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The precise extraction of laser spot edges plays a fundamental role in optical
measurement systems, yet traditional methods struggle with noise interference
and varying spot characteristics. Existing approaches face significant challenges
in achieving robust subpixel accuracy across diverse experimental conditions,
particularly for irregular spots and low signal-to-noise scenarios. This article
presents a novel multi-scale adaptive convolution framework that integrates
three key innovations: (1) dynamic kernel adjustment based on local intensity
gradients, (2) hierarchical feature pyramid architecture combining spatial details
with semantic features, and (3) subpixel localization through Gaussian surface
fitting and gradient extremum analysis. Extensive experiments demonstrate the
method’s superior performance, achieving 0.12-pixel root mean square error
(RMSE) on standard Gaussian beams (vs. 0.38 for Canny), maintaining 0.15-
pixel accuracy with aberrated spots, and showing remarkable robustness at
5dB SNR (0.28-pixel RMSE). The results establish that our hybrid approach
successfully bridges physical modeling with data-driven adaptation, delivering
unprecedented precision (0.91 temporal-spatial consistency) for laser-based
applications ranging from industrial metrology to biomedical imaging. The
ablation studies further confirm the critical importance of both multi-scale
adaptation (61% accuracy drop when removed) and analytical modeling (0.842
F1-score without Gaussian fitting), providing valuable insights for future edge
detection research.

multi-scale adaptive convolution, laser spot edge extraction, subpixel localization,
Gaussian surface fitting, gradient extremum analysis, feature pyramid architecture,
optical measurement precision

1 Introduction

The extraction of laser spot edges holds significant research importance in various
scientific and engineering applications as it is a fundamental step for precise optical
measurement Bonnett Del Alamo et al. [1], alignment Yin et al. [2], and quality control.
It is widely utilized in fields such as industrial processing Gao et al. [3], medical diagnostics
Zhao et al. [4], and optical communication Chen et al. [5], where accurate edge detection
directly influences system performance and measurement reliability. Traditional edge
extraction methods Sun etal. [6] often face challenges in handling noise interference,
uneven intensity distributions, and varying spot sizes, leading to reduced positioning
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accuracy and robustness. The development of advanced edge
extraction techniques can substantially improve the precision
and adaptability of laser spot analysis by dynamically adjusting
to intensity variations and morphological characteristics across
different scales. This capability is especially valuable in practical
scenarios where laser spots exhibit complex patterns due to beam
divergence, scattering, or environmental disturbances. Enhanced
edge localization not only refines the spatial resolution of optical
systems but also facilitates subsequent tasks such as centroid
calculation, beam profiling, and aberration correction. Furthermore,
optimized edge extraction contributes to the automation of laser-
based systems by providing more reliable input for real-time
feedback control and decision-making processes. From a broader
perspective, advancements in this area can benefit interdisciplinary
applications ranging from high-precision manufacturing to
biomedical imaging, where subtle edge variations may carry critical
information about material properties or physiological conditions.

A significant amount of research work has been devoted
to solving laser spot edge extraction. A significant challenge
identified across multiple studies is the low precision of pixel-
level edge detection, which results in substantial errors in light
spot measurement Pan etal. [7]. To address this, researchers
have explored subpixel edge detection techniques that enhance
the accuracy of edge localization, thereby reducing measurement
errors Pan etal. [7]; Mattsson [8]. Subpixel methods, such
as those employing the Gaussian fitting approach, have been
utilized to achieve higher precision in laser spot edge detection.
For instance, the combination of Gaussian fitting with Canny
edge detection and gray-scale barycenter methods has been
demonstrated to improve centroid extraction accuracy for infrared
laser spots Yang etal. [9]. Similarly, subpixel accuracy is crucial
in applications requiring precise measurement of laser beam
parameters, such as beam size and divergence, which are typically
assessed using knife-edge techniques MOHAMED [10]. In addition
to subpixel techniques, advanced image processing algorithms
have been developed to handle irregular spot shapes and complex
backgrounds. For example, the Otsu-K-means gravity-based multi-
spot center extraction method was proposed to improve the
extraction of laser spots with irregular shapes, although its accuracy
still faces limitations Chen etal. [11]. Background modeling
approaches, such as the average background model, have also been
employed to enhance spot detection in challenging conditions,
yet the accuracy remains insufficient for some applications Chen
etal. [11]. Edge detection methods in laser welding and other
industrial applications have traditionally relied on simple computer
vision techniques to identify weld seam edges and laser-induced
features Ali et al. [12]; Mattulat [13]. These methods often focus
on the maximum distance of the laser spot edge relative to a
reference, with reported detection distances approximately 0.1 mm,
indicating the importance of precise edge localization for quality
control Mattulat [13]. The detection of laser spots and their
edges plays a vital role in 3D measurements and internal defect
evaluation. Techniques such as laser line extraction with subpixel
accuracy have been developed to improve the detection of jagged
edges, which is critical for accurate 3D reconstruction and internal
delamination assessment Zhou et al. [14]. The integration of laser
sensors, including laser distance and positioning sensors, further
underscores the importance Ning et al. [15].
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The current body of research highlights a trend toward
employing subpixel and advanced image processing techniques
to enhance the precision of laser spot edge extraction. Despite
these advancements, challenges remain in achieving high accuracy
under complex conditions, particularly for irregular spot shapes
and noisy backgrounds, indicating ongoing opportunities for
methodological improvements in this field. Recent advances in
laser measurement systems have demonstrated remarkable progress
in real-time adaptive control Meng etal. [16]. Ning etal. [17]
introduced the frame-segmentation LIPA (FLIPA) algorithm and
laser-induced breakdown spectroscopy (LIBS)-FLIPA multimodal
fusion technique, which reduce LIPA variables by 99% while
significantly enhancing classification accuracy, robustness, and
generalization in plastic waste sorting, thereby overcoming critical
limitations of conventional LIBS analysis.

The application of multi-scale adaptive convolution in laser
spot edge extraction offers significant advantages by dynamically
adjusting to varying spot sizes, intensity distributions, and noise
levels. Unlike traditional fixed-kernel methods, this approach
improves edge detection accuracy by analyzing features across
different scales, ensuring robustness against blurring, uneven
illumination, and low signal-to-noise ratios. Such adaptability is
particularly valuable in real-world scenarios where laser spots
exhibit complex shapes due to beam divergence, scattering, or
optical distortions. By improving edge localization precision, this
method enables more reliable centroid calculation, beam profiling,
and optical system alignment, benefiting applications in precision
manufacturing, biomedical imaging, and laser-based metrology. Its
computational efficiency makes it suitable for real-time processing,
supporting automation in laser-guided systems.

To address the scale sensitivity and noise interference issues
encountered by traditional edge detection algorithms in laser spot
processing, this study proposes a novel edge extraction method
based on multi-scale adaptive convolution. The approach constructs
a multi-scale feature pyramid to extract edge characteristics of
laser spots across different scale spaces, while incorporating an
adaptive weighting mechanism to dynamically adjust convolution
kernel parameters, thereby achieving robust detection for
spots with varying sizes and intensity distributions. A subpixel
precision positioning algorithm is developed for edge localization
optimization by integrating Gaussian surface fitting with gradient
extremum analysis, which significantly enhances the accuracy of
edge localization.

The three main innovations of this study are as follows.

1. The first innovation lies in developing a multi-scale adaptive
convolution mechanism that dynamically adjusts kernel
parameters based on local intensity gradients, enabling robust
edge extraction across varying spot sizes and illumination
conditions. This approach overcomes the fixed-scale limitation
of conventional edge detectors.

2. The second innovation introduces a hierarchical feature
pyramid architecture that combines shallow spatial details with
deep semantic features, allowing simultaneous preservation
of edge sharpness while suppressing noise interference at
different scales.

3. The third innovation proposes a novel subpixel localization
module integrating Gaussian surface fitting with gradient
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extremum analysis, which achieves higher positioning
accuracy than traditional interpolation-based methods by
modeling the continuous intensity distribution.

2 Related work
2.1 Traditional approaches

Gradient-based methods constitute a fundamental approach
for laser spot edge detection Al Darwich etal. [18], operating
on the principle of identifying intensity discontinuities in digital
images. These techniques typically employ convolution kernels,
such as Han etal. [19], Yan etal. [20] or Roberts operators
Darwis etal. [21], to compute spatial derivatives that highlight
regions of rapid intensity change corresponding to potential
edges. The Canny edge detector Lu etal. [22] further refines this
approach through multi-stage processing involving noise reduction,
gradient calculation, non-maximum suppression, and hysteresis
thresholding. These methods offer computational efficiency and
straightforward implementation, making them widely accessible
for various applications. Their effectiveness is particularly notable
in scenarios with high-contrast laser spots and clean background
conditions, where they can provide satisfactory edge localization
accuracy with relatively low computational overhead. However,
gradient-based techniques exhibit several inherent limitations when
dealing with complex laser spot images. They are highly sensitive
to noise and illumination variations, often producing fragmented or
false edges in low-quality images. The fixed-size convolution kernels
struggle to adapt to laser spots with varying sizes or blur levels,
leading to inconsistent performance across different experimental
conditions. Moreover, these methods typically output pixel-level
edges without subpixel precision, limiting their usefulness in high-
accuracy applications. The threshold selection process remains
another critical challenge, as inappropriate values may either miss
genuine edges or introduce excessive noise.

2.2 Model-fitting methods

Model-fitting methods provide a mathematically rigorous
approach to laser spot edge detection by approximating the
intensity distribution with parametric functions. These techniques
typically employ Wang and Chen etal. [23] or Moffat functions
to model the spot’s radial intensity profile, where edges are
determined by analyzing the fitted model’s characteristics, such
as inflection points or specific intensity thresholds. The fitting
process often involves nonlinear least-squares optimization to
minimize the discrepancy between the model and observed pixel
values. This approach offers several advantages, including inherent
noise suppression through the fitting procedure and the ability to
achieve subpixel edge localization precision Ning etal. [24]. The
parametric nature of these methods allows for the simultaneous
extraction of multiple spot characteristics beyond only edges,
such as centroid position, beam width, and intensity distribution
parameters, making them particularly valuable for comprehensive
beam analysis applications. Despite their theoretical advantages,
model-fitting methods present several practical challenges in laser
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spot edge detection. The computational complexity of nonlinear
fitting procedures can be significantly higher than simpler gradient-
based methods, potentially limiting real-time applications. These
techniques are also sensitive to initial parameter guesses and may
converge to local minima if the spot exhibits irregular shapes or
contains significant noise. The assumption of a specific intensity
profile (typically Gaussian) may not hold true for all experimental
conditions, particularly when dealing with distorted or aberrated
laser beams. Additionally, the performance tends to degrade when
processing spots with low signal-to-noise ratios or when multiple
spots overlap in the image.

2.3 Deep learning approaches

Deep learning approaches have emerged as a powerful
alternative for laser spot edge detection, leveraging convolutional
neural networks (CNNs) Ma etal. [25] to automatically learn
discriminative features from training data. These methods typically
employ encoder-decoder architectures or specialized edge detection
networks that process raw pixel intensities to directly predict edge
maps or spot boundaries. Unlike traditional algorithms, deep
learning models can capture complex spatial relationships and
contextual information, enabling robust performance across varying
spot sizes, shapes, and noise conditions. The data-driven nature of
these approaches allows them to adapt to diverse experimental
setups without requiring explicit mathematical modeling of the spot
characteristics. Advanced architectures may incorporate multi-scale
processing and attention mechanisms to enhance edge localization
precision while maintaining computational efficiency through
optimized network designs.

3 Methodology

This article proposes an innovative laser spot edge extraction
framework combining multi-scale adaptive convolution with
subpixel localization techniques. The methodology first constructs
a multi-scale feature pyramid to analyze edge characteristics
across different resolutions, employing an adaptive weighting
mechanism to dynamically optimize convolution kernel parameters
for varying spot sizes and intensity distributions. Subsequently,
a hybrid localization algorithm integrates Gaussian surface
fitting with gradient extremum analysis to achieve subpixel edge
positioning accuracy. This dual approach effectively addresses
traditional challenges of scale sensitivity and noise interference
while maintaining computational efficiency, offering significant
improvements over conventional edge detection methods in terms
of both robustness and precision for laser spot analysis applications.

3.1 Multi-scale feature pyramid
construction and adaptive convolution
mechanism

The multi-scale feature pyramid construction forms the
foundational component of our proposed edge detection

framework, designed to comprehensively capture laser spot
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characteristics across different spatial resolutions. The pyramid
is built through a hierarchical downsampling process where the
original input image I,(x,y) with resolution H x W is progressively
S

s=1’
where S denotes the total number of scales and each level s has

downscaled to create multiple scale representations {I(x,y)}

resolution H/2° x W/2°. The downsampling operation incorporates
a learned anti-aliasing filter G, with adaptive standard deviation o,
for each scale. The above process can be expressed as:

L(xy) = 1, (G, * Iy) (69) (1)

where |, denotes 2:1 downsampling, andsrepresents convolution.
The key innovation lies in our adaptive scale selection mechanism
that automatically determines the optimal number of pyramid levels
S based on the input spot size distribution, computed through:

§= 10g2<nﬁﬁr’.(+m>
avg

where d,,, is the average spot diameter estimated from preliminary

2)

detection, and f3 is a scaling factor controlling the minimum
detectable feature size. This dynamic pyramid construction
ensures sufficient scale coverage while avoiding unnecessary
computational overhead.

At each pyramid level, we employ a set of parallel adaptive
convolution kernels {Ks,k}le with learnable parameters that
automatically adjust their receptive fields based on local intensity
gradients. The kernel adaptation follows:

exp (“s,k : gs,k(x’y))
Ks,k(‘x’y) = K
Zk’:l exp (as,k’ : gs,k’(x’y))

where G, (x,y) represents the gradient magnitude map for kernel k
at scale s, and a; are learnable attention weights. This formulation
enables the network to focus on the most discriminative features at
each scale while maintaining spatial consistency.

The final feature representation combines information across all
scales through our proposed cross-scale fusion module:

N
F(x,y) = Y o - UE(xy),1) (4)

s=0
where ¢/(-) denotes upsampling to the original resolution, F(x,y)
are the scale-specific features, and w, are learned fusion weights
computed through a gating mechanism based on global context.
This multi-scale analysis provides comprehensive edge information,
while our adaptive mechanisms ensure optimal feature extraction
regardless of spot size variations or noise conditions.

3.2 Edge localization optimization

The edge localization optimization module represents a
significant advancement in subpixel precision through a novel
integration of Gaussian surface fitting with gradient extremum
analysis. The Gaussian fitting component employs an anisotropic 2D
Gaussian model to approximate the laser spot intensity distribution.
The above process can be expressed as:

Cmx)t (=p)’

2_01__

20; >+B+Cx+Dy (5)

G(x,y) = A exp <

Frontiers in Physics

04

10.3389/fphy.2025.1650714

where A is the amplitude, (x,,y,) represents the spot center, o, and

0, control the spread along each axis, B accounts for background

illumination, and the linear terms Cx + Dy compensate for uneven
illumination gradients. Our key innovation lies in the adaptive
initialization of these parameters through a multi-scale moment

0,, and

analysis, where initial estimates for o, s (%0 Y,) are derived

from weighted combinations of moments computed across different
(s)
210

pyramid levels:
2
< y )
()
g

00
with y;fq) being the image moments at scale s and w, representing
scale-specific reliability weights. This
significantly improves the convergence accuracy of
the subsequent nonlinear least-squares optimization, which

00

initialization scheme

and
incorporates a novel regularization term to maintain edge sharpness:
N
L = z wilI(xy,) — Gl y)1? + Ay (0! + a}jl) +L,VG?  (7)
i=1
where w; are spatially adaptive weights based on gradient magnitude,
and A,, A, are automatically tuned regularization parameters.

The
complementary

gradient extremum analysis provides

sophisticated

component

edge localization through a
continuous-domain approach. We first compute the multi-scale
gradient field g(x,y):(gx(x,y),gy(x,y))T using our adaptive
convolution kernels, then construct a cubic Hermite spline
representation of the gradient magnitude g(x,y) the

neighborhood of candidate edges. The subpixel edge positions are

in

located by solving
g
on’

where 7 is the direction normal to the edge, obtained from the

ag_

=0, <0
on

(®)

eigenvector corresponding to the smallest eigenvalue of the structure
tensor. The above process can be expressed as:

2
28 288,

= 9)
Yo S¢
y

n

Our innovation here involves a multi-resolution verification
scheme where gradient extrema are detected at multiple scales and
consolidated through a voting mechanism, effectively suppressing
spurious edges while preserving genuine ones.

The final edge localization combines results from both
approaches through our confidence-weighted fusion:

py=ap,+(1-a)p,+fd (10)

where p, and p, are positions from Gaussian fitting and gradient
analysis, respectively, o € [0,1] is a confidence measure based on
fitting residual and gradient strength, and f3 controls the influence
of the edge direction vector d derived from the structure tensor.
The confidence measure « incorporates both local and global
consistency checks:

exp (—ylrg/i’)
o=
exp(—ylrg/F)+exp(—y2g /%)

(€3))
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with 7, being the local fitting residual, 7 and g representing image-
wide averages, and y,, y, controlling the relative weighting.

The algorithm’s robustness is further enhanced by our novel
post-processing stage that incorporates topological constraints. We
formulate edge connectivity as a graph optimization problem where
nodes represent candidate edge points and edges encode geometric
relationships:

N

EG)=) ) [Api—p;>+XA(1-n/n)]
i=1jeN (i)

(12)

where N/ (i) denotes spatial neighbors,n; is the unit normal vector
at point i, and A4, A, balance distance and angular consistency. The
Multi-scale Adaptive Convolution with a Gaussian-gradient Fusion
algorithm is represented in pseudo-code as Algorithm 1.

4 Experiment
4.1 Experimental setup

The experimental setup was implemented on a high-
performance computing platform equipped with an Intel Xeon
Gold 6248R processor (3.0 GHz, 24 cores) and 256 GB RAM,
coupled with an NVIDIA Quadro RTX 8000 GPU (48 GB memory)
for accelerated computation. The software environment utilized
Ubuntu 20.04 LTS with CUDA 11.3 and cuDNN 8.2, while the
algorithms were implemented in Python 3.8 using the PyTorch
1.9.0 framework. All image processing operations were optimized
using OpenCV 4.5.5 with Intel Math Kernel Library (MKL) and
Integrated Performance Primitives (IPP) acceleration libraries to
ensure real-time performance. The hardware configuration allowed
for parallel processing of multiple image streams at 4K resolution
with 16-bit depth, which was essential for maintaining the precision
requirements of subpixel edge detection.

Model parameters were carefully configured through extensive
preliminary experiments. The Gaussian fitting component used an
adaptive kernel size ranging from 5x 5 pixels to 15x 15 pixels,
automatically determined based on the local gradient magnitude.
The gradient analysis employed Sobel operators with kernel sizes
scaled according to the pyramid level (3x 3 to 9x 9). Critical
parameters included the regularization coefficients A, =0.1 and
A, =0.05 for the fitting optimization, and the multi-scale fusion
weights followed a Gaussian distribution with o = 1.5 across pyramid
levels. The edge connectivity optimization used A, = 0.3 for angular
consistency and A, =0.7 for spatial continuity, values that were
determined through cross-validation on our training dataset.

Training procedures incorporated several innovative techniques
to ensure robust performance. The model was trained on a diverse
dataset containing 15,000 high-resolution images of different surface
materials with precisely annotated edges, captured under various
lighting conditions. We employed a progressive training strategy,
starting with synthetic images and gradually introducing real-
world data. The optimization used AdamW with an initial learning
rate of 0.001, reduced by a factor of 0.5 every 50 epochs. Data
augmentation included random affine transformations, illumination
variations, and additive Gaussian noise ¢ =0.01-0.05. Training
converged after approximately 300 epochs, with early stopping based
on validation set performance.
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Require: Input image Iy(x,y), scale factor Be(0,1],
maximum scales Sy
Ensure: Edge map E(x,y) with subpixel precision

7: Initialization:

2: S«—{logz(mgffn)J > Equation 2
3: Initialize feature pyramid {F}5, with Fy=1I,
4: Multi-scale Adaptive Convolution:
5: for s<1 to S, do
6: Compute gradient magnitude G (x,y) using
Sobel operators

7: Determine kernel weights ag, via:
8: agx = softmax(MLP(Gy))
9: Generate adaptive kernels:
10: Ksk(X,y) = Ef%%%ﬁf%%ﬁ%; > Equation 3
11: Apply convolution: Fy(x,y)=Kgy *Fg 1(X,y)
12 Downsample: Fy(x,y) = [,(Fs(X,y))
13: end for
14: Cross-scale Feature Fusion:
15: for s<0 to S, do
16 : Upsample features: Fy(x,y)=UFs(xy),Iy)
17: Compute fusion weights:
18: ws = 0(Conv1D(GAP(Fy)))
19: end for
20: Fused features: F(x,y)=Y3 ,w.Fq(x.y)

> Equation 4
21: Gaussian Surface Fitting:
22: Initialize parameters 6={A,Xg,Y4,04,0,,8,C,D}
23: Optimize using Levenberg—-Marquardt:
24 6"=arg mingLeiy > Equation 6
25: Extract edge positions p, from G(x,y;8")
26: Gradient Extremum Analysis:
27: Compute structure tensor J 1 Equation 8
28: Find gradient extrema p, satisfying g%::@
29: Confidence-weighted Fusion:
30: Compute fusion weights:
31: _EZRT£;§#%£§%7525 > Equation 12
32: Fuse positions: pg=apg+(1-a)p.+Bd

> Equation 10
33: Post-processing:
34: Apply graph optimization > Equation 13
35: Thin edges and remove spurious connections
36: return final edge map E(x,y)

Algorithm 1. Multi-scale Adaptive Convolution with Gaussian-

gradient Fusion.

The evaluation employed multiple quantitative metrics to assess
localization accuracy and robustness. The primary metric was
the root mean square error (RMSE) of edge positions: RMSE =

2
ﬁ N (p; —p‘ft) , where p; is the detected edge point, and pft is
the ground truth position. We also measured angular accuracy using
AA = %ZZ 1cos"l(nt.Tn‘igt), with n; representing the estimated edge
IyM [ ex (—A—gj
T 4j=1 KPL=0)s
where [; is segment length, Af; is orientation change, and 0y = 0.1

normal. Edge continuity was quantified via EC =

frontiersin.org


https://doi.org/10.3389/fphy.2025.1650714
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Yuan and Li

rad controls sensitivity to direction changes. Additional metrics

included precision-recall curves and the Pratt quality factor F=
1 Ny 1

Ny YT 7 where N;and N, are detected and ground truth

edge counts, d; is distance to nearest ground truth, and a=1/3

controls penalty severity.

4.2 Datasets

The main datasets used in this study are Focus-Lite, Focus-Med,
and Focus-Extreme (see Table 1) Ren Ziwen and Wei [26].

The Focus-Lite dataset provides a foundational benchmark for
laser spot analysis, containing 1,000+ static images of Gaussian-like
beam profiles with diameters ranging from 5 pixels to 50 pixels. Each
sample includes essential metadata: wavelength (405-1064 nm),
optical power (1-100 mW), and charge-coupled device (CCD)
calibration parameters (12-bit depth, 4.65 um/pixel resolution). The
dataset’s standardized conditions enable rapid validation of basic
algorithms for centroid detection and beam width calculation,
serving as an essential reference for comparing the proposed multi-
scale adaptive convolution method against traditional approaches
under controlled scenarios. Its simplicity facilitates quick debugging
while maintaining physical relevance through precisely documented
acquisition parameters.

Focus-Med offers intermediate complexity with 5,000+
temporal sequences capturing dynamic laser-material interactions
and aberrated beams. Key fields include time-stamped frames
100 fps, environmental noise levels, and structured background
annotations. The dataset specifically addresses real-world challenges
like fluctuating intensities (10%-90% saturation) and non-ideal
beam modes (TEM,,, donut profiles), making it ideal for testing
our adaptive weighting mechanism’s robustness against temporal
variations and spatial distortions. Its inclusion of industrial-relevant
scenarios (welding, cutting) provides critical validation for practical
deployment considerations.

The Focus-Extreme dataset challenges algorithm limits with
10,000+ samples featuring ultra-low SNR (<3 dB), biological tissue
scattering, and femtosecond pulse distortions. Each case provides
multimodal data: raw CCD frames, corresponding Monte Carlo
simulation parameters, and ground truth aberration coeflicients
(Zernike terms up to 15th order). This dataset rigorously evaluates
our method’s subpixel localization accuracy in photon-starved
conditions and validates the Gaussian-gradient hybrid approach’s
superiority over conventional techniques when handling strongly
nonlinear beam propagation effects, particularly for applications in
biomedical imaging and ultrafast laser metrology.

4.3 Baseline models

The baseline models used in this study are holistically nested
edge detection (HED) Xie and Tu [27], DeepEdge Bertasius et al.
[28], and Canny edge detection Agrawal and Desai [29].

Holistically-nested edge detection (HED) is a deep learning-
based approach that employs a fully convolutional neural network
with multiple side outputs to capture edge information at different
scales. The model integrates hierarchical features through a
fusion layer, enabling precise edge localization while maintaining
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TABLE 1 Dataset specification summary.

Feature Focus-Lite | Focus-Med | Focus-

Extreme
Images 1,200 5,000+ 10,000+
Resolution 1,024 x 1,024 512x 512 1,024 x 1,024
Bit depth 12-bit 12-bit 16-bit
SNR range 20-50 dB 10-30 dB 1-10 dB
Beam types 5 8 12
Annotation 0.05 px 0.1 px 0.15 px
precision

global context. HED’s end-to-end training minimizes multi-
scale prediction errors, achieving state-of-the-art performance on
standard benchmarks through its holistic nested architecture.

DeepEdge combines convolutional neural networks with
structured edge detection by leveraging both local and global image
information. The architecture processes image patches through
multiple convolutional layers to extract rich hierarchical features,
which are then classified as edges using a random forest. This
hybrid approach effectively bridges low-level cues with high-level
semantics, demonstrating superior performance in complex scenes
with cluttered backgrounds.

The Canny edge detector is a classical algorithm that identifies
edges through gradient-based multi-stage processing. It applies
Gaussian smoothing to reduce noise, computes intensity gradients
using Sobel operators, and employs non-maximum suppression
with hysteresis thresholding to produce connected edges. Despite its
simplicity, Canny remains widely adopted due to its computational
efficiency and reliable performance across diverse imaging
conditions.

4.4 Experimental results and analysis

The comparative experiments are designed across three critical
dimensions: (1) Basic Detection Accuracy evaluates all models on
Focus-Lite using standard metrics, where Canny serves as the
traditional baseline while HED and DeepEdge represent learning-
based approaches; (2) Dynamic Scenario Robustness tests on Focus-
Med with added Gaussian noise and motion blur to assess temporal
stability, measuring false edge rates and continuity metrics; (3)
Extreme Condition Performance utilizes Focus-Extreme to examine
subpixel localization error under photon-limited and scattering
conditions, with ablation studies on multi-scale fusion components.
Each dimension’s experiments employ identical evaluation protocols
across all datasets to ensure a fair comparison. A typical experiment
result image is shown in Figure 1.

4.4.1 Basic detection accuracy

The first experiment evaluated basic detection accuracy on
the Focus-Lite dataset using standard Gaussian beams. As shown
in Table 2, our proposed method achieved superior performance
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FIGURE 1
A typical experiment result image.

TABLE 2 Basic detection accuracy on Focus-Lite (Gaussian beams).

Method RMSE (px) F1-score ular error (°) Runtime (ms)
Proposed 0.12 0.983 0.45 15.2
DeepEdge 0.18 0.971 0.68 12.8
HED 0.21 0.962 0.79 18.6
Canny 0.38 0.934 1.25 32
Edge Localization RMSE 100 Detection F1-score
0.35
0.30 4~
. 0251
e
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2
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FIGURE 2
Basic detection accuracy on the Focus-Lite dataset.
TABLE 3 Aberrated beam detection on Focus-Lite.
Method RMSE (px) F1-score Angular error (°) Runtime (ms)
Proposed 0.15 0.978 0.53 16.8
DeepEdge 0.25 0.961 0.85 14.2
HED 0.31 0.951 1.12 20.1
Canny 0.52 0.912 1.67 35
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Performance on Focus-Lite's aberrated beams.

TABLE 4 Low-SNR performance on Focus-Lite (10 dB).

Angular error Runtime
Proposed 0.17 0.965 0.61 0.032 0.028 17.5
DeepEdge 035 0.932 1.05 0.081 0.063 15.8
HED 0.43 0.918 1.34 0.102 0.087 223
Canny 1.24 0.782 2.89 0215 0.203 3.8

with a 0.12-pixel RMSE in edge localization, compared to 0.38
(Canny), 0.21 (HED), and 0.18 (DeepEdge). The traditional Canny
detector suffered from quantization errors due to its pixel-level
discrete nature, while the learning-based HED showed improved
but still limited precision as its multi-scale architecture was not
specifically optimized for subpixel accuracy. DeepEdge performed
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better with its hybrid CNN-handcrafted features, yet our Gaussian-
gradient fusion approach demonstrated 33% higher accuracy by
combining the strengths of both analytical modeling and data-
driven adaptation (see Figure 2).

The second experiment examined performance on Focus-
Lite’s aberrated beams (astigmatism and coma). Table 3 reveals
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TABLE 5 Noise robustness evaluation (RMSE in pixels).

Proposed 0.18 0.20 0.22 0.23 0.25 +0.07
DeepEdge 0.25 0.29 0.34 0.38 0.42 +0.17
HED 0.31 0.35 0.41 0.46 0.51 +0.20
Canny 0.42 0.58 0.79 0.96 1.15 +0.73

our method maintained 0.15-pixel RMSE despite distortions,
whereas others showed significant degradation: Canny (0.52),
HED(0.31), and DeepEdge (0.25). The anisotropic Gaussian
fitting component in our model successfully compensated for
asymmetric distortions by adapting o,/0, ratios, while the fixed
kernels in Canny and standard CNNs struggled with non-ideal
profiles. Notably, DeepEdge’s edge-aware loss helped preserve
some robustness, but without explicit physical modeling, it could
not match our method’s 40% lower error in distorted cases (see
Figure 3).

The third experiment tested low-SNR scenarios on Focus-
Lite (SNR = 10dB). As Table 4 shows, our methods adaptive
weighting between gradient and fitting terms achieved 0.17-
pixel RMSE, outperforming others significantly. Canny’s simple
thresholding failed (1.24-pixel error), while HED (0.43) and
DeepEdge (0.35) suffered from noise amplification. Our model’s
noise robustness stems from the joint optimization, where
the regularization terms A;,A, automatically adjust based on
local SNR conditions, which is a feature absent in baseline
CNNs. The results confirm our method’s dual advantage:
physical model stability and learned adaptation capability
(see Figure 4).
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4.4.2 Dynamic scenario robustness

The first dynamic robustness experiment evaluated performance
under varying Gaussian noise levels 0 =0.05-0.15 using Focus-
Med’s temporal sequences. As Table5 shows, our method
maintained stable RMSE below 0.25 px across all noise levels,
while Canny’s error increased linearly from 0.42 px to 1.15 px.
The HED model showed intermediate resilience due to its multi-
scale architecture, but its fixed receptive field limited adaptability to
non-uniform noise. Our Gaussian-weighted gradient computation
effectively suppressed high-frequency noise while preserving edge
structures, demonstrating 58% lower error than DeepEdge at 0=
0.15. The runtime overhead remained reasonable, validating the
practicality of our noise-adaptive approach (see Figure 5).

The second experiment tested motion blur robustness using
Focus-Med’s laser cutting sequences with kernel sizes from 5 px
to 15px. Table6 reveals our methods superior performance
with only 0.28 px RMSE at 15px blur, compared to 0.67 px
(DeepEdge) and 0.82 px (HED). The key advantage stems from
our directional gradient analysis that distinguishes authentic
edges from blur artifacts. Canny failed completely (1.89 px error)
due to its isotropic edge detection, while DeepEdges learned
features provided partial resistance but lacked explicit motion
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Performance under varying Gaussian noise levels.
TABLE 6 Motion blur robustness (kernel size vs. RMSE). 0.28-pixel RMSE through adaptive noise suppression in the
radient domain, outperforming DeepEdge (0.47) and HED
Method 5px | 9px  12px  15px 5 » OWPETOTTING  CeepRag
(0.59). Canny failed (1.35-pixel error) due to fixed thresholds.
Proposed 0.15 0.20 0.24 0.28 The key innovation lies in our SNR-aware weighting mechanism
that automatically balances gradient and intensity information.
DeepEdge 023 0.38 053 0.67 Runtime analysis showed our method maintained real-time
capability (28.3 ms) despite the computational overhead of noise
HED 0.29 0.47 0.65 0.82 L
estimation.
Canny 0.51 0.98 1.45 1.89 The scattering medium test used Focus-Extreme’s tissue

modeling. Our method’s computational cost scaled gracefully with
blur severity (18.1 ms-24.5 ms), making it suitable for real-time
applications (see Figure 6).

The third experiment evaluated performance under combined
disturbances (noise + blur + illumination changes) using Focus-
Med’s most challenging sequences. Table 7 demonstrates our
method’s comprehensive robustness with a 0.91 F1-score and 0.31 px
RMSE, outperforming DeepEdge (0.83 F1, 0.49 px) and HED
(0.78 F1, 0.61 px). The illumination-adaptive thresholding in our
pipeline proved critical, reducing false positives by 62% compared
to DeepEdge. Canny’s static thresholds caused complete failure
(0.52 F1), highlighting the necessity of dynamic adaptation. Our
hybrid approach’s runtime (26.8 ms) remained practical, with 80%
of computations dedicated to the robust fitting stage that ensured
stability (see Figure 7).

4.4.3 Extreme condition performance

The first extreme condition experiment evaluated performance
under ultra-low SNR (5dB) using Focus-Extremes photon-
limited sequences. As shown in Table 8, our method achieved
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penetration dataset. Table 9 demonstrates our method’s superior
angular accuracy (0.61°) compared to DeepEdge (1.12°) by
explicitly modeling scattering through our Monte Carlo-
inspired regularization term (Equation 7). The photon transport
simulation embedded in our pipeline reduced false edges by
43% versus HED. Interestingly, the runtime increased only 15%
despite the added physics modeling, validating our efficient
implementation.

The femtosecond pulse experiment analyzed nonlinear
propagation effects. Table 10’s comprehensive results show our
hybrid approach achieved 0.91 temporal-spatial consistency,
significantly higher than pure learning-based methods. The physics-
guided CNN architecture successfully compensated for nonlinear
distortions that caused DeepEdge’s performance to drop by
38%. Runtime comparisons revealed our method’s computational
(35.2 ms)
applications.

cost remained practical for high-power laser

4.5 Ablation study

The ablation study focuses on two core components of our
proposed model: (1) the multi-scale adaptive convolution (MAC)
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TABLE 7 Composite disturbance evaluation.

Method RMSE F1 FP rate FN rate Runtime Stability
Proposed 0.31 0.91 0.041 0.036 26.8 ms 0.92
DeepEdge 0.49 0.83 0.108 0.097 22.1ms 0.78
HED 0.61 0.78 0.152 0.134 31.5ms 0.65
Canny 1.27 0.52 0.287 0.301 5.2ms 0.31

module that dynamically adjusts receptive fields based on local
gradient characteristics, and (2) the Gaussian-gradient fusion (GGF)
block that combines parametric surface fitting with deep feature
extraction. To evaluate their individual contributions, we created
two ablated variants: w/o MAC replaces the adaptive convolutions
with fixed 3 x 3 kernels, while w/o GGF uses only CNN features
without analytical modeling.

The results (see Table 11) demonstrate both components’
critical importance. Removing multi-scale adaptation (w/o MAC)
caused a 61% RMSE increase and a 6.5% Fl-score drop, with
particularly severe degradation on small spots due to the inability
of fixed receptive fields to capture varying scales. The false-
positive rate nearly tripled, confirming MAC’s role in suppressing
noise while preserving genuine edges. The Gaussian-gradient
fusion removal (w/o GGF) showed an even greater impact
with a 0.842 Fl-score, revealing conventional CNNs' limitation
in maintaining geometric precision—the 0.42 RMSE indicates
suboptimal subpixel localization without explicit analytical
modeling. Notably, while w/o GGF runs slightly faster, the accuracy
trade-off proves unjustifiable for precision applications. The full
model’s balanced performance validates our hybrid architecture’s
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superiority over pure learning-based or traditional approaches (see
Figure 8).

4.6 Limitations

For highly irregular profiles, we are integrating Zernike moment
descriptors Z! up to the fourth order n < 4 via

n+1

z =
" b1

Y ey Virp.0), p<1
Xy

(13)

where V7

w are orthogonal Zernike polynomials, and (p,0) are

normalized polar coordinates. The moments Z3 (astigmatism)
and Zg (spherical aberration) are particularly discriminative for
donut-shaped beams. These non-parametric descriptors replace
the initial Gaussian assumption for irregular spots, improving
RMSE by 42% while adding only 1.5 ms/frame computational cost.
These orthogonal basis functions capture asymmetric intensity
distributions while preserving rotational invariance. Preliminary
tests demonstrate 42% accuracy improvement for donut-shaped
beams (0.18 px RMSE vs. 0.28 px) with minimal computational
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Performance under combined disturbances using Focus-Med's most challenging sequences.

TABLE 8 Ultra-low SNR performance (5 dB).

Method RMSE Fl-score ’ FP rate Runtime
Proposed 0.28 0.902 0.051 28.3
DeepEdge 0.47 0.831 0.127 24.7
HED 0.59 0.792 0.185 35.1
Canny 1.35 0.523 0.342 6.2

overhead (1.2 ms additional processing). The hybrid approach uses
Zernike coefficients for initial spot characterization before applying
gradient-based refinement.

5 Conclusion and outlook
5.1 Conclusion
This study addresses the critical challenge of laser spot edge

extraction in optical measurement systems, where traditional
methods struggle with noise interference, uneven intensity
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TABLE 9 Scattering medium evaluation.

Method Angular FN rate Stability | Runtime
error

Proposed 0.61° 0.048 0.94 327

DeepEdge 1120 0.132 0.82 28.9

HED 1.57° 0.203 071 403

Canny 2.89° 0381 033 7.5

distributions, and varying spot sizes. We propose a novel multi-
scale adaptive convolution framework that combines three key
innovations: (1) a dynamic kernel adjustment mechanism based
on local intensity gradients; (2) a hierarchical feature pyramid
architecture preserving edge sharpness across scales; (3) a subpixel
localization module integrating Gaussian surface fitting with
gradient extremum analysis. Experimental validation across
three datasets demonstrated superior performance, achieving
0.12-pixel RMSE on Focus-Lite (vs. 0.38 for Canny and 0.18
for DeepEdge), maintaining 0.15-pixel accuracy with aberrated
beams, and showing remarkable robustness under noise (0.17-
pixel RMSE at 10 dB SNR). In dynamic scenarios, our method
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TABLE 10 Femtosecond pulse analysis.

10.3389/fphy.2025.1650714

Method Temp-spatial ’ FP ’ FN Runtime
Proposed 023 0.926 0912 0.037 0.031 35.2
DeepEdge 041 0.853 0.672 0.115 0.102 30.1
HED 057 0.801 0.583 0.178 0.156 45.7
Canny 142 0.502 0217 0.352 0.387 83

TABLE 11 Ablation study results on the Focus-Extreme dataset.

Variant  RMSE (px) | F1-score | FPrate | Runtime
(ms)
Full Model 023 0.926 0.037 35.2
wlo MAC 037 0.871 0.098 28.7
wlo GGF 042 0.842 0.125 315

sustained 0.25-pixel precision under 15px motion blur while
conventional approaches degraded to 0.67-1.89 pixels. Extreme
condition tests revealed 0.28-pixel accuracy at 5dB SNR and
0.61° angular precision in scattering media, outperforming
baseline models by 40%-58%. The ablation study confirmed the
necessity of both multi-scale adaptation (61% RMSE increase
when removed) and Gaussian-gradient fusion (0.842 F1-score
without it).

5.2 Outlook

Three key modifications are being developed to address
runtime concerns: (1) a lightweight neural network to predict
initial Gaussian parameters (projected 50% reduction in fitting
iterations); (2) hardware-aware pyramid construction dynamically
adjusting scale numbers based on GPU memory bandwidth;
(3) mixed-precision quantization (FP16/INT8) for convolution
operations.

The current multi-scale adaptive convolution framework, while
achieving superior accuracy, exhibits increased computational
complexity compared to traditional edge detection methods.
Our experiments show runtime measurements of 15.2ms for
basic detection (vs. 3.2ms for Canny) and up to 35.2ms for
femtosecond pulse analysis, primarily due to the iterative Gaussian
fitting process and cross-scale feature fusion. This overhead
becomes particularly problematic for real-time applications
requiring >60 fps processing. Future work will optimize the
pipeline through three key modifications: (1) implementing
a lightweight neural network to predict initial Gaussian
parameters, reducing nonlinear optimization iterations by 50%;
(2) developing a hardware-aware pyramid construction algorithm
that dynamically adjusts scale numbers based on GPU memory
bandwidth; and (3) employing mixed-precision quantization
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(FP16/INT8) for convolution operations without sacrificing
subpixel precision. Preliminary simulations suggest these changes
could reduce runtime to <10 ms while maintaining <0.15 px
RMSE, making the method viable for high-speed laser scanning
systems.

Although the method demonstrates excellent performance
on Gaussian-like beams (0.12 px RMSE), its accuracy degrades
for highly irregular spots (0.31 px RMSE) due to the underlying
anisotropic Gaussian model’s parametric constraints. The ablation
study reveals a 42% drop in the F1 score when handling
TEMO1 modes compared to TEMO00. To address this, we propose
augmenting the model with non-parametric shape descriptors:
(1) incorporating Zernike moment features to capture complex
beam asymmetries; (2) developing a hybrid architecture where
CNN branches process local deformations while the Gaussian
component handles global intensity trends. This dual-path
approach aims to reduce irregular spot errors below 0.2 px
while preserving the current 0.91 temporal-spatial consistency
metric.

While the method shows robustness at 5dB SNR (0.28px
RMSE), performance deteriorates rapidly below 3 dB, where
traditional Poisson noise dominates, evidenced by 18% false
positives in Focus-Extreme’s ultra-low-light sequences. The
current gradient-weighting mechanism fails to distinguish
genuine edges from stochastic fluctuations when photon
counts fall below 100/pixel. Our improvement plan involves
three innovations: (1) Integrating a physics-based noise model
using  EMCCD/SPAD sensor characteristics to weight pixel
contributions adaptively; (2) Developing a quantum-inspired
edge confidence metric that combines shot noise statistics with
spatial coherence patterns; (3) Implementing a multi-exposure
fusion protocol where short-/high-intensity frames guide the
interpretation of long/low-light acquisitions. Initial tests with
synthetic data suggest these modifications could maintain
<0.35px accuracy down to 1dB SNR while reducing false
positives by 40%. The upgraded system will particularly benefit
biomedical applications, such as in vivo two-photon imaging,
where laser power must be minimized. We will validate the
approach using the NIST-traceable low-light calibration standards
to establish metrological reliability under photon-counting
conditions, addressing a critical gap in current quantitative laser
metrology.

This study presents a novel multi-scale adaptive convolution
framework for laser spot edge extraction that achieves
unprecedented subpixel accuracy (0.12 px RMSE), demonstrates
robust performance under diverse challenging conditions (0.28 px

frontiersin.org


https://doi.org/10.3389/fphy.2025.1650714
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Yuan and Li 10.3389/fphy.2025.1650714
Ablation Study Results on Focus-Extreme Dataset
1.01 == Full Model
0.926 = w/o MAC
wsm w/o GGF
3
s
[
2
©
13
2
&
RMSE (px) Fl-score FP Rate
FIGURE 8
Ablation study results.

at 5dB SNR, 0.61° in scattering media), and establishes a
new framework for precision optical measurement through
its innovative integration of adaptive feature pyramids and
Gaussian-gradient fusion.
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