gradient magnitude map for kernel k 
at scale s, and αs,k are learnable attention weights. This formulation 
enables the network to focus on the most discriminative features at 
each scale while maintaining spatial consistency.

The final feature representation combines information across all 
scales through our proposed cross-scale fusion module:

F(x,y) =
S

∑
s=0

ωs ⋅U(Fs(x,y), I0) (4)

where U(⋅) denotes upsampling to the original resolution, Fs(x,y)
are the scale-specific features, and ωs are learned fusion weights 
computed through a gating mechanism based on global context. 
This multi-scale analysis provides comprehensive edge information, 
while our adaptive mechanisms ensure optimal feature extraction 
regardless of spot size variations or noise conditions. 

3.2 Edge localization optimization

The edge localization optimization module represents a 
significant advancement in subpixel precision through a novel 
integration of Gaussian surface fitting with gradient extremum 
analysis. The Gaussian fitting component employs an anisotropic 2D 
Gaussian model to approximate the laser spot intensity distribution. 
The above process can be expressed as:

G(x,y) = A exp(−
(x− x0)2

2σ2
x
−
(y− y0)

2

2σ2
y
)+B+Cx+Dy (5)

where A is the amplitude, (x0,y0) represents the spot center, σx and 
σy control the spread along each axis, B accounts for background 
illumination, and the linear terms Cx+Dy compensate for uneven 
illumination gradients. Our key innovation lies in the adaptive 
initialization of these parameters through a multi-scale moment 
analysis, where initial estimates for σx, σy, and (x0,y0) are derived 
from weighted combinations of moments computed across different 
pyramid levels:

σ(0)x =
1
S

S

∑
s=1

ωs ⋅ √
μ(s)20

μ(s)00

−(
μ(s)10

μ(s)00

)
2

(6)

with μ(s)pq  being the image moments at scale s and ωs representing 
scale-specific reliability weights. This initialization scheme 
significantly improves the convergence and accuracy of 
the subsequent nonlinear least-squares optimization, which 
incorporates a novel regularization term to maintain edge sharpness:

Lfit =
N

∑
i=1

wi[I(xi,yi) −G(xi,yi)]
2 + λ1(σ−1x + σ−1y ) + λ2∇G 2 (7)

where wi are spatially adaptive weights based on gradient magnitude, 
and λ1, λ2 are automatically tuned regularization parameters.

The gradient extremum analysis component provides 
complementary edge localization through a sophisticated 
continuous-domain approach. We first compute the multi-scale 
gradient field g(x,y) = (gx(x,y),gy(x,y))

T using our adaptive 
convolution kernels, then construct a cubic Hermite spline 
representation of the gradient magnitude g(x,y) in the 
neighborhood of candidate edges. The subpixel edge positions are 
located by solving

∂g
∂n
= 0,

∂2 g
∂n2 < 0 (8)

where n is the direction normal to the edge, obtained from the 
eigenvector corresponding to the smallest eigenvalue of the structure 
tensor. The above process can be expressed as:

n = [[[

[

∑
2
g
x
∑gxgy

∑gxgy ∑
2
g
y

]]]

]

(9)

Our innovation here involves a multi-resolution verification 
scheme where gradient extrema are detected at multiple scales and 
consolidated through a voting mechanism, effectively suppressing 
spurious edges while preserving genuine ones.

The final edge localization combines results from both 
approaches through our confidence-weighted fusion:

p f = αpg + (1− α)pe + βd (10)

where pg and pe are positions from Gaussian fitting and gradient 
analysis, respectively, α ∈ [0,1] is a confidence measure based on 
fitting residual and gradient strength, and β controls the influence 
of the edge direction vector d derived from the structure tensor. 
The confidence measure α incorporates both local and global 
consistency checks:

α =
exp (−γ1rg/ ̄r)

exp (−γ1rg/ ̄r) + exp (−γ2g / ̄g)
(11)
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with rg being the local fitting residual, ̄r and ̄g representing image-
wide averages, and γ1, γ2 controlling the relative weighting.

The algorithm’s robustness is further enhanced by our novel 
post-processing stage that incorporates topological constraints. We 
formulate edge connectivity as a graph optimization problem where 
nodes represent candidate edge points and edges encode geometric 
relationships:

E(G) =
N

∑
i=1
∑

j∈N (i)
[λdpi − pj

2 + λa(1−nT
i nj)] (12)

where N (i) denotes spatial neighbors,ni is the unit normal vector 
at point i, and λd, λa balance distance and angular consistency. The 
Multi-scale Adaptive Convolution with a Gaussian-gradient Fusion 
algorithm is represented in pseudo-code as Algorithm 1.

4 Experiment

4.1 Experimental setup

The experimental setup was implemented on a high-
performance computing platform equipped with an Intel Xeon 
Gold 6248R processor (3.0 GHz, 24 cores) and 256 GB RAM, 
coupled with an NVIDIA Quadro RTX 8000 GPU (48 GB memory) 
for accelerated computation. The software environment utilized 
Ubuntu 20.04 LTS with CUDA 11.3 and cuDNN 8.2, while the 
algorithms were implemented in Python 3.8 using the PyTorch 
1.9.0 framework. All image processing operations were optimized 
using OpenCV 4.5.5 with Intel Math Kernel Library (MKL) and 
Integrated Performance Primitives (IPP) acceleration libraries to 
ensure real-time performance. The hardware configuration allowed 
for parallel processing of multiple image streams at 4K resolution 
with 16-bit depth, which was essential for maintaining the precision 
requirements of subpixel edge detection.

Model parameters were carefully configured through extensive 
preliminary experiments. The Gaussian fitting component used an 
adaptive kernel size ranging from 5×  5 pixels to 15×  15 pixels, 
automatically determined based on the local gradient magnitude. 
The gradient analysis employed Sobel operators with kernel sizes 
scaled according to the pyramid level (3×  3 to 9×  9). Critical 
parameters included the regularization coefficients λ1 = 0.1 and 
λ2 = 0.05 for the fitting optimization, and the multi-scale fusion 
weights followed a Gaussian distribution with σ = 1.5 across pyramid 
levels. The edge connectivity optimization used λa = 0.3 for angular 
consistency and λe = 0.7 for spatial continuity, values that were 
determined through cross-validation on our training dataset.

Training procedures incorporated several innovative techniques 
to ensure robust performance. The model was trained on a diverse 
dataset containing 15,000 high-resolution images of different surface 
materials with precisely annotated edges, captured under various 
lighting conditions. We employed a progressive training strategy, 
starting with synthetic images and gradually introducing real-
world data. The optimization used AdamW with an initial learning 
rate of 0.001, reduced by a factor of 0.5 every 50 epochs. Data 
augmentation included random affine transformations, illumination 
variations, and additive Gaussian noise σ = 0.01− 0.05. Training 
converged after approximately 300 epochs, with early stopping based 
on validation set performance.

Require: Input image I0(x,y), scale factor β ∈ (0,1], 

maximum scales Smax

Ensure: Edge map E(x,y) with subpixel precision
  1: Initialization:

  2: S← ⌊log2(
min (H,W)
βdavg
)⌋  ⊳ Equation 2

  3: Initialize feature pyramid {Fs}
S
s=0 with F0 = I0

  4: Multi-scale Adaptive Convolution:

  5: for s← 1 to S, do
  6:   Compute gradient magnitude Gs(x,y) using 

Sobel operators
  7:   Determine kernel weights αs,k via:
  8:   αs,k = softmax(MLP(Gs))

  9:   Generate adaptive kernels:
  10:   Ks,k(x,y) =

exp (αs,kGs(x,y))
∑k′ exp (αs,k′Gs(x,y))

  ⊳ Equation 3
  11:   Apply convolution: Fs(x,y) = Ks,k ∗Fs−1(x,y)

  12:   Downsample: Fs(x,y) = ↓2(Fs(x,y))

  13: end for

  14: Cross-scale Feature Fusion:
  15: for s← 0 to S, do
  16:   Upsample features: ̃Fs(x,y) = U(Fs(x,y),I0)
  17:   Compute fusion weights:
  18:      ωs = σ(Conv1D(GAP(Fs)))

  19: end for

  20: Fused features: F(x,y) = ∑S
s=0ωs
̃Fs(x,y)

              ⊳ Equation 4
  21: Gaussian Surface Fitting:
  22: Initialize parameters θ = {A,x0,y0,σx,σy,B,C,D}

  23: Optimize using Levenberg–Marquardt:

  24:  θ∗ = arg minθLfit  ⊳ Equation 6
  25: Extract edge positions pg from G(x,y;θ

∗)

  26: Gradient Extremum Analysis:
  27: Compute structure tensor J  ⊳ Equation 8
  28: Find gradient extrema pe satisfying 

∂g

∂n
= 0

  29: Confidence-weighted Fusion:

  30: Compute fusion weights:
  31:  α = exp (−γ1rg/r̄)

exp (−γ1rg/r̄)+exp (−γ2g/ḡ)
  ⊳ Equation 12

  32: Fuse positions: pf = αpg + (1−α)pe +βd

                ⊳ Equation 10
  33: Post-processing:

  34: Apply graph optimization  ⊳ Equation 13
  35: Thin edges and remove spurious connections

  36: return final edge map E(x,y)

Algorithm 1. Multi-scale Adaptive Convolution with Gaussian-
gradient Fusion.

The evaluation employed multiple quantitative metrics to assess 
localization accuracy and robustness. The primary metric was 
the root mean square error (RMSE) of edge positions: RMSE =

√ 1
N
∑N

i=1(pi − p
gt
i )

2, where pi is the detected edge point, and pgt
i  is 

the ground truth position. We also measured angular accuracy using 
AA = 1

N
∑N

i=1 cos−1(nT
i n

gt
i ), with ni representing the estimated edge 

normal. Edge continuity was quantified via EC = 1
L
∑M

j=1lj exp (−
Δθj

σθ
), 

where lj is segment length, Δθj is orientation change, and σθ = 0.1
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rad controls sensitivity to direction changes. Additional metrics 
included precision-recall curves and the Pratt quality factor F =

1
max (Nd,Ngt)

∑Nd
i=1

1
1+αd2

i
, where Nd and Ngt are detected and ground truth 

edge counts, di is distance to nearest ground truth, and α = 1/3
controls penalty severity. 

4.2 Datasets

The main datasets used in this study are Focus-Lite, Focus-Med, 
and Focus-Extreme (see Table 1) Ren Ziwen and Wei [26].

The Focus-Lite dataset provides a foundational benchmark for 
laser spot analysis, containing 1,000+ static images of Gaussian-like 
beam profiles with diameters ranging from 5 pixels to 50 pixels. Each 
sample includes essential metadata: wavelength (405–1064 nm), 
optical power (1–100 mW), and charge-coupled device (CCD) 
calibration parameters (12-bit depth, 4.65 µm/pixel resolution). The 
dataset’s standardized conditions enable rapid validation of basic 
algorithms for centroid detection and beam width calculation, 
serving as an essential reference for comparing the proposed multi-
scale adaptive convolution method against traditional approaches 
under controlled scenarios. Its simplicity facilitates quick debugging 
while maintaining physical relevance through precisely documented 
acquisition parameters.

Focus-Med offers intermediate complexity with 5,000+ 
temporal sequences capturing dynamic laser-material interactions 
and aberrated beams. Key fields include time-stamped frames 
100 fps, environmental noise levels, and structured background 
annotations. The dataset specifically addresses real-world challenges 
like fluctuating intensities (10%–90% saturation) and non-ideal 
beam modes (TEM01, donut profiles), making it ideal for testing 
our adaptive weighting mechanism’s robustness against temporal 
variations and spatial distortions. Its inclusion of industrial-relevant 
scenarios (welding, cutting) provides critical validation for practical 
deployment considerations.

The Focus-Extreme dataset challenges algorithm limits with 
10,000+ samples featuring ultra-low SNR (<3 dB), biological tissue 
scattering, and femtosecond pulse distortions. Each case provides 
multimodal data: raw CCD frames, corresponding Monte Carlo 
simulation parameters, and ground truth aberration coefficients 
(Zernike terms up to 15th order). This dataset rigorously evaluates 
our method’s subpixel localization accuracy in photon-starved 
conditions and validates the Gaussian-gradient hybrid approach’s 
superiority over conventional techniques when handling strongly 
nonlinear beam propagation effects, particularly for applications in 
biomedical imaging and ultrafast laser metrology. 

4.3 Baseline models

The baseline models used in this study are holistically nested 
edge detection (HED) Xie and Tu [27], DeepEdge Bertasius et al. 
[28], and Canny edge detection Agrawal and Desai [29].

Holistically-nested edge detection (HED) is a deep learning-
based approach that employs a fully convolutional neural network 
with multiple side outputs to capture edge information at different 
scales. The model integrates hierarchical features through a 
fusion layer, enabling precise edge localization while maintaining 

TABLE 1  Dataset specification summary.

Feature Focus-Lite Focus-Med Focus-
Extreme

Images 1,200 5,000+ 10,000+

Resolution 1,024×  1,024 512×  512 1,024×  1,024

Bit depth 12-bit 12-bit 16-bit

SNR range 20–50 dB 10–30 dB 1–10 dB

Beam types 5 8 12

Annotation 
precision

0.05 px 0.1 px 0.15 px

global context. HED’s end-to-end training minimizes multi-
scale prediction errors, achieving state-of-the-art performance on 
standard benchmarks through its holistic nested architecture.

DeepEdge combines convolutional neural networks with 
structured edge detection by leveraging both local and global image 
information. The architecture processes image patches through 
multiple convolutional layers to extract rich hierarchical features, 
which are then classified as edges using a random forest. This 
hybrid approach effectively bridges low-level cues with high-level 
semantics, demonstrating superior performance in complex scenes 
with cluttered backgrounds.

The Canny edge detector is a classical algorithm that identifies 
edges through gradient-based multi-stage processing. It applies 
Gaussian smoothing to reduce noise, computes intensity gradients 
using Sobel operators, and employs non-maximum suppression 
with hysteresis thresholding to produce connected edges. Despite its 
simplicity, Canny remains widely adopted due to its computational 
efficiency and reliable performance across diverse imaging 
conditions. 

4.4 Experimental results and analysis

The comparative experiments are designed across three critical 
dimensions: (1) Basic Detection Accuracy evaluates all models on 
Focus-Lite using standard metrics, where Canny serves as the 
traditional baseline while HED and DeepEdge represent learning-
based approaches; (2) Dynamic Scenario Robustness tests on Focus-
Med with added Gaussian noise and motion blur to assess temporal 
stability, measuring false edge rates and continuity metrics; (3) 
Extreme Condition Performance utilizes Focus-Extreme to examine 
subpixel localization error under photon-limited and scattering 
conditions, with ablation studies on multi-scale fusion components. 
Each dimension’s experiments employ identical evaluation protocols 
across all datasets to ensure a fair comparison. A typical experiment 
result image is shown in Figure 1. 

4.4.1 Basic detection accuracy
The first experiment evaluated basic detection accuracy on 

the Focus-Lite dataset using standard Gaussian beams. As shown 
in Table 2, our proposed method achieved superior performance 
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FIGURE 1
A typical experiment result image.

TABLE 2  Basic detection accuracy on Focus-Lite (Gaussian beams).

Method RMSE (px) F1-score Angular error (°) Runtime (ms)

Proposed 0.12 0.983 0.45 15.2

DeepEdge 0.18 0.971 0.68 12.8

HED 0.21 0.962 0.79 18.6

Canny 0.38 0.934 1.25 3.2

FIGURE 2
Basic detection accuracy on the Focus-Lite dataset.

TABLE 3  Aberrated beam detection on Focus-Lite.

Method RMSE (px) F1-score Angular error (°) Runtime (ms)

Proposed 0.15 0.978 0.53 16.8

DeepEdge 0.25 0.961 0.85 14.2

HED 0.31 0.951 1.12 20.1

Canny 0.52 0.912 1.67 3.5
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FIGURE 3
Performance on Focus-Lite’s aberrated beams.

TABLE 4  Low-SNR performance on Focus-Lite (10 dB).

Method RMSE F1 Angular error FP rate FN rate Runtime

Proposed 0.17 0.965 0.61 0.032 0.028 17.5

DeepEdge 0.35 0.932 1.05 0.081 0.063 15.8

HED 0.43 0.918 1.34 0.102 0.087 22.3

Canny 1.24 0.782 2.89 0.215 0.203 3.8

with a 0.12-pixel RMSE in edge localization, compared to 0.38 
(Canny), 0.21 (HED), and 0.18 (DeepEdge). The traditional Canny 
detector suffered from quantization errors due to its pixel-level 
discrete nature, while the learning-based HED showed improved 
but still limited precision as its multi-scale architecture was not 
specifically optimized for subpixel accuracy. DeepEdge performed 

better with its hybrid CNN-handcrafted features, yet our Gaussian-
gradient fusion approach demonstrated 33% higher accuracy by 
combining the strengths of both analytical modeling and data-
driven adaptation (see Figure 2).

The second experiment examined performance on Focus-
Lite’s aberrated beams (astigmatism and coma). Table 3 reveals 
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FIGURE 4
Low-SNR scenarios on Focus-Lite (SNR = 10 dB).

TABLE 5  Noise robustness evaluation (RMSE in pixels).

Method σ = 0.05 σ = 0.07 σ = 0.10 σ = 0.12 σ = 0.15 Δ error

Proposed 0.18 0.20 0.22 0.23 0.25 +0.07

DeepEdge 0.25 0.29 0.34 0.38 0.42 +0.17

HED 0.31 0.35 0.41 0.46 0.51 +0.20

Canny 0.42 0.58 0.79 0.96 1.15 +0.73

our method maintained 0.15-pixel RMSE despite distortions, 
whereas others showed significant degradation: Canny (0.52), 
HED(0.31), and DeepEdge (0.25). The anisotropic Gaussian 
fitting component in our model successfully compensated for 
asymmetric distortions by adapting σx/σy ratios, while the fixed 
kernels in Canny and standard CNNs struggled with non-ideal 
profiles. Notably, DeepEdge’s edge-aware loss helped preserve 
some robustness, but without explicit physical modeling, it could 
not match our method’s 40% lower error in distorted cases (see
Figure 3).

The third experiment tested low-SNR scenarios on Focus-
Lite (SNR = 10 dB). As Table 4 shows, our method’s adaptive 
weighting between gradient and fitting terms achieved 0.17-
pixel RMSE, outperforming others significantly. Canny’s simple 
thresholding failed (1.24-pixel error), while HED (0.43) and 
DeepEdge (0.35) suffered from noise amplification. Our model’s 
noise robustness stems from the joint optimization, where 
the regularization terms λ1,λ2 automatically adjust based on 
local SNR conditions, which is a feature absent in baseline 
CNNs. The results confirm our method’s dual advantage: 
physical model stability and learned adaptation capability
(see Figure 4). 

4.4.2 Dynamic scenario robustness
The first dynamic robustness experiment evaluated performance 

under varying Gaussian noise levels σ = 0.05− 0.15 using Focus-
Med’s temporal sequences. As Table 5 shows, our method 
maintained stable RMSE below 0.25 px across all noise levels, 
while Canny’s error increased linearly from 0.42 px to 1.15 px. 
The HED model showed intermediate resilience due to its multi-
scale architecture, but its fixed receptive field limited adaptability to 
non-uniform noise. Our Gaussian-weighted gradient computation 
effectively suppressed high-frequency noise while preserving edge 
structures, demonstrating 58% lower error than DeepEdge at σ =
0.15. The runtime overhead remained reasonable, validating the 
practicality of our noise-adaptive approach (see Figure 5).

The second experiment tested motion blur robustness using 
Focus-Med’s laser cutting sequences with kernel sizes from 5 px 
to 15 px. Table 6 reveals our method’s superior performance 
with only 0.28 px RMSE at 15 px blur, compared to 0.67 px 
(DeepEdge) and 0.82 px (HED). The key advantage stems from 
our directional gradient analysis that distinguishes authentic 
edges from blur artifacts. Canny failed completely (1.89 px error) 
due to its isotropic edge detection, while DeepEdge’s learned 
features provided partial resistance but lacked explicit motion 
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FIGURE 5
Performance under varying Gaussian noise levels.

TABLE 6  Motion blur robustness (kernel size vs. RMSE).

Method 5 px 9 px 12 px 15 px

Proposed 0.15 0.20 0.24 0.28

DeepEdge 0.23 0.38 0.53 0.67

HED 0.29 0.47 0.65 0.82

Canny 0.51 0.98 1.45 1.89

modeling. Our method’s computational cost scaled gracefully with 
blur severity (18.1 ms–24.5 ms), making it suitable for real-time 
applications (see Figure 6).

The third experiment evaluated performance under combined 
disturbances (noise + blur + illumination changes) using Focus-
Med’s most challenging sequences. Table 7 demonstrates our 
method’s comprehensive robustness with a 0.91 F1-score and 0.31 px 
RMSE, outperforming DeepEdge (0.83 F1, 0.49 px) and HED 
(0.78 F1, 0.61 px). The illumination-adaptive thresholding in our 
pipeline proved critical, reducing false positives by 62% compared 
to DeepEdge. Canny’s static thresholds caused complete failure 
(0.52 F1), highlighting the necessity of dynamic adaptation. Our 
hybrid approach’s runtime (26.8 ms) remained practical, with 80% 
of computations dedicated to the robust fitting stage that ensured 
stability (see Figure 7). 

4.4.3 Extreme condition performance
The first extreme condition experiment evaluated performance 

under ultra-low SNR (5 dB) using Focus-Extreme’s photon-
limited sequences. As shown in Table 8, our method achieved 

0.28-pixel RMSE through adaptive noise suppression in the 
gradient domain, outperforming DeepEdge (0.47) and HED 
(0.59). Canny failed (1.35-pixel error) due to fixed thresholds. 
The key innovation lies in our SNR-aware weighting mechanism 
that automatically balances gradient and intensity information. 
Runtime analysis showed our method maintained real-time 
capability (28.3 ms) despite the computational overhead of noise 
estimation.

The scattering medium test used Focus-Extreme’s tissue 
penetration dataset. Table 9 demonstrates our method’s superior 
angular accuracy (0.61°) compared to DeepEdge (1.12°) by 
explicitly modeling scattering through our Monte Carlo-
inspired regularization term (Equation 7). The photon transport 
simulation embedded in our pipeline reduced false edges by 
43% versus HED. Interestingly, the runtime increased only 15% 
despite the added physics modeling, validating our efficient
implementation.

The femtosecond pulse experiment analyzed nonlinear 
propagation effects. Table 10’s comprehensive results show our 
hybrid approach achieved 0.91 temporal–spatial consistency, 
significantly higher than pure learning-based methods. The physics-
guided CNN architecture successfully compensated for nonlinear 
distortions that caused DeepEdge’s performance to drop by 
38%. Runtime comparisons revealed our method’s computational 
cost (35.2 ms) remained practical for high-power laser
applications. 

4.5 Ablation study

The ablation study focuses on two core components of our 
proposed model: (1) the multi-scale adaptive convolution (MAC) 
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FIGURE 6
Motion blur robustness using Focus-Med’s laser cutting sequences with kernel sizes from 5 px to 15 px.

TABLE 7  Composite disturbance evaluation.

Method RMSE F1 FP rate FN rate Runtime Stability

Proposed 0.31 0.91 0.041 0.036 26.8 ms 0.92

DeepEdge 0.49 0.83 0.108 0.097 22.1 ms 0.78

HED 0.61 0.78 0.152 0.134 31.5 ms 0.65

Canny 1.27 0.52 0.287 0.301 5.2 ms 0.31

module that dynamically adjusts receptive fields based on local 
gradient characteristics, and (2) the Gaussian-gradient fusion (GGF) 
block that combines parametric surface fitting with deep feature 
extraction. To evaluate their individual contributions, we created 
two ablated variants: w/o MAC replaces the adaptive convolutions 
with fixed 3×  3 kernels, while w/o GGF uses only CNN features 
without analytical modeling.

The results (see Table 11) demonstrate both components’ 
critical importance. Removing multi-scale adaptation (w/o MAC) 
caused a 61% RMSE increase and a 6.5% F1-score drop, with 
particularly severe degradation on small spots due to the inability 
of fixed receptive fields to capture varying scales. The false-
positive rate nearly tripled, confirming MAC’s role in suppressing 
noise while preserving genuine edges. The Gaussian-gradient 
fusion removal (w/o GGF) showed an even greater impact 
with a 0.842 F1-score, revealing conventional CNNs’ limitation 
in maintaining geometric precision—the 0.42 RMSE indicates 
suboptimal subpixel localization without explicit analytical 
modeling. Notably, while w/o GGF runs slightly faster, the accuracy 
trade-off proves unjustifiable for precision applications. The full 
model’s balanced performance validates our hybrid architecture’s 

superiority over pure learning-based or traditional approaches (see
Figure 8). 

4.6 Limitations

For highly irregular profiles, we are integrating Zernike moment 
descriptors Zm

n  up to the fourth order n ≤ 4 via

Zm
n =

n+ 1
π
∑
x,y

I(x,y)Vm
n (ρ,θ), ρ ≤ 1 (13)

where Vm
n  are orthogonal Zernike polynomials, and (ρ,θ) are 

normalized polar coordinates. The moments Z2
2 (astigmatism) 

and Z0
4 (spherical aberration) are particularly discriminative for 

donut-shaped beams. These non-parametric descriptors replace 
the initial Gaussian assumption for irregular spots, improving 
RMSE by 42% while adding only 1.5 ms/frame computational cost. 
These orthogonal basis functions capture asymmetric intensity 
distributions while preserving rotational invariance. Preliminary 
tests demonstrate 42% accuracy improvement for donut-shaped 
beams (0.18 px RMSE vs. 0.28 px) with minimal computational 
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FIGURE 7
Performance under combined disturbances using Focus-Med’s most challenging sequences.

TABLE 8  Ultra-low SNR performance (5 dB).

Method RMSE F1-score FP rate Runtime

Proposed 0.28 0.902 0.051 28.3

DeepEdge 0.47 0.831 0.127 24.7

HED 0.59 0.792 0.185 35.1

Canny 1.35 0.523 0.342 6.2

overhead (1.2 ms additional processing). The hybrid approach uses 
Zernike coefficients for initial spot characterization before applying 
gradient-based refinement. 

5 Conclusion and outlook

5.1 Conclusion

This study addresses the critical challenge of laser spot edge 
extraction in optical measurement systems, where traditional 
methods struggle with noise interference, uneven intensity 

TABLE 9  Scattering medium evaluation.

Method Angular 
error

FN rate Stability Runtime

Proposed 0.61° 0.048 0.94 32.7

DeepEdge 1.12° 0.132 0.82 28.9

HED 1.57° 0.203 0.71 40.3

Canny 2.89° 0.381 0.33 7.5

distributions, and varying spot sizes. We propose a novel multi-
scale adaptive convolution framework that combines three key 
innovations: (1) a dynamic kernel adjustment mechanism based 
on local intensity gradients; (2) a hierarchical feature pyramid 
architecture preserving edge sharpness across scales; (3) a subpixel 
localization module integrating Gaussian surface fitting with 
gradient extremum analysis. Experimental validation across 
three datasets demonstrated superior performance, achieving 
0.12-pixel RMSE on Focus-Lite (vs. 0.38 for Canny and 0.18 
for DeepEdge), maintaining 0.15-pixel accuracy with aberrated 
beams, and showing remarkable robustness under noise (0.17-
pixel RMSE at 10 dB SNR). In dynamic scenarios, our method 
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TABLE 10  Femtosecond pulse analysis.

Method RMSE F1 Temp-spatial FP FN Runtime

Proposed 0.23 0.926 0.912 0.037 0.031 35.2

DeepEdge 0.41 0.853 0.672 0.115 0.102 30.1

HED 0.57 0.801 0.583 0.178 0.156 45.7

Canny 1.42 0.502 0.217 0.352 0.387 8.3

TABLE 11  Ablation study results on the Focus-Extreme dataset.

Variant RMSE (px) F1-score FP rate Runtime 
(ms)

Full Model 0.23 0.926 0.037 35.2

w/o MAC 0.37 0.871 0.098 28.7

w/o GGF 0.42 0.842 0.125 31.5

sustained 0.25-pixel precision under 15 px motion blur while 
conventional approaches degraded to 0.67–1.89 pixels. Extreme 
condition tests revealed 0.28-pixel accuracy at 5 dB SNR and 
0.61° angular precision in scattering media, outperforming 
baseline models by 40%–58%. The ablation study confirmed the 
necessity of both multi-scale adaptation (61% RMSE increase 
when removed) and Gaussian-gradient fusion (0.842 F1-score
without it). 

5.2 Outlook

Three key modifications are being developed to address 
runtime concerns: (1) a lightweight neural network to predict 
initial Gaussian parameters (projected 50% reduction in fitting 
iterations); (2) hardware-aware pyramid construction dynamically 
adjusting scale numbers based on GPU memory bandwidth; 
(3) mixed-precision quantization (FP16/INT8) for convolution 
operations.

The current multi-scale adaptive convolution framework, while 
achieving superior accuracy, exhibits increased computational 
complexity compared to traditional edge detection methods. 
Our experiments show runtime measurements of 15.2 ms for 
basic detection (vs. 3.2 ms for Canny) and up to 35.2 ms for 
femtosecond pulse analysis, primarily due to the iterative Gaussian 
fitting process and cross-scale feature fusion. This overhead 
becomes particularly problematic for real-time applications 
requiring >60 fps processing. Future work will optimize the 
pipeline through three key modifications: (1) implementing 
a lightweight neural network to predict initial Gaussian 
parameters, reducing nonlinear optimization iterations by 50%; 
(2) developing a hardware-aware pyramid construction algorithm 
that dynamically adjusts scale numbers based on GPU memory 
bandwidth; and (3) employing mixed-precision quantization 

(FP16/INT8) for convolution operations without sacrificing 
subpixel precision. Preliminary simulations suggest these changes 
could reduce runtime to <10 ms while maintaining <0.15 px 
RMSE, making the method viable for high-speed laser scanning
systems.

Although the method demonstrates excellent performance 
on Gaussian-like beams (0.12 px RMSE), its accuracy degrades 
for highly irregular spots (0.31 px RMSE) due to the underlying 
anisotropic Gaussian model’s parametric constraints. The ablation 
study reveals a 42% drop in the F1 score when handling 
TEM01 modes compared to TEM00. To address this, we propose 
augmenting the model with non-parametric shape descriptors: 
(1) incorporating Zernike moment features to capture complex 
beam asymmetries; (2) developing a hybrid architecture where 
CNN branches process local deformations while the Gaussian 
component handles global intensity trends. This dual-path 
approach aims to reduce irregular spot errors below 0.2 px 
while preserving the current 0.91 temporal-spatial consistency
metric.

While the method shows robustness at 5 dB SNR (0.28px 
RMSE), performance deteriorates rapidly below 3 dB, where 
traditional Poisson noise dominates, evidenced by 18% false 
positives in Focus-Extreme’s ultra-low-light sequences. The 
current gradient-weighting mechanism fails to distinguish 
genuine edges from stochastic fluctuations when photon 
counts fall below 100/pixel. Our improvement plan involves 
three innovations: (1) Integrating a physics-based noise model 
using EMCCD/SPAD sensor characteristics to weight pixel 
contributions adaptively; (2) Developing a quantum-inspired 
edge confidence metric that combines shot noise statistics with 
spatial coherence patterns; (3) Implementing a multi-exposure 
fusion protocol where short-/high-intensity frames guide the 
interpretation of long/low-light acquisitions. Initial tests with 
synthetic data suggest these modifications could maintain 
<0.35 px accuracy down to 1 dB SNR while reducing false 
positives by 40%. The upgraded system will particularly benefit 
biomedical applications, such as in vivo two-photon imaging, 
where laser power must be minimized. We will validate the 
approach using the NIST-traceable low-light calibration standards 
to establish metrological reliability under photon-counting 
conditions, addressing a critical gap in current quantitative laser
metrology.

This study presents a novel multi-scale adaptive convolution 
framework for laser spot edge extraction that achieves 
unprecedented subpixel accuracy (0.12 px RMSE), demonstrates 
robust performance under diverse challenging conditions (0.28 px 
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FIGURE 8
Ablation study results.

at 5 dB SNR, 0.61° in scattering media), and establishes a 
new framework for precision optical measurement through 
its innovative integration of adaptive feature pyramids and 
Gaussian-gradient fusion.
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