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Measures and operators
associated with Parseval
distribution frames

Camillo Trapani* and Francesco Tschinke

Dipartimento di Matematica e Informatica, Universita di Palermo, Palermo, Italy

Continuing the study by Tschinke et al. (2019), we examine further aspects of
distribution frames (namely, Gel'fand and Parseval), particularly regarding those
that are more relevant for applications in quantum physics. Parseval distribution
frames are, in particular, closely related to coherent states. Thus, POV measures,
Naimark dilations, and operators defined by Parseval distribution frames are
the main subjects of this paper. The main results are Theorems 2.2 and 3.1.
Theorem 2.2 gives a sufficient conditions for the existence of such distribution
coherent states for positive operator valued measures. Theorem 3.1 establishes
conditions under which the distribution coherent states can be identified with
the projections of some Gel'fand distribution basis in a larger Hilbert space (in
Naimark's sense).

Parseval distribution frames, POV measures, Naimark dilations, operators, rigged Hilbert
space

1 Introduction and preliminaries

Since a long time now, the language of rigged Hilbert space [1-4] has been used in
the mathematical description of quantum mechanical systems for giving room to objects of

common use in daily practice that can hardly be cast in the traditional approach with Hilbert
PZ

ﬂ >
denotes the linear momentum operator, is one of the simplest examples of such cases.

space (e.g., [5-10, 25]). The case of the eigenvectors of the free Hamiltonian where p
The theory of frames, discrete and continuous, plays an interesting role in quantum
mechanics in at least two situations. The first one, which is closely related to the appearance
of the so-called non-Hermitian Hamiltonians, has put on the stage families (mostly discrete)
of non-orthogonal vectors (often eigenvectors of nonsymmetric operators) that constitute,
in favorable cases, Riesz bases of the Hilbert space; they are generally obtained by modifying
an orthonormal basis {e, } through the action of a bounded operator G with bounded inverse
(the so-called metric operator). The second one is connected to the theory of coherent states,
which are, often, continuous frames that are supposed to constitute a resolution of identity.
In the language of frames, this property is denoted as (continuous) Parseval frames [11].
In the paper [12], in view of a more general treatment, the notion of distribution
frames was introduced together with a family of relatives Riesz distribution frames, Parseval
distribution frames, and Gel'fand distribution bases. They are all present in a rigged Hilbert
space, and Gel'fand distribution bases are shown to be the natural generalization to the new
environment of the familiar notion of orthonormal basis of Hilbert spaces. The generalized
eigenvectors (in the sense of the Gelfand-Maurin theorem [13, 14]) of % provide an
instance of a Gel'fand distribution basis (a generalized eigenvalue expansion for unbounded
normal operators can also be found in [15]). Given a self-adjoint operator A in a Hilbert
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space H, its spectral behavior, when expressed in terms of
generalized eigenvectors, can be studied using the formalism of
Gel'fand distribution bases, as in [16].

In this paper, we focus our attention mostly on Parseval
distribution frames; similar to the Gel'fand ones, they are resolutions
of the identity in the sense that they satisfy a Parseval-like equality,
but they are not necessarily y-independent; in other words, they can
be over-complete. An over-complete resolution of the identity is one
of the characteristic features of coherent states that have been the
subject of an enormous (and still increasing!) amount of literature;
refer to [17] for a systematic treatment. Usually, coherent states are
represented as vectors of some Hilbert space, but there are cases
where more general objects (non-square integrable functions or
even distributions) should be considered (e.g., [18], Section 5.1.3).
In our opinion, these considerations motivate an approach that
goes beyond Hilbert space; for this reason, after discussing some
basic aspects of Bessel and Parseval distribution frames, here, we
examine in details some aspects of the theory that are more related
to possible applications, even if we maintain the analysis at a quite
abstract level. To be more precise, we consider positive operator-
valued (POV) measures defined by distribution maps (Section 2)
and study the possibility of introducing Naimark dilations for
rigged Hilbert spaces with the aim of showing that certain Parseval
distribution frames can be obtained as projections of Gelfand
distribution maps (Section 3). Finally (Section4), we examine
operators defined by Parseval frames by means of certain sufficiently
regular functions by some mathematical expressions that closely
resemble the quantization procedure defined by coherent states.

The basic notions needed for the understanding of this paper are
given here. A more detailed discussion can be found in [12, 19].

A rigged Hilbert space, or Gel'fand triplet, is a triple of spaces,

D[t] > H < D*[t"],

where D is a dense subspace of a Hilbert space H (which is supposed
to be infinite-dimensional and separable) and, at once, a locally
convex space with topology #; throughout this paper, we will suppose
that D[t] is a Fréchet and reflexive space. We denote by D* the
conjugate dual of D, which is endowed with the strong dual topology
*. We indicate by £(D,D*) the space of continuous linear maps
from D[t] to D*[*]. In L(D,D*), an involution A — A’ is defined
by the equality (A flg) = (ATglf), where f,g € D.

Let 4 be a Radon measure on the Borel sets of a locally compact

space X. A distribution map is a y-weakly measurable function w:x €
X - w, e D"

The map w is called a Bessel distribution map if there exists a
continuous seminorm p on D[t] such that

jXI (flwe) Pdu<p(f?, VfeD;

in particular, w is called bounded Bessel if B > 0 such that

JX| (flw,) Pdu <BIfI®>, VfeD. (1)
Finally, w is a Parseval distribution frame if
| 1w pda=se, vrer.
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A Gel'fand distribution basis is a y-independent Parseval one;
that is, if £ is measurable and .[Xf(x) (glw,)du=0,Vg e D, then &=
0 u-ae.

A Riesz distribution basis w is the image of a Gel'fand basis
through a continuous operator R:D* — D> with continuous inverse.
For details, we refer to [12].

A Gel'fand distribution basis presents two interesting features.
On the one hand, it defines a POV measure on the o-algebra of Borel
sets. On the other hand, they can be used to construct sort-of scalar
operators A through some appropriate function «; formally,

(Aflg) = jxa (9 (AC) (Glg) du

on a suitable domain.

Here, we summarize the basic definitions, referring to [12]
for details.

Let w be a bounded Bessel distribution map. Then, the
sesquilinear form defined by

Q£9)= | (o) (wlg)da

is well defined on D x D. Moreover, it is || - |[-bounded; thus, it has a
bounded extension O to 7. Hence, there exists a bounded operator
S, in H such that

Q(f.9= <§wﬂg> , VfgeH. )
(8u/1g) = jx (floy) (w,lg) du, VfgeD.

As in [15, Definition 3.6], we state that a distribution map w is a
distribution frame if there exist A, B > 0 such that

AlfIP < JXI (flw, Y Pdu < BIfI%, VfeD.

A distribution frame w is clearly a bounded Bessel map. Thus,
for the operator S, defined in Equation 2, we have
Al < IS, AI<BIAl, VfeH.

This inequality, together with the fact that S, is symmetric, implies
that S, has a bounded inverse 3:01 everywhere, as defined in H.

If @ is a bounded Bessel distribution map and & € L> (X, ), the
conjugate linear functional on D, defined by

K@ = | £00 (wdgde
is bounded. Therefore, there exists a unique vector h; € H such that

AL =(hlg), vgeH.

Therefore, we can define a linear map Dw:LZ(X,y) — H, which
will be called the synthesis operator, by
D=h; EcL*(Xu).

Then, D, is bounded from L2 (X, w) to H. Hence, ithas a bounded
adjoint C,, := D}, called the analysis operator, which acts as follows:

Cif €D — & e L (X,u), where &, (x) = ( flw,), x € X.
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The synthesis operator D,, takes values in 7, and it is bounded and
ID, |l < B2

Remark 1.1: Let us describe the action of C,. If g€ H and {g,}
is a sequence of elements of D, norm converging to g, then the
sequence {1, }, where 77, = (g, |.), is convergent in L*(X, ) as w is
Bessel bounded. Put 5= |- [, — lim,_, #,. The function » does
not depend on the choice of the sequence {g,} approximating g in

‘H. Then, for D}, we have
(Dflg) = lim | €00 (wilg, Y= | oGO
n—-00 X X

Hence, D},g = 11. Notably, the function # € L*(X, ) depends linearly
on g In [12, 16], a linear functional was formally defined as @, by

if geMs g, —g (gla.)=1lim (g lw,) pointwise.

This should be read only as a notation shorthand because @, is
not well defined. In this note, we prefer to adopt a different notation
and directly use the operator C,,.

A p-weakly measurable function w:X — D* is called a
distribution basis for D if, for every fe D, there exists a unique
measurable function & ¢ such that

(flg) = fof(x) (w,lg)du, YgeD,

and, for every x € X, the linear functional feD — Ef(x) eC is
continuous on D(t].

If w is a distribution basis, by the definition itself, there exists
a unique p-weakly measurable map 6:X — D such that Ef(x) =
(fl6,), VfeD.Hence, the following identity holds:

(fig) = jx (f16,) (w,lg) du, VfgeD.

We consider 0 the dual map of w.
Furthermore, considering the complex conjugate of the above
expression, we obtain the following:

f=[ (Ao vreD.

Then, if 8 is y-independent, 6 is also a distribution basis.

2 POV measures associated with
distribution frames

Let w be a weakly measurable distribution map. For every f € D,
the integral

A [ 1(fla) Py

defines a positive measure on X, which is finite if w is Bessel.
In this case,

O, (f9) = JA (flog) (w lg)du, fgeD

defines a jointly continuous positive sesquilinear form on D x D.
The set of all jointly continuous, positive sesquilinear forms on D x
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D will be denoted by P(D). In this case, there exists a positive
operator T(A) € L(D,D*) (ie., (Tflf) =0, Vf € D) such that

| (o igdu=a@ing. vige.
In addition, the map
AeX— T(A) e L(D, DY)

defines a POV measure on X. In particular, if w is bounded Bessel,
for each A € X, T(A) is a bounded operator that can be extended to
the whole Hilbert space . In this case, one can find a Naimark
dilation (i.e., a larger Hilbert space, having H as closed subspace)
and a projection valued (PV) measure that reduces to T(A) on H.

On the other hand, given a POV measure T, one can pose
the question of whether it is possible to find a distribution map
w such that

(T(8) flg) = j (floy) (w,lg) du, YA€ figeD.

It is quite natural to look at the right-hand side of the previous
equality as the basic ingredients of a type of spectral resolution of
an operator: generalized projections, to be more precise. If w is a
distribution map, for each x € X, the map

(£,.8) € DxD = (flw,) (w,lg) ®)

is ajointly continuous sesquilinear form. Hence, for each x € X, there
exists an operator P, € L£(D,D*) such that

7, (f,8) = <waﬂg>, Vf,geD. (4)

From Equation 3, 4, it follows that

P, f={flo)w, VfeD.

The operator P, is symmetric (P, = P:[,X) and positive
(<waﬂf> >0, for every fe D). Even though P, does not satisfy
P, = P2 (which is meaningless), we can reasonably consider P, a
generalized one-dimensional projection.

As a first step, given a POV measure, as above, we want to find a
map 7,:D x D — L'(X, ) such that

(T(A) flg) = jATx(ﬂg) du, Vf,geD; VAeX.

For this to be possible, it is necessary and sufficient that the
POV measure T be absolutely continuous with respect to y in
a weak sense; that is, for every f,ge D, the complex measure
A — (T(A)flg) is absolutely continuous with respect to y. In this
case, the Radon-Nikodym theorem guarantees the existence of
a p-measurable function 7:x € X — 7, € S(D), the space of all
sesquilinear forms on D x D, such that

T
r(ﬁg)=‘;7(ﬁg>, VfgeD.

In fact, for y almost all x € X, 7, is a sesquilinear form on D.
Next, we want to show that under certain assumptions, there
exists a weakly measurable function w:X — D* such that

7.(f.8) = (flo)(wlg), VfgeD.
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Let us first introduce some notations. If o € P(D), we put
N(o) ={feD:o(f, f)=0}.

The Cauchy-Schwarz inequality and the continuity of ¢ imply
that N(o) is a closed subspace of D[¢].

Lemma 2.1: Let 0 € P(D) and o # 0. The following statements are
equivalent:

i. There exist # € D* (unique up to a factor z with |z|] = 1) and
u € D such that

o(f,.9 =iy (nlg), VfgeD and o(u,u)=1.

i. N(o) is a proper closed maximal subspace of D.

Proof: we assume that for some 1 € D*, a(f,) = {fln) (nlg), for
every f,g € D. Then, f e N(o0), if, and only if, (fly) = 0; i.e, N(0) =
Ker 7, and the latter is a closed maximal subspace of D, as is known.
Moreover, as ¢ # 0, we can find u € D such that o(u,u) = 1.

Next, we assume that 5’ €D also satisfies o(f,g)=
(fin') {n'|g). for every f,g € D. Then, o(f, ) = [{fin) I* = | {fin")
for every f € D. This implies that ' = zn, with |2] = 1.

Conversely, we assume that N(0) is a proper closed maximal
subspace of D and u ¢ N(0). We can assume o(u, u) = 1. Then, due
to the maximality of N(0), every element f€ D can be written as
f=Au+n, with n € N(0). Define (5| f) = . Then, 5 € D* as Ker 7 =
N(o) is closed. Then, if f=Au+n, g=pu+ n' are elements of D,

o(f,9) =oc(Au+n,pu+n'") = Ago(u,u) = (fin) (nlg) .
Let us come back to the function 7.

Theorem 2.2: Let xeX—>171,€P(D) be the
Radon-Nikodym derivative of the POV measure T. We assume that

obtained as

i. codim N(z,) =1 for y almost every x € X;
ii. there exists u € D such that u({x € X;t,(u,u) # 1}) =0

Then, there exists a weakly measurable distribution map w:x €
X — w, € D" such that for 4 almost every x € X,

7.(£,9) = (floy) (w,lg), VfgeD.

Proof: by (i) and (ii) for almost every xeX, the
conditions of Lemma 2.1 are fulfilled. Then, for these x € X, the set
{we D1 (f, ) = | {flw) 12, V f € D} is non-empty, so, we can define
a function x — w, by picking one element in each of these sets. As
7.(£,8) = (fln,) (n,1g), forall f,g € D, the function w defined in this
way is weakly measurable. The statement then follows by observing
that the condition codim N(r,) = 1 is equivalent to stating that N(r,)
is closed and maximal.

3 Naimark dilations of rigged Hilbert
spaces

Naimark dilations are powerful tools in operator theory, and
they are also relevant in other contexts. In [20], this technique has
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been adopted for certain aspects of frame theory: in particular,
the authors show that a Parseval frame is the projection of an
orthonormal basis in a larger Hilbert space. Our problem is now to
try and extend this result to distribution frames. Let us start with
some preliminary remarks.

Let D[t] ¢ H c D*[t*] be a RHS, with D[t] a Fréchet and
reflexive space, and let KC be another Hilbert space containing H
as a closed subspace. Then K =H & M, where M denotes the
orthogonal complement of # in K. Let us consider the space £ =
D & M endowed with the topology defined by the semi-norms

p.(f@¢) =p,(N)+I¢l,

where {p,,} is a countable family of semi-norms defining the topology
of D. Clearly, € is Fréchet.
We claim that (D & M)* = D* & M so that

feD, peM,

Do M|ty] c K c D o M[£5]

is a RHS, which we call the Naimark dilation of D[t] c H C

D*[t*]. On the one hand, if F, € (D& M)*, then Fy(f) = F,(f&0)

defines a continuous conjugate linear functional on D, and F, (m) =

F,(0@m) defines a bounded conjugate linear functional on M, so,

there exists m' € M such that F,(m) = (m'|m), for every m € M.

Therefore, (D & M)* c D* @& M. The converse inclusion is obvious.
Let w be a Parseval distribution frame; that is,

| IhwdPdu=1se, vrer.
In this case, the analysis operator C,,
CoifeD = (flw) € L’ (Xop),

is an isometry; hence, the closure of C,D can be identified with a
closed (generally, proper) subspace of L*(X, ).

Letusput D, = C,Dand H, = C,H. Itis clear that D, is a dense
subspace of H.,. If the topology of D is defined by the family of semi-
norms {p,} . it is natural to define a topology on D, by means of

the semi-norms {p¢} _ defined by

nelN
P (@) =p,(C.'¢), ¢eD..

Let D} denote the conjugate dual of D,. In this way, we
constructed a rigged Hilbert space whose central Hilbert space is a
closed subspace of L*(X, H.

Let M = H; ¢ L*(X,u), and consider the rigged Hilbert space
constructed as above. P is used to denote the orthogonal projection
of L*(X,u) onto H,. Then, P maps D, onto itself as ¢ € D, if, and
only if, ¢ = C, f for some f € D; then, PC, f = C, f by the definition
of IP, and so P¢ € D,. Moreover, we have, if =P f € D,,

pS(PY) = p, (C'PP) = p, (C,'PC, f) = p, ().

Hence, P is continuous from D, to itself. Therefore, there exist
P*:D} — Dy such that

(PP D) = ($|P*D), V¢ € D,,® € Dj.

Clearly, P* extends PP to D;;.
Let us now consider the rigged Hilbert space

D, CcH,cDj.
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The definition of the topology of D, implies that C, is
continuous from D to D,, and it is also one-to-one. Hence, there
exists Cy:D; — D™ such that

(Cuf1®) = (NC;P),

We state that C;D; =D*. Indeed, Equation 5 implies that
C; Dy ¢ D*. On the other hand, as C;l is also continuous if F € D*,
the functional H(¢) = (F|C,'¢) is in D} and

VfeD,0eD;. (5)

(FIC,'¢) = ((C.')*FIg), V¢ eD,.

The equality F = C(C,')*F implies the statement.
Let {ix € X — { € D} be a Gel'fand distribution basis. Then,
w, =P*{ is a Parseval distribution frame. Indeed,

1600, P = [10AP“) P = [1 (R AC) P = W AP =121

We want to state the converse; that is, given a Parseval
distribution frame w, does there exist a Gel'fand distribution basis
(in a larger rigged Hilbert space such that w is the projection of {?

Let C(X) denote the space of continuous functions on X,
endowed with the locally convex topology 7, defined by the semi-
norms ¢ = p(@) = sup, ., lo(x)|, K € X, and K compact.

Theorem 3.1: Let w be a Parseval distribution frame. It is assumed
that C, maps D into C(X) and that C, is continuous from D[¢] to
C(X)[7,]. Moreover, it is assumed that the evaluation map §, on C(X)
defined by (¢|6,) = ¢(x) is continuous on D, = C,D with its own
topology. Then, w can be identified with the projection P8, of the
Gel’fand distribution basis 6.

Proof: indeed, we have

<wa|]P8x> = <]Pcwﬂ6x> = <Cwﬂ6x> = (Ca.).f) (x) = (flwx> N

By (13)

(CufIPS,) = (AIC;PY,) .

Hence, w, = C; P9,

Let us come back to the POV measure defined in the previous
section. We adapt to our situation some known results concerning
the POV measures defined by tight frames (e.g., [2, Section 3.2]). Let
Ee LZ(X,/,t) and A be a Borel subset of X. We define an operator E(A)
with values in L*(X, i) by

(EQ)O () =x, ®)Ex), Eel*(X,p).

This is clearly a PV measure.
Let &, € C,D c L*(X,u); then, there exist vectors f,g € D such
that f=C,'P¢and g= C,'PPy.
(PE(A)PEln), = (E(A)PEIPr), = [ x, (%) (Co /) (0)(Cug) (x)du

= [, (Cof) ) (Cug) du = [ (Nlw,) {w,lg) du
=(T(A) flg) = (T(A) C,'PE|C,' Py) .

Thus,
(CT(A)C, =PE(A)P, VA€X.

Hence, the POV measure T can be identified with the projection
of a PV measure E on a larger rigged Hilbert space.
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4 Parseval frames, coherent states,
and quantization

Let w be a Parseval distribution frame; this fact can be expressed
equivalently as follows:

o= | (e (wlgdu fgeD, ©

which, at least in the case when w takes values in the Hilbert space,
is called a resolution of the identity. This is a terminology more
frequently used in Physics, particularly when dealing with coherent
states that satisfy an equality corresponding to Equation 6 and
some more conditions (in the classical formulation: saturation of
the Heisenberg inequality, being eigenvectors of the annihilation
operator, or being obtained by the action of the Weyl-Heisenberg
group on some vacuum state). More general coherent states are
often generated as orbits produced by a certain representation of a
group (locally compact or Lie); these representations are supposed
to be square-integrable. Non-square-integrable representations of
groups can, however, also be envisaged (see [2, Ch.8] for a complete
discussion). As already mentioned in the Introduction section,
coherent states that are represented by non-square integrable
functions or even by true distributions have also been considered
in some applications. Thus, finally, it is not so exotic to take
into account D*-valued functions satisfying (15), that is, Parseval
distribution frames.

The quantization procedure is an important aspect of coherent
states. It is obtained by associating to a sufficiently regular function
« defined on X with the operator A, that, in our language, can be
formally written as follows:

(Aufg) = jxam (fly) (w,lg) du. @)

For discrete Parseval frames in Hilbert space, operators defined
by obvious modifications of Equation 7 have been studied in [21, 22].

Finally, we remark that in the case of #-valued maps, operators
of type Equation 8 are closely related with the continuous frame
multipliers considered by Balasz et al. in [23] (see also [24]).

Let us begin with an example.

Example 4.1: [15, Example 4.1] Let {ix € X — {, € D* be a Gel'fand
distribution basis. Then, an operator A (type of diagonal operator)
can be introduced as follows, starting from a (complex valued)
measurable function « such that

jxloc(x) (ALY Pdu < co, VfeD.

Put

Af= [ e (AL tdn feD.

The assumptions imply that A maps D into H and it is a closable
operator in /. The domain of its closure A is

D(K) = {fe "H:jxla(x)(C(f) (x) |2d;4 < oo}

The operator A is bounded if, and only if, @ € L°(X, ). The
spectrum o(A) is given by the closure of the essential range of «, that
is, the set of z € C such that

pixla(x)—zl <€ >0, Ve>0.
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Moreover, if A and its adjoint A* leave D invariant, for almost
every x € X, a(x) is a generalized eigenvalue of A, in the sense of
Gel'fand: A has an extension to D*, let us call it 4, and, for almost
every x € X,

(AL lg) =a(x)(¢lg), VgeD.

A similar construction is possible by starting from a Riesz
distribution map. For details, we refer to [12].

Let us now consider a more general situation. It is assumed that w
is a distribution map and we are given a measurable function a: X —
C such that the sesquilinear form

0, (£9) = | a0 (fla,) (wlg) du ®)

is defined for all f,geD. Let us suppose that there exists a
continuous semi-norm p’ such that

.91 = | «@(flo) (Wl du| <’ (NP @, VSgeD.
Then, there exists an operator A, € L(D,D*) such that
Q. (£.8) = (Auflg). VfigeD.
Let us assume that
Jxla(x) {(flwyPdu<oco VfeD,

and that w is bounded Bessel. In this case, using the inequality
Equation 1, we obtain the following:

19, (£9)1= || (10 (w,lg) di

< o : w) |? - B> lgll-
<<jX|a(x)(ﬂw)|dy)z(JXI(g| )P )” = KB gl
©)

From Equation 9, it follows that

e @@ (o wdp, feD

is a vector in H; for this reason, it is more convenient to adopt the
notation A :=A,. As w is a bounded Bessel distribution map, the
operators D, and C,, are bounded, so in particular,

IAA? < Blla(flw) |15 = BJXI‘X(X) (flw,) Py, VfeD.
It is then natural to choose
D(A) = {fe H:J o (x) { flw, ) P < oo}
X

In this case, the analysis operator C, is bounded and admits a
bounded extension to H, which is denoted again as C,,. We look for
the adjoint A™ of A. As is well known, the set D(A™) is given for all
g € H such that there exists g* € #, for which

(Aflg) =(flg")>

We have D ¢ D(A*) as (Aflg) = [ a(x) (flw,) {w,lg) du, by the
definition of the sesquilinear form Q in Equation 8, and clearly,

VfeD.

g = Jm@lwx) w,du.
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We now prove that
D)= {g& s [ [6G (Cug) 09 Pl < ool
and
Atg= jXM(cwg) Wdu, geH.

Indeed, recalling that we have identified | () (flw,) w,du
with Af € H, we have, for {g,} ¢ D, g, = g€ D(A™)

(Aflgy = ([ yw () (flwy) wedu | g) = <on¢ ) (flw,) w,du | nllr&gn>
= Jim ([,@() (flo,) wudpe | 8,) = lim [ () (flas) (wilg,) di
= [ @@ (flo,) (Cog) (x) du,

by the continuity of the inner product of L*(X, ).
In a similar way, we prove that

D(A*™*) = {fe H:JI(x(x)(wa) () Pdu < oo}

A f= [ a(CuGdn et

This  also about A

given in [15, Example 4.1].

explicitly ~ proves the statement

All this also applies when w is a Parseval frame, but in this case,
something more can be said. In particular, we can characterize the
boundedness of the operator A.

Proposition 4.2: Let w be a Parseval frame, and A the operator
is defined by

D(A) = {feH:[ Ja(x) (flo,) Pdu < co}
Af = a@(flo)wdu, feD(A).

Let us assume that

IAfI? = L'“(’C’ CofPdu, VfeD(4).

Then, A is bounded if, and only if, & € L (X, ).

Proof: the sufficiency is obvious. Let us assume that A is
bounded, and let A be its closure (which is defined everywhere in
‘H and bounded). Let us assume that « ¢ L°(R). Then, for every
n € N, the set E, = {x € Rila(x)| > n} has positive measure. Let y,,
denote the characteristic function of E,. As w is a Parseval frame,
C, is an isometry of A into L*(X, ). The density of D in H implies
that C,H is an infinite dimensional separable Hilbert space; hence,
there exists a unitary operator V from L2(X, @) to C,H; then, we can
find an element f, € H such that C,f, = Vy, and [|f, | = [ Vy,l, =
I, = u(E,)""2. Then,

IAS,I7 = LRIOC(x) PI(Cof,) @) Pdu > 11,17,

is a contradiction.

Proposition 4.2 allows us to get some information on the
spectrum of the operator A.

Let us first show that the operator defined through the function
MX—IH, when defined almost everywhere, is the natural candidate to
produce the inverse of the operator defined by a(x) — A. It is assumed
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that the function h(x) = (a(x) —1)~! is well defined and essentially
bounded. Then, if f € D,

1901 = | 2= (M) () d|

< la=D) " loll (= 1) (flw) 1 .l 1l
= 1@ = D) ool (=) (flw) I gl

This implies that the vector J (@) =) (flo,) w,dy is in
D(A — AI) and the following equality holds:

(flg) = <(A - Al Jxﬁ (flwy) wxdﬂlg> :

Then, if axl_/l € L®(X, ), the resolvent operator (A—AD7" is

well defined and bounded, which implies that there exists M >
0 such that
plxeRija(x)-Al <M} =0.

In other words, if A ¢ Im, a, then A € p(A,). Equivalently,

ess

o(A)c{zeCVe>0 pfxeRia(x)—z| <e >0}.

Example 4.3: (the case of Riesz distribution bases, [15, Example
4.2] revisited) Let w be a Riesz distribution basis and 6
its dual. Let o be a (complex valued) measurable function
such that

J la () (f16,) [Py < 0o, ¥f e D.

b'¢

A linear operator H on D can then be defined by
Hf= Jxa(x) (f16,) w.dy.

In addition, in this case, one can see that Hf € H so that H:D —
‘H. Indeed, let us consider the sesquilinear form on D x D:

Q59 = [ 4 (o) (0.l do.
Then, as in Equation 7,
Q091 = ([ Jat (o) Pan)*( [ 1616 Per)

1
<K(B: lgll VgeD.

Hence, [ a(x) (flw,) 6,du can be identified with a vector in 7.
Regarding the adjoint H*, in similar way as before, we obtain

D(H") = |ge H:j;@(%) ()P < ool

H'g= JXM(Ceg) () dp.

Here, Cy is (the extension of) the analysis operator corresponding to

0.
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