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Microscale piezoelectric energy harvesters (PEHs) are promising devices for
converting ambient thermal and vibrational energy into usable electrical power.
However, their performance is strongly influenced by geometric, material, and
thermal parameters, leading to nonlinear behavior that complicates accurate
prediction. This study investigates a three-layer clamped bimorph beam
consisting of PZT-5H piezoelectric outer layers and an aluminum core, modeled
using Euler—Bernoulli beam theory under base excitation and thermal gradients.
To overcome the high computational cost of solving the governing equations, a
surrogate model based on Gaussian Process Regression (GPR) is developed. The
training dataset is generated using Latin Hypercube Sampling, enabling efficient
exploration of the design space. The surrogate model accurately predicts
both output power and natural frequency across diverse design configurations.
Validation against numerical simulations demonstrates excellent agreement,
with coefficient of determination (R?) values exceeding 0.99. The proposed
framework significantly reduces computational effort while maintaining high
predictive accuracy. It provides a reliable tool for design optimization of
thermal-vibrational energy harvesting systems, enhancing their efficiency and
robustness.

KEYWORDS

microscale energy harvesting system, temperature gradient, base renewable vibrational
energy, nonlinear dependence, excitation frequency, machine learning-based surrogate
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1 Introduction

The field of energy harvesting, which integrates micro- and nano-electromechanical
systems with smart materials, has significantly transformed the development of innovative
systems. Over the past two decades, researchers have shown considerable interest in
capturing energy from ambient sources to power low-energy electronic devices. The
primary goal of this technology is to supply electrical energy in remote or inaccessible
locations and to recharge energy storage devices, such as batteries and capacitors
[1]. The three primary conversion mechanisms are electrostatic [2], piezoelectric
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[3-5], and electromagnetic transduction [6]. Electrostatic harvesters
rely on vibration-dependent variable capacitors, where mechanical
energy is converted into electricity as plate separation alters
capacitance, though this method requires an external voltage source
and is well-suited for micro-scale applications [7-9]; Meninger et al.
pioneered variable capacitors for electrostatic conversion in 1998
[10], later refined by Roundy et al. [11]. Electromagnetic harvesters
operate via a moving coil within a magnetic field, inducing
voltage, though bulky magnets and low output voltages hinder
their scalability (0.1-0.2V) [12, 13]. Piezoelectric transducers,
which generate charge under mechanical deformation, offer higher
energy density than electrostatic and electromagnetic methods and
are increasingly studied for vibration energy harvesting [14, 15];
clamped beams are commonly used to maximize strain [16-18]. In
recent years, research and development on piezoelectric transducers
have increased significantly. This rise is mainly because piezoelectric
devices have a higher energy density than electrostatic and
electromagnetic options. Their greater energy density makes
piezoelectric converters better at turning mechanical energy
into electrical energy. This ability benefits sensors, actuators,
and devices that gather energy. As a result, researchers and
engineers have focused on improving piezoelectric materials and
systems  performance, efficiency, and flexibility over the past
decade. This trend highlights the essential role that piezoelectric
technology plays in advancing various fields, including consumer
electronics, automotive systems, and renewable energy solutions.
[19]. Modifying the configuration of piezoelectric energy harvesting
systems significantly enhances the amount of harvested energy.
This modification can be achieved through various techniques,
such as changing the type of piezoelectric material, altering the
electrode pattern, adjusting the polarization direction, layering the
material to increase the active volume, and tuning the excitation
frequency of the device. The type of piezoelectric material has
a significant impact on the efficiency of the energy harvesting
system. Various piezoelectric materials have been used in this
field, among which PZT is the most commonly used [20-22].
In energy harvesting device modeling, solving the governing
equations of the dynamic behavior of microscale energy harvesters
is essential for determining harvested power. These nonlinear
equations must be solved repeatedly, even within evolutionary
optimization algorithms, to achieve optimal performance. Machine
learning techniques now enable the development of surrogate
models capable of learning the input-output relationships of
complex systems using appropriate [23-25]. Such models have
broad applicability and are increasingly utilized in various domains,
including modeling nonlinear dynamic phenomena and harvested
power in energy harvesters [26-28]. Microscale piezoelectric
energy harvesters are increasingly integrated into various real-world
applications where inherent thermal gradients significantly impact
device performance. For instance, industrial sensors deployed
in manufacturing environments frequently experience fluctuating
temperature conditions due to machinery operation and ambient
changes, which can alter the harvester’s piezoelectric material
properties and mechanical stresses. Similarly, wearable devices that
harvest energy from body movements are exposed to non-uniform
temperature distributions caused by body heat and environmental
variations. These temperature gradients influence the devices’
dynamic response and electrical output, making it essential to
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incorporate thermal effects into the design and analysis for reliable
and efficient operation under realistic operating conditions [30, 31].
In recent years, machine learning-based surrogate modeling has
emerged as a powerful tool for predicting the performance of
complex energy harvesting systems, offering a practical alternative
to computationally expensive numerical simulations. Among the
various approaches, models such as artificial neural networks
(ANNs), random forests (RF), and support vector regression
(SVR) have demonstrated notable success in handling nonlinearity
and multidimensional parameter spaces. However, each technique
presents unique trade-offs regarding interpretability, generalization,
and sensitivity to hyperparameter tuning. In this study, we adopt
an optimizable Gaussian Process Regression (GPR) model, which
offers high predictive accuracy, probabilistic confidence intervals,
and robust generalization even with moderate-sized datasets.
Using Bayesian optimization for hyperparameter tuning further
enhances the model’s adaptability, making it particularly well-suited
for capturing the coupled nonlinear effects inherent in thermo-
mechanical piezoelectric energy harvesting [32, 33].

While previous studies on piezoelectric energy harvesting
have predominantly focused on vibrational excitation under
isothermal conditions, the explicit consideration of thermal
gradients remains relatively unexplored. Many existing models
either neglect thermal effects or treat them simplistically, which
limits their applicability in practical scenarios where temperature
variations are unavoidable. This study addresses this critical gap
by integrating steady-state thermal gradients into a bimorph
microscale piezoelectric harvester’s coupled electromechanical
modeling framework. Furthermore, using an optimized Gaussian
Process Regression surrogate model allows efficient exploration
of the complex nonlinear interactions between temperature,
mechanical deformation, and electrical output, thereby advancing
the predictive accuracy and practical relevance of energy harvester
design under realistic thermal environments. The analytical
solution is applied to bimorph configurations, and temperature
effects are modeled for symmetric and asymmetric modes. In
piezoelectric energy harvesting systems, the output power exhibits
a strong nonlinear dependence on design parameters such as
transducer geometry, piezoelectric material properties, boundary
conditions, and excitation frequency. This nonlinear relationship
indicates that small parameter changes can cause significant
and unpredictable variations in harvested power. Modifying the
transducer’s length, thickness, or electrode configuration can
substantially affect efficiency. Additionally, aligning the harvester’s
natural frequency with the excitation frequency is essential for
maximizing power output. Accordingly, the design of such systems
necessitates a thorough analysis of their dynamic behavior and
the application of advanced nonlinear modeling techniques to
improve performance under varying conditions. In this context,
a novel surrogate model has been developed to accurately predict
the maximum power output of energy harvesters subjected to
thermal variations. This model eliminates the need for repeated
evaluations of complex coupled governing equations, which are
traditionally time-consuming and computationally intensive.
By streamlining this process, the surrogate model significantly
accelerates the optimization workflow, enabling rapid design
iterations and performance enhancements. This advancement
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represents a substantial step forward in the efficient design and
development of energy harvesting systems.

2 Dynamic coupled
mechanical-electrical-thermal
responses

Over the past decade, most energy harvesters have been
designed and analyzed as cantilever beams. Before formulating
the governing equations, several simplifying assumptions were
made to reduce the complexity of the analytical model while
preserving its physical fidelity. The Euler-Bernoulli beam theory
assumes that the beam is slender and that transverse shear
deformation can be neglected. Heat transfer is considered steady-
state and one-dimensional, with no internal heat generation present.
The piezoelectric layers are modeled as linear, homogeneous,
and isotropic materials. Dielectric losses and internal electrical
resistance are assumed to be negligible. Furthermore, perfect
bonding is assumed between all layers, with no interfacial slip. These
assumptions collectively enable a more tractable and analytically
manageable model, while still capturing the essential physical
behavior of the system. In this context, energy harvesting specifically
refers to vibrational energy harvesting, where energy is extracted
from base excitation. As the base undergoes transverse vibrations,
the beam experiences mechanical strain, leading to electrical
polarization in the piezoelectric layers and generating an electric
potential along the beam’s polarization axis. This enables the
production of electrical power. Thin conductive electrodes are
applied along the entire length of the beam to collect the induced
electric field and extract electrical energy. Additional assumptions
include negligible dielectric losses and internal electrical resistance
in the harvesting layers, allowing the electric field to be uniform
along the beam’s length. Figure 1 illustrates the configuration of
the bimorph piezoelectric energy harvester, while Figures la,b
show the electrode arrangements for parallel and series electrical
connections, respectively. Mechanical strain in the piezoelectric
layers arises either from vibrational excitation at the base or
from thermal gradients across the composite structure. This strain
induces an electric potential, V, along the beam’s polarization
direction. The corresponding electrical power, P, is extracted via
conductive electrodes connected to an external resistive element, R,
functioning as the load. While both configurations share identical
geometrical and material characteristics, their electromechanical
coupling mechanisms differ, thereby influencing the harvester’s
frequency response behavior. A set of geometric and thermal
parameters defines the system. The thickness of each piezoelectric
layer is represented by h,, while h;, denotes the thickness of the
homogeneous substrate layer. The temperatures at the upper and
lower surfaces of the piezoelectric layers are indicated by T, and T/,
respectively, with T, signifying the temperature of the homogeneous
layer. In this study, the assumption of one-dimensional, steady-
state heat conduction without internal heat generation is adopted
based on the energy harvesting system’s physical characteristics
and operating conditions. The device consists of thin laminated
layers with high surface-area-to-volume ratios, which promote
rapid thermal equilibration in the thickness direction while
minimizing lateral heat flow. Moreover, the harvester is assumed
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FIGURE 1

Frequency response of the harvested power with respect to the
dimensionless frequency Q in the first case, for different values of T;;
(a) parallel connection (b) series connection of piezoelectric layers.

to operate under stable thermal boundary conditions, such as fixed
surface temperatures or constant ambient exposure, where thermal
transients decay much faster than the characteristic time scales of
the mechanical vibrations. As a result, the temperature field reaches
a steady state before the dynamic response becomes significant.
Additionally, the absence of internal heat sources further supports
this assumption. This modeling approach aligns with the typical
environmental conditions under which such piezoelectric harvesters
are deployed, particularly in structural and aerospace applications.
It allows for a physically accurate yet computationally efficient
representation of the thermal behavior. Although transient thermal
effects may be relevant in scenarios involving rapidly changing
thermal loads, such cases fall outside the scope of the current
work. Based on these assumptions, the temperature distribution is
established through specific Equations [14]:

Ty(z=0)=T,=T,T,=Tp(z=hc)=Tp(z=-hc) (la)

T,-T
Th(z):Tb+1‘—L[KL][Z—O],OSZ§ha (1b)
w T,
T,-T h
AT,,,(Z):TP,—T0=T,,+‘—"[i<—">+L(Z—ha)],
1 w | K \2) K
Z—Khhh+K—P h P
x h,<Z<h¢ (1c)
Tt_Tb
ATPb(Z):TPb_T():Tb_'—I—hP
2K, MK, (1d)
1 [, 1
X|:K_h<?>+K_P(_Z+ha):|_huSZS_hc

In these expressions, where Tp, Tp, and T), represent the
temperature distributions within the upper piezoelectric layer,
lower piezoelectric layer, and the homogeneous (substrate) layer,
respectively. The thermal conductivities of the piezoelectric and
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homogeneous materials are denoted by K, and K, respectively.
Equations 2-4 define the axial mechanical stress ¢ in the
homogeneous layer and the electric displacement D,, in the

piezoelectric layers.

o) = Cly ~ ByATy(2) )
0_1; = Cl;x - eszz _ﬁPATp(Z) (3)
D =e,€e. +h E_ + PzATp(Z) (4)

h
Cxx’

The coefficients C?

- represent the elastic stiffness of the

piezoelectric and homogeneous layers, respectively. The parameters
e, and h,, denote the piezoelectric and dielectric coeflicients, while
Bps B> are the thermal stress constants for each material. The axial
mechanical strain is indicated ¢, and E, stands for the electric
field. The distributed piezoelectric coefficient in the layer’s thickness
is denoted by P,. The electric field E, is related to the applied
voltage V(t) and the piezoelectric layer thickness, considering
parallel and series configurations (Table 1). The total transverse
displacement W(x,#) combines base excitation W (t) and relative
deflection W, (x,t). Different boundary conditions significantly
influence energy harvesting systems’ dynamic behavior and overall
performance by altering key parameters such as natural frequency,
mode shapes, stress distribution, and deflection amplitude. For
instance, a fixed-fixed configuration increases structural stiffness,
which raises the system’s natural frequencies and reduces vibration
amplitude under the same excitation level. This can lower strain
levels in piezoelectric layers, decreasing harvested power. Similarly,
supported or free-free conditions tend to exhibit symmetrical
mode shapes and limited localized deformation, making them
less efficient in concentrating strain energy in regions optimal
for transducer placement. Moreover, complex boundary conditions
may introduce mode coupling or require more sophisticated
mounting mechanisms, complicating device fabrication and tuning.
Therefore, although alternative boundary conditions may offer
particular advantages in specific applications, they typically reduce
the energy conversion efficiency and design simplicity compared
to the cantilever (fixed-free) configuration, which remains the
most efficient and widely adopted choice in vibration-based
energy harvesting systems. The fixed-free (cantilever) boundary
condition plays a pivotal role in designing and analyzing energy
harvesting systems due to its favorable dynamic characteristics.
This configuration offers mechanical flexibility, enabling significant
tip deflections that enhance strain energy conversion efficiency in
piezoelectric and other transduction mechanisms. The cantilever
structure exhibits a lower natural frequency than fixed-fixed or
supported conditions. It is well-suited for harvesting ambient
low-frequency vibrations commonly encountered in real-world
environments. Alternative boundary conditions, such as fixed-
fixed or free-free, often increase system stiffness or mode shapes
that reduce energy conversion efficiency or complicate the design
and implementation. Moreover, the simplicity of the cantilever
setup facilitates easier fabrication, integration, and tuning of the
harvester for targeted frequency ranges. Consequently, the fixed-
free condition remains the preferred choice in many practical
energy harvesting applications, balancing mechanical performance
and manufacturability while maximizing power output. Equation 5
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describes the governing differential equation for the forced vibration
of the cantilever beam under thermal loading, based on Euler-
Bernoulli beam theory:

aZMTS a4erl TS TP az wfel 82 wfel
ax2 +Equ ax4 +(N +2N )?'FPAE‘I?-F
S
dd(x) dé(x-L) ’w,
SV [ - ] =— re 5
(#) Ix I m—s (5)

To determine the electric charge g(¢) on the electrodes, Gauss’s
law can be applied. The charge is obtained by integrating the
electric displacement D, over the cross-sectional area of the
electrodes. When ¢(t) is considered a time-dependent quantity, the
corresponding electric current i(t) at the electrode terminals can be
derived by taking the time derivative of the charge.

, dq(t) L’w,,
i(f) = Z—t =—e(h, +0.5hc)bjo - t’ dx
bL . 0T, (h, +0.5h,)
e VSO + PALL (o)

Using Equation 6 and Ohm’s Law, which relates the voltage
v(t) across a resistor to the current i(¢) flowing through it with the
equation v(t) = R x i(t), we can derive the corresponding electrical
governing equation as follows:

Vi) _ dv) JLEfwrez
A ——e(h +0.5h)b| =2 g
R PTam €ex (o + 0.5h,) ooxtat
0T, (h,+0.5h
+szL—P( “at ) (7)

Assuming the harvesting system has no internal heat sources,
and temperature variations are steady over time, Equation 7
the term

is derived under these conditions. As a result,

P, bL 9T p(h,+0.5h,)

temperature at a specific location within the piezoelectric layer,

, which represents the time rate of change of

is effectively zero. The method of separation of variables is
employed to solve the governing differential equations obtained
in the previous section. This involves expressing the transverse
displacement as a product of spatial and temporal components,
represented by the rth transverse mode shape X,(x) and the
corresponding modal displacement W,(f), respectively. This
modal analysis approach facilitates the solution of the system’s
dynamic response (Equation 8).

Wy (x.6) = ) X, (X)W, (t) (8)
r=1

The rth normal mode shape, denoted as X,(x), is essential
for characterizing the linear transverse vibrations of a cantilever
beam. This function is vital for accurately analyzing and
predicting the beam’s dynamic response, making it a crucial
component in engineering design and structural analysis. The
mathematical expression for the rth mode shape is provided by
Equation 9 as follows:

(2]
X, (x)= coshOx — cosO,x + A,(—sinh@lx + 9—1 sin sz)] 9)
2

mL

Equation 10 describes the energy harvester’s rth natural
frequency w,, taking thermal loads into account. Temperature

frontiersin.org


https://doi.org/10.3389/fphy.2025.1642670
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Shirbani et al.

TABLE 1 Electric field expressions in piezoelectric layers as influenced
by parallel and series wiring schemes.

10.3389/fphy.2025.1642670

TABLE 2 Constant parameter values corresponding to various system
configurations.

Configuration type ’ Top layer Bottom layer Connection type ‘ P Pc ‘
parallel connection (p) E;(t) =- % E;(t) =+ ? Parallel connection (p) 2 1
P P
series connection(s) E;(t) = - % E;(t) = - % Series connection (s) 1 0.5

gradients within the beam generate stresses that affect its stiffness
and dynamic behavior. Consequently, the natural frequencies

depend not only on the material properties but also on the prevailing
thermal conditions.
2 EI eq NT

=zl (3]

The governing equations describe the dynamic behavior of

NT
2F1,

(10)

the energy harvester under harmonic base excitation and thermal
effects. A transverse displacement amplitude, W 4, characterizes the
base excitation. The imaginary unit is represented by j. Under these
conditions, the vibration response of the beam can be expressed
using modal coordinates W (), along with the corresponding
electric voltage V(t).

ZOO jwA Fy, jot

r=1 [(0?-w?)+j(2{,0,@

T p— (O _ o
[(ﬁ ! "’C""CP) L )28 ma]

The term w,,(x.t)c and Equation 11 denotes the displacement of
each point on the structure relative to the base and is mathematically
expressed as follows:

zoo jwA,
r=1 [(0]-0?)+j(2 {,0,0)]
1 ,
[(555 + weic, )+
X (x)F 4, e
X
(@} - @?) +j (2 ¢, 0,0)]
The electrode current i(t) is derived using Ohm’s law in Equation

12. With both the current and voltage available at the electrode
terminals, the harvested power P(t) can then be calculated as follows:

1-

W, (x.1) = - PR

r=1 [(@l-w?)+j(2 {,0,0)]

(12)

(j“”\vFAr)z

zoo 2wt
- L r=1 (@) (20,w,0)] .
2R 1 iwC oo jwA? 2
[(ﬁ A 1’)* r=1 (@) (20, @,)]

The constants y and y; in the Equation 13 depend
on the specific configuration; their corresponding values are
provided in Table 2.

2.1 Numerical extraction of the maximum
harvested power

We conducted a frequency sweep analysis to identify the system’s
maximum harvest power. We tested the system at different excitation
frequencies, creating a power-frequency curve that showed a clear
peak. This peak represents the frequency where the system works
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most efficiently and matches its resonance condition, which helps
us find the best point for energy harvesting. The analysis also
highlights the system’s sensitivity to excitation frequency, which is
essential for design and tuning. Table 3 outlines the properties and
dimensions of the piezoelectric harvesting beam, made from PZT-
5H and aluminum, with an assumed initial ambient temperature
of 20°C applied uniformly to both surfaces. As can be seen from
the extracted equations, the parameters affecting the harvester’s
design include the beam layers’ length L, width b, the thickness
of the layer hp, hy, the electrical resistance of the two ends of the
electrodes R, and the temperature difference between the harvester
layers T,. This study adopts a representative average damping ratio
following the approach commonly used in previous investigations
on piezoelectric energy harvesting beams. This simplification is
justified given the microscale harvester’s operating conditions
and the inherent uncertainties in exact damping characterization.
While damping influences the system’s dynamic response and
power output, especially near resonance, its effect under thermal
gradients is indirect through changes in structural stiffness and
natural frequencies—thermal-induced variations in stiffness shift
resonance frequencies, modifying the interaction between damping
and vibrational response. Higher damping values generally broaden
the resonance peak and reduce maximum harvested power, whereas
lower damping sharpens the response but may lead to sensitivity
under thermal fluctuations. The chosen damping value practically
balances model fidelity and computational tractability. Future work
may consider a parametric study to comprehensively assess the
coupled impact of damping and thermal effects on harvester
performance. For example, Figures 2, 3 illustrate the effect of two
of these parameters on the frequency response performance in the
parallel mode. After plotting the frequency response of the generated
power, the maximum power points for each mode are extracted. This
process is repeated across the entire design range of the influential
parameters to compile comprehensive data capturing the numerical
relationship between the input variables and the outputs of interest.

One key modeling consideration in piezoelectric energy
harvesting systems is the electrical configuration of the piezoelectric
layers, whether connected in series or parallel. This choice
significantly influences the harvester’s output characteristics, such
as voltage, current, and overall harvested power. The results
demonstrate that the series connection yields significantly higher
output power, voltage, and current values than the parallel
configuration under the same excitation and boundary conditions.
This behavior can be attributed to the cumulative voltage effect
in series configurations, where the electrical potential generated
by each layer adds up constructively. Additionally, in series
mode, the mechanical deformation of the beam results in a more
pronounced stress distribution across the layers, leading to stronger
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TABLE 3 Summary of material characteristics and dimensional attributes
of the bimorph harvester's layered structure.

Parameter ‘ Values
CcP . (Nm™) 117 x 10°
ch (Nm™?) 75x10°
pi(kgm™) 2707
pplkgm™) 7500
a,(m’s™") 10x10°°
o, (m*s7) 23x10°°
K,(Wm°C) 15
K;,(Wm°C) 204
e, (Cm™) -6.5

h,(C°N"'m™?) 15x107°

L (mm) 50x107°
b (mm) 10x 1073

2000+

1500+

1000+

‘P/(wZVVl)Z“uWS4/m2]

500

FIGURE 2
Frequency response of the harvested power with respect to the
dimensionless frequency Q in the parallel case for different values of T,

electromechanical coupling and enhanced energy conversion
efficiency. In contrast, in parallel configurations, while the voltage
remains lower due to shared potential, the current may distribute
more uniformly, making it suitable for applications requiring stable
current flow rather than high voltage.
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From a design standpoint, these findings offer practical
guidelines for selecting connection schemes tailored to specific
application requirements. For instance, series configurations are
evidently advantageous in low-power autonomous sensor networks
where higher voltage is crucial for charging small-scale storage
devices or activating low-current electronic circuits. Conversely,
parallel configurations may be preferable for applications with
critical current stability, such as power conditioning systems
or devices requiring smooth charging cycles. Furthermore, the
impact of thermal conditions slightly amplified the benefits of the
series configuration, particularly in environments with temperature
gradients that affect the mechanical response of the piezoelectric
beam. These insights underscore the necessity of considering the
electrical connection scheme as a fundamental design variable,
rather than a post-processing decision. The empirical modeling
conducted in this study, supported by machine learning-driven
surrogate models, enables a robust and computationally efficient
comparison between the two configurations over a broad design
space. As such, the presented framework captures the nuanced
performance differences between series and parallel modes and
equips engineers and designers with a decision-making tool for
optimizing piezoelectric harvesters under coupled thermal and
vibrational loading scenarios.

3 Surrogate modeling

In the previous section, it was demonstrated that the harvested
power depends on multiple parameters. Therefore, designing an
optimal energy harvester requires using an optimization algorithm
that involves repeatedly solving the governing differential equation.
However, this process is computationally expensive and only
provides the generated power for specific input conditions, rather
than the maximum extractable power. To overcome this limitation,
a suitable surrogate model can be employed to approximate
the relationship between the input variables (energy harvester
parameters) and the output (generated power). In this study, the
most influential variables are first identified (Table 3). Subsequently,
a dataset is created by sampling various combinations of these
variables, referred to as design points. These key variables are
henceforth called features, by machine learning terminology. This
section examines three key relationships for the problem defined in
the previous sections. A suitable dataset is prepared for each case,
and a surrogate model is trained accordingly. The first relationship
explores how the features (variables listed in Table 4) affect the
power generated by a piezoelectric energy harvester with a parallel
connection. The second relationship considers the features of the
power generated by a piezoelectric energy harvester with a series
connection. Finally, the relationship between the energy harvester’s
features and natural frequency is analyzed.

3.1 Providing an appropriate dataset

Constructing a highly relevant dataset requires meticulous
selection of design points. In this study, design points were generated
using a multifaceted approach. First, the Latin Hypercube Sampling
(LHS) technique was applied to create an initial set of 360 design
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— — hy=hy=0.5(mm)
= == 2, =2h=0.666(mm)
2hy=hy=0.666(mm)

Oresonance

FIGURE 3

Frequency response of the harvested power with respect to the dimensionless frequency Q in the parallel case for different values of the thickness ratio.

TABLE 4 The definition of the features used in this study.

Features Symbol Description
Feature 1 1 The length of the piezoelectric energy harvester
Feature 2 b The width of the piezoelectric energy harvester
Feature 3 h, The thickness of the piezoelectric layer
Feature 4 T, The temperature of the top piezoelectric layer
Feature 5 Ry The resistive loads connected to the piezoelectric
layer

points. An iterative z-score filtering method was employed three
times to improve dataset quality. This process examined the output
values in each dataset, removing outliers beyond a robust threshold
of |z| < 3. After each iteration, z-scores were recalculated based on
the remaining data, ensuring a thorough refinement that removed
anomalies while preserving the statistical integrity of the dataset.
Following this outlier removal procedure, the cleaned datasets
contained 347 and 341 design points for power prediction in parallel
and series configurations, respectively. In contrast, the dataset for
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natural frequency prediction retained all 360 points. The resulting
datasets are thus well-tuned for subsequent analysis and model
training. Figure 4 (below) illustrates the data distribution before
and after outlier removal, shown on the left side. Outliers were
effectively removed from the first and second datasets, with 21
outliers detected and excluded from the third dataset and 29 from
the second. The third dataset showed no significant outlier issues
and maintained a uniform distribution throughout. As a result, the
third model is expected to face fewer challenges during prediction.
On the right side of Figure4, the sensitivity of the response
variables—namely, the extracted power in parallel and series
configurations, and the ratio of natural frequency under thermal
conditions to that without thermal effects is analyzed concerning
each of the five input features, both before and after outlier removal.
This analysis reveals that outlier removal increases the correlation
between each feature and the corresponding response variable,
suggesting that models trained on the cleaned datasets will likely
exhibit improved predictive performance.

Compared to the third, the non-uniform data distribution
and relatively low feature-response correlations in the first two
models indicate nonlinear relationships between inputs and outputs.
Thus, the decision to remove outliers is well justified. Outliers
pose several challenges: as seen in the earlier figures, a sudden
increase in extracted power within a narrow response range
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reflects nonlinear and highly complex behavior; additionally, Latin
Hypercube Sampling results in sparse data around this nonlinear
region. Concentrating more samples there would yield a low
correlation with the rest of the dataset. Therefore, two options
arise: either remove the extreme outliers or focus exclusively on the
nonlinear region, disregarding others. This study adopts the former
approach by excluding the outliers.

3.2 Surrogate modeling

After preparing a suitable dataset, a surrogate model was
trained using an optimizable Gaussian Process Regression (GPR)
framework. In recent years, surrogate modeling has become a
vital computational strategy in energy harvesting research, allowing
researchers to approximate complex multiphysics simulations with
efficient, data-driven alternatives. While the current study adopts
Gaussian Process Regression (GPR) as its surrogate modeling
framework, due to its inherent advantages in probabilistic prediction
and interpretability, it is essential to briefly contextualize this choice
within the broader landscape of surrogate modeling methods.
Several machine learning algorithms have been successfully applied
in similar contexts, including Artificial Neural Networks (ANNs),
Support Vector Regression (SVR), and Random Forests (RFs), each
offering distinct advantages and limitations.

ANNs are widely utilized for their remarkable capacity to
capture highly nonlinear relationships between input and output
variables, particularly in systems with strong coupling such as
piezoelectric energy harvesters. However, they typically require
large volumes of training data and are prone to overfitting
unless carefully regularized. Moreover, the interpretability of ANNs
remains limited due to their black-box nature.SVR is another robust
approach capable of handling nonlinearity in high-dimensional
datasets with limited samples. Its reliance on kernel functions
makes it suitable for smaller datasets; however, its computational
efficiency declines as dataset size increases, and it lacks built-
in mechanisms for uncertainty quantification. RFs, on the other
hand, offer good predictive accuracy and are relatively resilient
to noise and overfitting. They provide feature importance insights
but are often less effective in extrapolation tasks, especially in
problems involving continuous and smooth physical responses.
In contrast, GPR combines the strengths of these methods while
providing a unique advantage, its probabilistic nature not only
yields point predictions but also offers uncertainty estimates, which
are especially valuable in engineering applications with sparse
or expensive data generation. Using a nonisotropic Matérn 5/2
kernel further enhances its flexibility to model varying degrees of
smoothness across different input dimensions. Optimizing GPR
hyperparameters through Bayesian inference also ensures a balance
between accuracy and generalization. Thus, the selection of GPR in
this study is methodologically justified and practically advantageous.
It offers a superior trade-off between model complexity, accuracy,
and computational cost. It is particularly well-suited for modeling
the coupled thermo-mechanical behavior of microscale energy
harvesters under diverse operating conditions.

The model's hyperparameters were tuned via Bayesian
optimization, employing a nonisotropic Matérn 5/2 kernel with a
kernel scale of 0.0011616 and a noise standard deviation (sigma) of
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TABLE 5 Average and STD of R? values for the training, validation, and
testing datasets for three surrogate models.

DEIEN Average and STD of R, values

Train Validation Test

First surrogate 100.00% 90.41% 91.72%
models (0.00%) (9.85%) (6.80%)
Second 100.00% 90.43% 90.66%
surrogate (0.00%) (7.66%) (6.86%)
models

Third 100.00% 99.41% 99.31%
surrogate (0.00%) (0.70%) (0.61%)
models

14.3246. To simplify the mean structure, the basis function was set to
zero. Hyperparameter optimization was performed within defined
search ranges: kernel scale (0.001-1000), sigma (0.0001-14.3636),
and kernel function choices including isotropic and nonisotropic
variants such as Exponential, Matérn 3/2, Rational Quadratic, and
Squared Exponential kernels. The data was standardized prior to
training to ensure consistent scaling. Bayesian optimization used an
expected improvement per second plus acquisition function over
30 iterations to efficiently identify the optimal model configuration,
balancing predictive accuracy and computational efficiency. A 10-
fold cross-validation strategy was employed for training, validation,
and testing. To assess robustness, the datasets were randomly split 20
times into training, validation, and testing subsets at 70%, 15%, and
15%, respectively. The mean and standard deviation of performance
metrics across these splits were computed for all three surrogate
models. These statistics comprehensively understand each model’s
behavior throughout training, validation, and testing phases. The
results are summarized in Table 5. The mean R? value for the
third model, which predicts the effect of thermal conditions on the
natural frequency, is observed to exceed 0.99 (as shown in Figures
5a-c). This indicates that the model can simulate this behavior with
extremely high accuracy. On the other hand, the second model
performs the prediction of the extracted power by the piezoelectric
harvester in the second case (series configuration) with a mean R? of
0.9066. This value is acceptable given the nature of the problem and
the inherent nonlinearity in the behavior, as the relationship between
harvested power and frequency within the resonance region is
nonlinear. Therefore, the model’s agreement with this behavior is
deemed satisfactory. The residual histograms show the difference
between the predicted and actual values for each design point in
the training dataset (Figures 6a—c). The figures below display these
histograms for all three models. Most design points are clustered
around zero, indicating that the models have been trained effectively
and that the predicted values closely align with the actual values.
Furthermore, the box plots presented below (corresponding
to models 1, 2, and 3) illustrate the training, validation, and
testing performance of the three surrogate models over 20
independent runs. The range of variation observed in the first
and second models remains within acceptable limits, indicating
consistent model behavior. The surrogate models’ performance
was also evaluated using predicted-versus-actual plots, a common
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visualization technique in regression analysis. These plots compare
predicted values against actual observations, providing an intuitive
assessment of model accuracy and predictive capability. Figures 7a-c
present these plots for the three models, respectively. Each
panel displays data points ideally clustered closely along the red
diagonal line, which represents perfect predictions. This line is
a benchmark, indicating where model predictions match actual
outcomes. A tight grouping of points around this diagonal
visually confirms the models’ accuracy and reliability, highlighting
their effectiveness in making precise forecasts. Based on the
comparative analysis of series and parallel configurations in
bimorph piezoelectric energy harvesters, it is evident that each
connection scheme offers distinct advantages depending on the
intended application. The series configuration, which demonstrated
superior performance in output voltage, current, and harvested
power, is particularly suitable for applications requiring higher
electrical energy density, such as wireless sensor nodes, low-power
microelectronic devices, or remote structural health monitoring
systems. Conversely, the parallel configuration may be advantageous
in scenarios where stability of current and reduced voltage levels are
desired, such as in energy storage systems or powering low-voltage
electronic components. These findings underscore the importance
of carefully selecting the connection topology to tailor the
energy harvester’s output to specific operational requirements and
environmental conditions.

4 Conclusion

This study presents a comprehensive investigation into the
performance prediction of bimorph microscale piezoelectric energy
harvesters under the combined effects of base excitation and thermal
gradients. A simplified analytical model was derived based on
Euler-Bernoulli beam theory and thermal conduction assumptions
to describe the system’s mechanical, electrical, and thermal coupling.
The study comprehensively analyzed the influence of critical geometric
dimensions and thermal conditions to assess their effects on the power
output generated and the system’s natural frequency. By varying key
parameters such as the shape and size of the device and the thermal
gradients applied, the research aimed to understand how these factors
intricately interact and ultimately contribute to optimizing the efficiency
of power harvesting and achieving desirable dynamic responses. This
investigation sheds light on the underlying mechanisms that govern
performance, providing valuable insights for future advancements in the
field. A sophisticated surrogate model grounded in machine learning
principles was developed utilizing Gaussian Process Regression (GPR).
This model was meticulously trained on a rigorously filtered dataset
designed to address the prohibitive computational costs associated
with repeatedly solving complex, nonlinear, coupled equations. Three
distinct surrogate models were created to enhance predictive capabilities,
each tailored to forecast the output power in both parallel and
series electrical configurations. Additionally, these models account
for the natural frequency shifts induced by thermal effects, allowing
for a comprehensive understanding of the system’s behavior under
varying conditions. The predictive models demonstrated exceptional
capabilities, achieving R* values exceeding 0.99 in multiple instances,
reflecting their high accuracy in forecasting outcomes. This research
highlights that a series configuration of energy harvesting systems
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generally yields higher power outputs than a parallel connection. This
is primarily due to the significantly improved induced deformation in
series setups, which enhances the system’s ability to convert energy.
Furthermore, the study emphasizes the critical role of temperature
gradients and excitation frequency in influencing the system’s overall
efficiency and performance metrics. The innovative surrogate modeling
framework developed in this research enables rapid and precise
estimations of system performance to address the complexities of these
variables. This advancement proves to be a vital tool for optimizing
microscale energy harvesting systems, streamlining the design process,
and ensuring more effective energy utilization. Such enhancements
advance our understanding of microscale energy dynamics and pave
the way for more efficient energy solutions in various applications.
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