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In this paper, we propose a method for constructing families of spacelike
surfaces in Minkowski 3-space IEf that share Bertrand curves as asymptotic
curves. By using marching-scale functions, we derive the necessary conditions,
provide flexible formulations, and establish a framework for constructing mutual
spacelike Bertrand curves. Examples show how different functions generate
surfaces interpolating the common asymptotic curves, offering new insights for
geometric modeling and ruled surface theory.

Bertrand couple, tangent planes, iso-asymptotic curve, asymptotic, spacelike

1 Introduction

Among the various curves found on surfaces, asymptotic curves hold a special place
due to their distinct geometric behavior. An asymptotic curve is one where the tangent
vector continuously aligns with a direction that renders the normal curvature zero. In
practical terms, this means the surface remains momentarily aligned with its tangent
plane along the curve, a condition further reinforced by the persistent alignment of the
curve’s binormal vector with the surface normal. Consequently, the Gaussian curvature
along such a curve is non-positive—that is, it is either zero or negative [1, 2]. Recent
investigations have emphasized the importance of these curves, particularly in applications
such as astronomy. For example, Hartman and Wintner [3] stressed that regularity
conditions are critical for understanding asymptotic curves on surfaces with negative
Gaussian curvature, whereas Kitagawa [4] showed that a flat torus embedded in a unit
3-sphere features cyclic asymptotic curves. Further studies by Garcia and Sotomayor [5]
have shed light on the intrinsic properties of asymptotic curves in Euclidean spaces, and
Garcia etal. [6] demonstrated that networks of these curves can maintain topological
stability under small perturbations. Moreover, asymptotic curves play a significant role
in diverse fields such as architecture and computer-aided design. In astrophysics, for
instance, the analysis of Lyapunov orbits—which is crucial for understanding stellar
escape trajectories—relies heavily on the geometry of asymptotic curves. Contopoulos [7]
examined how unstable orbits can escape along these curves, whereas Efthymiopoulos et al.
[8] observed that chaotic trajectories within fractal-like sets often mirror the behavior of
unstable asymptotic curves. In the realm of free-form architecture, Fl6ry and Pottmann [9]
developed a geometric modeling framework that uses strips of ruled surfaces, constructed
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by aligning rulings with asymptotic curves, and refined these initial
designs to match specific target shapes.

In a related development, the concept of a surface family
featuring a unique characteristic curve was first introduced by Wang
etal. [10] in Euclidean 3-space (E®), where they constructed a
family of surfaces sharing a common geodesic. This pioneering work
has inspired numerous subsequent studies on surface families with
shared key curves in both Euclidean and non-Euclidean contexts
(e.g., [11-32]). In curve theory, establishing a robust correspondence
between curves remains a fundamental challenge. One well-known
example is the Bertrand pair, which is a classical case where two
curves are in bijective correspondence and share the same principal
normals [1, 2]. These Bertrand curves also serve as models for
offset curves, which are integral to computer-aided design (C.AD)
and manufacturing (C.AM) processes (see [33-35]). Despite these
advances, no prior research has focused on constructing spacelike
surfaces in ]E? that incorporate Bertrand curves as asymptotic
curves. In this study, we seek to bridge that gap by exploring how
Bertrand curves can be utilized as asymptotic curves to generate
families of spacelike surfaces in IE?.

In this study, we introduce a method for constructing families
of spacelike surfaces in Minkowski 3-space that share a common
Bertrand curve as an asymptotic curve. By utilizing spacelike
Bertrand curves and aligning the tangent planes of the surfaces with
the osculating planes of the curves, parametric equations of the
surfaces are developed using marching-scale functions. Necessary
and sufficient conditions are derived to guarantee the asymptotic
nature of the common curve on each surface. Several flexible
formulations are proposed, and examples illustrate the generation
of spacelike surfaces through different choices of marching-scale
functions. The significance of this work lies in providing a
systematic and versatile framework for generating geometrically
meaningful surfaces, enhancing the theoretical understanding of
Lorentzian geometry, and offering practical tools for applications in
computer-aided geometric design, relativity, and broader differential
geometry contexts.

2 Preliminaries

In this section, we provide a concise overview of the
fundamentals of curves and surfaces in Minkowski 3-space I’
[14, 15]. Consider vectors w = (wy,w,,w;) and z = (z,2,,23) in E}.
Their Lorentzian inner product is defined by

<W,Z >= W2) + W,2, — WsZs.
We also define the cross product of w and z as
WXZ=(wy23 - ws2,), (W32 — wy23),— (W 2, — wy2y) .

As the Lorentzian inner product is an indefinite metric, any
vector w € E? can be classified by its causal character. Specifically,
w is called spacelike (SL) if (w,w) >0 or w=0, timelike (7 L)
if (w,w) <0, and lightlike or null if (w,w) =0 while w#0.
The norm of w is defined as ||w|| = v[{w,w)|. Accordingly, the
hyperbolic unit sphere and the Lorentzian (de Sitter) unit sphere
are given by

Hiz{wE]E? | [lw]? :=wf+w§—w§=—1},
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and
St={we &l lIwl* =wi+w3-wi=1}.

Consider a unit-speed SL-curve @(w) in I} that possesses a
T L-binormal vector. Its curvature and torsion are denoted by x(w)
and 7(w), respectively. Let {1, (w),A,(w),A;(w)} be the corresponding
Serret-Frenet frame along ¢(w), where A,(w), A,(w), and A5(w)
represent the unit tangent, principal normal, and binormal vectors,
respectively. The frame vectors satisfy the following normalization
conditions under the Lorentzian inner product:

<ALA >=< A4, >=— <A >=1,
Ay XAy ==A3A XA =450, x A5 =,

The derivatives of the frame vectors with respect to the arc-
length parameter w are then expressed as

A 0 k(w) 0 A
A= —x(w) 0 1(w) AL (2.1)
AL 0 T(w) 0 A

with the prime indicating differentiation with respect to w. The
subspaces spanned by Sp{d,,A;}, Spid,, A,}, and SpiA;,A,} are
referred to as the normal plane, osculating plane, and rectifying
plane, respectively.

Definition 2.1: ([1, 2]) Let ¢(w) and @(w) be two curves in ]Ef,
with the respective principal normal vectors A,(w) and A, (w).
The curves form a Bertrand pair if, at corresponding points, their
principal normals are linearly dependent. Equivalently, there exists
a constant f such that

(W) =9 (w)+ fA,(w). (2.2)

Here, fis a fixed scalar.
We denote a surface 2R by its parametrization

Ro(w,t) = (v, (W, 1), 0, (W, 8) 03 (W, 1)), (w,t) €D C R

Here, if we let vj(w, t) = 3—';, for j = w and ¢, the surface’s normal
vector is defined as

n(w,t) =v,Av,
with the property that (n,v,,) = (n,v,) = 0.

Definition 2.2: ([1,2]) A curve on a surface is called asymptotic if,
at every point on the curve, the surface normal is aligned with the
curve’s binormal vector.

A curve @(w) on a surface v(w,1) is called an iso-parametric
curve if one of its parameters remains constant. In other words,
there exists a fixed value t; such that ¢(w) = v(w,1,), or similarly,
a constant w, with ¢(f) = v(w,,t). When a given curve ¢(w) serves
both as an asymptotic curve and as an iso-parametric curve on
v(w, 1), we refer to it as an iso-asymptotic of the surface.

Definition 2.3: A surface in Minkowski 3-space IE? is termed a
T L surface if its induced metric is Lorentzian, and it is called an
S L surface if the induced metric is a positive-definite Riemannian
metric. Equivalently, a S£ surface has a timelike normal vector,
whereas a 7 L surface possesses a S L-normal vector.
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3 Main results

In this section, we present a novel method for constructing
families of S £ surfaces in IE? that share Bertrand curves as common
asymptotic curves. Our approach leverages SL-Bertrand curves in
such a way that the tangent planes of the resulting S £ surfaces align
with the osculating planes of these SL-Bertrand curves. To achieve
this, we assume that the curves ¢(w) and @(w) are SL-Bertrand
curves with 7 £-binormal vectors, as described in Equations 2.1, 2.2.
Based on this assumption, one can define a surface family by

Roo(w,t) =pw) +r(w,)A; (W) +y(w, ) A, (w); 0<t<T,0<v<L,
(3.1)

which constitutes an SL-surface family sharing the curve (w) as
mutual curve in common. Similarly, the surface

Rd(w, 1) =P (W) +x (W, DA, (W) +n (W, DA, (w); 0<t<T,0<w<L
(3.2)

also forms an SL-surface family with @(w) as a common curve. In
these constructions, the functions r(w,t) and y(w, ) (which belong
to C') are termed marching-scale functions, with the condition
n(w,t,) # 0 for some ¢, € [0, T]. To ensure that $(w) is an asymptotic
curve on R, we must determine the appropriate conditions for
the marching-scale functions. Computing the partial derivatives of

]» , (3.3)

where subscripts denote partial differentiation with respect to w and

o(w, ) gives
o, (w,t) = (1+¢, —%n)A, + (x&+1p,) A, + ik,
v, (wt) = }«}Xl + Utjz’

t, respectively. The surface normal is then defined by

A(w, ) = -9, +rivh, + [ (e, - v9,) & - (1+1, - vR)y,] As.
(3.4)

As @(w) is an iso-parametric curve on %R, there exists
a parameter value t=1¢,¢€ [0,T] such that 9(w,t,) = ¢(w). This

implies that
t(wito) =n(witg) =01, (wito) =1, (1) =0 (3.5)
Evaluating the normal vector at t = £, then simplifies to
A (w,ty) = -1, (w,19) A; (w). (3.6)

This result shows that the surface normal along @(w) is parallel
to the binormal vector, ensuring that ¢(w) is indeed an SL-
asymptotic curve on . From the relations in Equations 3.1-3.6, we
consequently derive the following theorem.

Theorem 3.1: A curve @(w) is an iso-asymptotic (i.e, an
asymptotic) curve on the SL-surface family 9 if and only if

}

t(w,ty) =n(wty) =0,

(3.7)
n,(w,t,) #0, 0<ty<T, 0<w<L.

for some t, € [0, T] and for all w € [0, L].
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For simplification and practical evaluation, we assume
that the marching-scale functions r(w,t) and y(w,t) can be
separated as follows:

r(w,0) =1(w) X (1),
y(w, 1) =m(w) (1),

where I(w), m(w),X(t), and 2)(t) are C' functions that are not
identically zero. From Theorem 3.1, we then obtain the following:

Corollary 3.1: The curve ¢(w) is an asymptotic curve on the SL-
surface family 9 if and only if

X(t) =D (t,) =0, I(w)=const. #0, m(w) = const. 0,
) (t)
dt
with £, € [0,T] and w € [0, L].
To construct surfaces 9 and R that interpolate ¢(w) and §(w)
as common asymptotic SL-Bertrand curves, we first define the

(3.8)

=const. #0,0<t, <T, 0<w<I,

marching-scale functions as in Equation 3.7 and then substitute
these into Equations 3.1, 3.2 to obtain the parametrization.
Moreover, for practical flexibility, the functions r(w,t) and y(w,t)
can be expressed in alternative forms while still allowing sufficient
freedom to ensure that the surfaces 9 and R interpolate ¢(w) and
¢(w) as mutual asymptotic curves. Therefore, we assume that r(w, )
and y(w, t) may also be given in two additional formats:

1. We assume that the marching-scale functions are defined by

P
Fn0) = £ a0 X0,

L k k
90wt = 2 bym(w Do,

where I(w), m(w), X(t), and (¢) belong to C!; the coefficients a
and b, are real numbers for k = 1,2,..., p; and neither /(w) nor m(w)
is identically zero. In this setting, the sufficient conditions to ensure
that the pair of curves {¢(w), §(w)} are common asymptotic curves
on the surfaces {SR, R } are given by

X(t)) =D (t) =0,

b,y #0,m(w)#0,and

a9 (1) (3.9)

——— =const. #0.
dt *

2. Alternatively, we assume the functions take a compositional
form:

P
sn0 = £ 2 a0,
! K k
pOwn)=g( Z bym* WD ) ),
then the corresponding conditions become

X(t) = (ty) = f(0)=g(0) =0,

daQ) (¢ (3.10)

by #0, @d(t ) const 0, m(w) #0, g (0) %0,
where I(w), m(w), and X(£),Y)(t) € C', with ai» b,-j € Rfori=1,2,and
j=12,...,p, (w), and m(w) are not identically zero. As there are no
03 frontiersin.org
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FIGURE 5
R UR with p(w) = p(w) =w.

additional restrictions imposed by the given curve in Equations 3.8,
3.9 or Equation 3.10, one can always construct the pair of surfaces
R, R} with {o(w), @(w)} as their mutual asymptotic curves by
suitably choosing these flexible marching-scale functions.

Example 3.1: We consider the curve
@(w) = (\/§sin w, V2w, V3 cos w), 0<w<2m.

Then one may define the associated frame vectors as

A(w)= (\/gcos w, V2,-V3sin w),
A, (w) = (—sin w,0,—cos w),

As(w) = (—\/Ecos w,—/3,V2sin w).
With these, the SL-surface family R is given by

R v(w,t):( V3sin w, V2w, V3 cos w)+(zc(w,t),n (w,1),0)x

V3cosw V2 \Bsinw
—sin w 0 —Ccos w
—V2cosw -V3 V2sinw

where 0 < w <27,

Frontiers in Physics

Now, if we set f= 2v3 in Equation 2.1, then the curve is
modified as

P (w) =@ (w) +2\/§/12(w) = (—\/gsin w, V2w, - V3 cos w).

this modified the

vectors become
A (w)= (—\/gcos w, V2, V3sin w),
/Tz (w) = (sin w,0,cos w),

j3(w) = (\/Ecos w,—V3,-2sin w).

For curve, corresponding  frame

Thus, the SL£-surface family 9 is now parameterized by

R . ﬁ(w,t):(—\/gsin w,V2w,— V3 cos w)+(p(w,t),\)(w,t),0)><

—V3cosw V2 V3sin w
sin w 0 Ccos W
V2cos w -V3 —V2sinw

In each case, the functions x(w, t) and y(w, t) (the marching-scale
functions) provide the necessary degrees of freedom to generate the
family of S L surfaces, with ¢(w) serving as the common asymptotic
curve.

06 frontiersin.org
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FIGURE 6
RUNR y(w)=1-cosw, f(w)=w.

1. In the case, where p(w,t)=1-cott, n(w,t)=sint,
tpy=0, and -1< t<1, the conditions in Equation 3.8
the constructed pair of

surfaces {R, R} (Figure 1) features @(w) on the surface

are satisfied. Consequently,
R, whereas the green curve represents @(w) on the
surface R.

2. If we define

4
t(w,t) =sint+ kzzalk sin® t,
4
y(w,t)=(1—-cost) +k22b1k(l —cos t)k,

for 0< t<2m and 0< w <27, with £, =0, and coefficients a,
bk € R, then the conditions given in Equation 3.9 are fulfilled. For
example, if we choose ay; = by, = 0.001, the corresponding pair of
surfaces {98, R} is illustrated in Figure 2. In this figure, the blue curve
represents $(w) on R, whereas the green curve represents ¢(w) on
R

3. If we define

Frontiers in Physics
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4 4
r(w,t) = sin <k§1 hlkwktk> ,p(w,t) = 151 blkwktk,

where 0 <w<2m, 0.1 <t<0.1, and set f, =0, then the criteria

outlined in Equation3.10 are satisfied. Specifically, when
choosing by, =1 for all k, the corresponding surfaces {9, R}
are illustrated in Figure 3. In this visualization, the blue curve
denotes @(w) on R, whereas the green curve represents @(w) on
the corresponding surface R.

This example illustrates that one can extend this construction of
S L-surface families by selecting additional combinations or sets of

curves to interpolate as desired.

3.1 SL ruled surfaces with S£ -Bertrand
curves

In this subsection, we analyze the structure of S£-ruled surfaces
that incorporate S£-Bertrand curves as asymptotic curves. For the
ease of interpretation, let §(w) be a unit-speed SL-curve witha 7 L-
binormal vector in ]E? We consider d(w,t) as an SL-ruled surface

frontiersin.org
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whose base curve is @(w), and we assume that ¢(w) is also an iso-
parametric SL curve of v(w, t). Then, there exists a specific value t,,
such that 9(w, t,) = @(w). This leads to the following relation:

R (w,t) — D (wyty) = (t—1,)§(w), withO < w < L,t, t, € [0, T],

where g(w) is a SL-unit vector along the rulings. Using Equation 3.2,
we obtain

(t=t) (W) =t (m, DA, (W) + 1 (W, )5 (W), 0<w<L, with £, £, € [0,T],

which represents a system of two equations involving the unknown
functions r(w, t) and H(w, t). To express these explicitly, we use

t(w,0) = (t—t) <§Ay >= (t-1t,) det(g.1,,15),

- o 3.11
D(w,t) = (t—1ty) <§A, >= —(t—t)det(§A,,45). 311

Equation 3.11 gives the necessary and sufficient conditions for
R to be a SL-ruled surface. According to Theorem 3.1, if the
curve @(w) is an asymptotic curve on R, then det (g,il,x3) #0.
Consequently, at any point along @(w), the ruling direction g(w)
belongs to the span of {il,iz}. Furthermore, g(w) and /Tl(w) must
not be collinear, leading to the expression

gEW) =yWA, (W) + WA, (w), 0<w<L,

for some real functions y(w) and S(w) # 0. As a result, the family
of iso-parametric SL-ruled surfaces sharing the common SL-
asymptotic curve ¢(w) can be expressed as

Ro(w, ) =pw) +t(y(w)A; W)+ B(W)A,(w)), 0<t<T, 0<wsL,
(3.12)

for certain real-valued functions y(w) and (w) # 0. The unit normal
to the surface 3R is given by

A (w 1) = 17 (yh, = BA,) - [B+ ('R - BR+yB +By') s,

Evaluating at t=0, which corresponds to the curve

@(w), we obtain
i (w,0) = -,
Thus, $(w) remains an asymptotic curve on 9.

Theorem 3.2: The pair of surfaces{R, R} interpolates the curves
{ep(w), @(w)} as mutual asymptotic SL-Bertrand curves if and only
if there exists £, € [0, T] and functions y(w) and B(w) # 0 such that
9 and 9 are represented by Equation 3.12 and

Ro(w, 1) =@ (W) +t(y(W)A, (W) +B(w)A,), 0<t<T, 0<w<L,
(3.13)

for some real-valued functions y(w) and S(w) # 0.

It is important to highlight in Equation 3.12 (respectively,
Equation 3.13) that a S£ asymptotic curve passes through every
point on the curve @(w) (respectively, @(w)). One of these curves
is @ (rersp. @(w)) itself, whereas the other corresponds to a SL-line
aligned with the direction g(w) ((respectively, g(w)), as described in
Equation 3.12 (respectively, (Equation 3.13)).

Example 3.2: Building upon Example 3.1, we consider the
following cases:
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1. For y(w)=sinw and B(w)= cosw, the surfaces {%R, R}
interpolating {@(w), ¢(w)} as mutual asymptotic SL-Bertrand
curves are given as follows (Figure 4):

V3sin w+%(\/§—1)sin 2w
V2w + V2t sin w >

V3cos w—t(\/gsin2 w+coszw)

R (w,t) =

and

—/3sin w—%(\/g—l)sin 2w
V2w + V2t sin w >

—V3cos w+t(\/§sin2 w+coszw)

R (w, ) =

where —1< t<1 and 0< w<2m In Figure4, the blue curve
represents ¢(w) on 3R, whereas the green curve illustrates ¢(w) on
R.

2. If y(w) = B(w) =w, then the surfaces {R, R} interpolating
{p(w), @(w)} as mutual asymptotic SL-Bertrand curves are
given by (Figure 5):

V3sin w+tw(\/§cos w—sin w)

Riv(w, t) = \/Ew(l +1) s
V3cos w— tw(\/gsin W+ Cos w)
and
—/3sin w—tw(\/gcos w —sin w)
R (w,1) = V2w(1+1) ,

—V3cos w+tw(\/§sin W+ COS w)

where —1.5< t<1.5 and 0 < w < 2m In Figure 5, the blue curve
represents $(w) on R, whereas the green curve corresponds to @(w)
on A

3. If y(w)=1-cosw and B(w)=w, then the surfaces {8, R}
interpolating {¢(w), §(w)} as mutual asymptotic S L-Bertrand
curves are given by (Figure 6):

V2sin w+t(\/§sin w— \/E)cosw

Roo(w,t) = \/§w+t(\/§sinw—\/§) R
V3cos w—t(\/gsin w— \/E)sinw
and
—/2sin w—t(\/gsin w— \/E)COS w
iﬁ:ﬁ(w,t)z \/§w+t(\/§sinw—\/§) R

—V3cos w+t(\/§sin sw— \/E)sinw

where —.5< t<.5 and 0< w<2m In Figure6, the blue curve
represents @(w) on R, whereas the green curve corresponds to (w)
on A
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4 Conclusion

In this study, we propose a method for constructing families
of spacelike surfaces in Minkowski 3-space that share a common
Bertrand curve as an asymptotic curve. By aligning surface tangent
planes with the osculating planes of spacelike Bertrand curves
and employing marching-scale functions, we establish a flexible
parametrization framework and derive the necessary and sufficient
conditions for asymptoticity. Examples highlight the versatility
of the method, which enriches surface modeling in Lorentzian
geometry and offers applications in differential geometry, relativity,
and computer-aided design. Potential extensions include timelike or
null surfaces, higher dimensions, and dynamic surface evolution.
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