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Spacelike surface families 
interpolating common 
asymptotic curves in Minkowski 
3-space
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In this paper, we propose a method for constructing families of spacelike 
surfaces in Minkowski 3-space 𝔼3

1  that share Bertrand curves as asymptotic 
curves. By using marching-scale functions, we derive the necessary conditions, 
provide flexible formulations, and establish a framework for constructing mutual 
spacelike Bertrand curves. Examples show how different functions generate 
surfaces interpolating the common asymptotic curves, offering new insights for 
geometric modeling and ruled surface theory.
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 1 Introduction

Among the various curves found on surfaces, asymptotic curves hold a special place 
due to their distinct geometric behavior. An asymptotic curve is one where the tangent 
vector continuously aligns with a direction that renders the normal curvature zero. In 
practical terms, this means the surface remains momentarily aligned with its tangent 
plane along the curve, a condition further reinforced by the persistent alignment of the 
curve’s binormal vector with the surface normal. Consequently, the Gaussian curvature 
along such a curve is non-positive—that is, it is either zero or negative [1, 2]. Recent 
investigations have emphasized the importance of these curves, particularly in applications 
such as astronomy. For example, Hartman and Wintner [3] stressed that regularity 
conditions are critical for understanding asymptotic curves on surfaces with negative 
Gaussian curvature, whereas Kitagawa [4] showed that a flat torus embedded in a unit 
3-sphere features cyclic asymptotic curves. Further studies by Garcia and Sotomayor [5] 
have shed light on the intrinsic properties of asymptotic curves in Euclidean spaces, and 
Garcia et al. [6] demonstrated that networks of these curves can maintain topological 
stability under small perturbations. Moreover, asymptotic curves play a significant role 
in diverse fields such as architecture and computer-aided design. In astrophysics, for 
instance, the analysis of Lyapunov orbits—which is crucial for understanding stellar 
escape trajectories—relies heavily on the geometry of asymptotic curves. Contopoulos [7] 
examined how unstable orbits can escape along these curves, whereas Efthymiopoulos et al. 
[8] observed that chaotic trajectories within fractal-like sets often mirror the behavior of 
unstable asymptotic curves. In the realm of free-form architecture, Flöry and Pottmann [9] 
developed a geometric modeling framework that uses strips of ruled surfaces, constructed
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by aligning rulings with asymptotic curves, and refined these initial 
designs to match specific target shapes.

In a related development, the concept of a surface family 
featuring a unique characteristic curve was first introduced by Wang 
et al. [10] in Euclidean 3-space (𝔼3), where they constructed a 
family of surfaces sharing a common geodesic. This pioneering work 
has inspired numerous subsequent studies on surface families with 
shared key curves in both Euclidean and non-Euclidean contexts 
(e.g., [11–32]). In curve theory, establishing a robust correspondence 
between curves remains a fundamental challenge. One well-known 
example is the Bertrand pair, which is a classical case where two 
curves are in bijective correspondence and share the same principal 
normals [1, 2]. These Bertrand curves also serve as models for 
offset curves, which are integral to computer-aided design (CAD)
and manufacturing (CAM) processes (see [33–35]). Despite these 
advances, no prior research has focused on constructing spacelike 
surfaces in 𝔼3

1 that incorporate Bertrand curves as asymptotic 
curves. In this study, we seek to bridge that gap by exploring how 
Bertrand curves can be utilized as asymptotic curves to generate 
families of spacelike surfaces in 𝔼3

1.
In this study, we introduce a method for constructing families 

of spacelike surfaces in Minkowski 3-space that share a common 
Bertrand curve as an asymptotic curve. By utilizing spacelike 
Bertrand curves and aligning the tangent planes of the surfaces with 
the osculating planes of the curves, parametric equations of the 
surfaces are developed using marching-scale functions. Necessary 
and sufficient conditions are derived to guarantee the asymptotic 
nature of the common curve on each surface. Several flexible 
formulations are proposed, and examples illustrate the generation 
of spacelike surfaces through different choices of marching-scale 
functions. The significance of this work lies in providing a 
systematic and versatile framework for generating geometrically 
meaningful surfaces, enhancing the theoretical understanding of 
Lorentzian geometry, and offering practical tools for applications in 
computer-aided geometric design, relativity, and broader differential 
geometry contexts. 

2 Preliminaries

In this section, we provide a concise overview of the 
fundamentals of curves and surfaces in Minkowski 3-space 𝔼3

1
[14, 15]. Consider vectors w = (w1,w2,w3) and z = (z1,z2,z3) in 𝔼3

1. 
Their Lorentzian inner product is defined by

< w,z >= w1z1 +w2z2 −w3z3.

We also define the cross product of w and z as

w× z = (w2z3 −w3z2) , (w3z1 −w1z3) ,−(w1z2 −w2z1) .

As the Lorentzian inner product is an indefinite metric, any 
vector w ∈ 𝔼3

1 can be classified by its causal character. Specifically, 
w is called spacelike (SL) if ⟨w,w⟩ > 0 or w = 0, timelike (T L) 
if ⟨w,w⟩ < 0, and lightlike or null if ⟨w,w⟩ = 0 while w ≠ 0. 
The norm of w is defined as ‖w‖ = √|⟨w,w⟩|. Accordingly, the 
hyperbolic unit sphere and the Lorentzian (de Sitter) unit sphere 
are given by

H2
+ = {w ∈ 𝔼

3
1 ∣ ‖w‖

2 ≔ w2
1 +w2

2 −w2
3 = −1} ,

and

S2
1 = {w ∈ E

3
1 ∣ ‖w‖

2 ≔ w2
1 +w2

2 −w2
3 = 1} .

Consider a unit-speed SL-curve φ(w) in 𝔼3
1 that possesses a 

T L-binormal vector. Its curvature and torsion are denoted by κ(w)
and τ(w), respectively. Let {λ1(w),λ2(w),λ3(w)} be the corresponding 
Serret–Frenet frame along φ(w), where λ1(w), λ2(w), and λ3(w)
represent the unit tangent, principal normal, and binormal vectors, 
respectively. The frame vectors satisfy the following normalization 
conditions under the Lorentzian inner product:

< λ1,λ1 >=< λ2,λ2 >= − < λ3,λ3 >= 1,
λ1 × λ2 = −λ3, λ1 × λ3 = −λ2,λ2 × λ3 = λ1.

The derivatives of the frame vectors with respect to the arc-
length parameter w are then expressed as

(
λ′1
λ′2
λ′3

)=(
0 κ (w) 0
−κ (w) 0 τ (w)

0 τ (w) 0
)(

λ1

λ2

λ3

), (2.1)

with the prime indicating differentiation with respect to w. The 
subspaces spanned by Sp{λ2,λ3}, Sp{λ1, λ2}, and Sp{λ3,λ1} are 
referred to as the normal plane, osculating plane, and rectifying 
plane, respectively.

Definition 2.1: ([1, 2]) Let φ(w) and φ̂(w) be two curves in 𝔼3
1, 

with the respective principal normal vectors λ2(w) and λ̂2(w). 
The curves form a Bertrand pair if, at corresponding points, their 
principal normals are linearly dependent. Equivalently, there exists 
a constant f such that

φ̂ (w) = φ (w) + fλ2 (w) . (2.2)

Here, f is a fixed scalar. 
We denote a surface R by its parametrization

R:υ (w, t) = (υ1 (w, t) ,υ2 (w, t) ,υ3 (w, t)) , (w, t) ∈ 𝔻 ⊆ ℝ2.

Here, if we let υj(w, t) =
∂υ
∂j

, for j = w and t, the surface’s normal 
vector is defined as

n (w, t) = υw ∧ υt,

with the property that ⟨n,υw⟩ = ⟨n,υt⟩ = 0.

Definition 2.2: ([1, 2]) A curve on a surface is called asymptotic if, 
at every point on the curve, the surface normal is aligned with the 
curve’s binormal vector. 

A curve φ(w) on a surface υ(w, t) is called an iso-parametric 
curve if one of its parameters remains constant. In other words, 
there exists a fixed value t0 such that φ(w) = υ(w, t0), or similarly, 
a constant w0 with φ(t) = υ(w0, t). When a given curve φ(w) serves 
both as an asymptotic curve and as an iso-parametric curve on 
υ(w, t), we refer to it as an iso-asymptotic of the surface.

Definition 2.3: A surface in Minkowski 3-space 𝔼3
1 is termed a 

T L surface if its induced metric is Lorentzian, and it is called an 
SL surface if the induced metric is a positive-definite Riemannian 
metric. Equivalently, a SL surface has a timelike normal vector, 
whereas a T L surface possesses a SL-normal vector. 
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3 Main results

In this section, we present a novel method for constructing 
families of SL surfaces in 𝔼3

1 that share Bertrand curves as common 
asymptotic curves. Our approach leverages SL-Bertrand curves in 
such a way that the tangent planes of the resulting SL surfaces align 
with the osculating planes of these SL-Bertrand curves. To achieve 
this, we assume that the curves φ(w) and φ̂(w) are SL-Bertrand 
curves with T L-binormal vectors, as described in Equations 2.1, 2.2. 
Based on this assumption, one can define a surface family by

R:υ (w, t) = φ (w) + x (w, t)λ1 (w) +y (w, t)λ2 (w) ; 0 ≤ t ≤ T, 0 ≤ v ≤ L,
(3.1)

 which constitutes an SL-surface family sharing the curve φ(w) as 
mutual curve in common. Similarly, the surface

R̂:υ̂ (w, t) = φ̂ (w) + x (w, t) λ̂1 (w) +y (w, t) λ̂2 (w) ; 0 ≤ t ≤ T, 0 ≤ w ≤ L
(3.2)

 also forms an SL-surface family with φ̂(w) as a common curve. In 
these constructions, the functions x(w, t) and y(w, t) (which belong 
to C1) are termed marching-scale functions, with the condition 
y(w, t0) ≠ 0 for some t0 ∈ [0,T]. To ensure that φ̂(w) is an asymptotic 
curve on R̂, we must determine the appropriate conditions for 
the marching-scale functions. Computing the partial derivatives of 
υ̂(w, t) gives

υ̂w (w, t) = (1+ xw − κ̂y) λ̂1 + (xκ̂+ yw) λ̂2 + yτ̂λ̂3,
υ̂t (w, t) = xtλ̂1 + ytλ̂2,

} , (3.3)

where subscripts denote partial differentiation with respect to w and 
t, respectively. The surface normal is then defined by

n̂ (w, t) = −yτ̂ytλ1 + xtτ̂yλ̂2 + [(xxt − yyt) κ̂− (1+ xw − yκ̂)yt] λ̂3.
(3.4)

As φ̂(w) is an iso-parametric curve on R̂, there exists 
a parameter value t = t0 ∈ [0,T] such that υ̂(w, t0) = φ̂(w). This 
implies that

x(w, t0) = y(w, t0) = 0, xw (w, t0) = yw (w, t0) = 0. (3.5)

Evaluating the normal vector at t = t0 then simplifies to

n̂(w, t0) = −yt (w, t0) λ̂3 (w) . (3.6)

This result shows that the surface normal along φ̂(w) is parallel 
to the binormal vector, ensuring that φ̂(w) is indeed an SL-
asymptotic curve on R̂. From the relations in Equations 3.1–3.6, we 
consequently derive the following theorem.

Theorem 3.1: A curve φ̂(w) is an iso-asymptotic (i.e., an 
asymptotic) curve on the SL-surface family R̂ if and only if

x(w, t0) = y(w, t0) = 0,
yt (w, t0) ≠ 0, 0 ≤ t0 ≤ T, 0 ≤ w ≤ L.

} (3.7)

for some t0 ∈ [0,T] and for all w ∈ [0,L]. 

For simplification and practical evaluation, we assume 
that the marching-scale functions x(w, t) and y(w, t) can be 
separated as follows:

x (w, t) = l (w)X (t) ,
y (w, t) =m (w)Y (t) ,

where l(w), m(w),X(t), and Y(t) are C1 functions that are not 
identically zero. From Theorem 3.1, we then obtain the following:

Corollary 3.1: The curve φ̂(w) is an asymptotic curve on the SL-
surface family R̂ if and only if

X(t0) =Y(t0) = 0, l (w) = const. ≠ 0,m (w) = const. ≠ 0,
dY(t0)

dt
= const. ≠ 0, 0 ≤ t0 ≤ T, 0 ≤ w ≤ L,

}}
}}
}

(3.8)

with t0 ∈ [0,T] and w ∈ [0,L]. 
To construct surfaces R and R̂ that interpolate φ(w) and φ̂(w)

as common asymptotic SL-Bertrand curves, we first define the 
marching-scale functions as in Equation 3.7 and then substitute 
these into Equations 3.1, 3.2 to obtain the parametrization. 
Moreover, for practical flexibility, the functions x(w, t) and y(w, t)
can be expressed in alternative forms while still allowing sufficient 
freedom to ensure that the surfaces R and R̂ interpolate φ(w) and 
φ̂(w) as mutual asymptotic curves. Therefore, we assume that x(w, t)
and y(w, t) may also be given in two additional formats: 

1. We assume that the marching-scale functions are defined by

{{
{{
{

x (w, t) =
p
Σ

k=1
a1kl(w)kX(t)k,

y (w, t) =
p
Σ

k=1
b1km(w)kY(t)k,

where l(w), m(w), X(t), and Y(t) belong to C1; the coefficients a1k
and b1k are real numbers for k = 1,2,…,p; and neither l(w) nor m(w)
is identically zero. In this setting, the sufficient conditions to ensure 
that the pair of curves {φ(w), φ̂(w)} are common asymptotic curves 
on the surfaces {R, R̂ } are given by

{{
{{
{

X(t0) =Y(t0) = 0,

b11 ≠ 0,m (w) ≠ 0, and
dY(t0)

dt
= const. ≠ 0.

(3.9)

2. Alternatively, we assume the functions take a compositional 
form:

{{{
{{{
{

x (w, t) = f(
p
Σ

k=1
a1klk (w)Xk (t)) ,

y (w, t) = g(
p
Σ

k=1
b1kmk (w)Yk (t)) ,

then the corresponding conditions become

{{
{{
{

X(t0) =Y(t0) = f (0) = g (0) = 0,

b11 ≠ 0,
dY(t0)

dt
= const ≠ 0, m (w) ≠ 0, g′ (0) ≠ 0,

(3.10)

where l(w), m(w), and X(t),Y(t) ∈ C1, with aij, bij ∈ ℝ for i = 1,2, and 
j = 1,2,…,p, l(w), and m(w) are not identically zero. As there are no 
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FIGURE 1
R∪ R̂ with x(w, t) = 1− cot and y(w, t) = sin t.

FIGURE 2
R∪ R̂ with x(w, t) = sin t+Σ4

k=2a1k sink t and y(w, t) = (1− cos t) +Σ4
k=2b1k(1− cos t)k.
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FIGURE 3
R∪ R̂ with x(w, t) = sin (Σ4

k=1w
ktk) and y(w, t) = Σ4

k=1w
ktk.

FIGURE 4
R∪ R̂with γ(w) = sin wand β(w) = cos w.
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FIGURE 5
R∪ R̂ with γ(w) = β(w) =w.

additional restrictions imposed by the given curve in Equations 3.8, 
3.9 or Equation 3.10, one can always construct the pair of surfaces 
{R̂, R} with {φ(w), φ̂(w)} as their mutual asymptotic curves by 
suitably choosing these flexible marching-scale functions.

Example 3.1: We consider the curve

φ (w) = (√3sin w,√2w,√3cos w) , 0 ≤ w ≤ 2π.

Then one may define the associated frame vectors as

λ1 (w) = (√3cos w,√2,−√3sin w) ,
λ2 (w) = (− sin w,0,−cos w) ,

λ3 (w) = (−√2cos w,−√3,√2sin w) .

}}}
}}}
}

With these, the SL-surface family R is given by

R : υ(w,t)=(√3sin w,√2w,√3cos w)+(x(w,t),y(w,t),0)×

(

√3cos w √2 √3sin w
− sin w 0 −cos w
−√2cos w −√3 √2sin w

),

 where 0 ≤ w ≤ 2π.

Now, if we set f = 2√3 in Equation 2.1, then the curve is 
modified as

φ̂ (w) ≔ φ (w) + 2√3λ2 (w) = (−√3sin w,√2w,−√3cos w) .

For this modified curve, the corresponding frame 
vectors become

λ̂1 (w) = (−√3cos w,√2,√3sin w) ,
λ̂2 (w) = (sin w,0,cos w) ,

λ̂3 (w) = (√2cos w,−√3,−√2sin w) .

}}}
}}}
}

Thus, the SL-surface family R̂ is now parameterized by

R̂ : υ̂(w,t)=(−√3sin w,√2w,−√3cos w)+(x(w,t),y(w,t),0)×

(

−√3cos w √2 √3sin w
sin w 0 cos w
√2cos w −√3 −√2sin w

).

In each case, the functions x(w, t) and y(w, t) (the marching-scale 
functions) provide the necessary degrees of freedom to generate the 
family of SL surfaces, with φ(w) serving as the common asymptotic 
curve. 
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FIGURE 6
R∪ R̂ γ(w) = 1− cos w, β(w) =w.

1. In the case, where x(w, t) = 1− cot t, y(w, t) = sin t, 
t0 = 0, and −1 ≤ t ≤ 1, the conditions in Equation 3.8 
are satisfied. Consequently, the constructed pair of 
surfaces {R, R̂} (Figure 1) features φ(w) on the surface 
R, whereas the green curve represents φ̂(w) on the
surface R̂.

2. If we define

x (w, t) = sin t+
4
Σ

k=2
a1k sink t,

y (w, t) = (1− cos t) +
4
Σ

k=2
b1k(1− cos t)k,

}}
}}
}

for 0 ≤ t ≤ 2π and 0 ≤ w ≤ 2π, with t0 = 0, and coefficients a1k, 
b1k ∈ ℝ, then the conditions given in Equation 3.9 are fulfilled. For 
example, if we choose a1k = b1k = 0.001, the corresponding pair of 
surfaces {R, R̂} is illustrated in Figure 2. In this figure, the blue curve 
represents φ̂(w) on R̂, whereas the green curve represents φ(w) on 
R. 

3. If we define

x (w, t) = sin(
4

Σ
k=1

b1kwktk), y (w, t) =
4

Σ
k=1

b1kwktk,

where 0 ≤ w ≤ 2π, −0.1 ≤ t ≤ 0.1, and set t0 = 0, then the criteria 
outlined in Equation 3.10 are satisfied. Specifically, when 
choosing b1k = 1 for all k, the corresponding surfaces {R, R̂} 
are illustrated in Figure 3. In this visualization, the blue curve 
denotes φ̂(w) on R̂, whereas the green curve represents φ(w) on 
the corresponding surface R.

This example illustrates that one can extend this construction of 
SL-surface families by selecting additional combinations or sets of 
curves to interpolate as desired. 

3.1 SL ruled surfaces with SL -Bertrand 
curves

In this subsection, we analyze the structure of SL-ruled surfaces 
that incorporate SL-Bertrand curves as asymptotic curves. For the 
ease of interpretation, let φ̂(w) be a unit-speed SL-curve with a T L-
binormal vector in 𝔼3

1. We consider υ̂(w, t) as an SL-ruled surface 
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whose base curve is φ̂(w), and we assume that φ(w) is also an iso-
parametric SL curve of υ(w, t). Then, there exists a specific value t0, 
such that υ̂(w, t0) = φ̂(w). This leads to the following relation:

R̂:υ̂ (w, t) − υ̂(w, t0) = (t− t0) ĝ (w) , with0 ≤ w ≤ L, t, t0 ∈ [0,T] ,

where ̂g(w) is a SL-unit vector along the rulings. Using Equation 3.2,
we obtain

(t− t0) ĝ (w) = x (w, t) λ̂1 (w) +y (w, t) λ̂2 (w) , 0 ≤ w ≤ L, with t, t0 ∈ [0,T] ,

 which represents a system of two equations involving the unknown 
functions x(w, t) and y(w, t). To express these explicitly, we use

x (w, t) = (t− t0) < ĝ, λ̂1 >= (t− t0)det(ĝ, λ̂2, λ̂3) ,
y (w, t) = (t− t0) < ĝ, λ̂2 >= −(t− t0)det(ĝ, λ̂1, λ̂3) .

(3.11)

Equation 3.11 gives the necessary and sufficient conditions for 
R̂ to be a SL-ruled surface. According to Theorem 3.1, if the 
curve φ̂(w) is an asymptotic curve on R̂, then det (ĝ, λ̂1, λ̂3) ≠ 0. 
Consequently, at any point along φ̂(w), the ruling direction ĝ(w)
belongs to the span of {λ̂1, λ̂2}. Furthermore, ĝ(w) and λ̂1(w) must 
not be collinear, leading to the expression

ĝ (w) = γ (w) λ̂1 (w) + β (w) λ̂2 (w) , 0 ≤ w ≤ L,

for some real functions γ(w) and β(w) ≠ 0. As a result, the family 
of iso-parametric SL-ruled surfaces sharing the common SL-
asymptotic curve φ̂(w) can be expressed as

R̂:υ̂ (w, t) = φ̂ (w) + t(γ (w) λ̂1 (w) + β (w) λ̂2 (w)) , 0 ≤ t ≤ T, 0 ≤ w ≤ L,
(3.12)

 for certain real-valued functions γ(w) and β(w) ≠ 0. The unit normal 
to the surface R̂ is given by

n̂ (w, t) = tβτ̂(γλ̂2 − βλ̂1) − [β+ t(γ2κ̂− β2κ̂+ γβ′ + βγ′) λ̂3.

Evaluating at t = 0, which corresponds to the curve 
φ̂(w), we obtain

n̂ (w,0) = −βλ̂3.

Thus, φ̂(w) remains an asymptotic curve on R̂.

Theorem 3.2: The pair of surfaces{R, R̂} interpolates the curves 
{φ(w), φ̂(w)} as mutual asymptotic SL-Bertrand curves if and only 
if there exists t0 ∈ [0,T] and functions γ(w) and β(w) ≠ 0 such that 
R̂ and R are represented by Equation 3.12 and

R:υ (w, t) = φ (w) + t (γ (w)λ1 (w) + β (w)λ2) , 0 ≤ t ≤ T, 0 ≤ w ≤ L,
(3.13)

for some real-valued functions γ(w) and β(w) ≠ 0. 
It is important to highlight in Equation 3.12 (respectively, 

Equation 3.13) that a SL asymptotic curve passes through every 
point on the curve φ̂(w) (respectively, φ(w)). One of these curves 
is φ̂ (rersp. φ(w)) itself, whereas the other corresponds to a SL-line 
aligned with the direction ĝ(w) ((respectively, g(w)), as described in 
Equation 3.12 (respectively, (Equation 3.13)).

Example 3.2: Building upon Example 3.1, we consider the 
following cases: 

1. For γ(w) = sin w and β(w) = cos w, the surfaces {R, R̂} 
interpolating {φ(w), φ̂(w)} as mutual asymptotic SL-Bertrand 
curves are given as follows (Figure 4):

R:υ (w, t) =(

√3sin w+ t
2 (√3− 1) sin 2w

√2w+√2t sin w
√3cos w− t(√3sin2 w+ cos2 w)

),

and

R̂:υ̂ (w, t) =(
−√3sin w− t

2 (√3− 1) sin 2w
√2w+√2t sin w

−√3cos w+ t(√3sin2 w+ cos2 w)

),

where −1 ≤ t ≤ 1 and 0 ≤ w ≤ 2π. In Figure 4, the blue curve 
represents φ̂(w) on R̂, whereas the green curve illustrates φ(w) on 
R. 

2. If γ(w) = β(w) = w, then the surfaces {R, R̂} interpolating 
{φ(w), φ̂(w)} as mutual asymptotic SL-Bertrand curves are 
given by (Figure 5):

R:υ (w, t) =(

√3sin w+ tw(√3cos w− sin w)
√2w (1+ t)

√3cos w− tw(√3sin w+ cos w)

),

and

R̂:υ̂ (w, t) =(

−√3sin w− tw(√3cos w− sin w)
√2w (1+ t)

−√3cos w+ tw(√3sin w+ cos w)

),

where −1.5 ≤ t ≤ 1.5 and 0 ≤ w ≤ 2π. In Figure 5, the blue curve 
represents φ̂(w) on R̂, whereas the green curve corresponds to φ(w)
on R. 

3. If γ(w) = 1− cos w and β(w) = w, then the surfaces {R, R̂} 
interpolating {φ(w), φ̂(w)} as mutual asymptotic SL-Bertrand 
curves are given by (Figure 6):

R:υ (w, t) =(

√2sin w+ t(√3sin w−√2)cos w
√2w+ t(√2sin w−√3)

√3cos w− t(√3sin w−√2) sin w

),

and

R̂:υ̂ (w, t) =(

−√2sin w− t(√3sin w−√2)cos w
√2w+ t(√2sin w−√3)

−√3cos w+ t(√3sin sw−√2) sin w

),

where −.5 ≤ t ≤ .5 and 0 ≤ w ≤ 2π. In Figure 6, the blue curve 
represents φ̂(w) on R, whereas the green curve corresponds to φ(w)
on R. 
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4 Conclusion

In this study, we propose a method for constructing families 
of spacelike surfaces in Minkowski 3-space that share a common 
Bertrand curve as an asymptotic curve. By aligning surface tangent 
planes with the osculating planes of spacelike Bertrand curves 
and employing marching-scale functions, we establish a flexible 
parametrization framework and derive the necessary and sufficient 
conditions for asymptoticity. Examples highlight the versatility 
of the method, which enriches surface modeling in Lorentzian 
geometry and offers applications in differential geometry, relativity, 
and computer-aided design. Potential extensions include timelike or 
null surfaces, higher dimensions, and dynamic surface evolution.
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