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Measures and operators 
associated with Parseval 
distribution frames

Camillo Trapani* and  Francesco Tschinke

Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy

Continuing the study by Tschinke et al. (2019), we examine further aspects of 
distribution frames (namely, Gel’fand and Parseval), particularly regarding those 
that are more relevant for applications in quantum physics. Parseval distribution 
frames are, in particular, closely related to coherent states. Thus, POV measures, 
Naimark dilations, and operators defined by Parseval distribution frames are 
the main subjects of this paper. The main results are Theorems 2.2 and 3.1. 
Theorem 2.2 gives a sufficient conditions for the existence of such distribution 
coherent states for positive operator valued measures. Theorem 3.1 establishes 
conditions under which the distribution coherent states can be identified with 
the projections of some Gel’fand distribution basis in a larger Hilbert space (in 
Naimark's sense).
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 1 Introduction and preliminaries

Since a long time now, the language of rigged Hilbert space [1–4] has been used in 
the mathematical description of quantum mechanical systems for giving room to objects of 
common use in daily practice that can hardly be cast in the traditional approach with Hilbert 
space (e.g., [5–10, 25]). The case of the eigenvectors of the free Hamiltonian p2

2m
, where p

denotes the linear momentum operator, is one of the simplest examples of such cases.
The theory of frames, discrete and continuous, plays an interesting role in quantum 

mechanics in at least two situations. The first one, which is closely related to the appearance 
of the so-called non-Hermitian Hamiltonians, has put on the stage families (mostly discrete) 
of non-orthogonal vectors (often eigenvectors of nonsymmetric operators) that constitute, 
in favorable cases, Riesz bases of the Hilbert space; they are generally obtained by modifying 
an orthonormal basis {en} through the action of a bounded operator G with bounded inverse 
(the so-called metric operator). The second one is connected to the theory of coherent states, 
which are, often, continuous frames that are supposed to constitute a resolution of identity. 
In the language of frames, this property is denoted as (continuous) Parseval frames [11].

In the paper [12], in view of a more general treatment, the notion of distribution 
frames was introduced together with a family of relatives Riesz distribution frames, Parseval 
distribution frames, and Gel’fand distribution bases. They are all present in a rigged Hilbert 
space, and Gel’fand distribution bases are shown to be the natural generalization to the new 
environment of the familiar notion of orthonormal basis of Hilbert spaces. The generalized 
eigenvectors (in the sense of the Gel’fand–Maurin theorem [13, 14]) of p2

2m
 provide an 

instance of a Gel’fand distribution basis (a generalized eigenvalue expansion for unbounded 
normal operators can also be found in [15]). Given a self-adjoint operator A in a Hilbert
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space H, its spectral behavior, when expressed in terms of 
generalized eigenvectors, can be studied using the formalism of 
Gel’fand distribution bases, as in [16].

In this paper, we focus our attention mostly on Parseval 
distribution frames; similar to the Gel’fand ones, they are resolutions 
of the identity in the sense that they satisfy a Parseval-like equality, 
but they are not necessarily μ-independent; in other words, they can 
be over-complete. An over-complete resolution of the identity is one 
of the characteristic features of coherent states that have been the 
subject of an enormous (and still increasing!) amount of literature; 
refer to [17] for a systematic treatment. Usually, coherent states are 
represented as vectors of some Hilbert space, but there are cases 
where more general objects (non-square integrable functions or 
even distributions) should be considered (e.g., [18], Section 5.1.3). 
In our opinion, these considerations motivate an approach that 
goes beyond Hilbert space; for this reason, after discussing some 
basic aspects of Bessel and Parseval distribution frames, here, we 
examine in details some aspects of the theory that are more related 
to possible applications, even if we maintain the analysis at a quite 
abstract level. To be more precise, we consider positive operator-
valued (POV) measures defined by distribution maps (Section 2) 
and study the possibility of introducing Naimark dilations for 
rigged Hilbert spaces with the aim of showing that certain Parseval 
distribution frames can be obtained as projections of Gel’fand 
distribution maps (Section 3). Finally (Section 4), we examine 
operators defined by Parseval frames by means of certain sufficiently 
regular functions by some mathematical expressions that closely 
resemble the quantization procedure defined by coherent states.

The basic notions needed for the understanding of this paper are 
given here. A more detailed discussion can be found in [12, 19].

A rigged Hilbert space, or Gel’fand triplet, is a triple of spaces,

D[t] ↪H↪D× [t×] ,

where D is a dense subspace of a Hilbert space H (which is supposed 
to be infinite-dimensional and separable) and, at once, a locally 
convex space with topology t; throughout this paper, we will suppose 
that D[t] is a Fréchet and reflexive space. We denote by D× the 
conjugate dual of D, which is endowed with the strong dual topology 
t×. We indicate by L(D,D×) the space of continuous linear maps 
from D[t] to D×[t×]. In L(D,D×), an involution A↦ A† is defined 
by the equality ⟨A f|g⟩ = ⟨A†g| f⟩, where f,g ∈D.

Let μ be a Radon measure on the Borel sets of a locally compact 
space X. A distribution map is a μ-weakly measurable function ω:x ∈
X→ ωx ∈D×.

The map ω is called a Bessel distribution map if there exists a 
continuous seminorm p on D[t] such that

∫
X
| ⟨ f|ωx⟩ |2dμ ≤ p( f)2, ∀ f ∈D;

in particular, ω is called bounded Bessel if B > 0 such that

∫
X
| ⟨ f|ωx⟩ |

2dμ ≤ B‖ f‖2, ∀ f ∈D. (1)

Finally, ω is a Parseval distribution frame if

∫
X
| ⟨ f|ωx⟩ |2dμ = ‖ f‖2, ∀ f ∈D.

A Gel’fand distribution basis is a μ-independent Parseval one; 
that is, if ξ is measurable and ∫Xξ(x)⟨g|ωx⟩dμ = 0, ∀g ∈D, then ξ =
0 μ-a.e.

A Riesz distribution basis ω is the image of a Gel’fand basis 
through a continuous operator R:D×→D× with continuous inverse. 
For details, we refer to [12].

A Gel’fand distribution basis presents two interesting features. 
On the one hand, it defines a POV measure on the σ-algebra of Borel 
sets. On the other hand, they can be used to construct sort-of scalar 
operators A through some appropriate function α; formally,

⟨A f|g⟩ = ∫
X

α (x)⟨ f|ζx⟩⟨ζx|g⟩dμ,

on a suitable domain.
Here, we summarize the basic definitions, referring to [12] 

for details.
Let ω be a bounded Bessel distribution map. Then, the 

sesquilinear form defined by

Ω ( f,g) = ∫
X
⟨ f|ωx⟩⟨ωx|g⟩dμ

is well defined on D ×D. Moreover, it is ‖ ⋅ ‖-bounded; thus, it has a 
bounded extension Ω̂ to H. Hence, there exists a bounded operator 
Ŝω in H such that

Ω̂ ( f,g) = ⟨Ŝω f|g⟩, ∀ f,g ∈H. (2)

As

⟨Ŝω f|g⟩ = ∫
X
⟨ f|ωx⟩⟨ωx|g⟩dμ, ∀ f.g ∈D.

As in [15, Definition 3.6], we state that a distribution map ω is a 
distribution frame if there exist A,B > 0 such that

A‖ f‖2 ≤ ∫
X
| ⟨ f|ωx⟩ |2dμ ≤ B‖ f‖2, ∀ f ∈D.

A distribution frame ω is clearly a bounded Bessel map. Thus, 
for the operator Ŝω defined in Equation 2, we have

A‖ f‖ ≤ ‖Ŝω f‖ ≤ B‖ f‖, ∀ f ∈H.

This inequality, together with the fact that Ŝω is symmetric, implies 
that Ŝω has a bounded inverse Ŝ−1ω  everywhere, as defined in H.

If ω is a bounded Bessel distribution map and ξ ∈ L2(X,μ), the 
conjugate linear functional on D, defined by

Λξ
ω (g) ≔ ∫

X
ξ (x)⟨ωx|g⟩dμ,

is bounded. Therefore, there exists a unique vector hξ ∈H such that

Λ̃ξ
ω (g) = ⟨hξ|g⟩, ∀g ∈H.

Therefore, we can define a linear map Dω:L2(X,μ) →H, which 
will be called the synthesis operator, by

Dωξ = hξ, ξ ∈ L2 (X,μ) .

Then, Dω is bounded from L2(X,μ) to H. Hence, it has a bounded 
adjoint Cω ≔ D∗ω called the analysis operator, which acts as follows:

Cω: f ∈D→ ξ f ∈ L2 (X,μ) ,where ξ f (x) = ⟨ f|ωx⟩ , x ∈ X.
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The synthesis operator Dω takes values in H, and it is bounded and 
‖Dω‖ ≤ B1/2.

Remark 1.1: Let us describe the action of Cω. If g ∈H and {gn}
is a sequence of elements of D, norm converging to g, then the 
sequence {ηn}, where ηn = ⟨gn|ω⋅⟩, is convergent in L2(X,μ) as ω is 
Bessel bounded. Put η≔ ‖ ⋅ ‖2 − limn→∞ηn. The function η does 
not depend on the choice of the sequence {gn} approximating g in 
H. Then, for D∗ω, we have

⟨Dωξ|g⟩ = lim
n→∞
∫

X
ξ (x)⟨ωx|gn⟩dμ = ∫

X
ξ (x)η (x)dμ.

Hence, D∗ωg = η. Notably, the function η ∈ L2(X,μ) depends linearly 
on g. In [12, 16], a linear functional was formally defined as ω̌x by

if g ∈H; gn→ g, ⟨g|ω̌x⟩ ≔ lim
n→∞
⟨gn|ωx⟩ pointwise.

This should be read only as a notation shorthand because ω̌x is 
not well defined. In this note, we prefer to adopt a different notation 
and directly use the operator Cω. 

A μ-weakly measurable function ω:X→D× is called a 
distribution basis for D if, for every f ∈D, there exists a unique 
measurable function ξ f such that

⟨ f|g⟩ = ∫
X

ξ f (x)⟨ωx|g⟩dμ, ∀g ∈D,

and, for every x ∈ X, the linear functional f ∈D→ ξ f(x) ∈ ℂ is 
continuous on D[t].

If ω is a distribution basis, by the definition itself, there exists 
a unique μ-weakly measurable map θ:X→D× such that ξ f(x) =
⟨ f|θx⟩ , ∀ f ∈D. Hence, the following identity holds:

⟨ f|g⟩ = ∫
X
⟨ f|θx⟩⟨ωx|g⟩dμ, ∀ f,g ∈D.

We consider θ the dual map of ω.
Furthermore, considering the complex conjugate of the above 

expression, we obtain the following:

f = ∫
X
⟨ f|ωx⟩θxdμ, ∀ f ∈D.

Then, if θ is μ-independent, θ is also a distribution basis. 

2 POV measures associated with 
distribution frames

Let ω be a weakly measurable distribution map. For every f ∈D, 
the integral

Δ↦∫
Δ
| ⟨ f|ωx⟩ |2dμ

defines a positive measure on Σ, which is finite if ω is Bessel. 
In this case,

ΩΔ ( f,g) = ∫
Δ
⟨ f|ωx⟩⟨ωx|g⟩dμ, f,g ∈D

defines a jointly continuous positive sesquilinear form on D ×D. 
The set of all jointly continuous, positive sesquilinear forms on D ×

D will be denoted by P(D). In this case, there exists a positive 
operator T(Δ) ∈ L(D,D×) (i.e., ⟨T f| f⟩ ≥ 0, ∀ f ∈D) such that

∫
Δ
⟨ f|ωx⟩⟨ωx|g⟩dμ = ⟨T (Δ) f|g⟩ , ∀ f,g ∈D.

In addition, the map

Δ ∈ Σ→ T (Δ) ∈ L(D,D×)

defines a POV measure on Σ. In particular, if ω is bounded Bessel, 
for each Δ ∈ Σ, T(Δ) is a bounded operator that can be extended to 
the whole Hilbert space H. In this case, one can find a Naimark 
dilation (i.e., a larger Hilbert space, having H as closed subspace) 
and a projection valued (PV) measure that reduces to T(Δ) on H.

On the other hand, given a POV measure T, one can pose 
the question of whether it is possible to find a distribution map 
ω such that

⟨T (Δ) f|g⟩ = ∫
Δ
⟨ f|ωx⟩⟨ωx|g⟩dμ, ∀Δ ∈ Σ; f,g ∈D.

It is quite natural to look at the right-hand side of the previous 
equality as the basic ingredients of a type of spectral resolution of 
an operator: generalized projections, to be more precise. If ω is a 
distribution map, for each x ∈ X, the map

( f,g) ∈D ×D→ ⟨ f|ωx⟩⟨ωx|g⟩ (3)

is a jointly continuous sesquilinear form. Hence, for each x ∈ X, there 
exists an operator Pωx

∈ L(D,D×) such that

τωx
( f,g) = ⟨Pωx

f|g⟩, ∀ f,g ∈D. (4)

From Equation 3, 4, it follows that

Pωx
f = ⟨ f|ωx⟩ωx, ∀ f ∈D.

The operator Pωx
 is symmetric (Pωx

= P†ωx
) and positive 

(⟨Pωx
f| f⟩ ≥ 0, for every f ∈D). Even though Pω does not satisfy 

Pω = P2
ω (which is meaningless), we can reasonably consider Pω a 

generalized one-dimensional projection.
As a first step, given a POV measure, as above, we want to find a 

map τx:D ×D→ L1(X,μ) such that

⟨T (Δ) f|g⟩ = ∫
Δ

τx ( f,g)dμ, ∀ f,g ∈D; ∀Δ ∈ Σ.

For this to be possible, it is necessary and sufficient that the 
POV measure T be absolutely continuous with respect to μ in 
a weak sense; that is, for every f,g ∈D, the complex measure 
Δ→ ⟨T(Δ) f|g⟩ is absolutely continuous with respect to μ. In this 
case, the Radon–Nikodym theorem guarantees the existence of 
a μ-measurable function τ:x ∈ X→ τx ∈ S(D), the space of all 
sesquilinear forms on D ×D, such that

τ ( f,g) = dT
dμ
( f,g) , ∀ f,g ∈D.

In fact, for μ almost all x ∈ X, τx is a sesquilinear form on D.
Next, we want to show that under certain assumptions, there 

exists a weakly measurable function ω:X→D× such that

τ⋅ ( f,g) = ⟨ f|ω⋅⟩⟨ω⋅|g⟩ , ∀ f,g ∈D.
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Let us first introduce some notations. If σ ∈ P(D), we put

N (σ) = { f ∈D:σ ( f, f) = 0} .

The Cauchy–Schwarz inequality and the continuity of σ imply 
that N(σ) is a closed subspace of D[t].

Lemma 2.1: Let σ ∈ P(D) and σ ≢ 0. The following statements are 
equivalent: 

i. There exist η ∈D× (unique up to a factor z with |z| = 1) and 
u ∈D such that

σ ( f,g) = ⟨ f|η⟩⟨η|g⟩ , ∀ f,g ∈D and σ (u,u) = 1.

i. N(σ) is a proper closed maximal subspace of D.

Proof: we assume that for some η ∈D×, σ( f,g) = ⟨ f|η⟩⟨η|g⟩, for 
every f,g ∈D. Then, f ∈ N(σ), if, and only if, ⟨ f|η⟩ = 0; i.e., N(σ) =
Ker η, and the latter is a closed maximal subspace of D, as is known. 
Moreover, as σ ≢ 0, we can find u ∈D such that σ(u,u) = 1.

Next, we assume that η′ ∈D× also satisfies σ( f,g) =
⟨ f|η′⟩⟨η′|g⟩, for every f,g ∈D. Then, σ( f, f) = |⟨ f|η⟩ |2 = |⟨ f|η′⟩ |2, 
for every f ∈D. This implies that η′ = zη, with |z| = 1.

Conversely, we assume that N(σ) is a proper closed maximal 
subspace of D and u ∉ N(σ). We can assume σ(u,u) = 1. Then, due 
to the maximality of N(σ), every element f ∈D can be written as 
f = λu+ n, with n ∈ N(σ). Define ⟨η| f⟩ = λ. Then, η ∈D× as Ker η =
N(σ) is closed. Then, if f = λu+ n, g = μu+ n′ are elements of D,

σ ( f,g) = σ(λu+ n,μu+ n′) = λμσ (u,u) = ⟨ f|η⟩⟨η|g⟩ .

Let us come back to the function τ.

Theorem 2.2: Let x ∈ X→ τx ∈ P(D) be obtained as the 
Radon–Nikodym derivative of the POV measure T. We assume that 

i. codim N(τx) = 1 for μ almost every x ∈ X;
ii. there exists u ∈D such that μ({x ∈ X:τx(u,u) ≠ 1}) = 0

Then, there exists a weakly measurable distribution map ω:x ∈
X→ ωx ∈D× such that for μ almost every x ∈ X,

τx ( f,g) = ⟨ f|ωx⟩⟨ωx|g⟩ , ∀ f,g ∈D.

Proof: by (i) and (ii) for almost every x ∈ X, the 
conditions of Lemma 2.1 are fulfilled. Then, for these x ∈ X, the set 
{ω ∈D×:τx( f, f) = |⟨ f|ω⟩ |2, ∀ f ∈D} is non-empty, so, we can define 
a function x↦ ωx by picking one element in each of these sets. As 
τx( f,g) = ⟨ f|ηx⟩⟨ηx|g⟩, for all f,g ∈D, the function ω defined in this 
way is weakly measurable. The statement then follows by observing 
that the condition codim N(τx) = 1 is equivalent to stating that N(τx)
is closed and maximal. 

3 Naimark dilations of rigged Hilbert 
spaces

Naimark dilations are powerful tools in operator theory, and 
they are also relevant in other contexts. In [20], this technique has 

been adopted for certain aspects of frame theory: in particular, 
the authors show that a Parseval frame is the projection of an 
orthonormal basis in a larger Hilbert space. Our problem is now to 
try and extend this result to distribution frames. Let us start with 
some preliminary remarks.

Let D[t] ⊂H ⊂D×[t×] be a RHS, with D[t] a Fréchet and 
reflexive space, and let K be another Hilbert space containing H
as a closed subspace. Then K =H⊕M, where M denotes the 
orthogonal complement of H in K. Let us consider the space E =
D ⊕M endowed with the topology defined by the semi-norms

ρn ( f ⊕ϕ) = pn ( f) + ‖ϕ‖, f ∈D, ϕ ∈M,

where {pn} is a countable family of semi-norms defining the topology 
of D. Clearly, E is Fréchet.

We claim that (D ⊕M)× =D× ⊕M so that

D ⊕M[t⊕] ⊂K ⊂D× ⊕M[t×⊕]

is a RHS, which we call the Naimark dilation of D[t] ⊂H ⊂
D×[t×]. On the one hand, if F⊕ ∈ (D ⊕M)×, then F0( f) ≔ F⊕( f ⊕ 0)
defines a continuous conjugate linear functional on D, and F1(m) ≔
F⊕(0⊕m) defines a bounded conjugate linear functional on M, so, 
there exists m′ ∈M such that F1(m) = ⟨m

′|m⟩, for every m ∈M. 
Therefore, (D ⊕M)× ⊂D× ⊕M. The converse inclusion is obvious.

Let ω be a Parseval distribution frame; that is,

∫
X
| ⟨ f|ωx⟩ |2dμ = ‖ f‖2, ∀ f ∈D.

In this case, the analysis operator Cω,

Cω: f ∈D→ ⟨ f|ω⋅⟩ ∈ L2 (X,μ) ,

is an isometry; hence, the closure of CωD can be identified with a 
closed (generally, proper) subspace of L2(X,μ).

Let us put D# = CωD and H# = CωH. It is clear that D# is a dense 
subspace of H#. If the topology of D is defined by the family of semi-
norms {pn}n∈ℕ, it is natural to define a topology on D# by means of 
the semi-norms {pC

n }n∈ℕ defined by

pC
n (ϕ) = pn (C

−1
ω ϕ) , ϕ ∈D#.

Let D×#  denote the conjugate dual of D#. In this way, we 
constructed a rigged Hilbert space whose central Hilbert space is a 
closed subspace of L2(X,μ).

Let M≔H⊥# ⊂ L2(X,μ), and consider the rigged Hilbert space 
constructed as above. ℙ is used to denote the orthogonal projection 
of L2(X,μ) onto H#. Then, ℙ maps D# onto itself as ϕ ∈D# if, and 
only if, ϕ = Cω f for some f ∈D; then, ℙCω f = Cω f by the definition 
of ℙ, and so ℙϕ ∈D#. Moreover, we have, if ϕ = ℙ f ∈D#,

pC
n (ℙϕ) = pn (C

−1
ω ℙϕ) = pn (C

−1
ω ℙCω f) = pn ( f) .

Hence, ℙ is continuous from D# to itself. Therefore, there exist 
ℙ×:D×# →D×#  such that

⟨ℙϕ|Φ⟩ = ⟨ϕ|ℙ×Φ⟩ ,∀ϕ ∈D#,Φ ∈D×# .

Clearly, ℙ× extends ℙ to D×# .
Let us now consider the rigged Hilbert space

D# ⊂H# ⊂D×# .
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The definition of the topology of D# implies that Cω is 
continuous from D to D#, and it is also one-to-one. Hence, there 
exists C×ω:D×# →D× such that

⟨Cω f|Φ⟩ = ⟨ f|C×ωΦ⟩ , ∀ f ∈D,Φ ∈D×# . (5)

We state that C×ωD×# =D
×. Indeed, Equation 5 implies that 

C×ωD×# ⊂D
×. On the other hand, as C−1ω  is also continuous if F ∈D×, 

the functional H(ϕ) = ⟨F|C−1ω ϕ⟩ is in D×#  and

⟨F|C−1ω ϕ⟩ = ⟨(C−1ω )
×F|ϕ⟩ , ∀ϕ ∈D#.

The equality F = C×ω(C−1ω )
×F implies the statement.

Let ζ:x ∈ X→ ζx ∈D×#  be a Gel’fand distribution basis. Then, 
ωx ≔ ℙ

×ζx is a Parseval distribution frame. Indeed,

∫|⟨ f|ωx⟩ |
2dμ = ∫|⟨ f|ℙ×ζx⟩ |

2dμ = ∫|⟨ℙ f|ζx⟩ |
2dμ = ‖ℙ f‖2 = ‖ f2‖.

We want to state the converse; that is, given a Parseval 
distribution frame ω, does there exist a Gel’fand distribution basis 
ζ in a larger rigged Hilbert space such that ω is the projection of ζ?

Let C(X) denote the space of continuous functions on X, 
endowed with the locally convex topology τ0 defined by the semi-
norms φ↦ pK(ϕ) = supx∈K |φ(x)|, K ⊂ X, and K compact.

Theorem 3.1: Let ω be a Parseval distribution frame. It is assumed 
that Cω maps D into C(X) and that Cω is continuous from D[t] to 
C(X)[τ0]. Moreover, it is assumed that the evaluation map δx on C(X)
defined by ⟨φ|δx⟩ = φ(x) is continuous on D# = CωD with its own 
topology. Then, ω can be identified with the projection ℙδx of the 
Gel’fand distribution basis δ. 

Proof: indeed, we have

⟨Cω f|ℙδx⟩ = ⟨ℙCω f|δx⟩ = ⟨Cω f|δx⟩ = (Cω f) (x) = ⟨ f|ωx⟩ .

By (13)

⟨Cω f|ℙδx⟩ = ⟨ f|C×ωℙδx⟩ .

Hence, ωx = C×ωℙδx.
Let us come back to the POV measure defined in the previous 

section. We adapt to our situation some known results concerning 
the POV measures defined by tight frames (e.g., [2, Section 3.2]). Let 
ξ ∈ L2(X,μ) and Δ be a Borel subset of X. We define an operator E(Δ)
with values in L2(X,μ) by

(E (Δ)ξ) (x) = χΔ (x)ξ (x) , ξ ∈ L2 (X,μ) .

This is clearly a PV measure.
Let ξ,η ∈ CωD ⊂ L2(X,μ); then, there exist vectors f,g ∈D such 

that f = C−1ω ℙξ and g = C−1ω ℙη.

⟨ℙE (Δ)ℙξ|η⟩2 = ⟨E (Δ)ℙξ|ℙη⟩2 = ∫XχΔ (x) (Cω f) (x) (Cωg) (x)dμ

= ∫Δ (Cω f) (x) (Cωg) (x)dμ = ∫Δ ⟨ f|ωx⟩⟨ωx|g⟩dμ
= ⟨T (Δ) f|g⟩ = ⟨T (Δ)C−1ω ℙξ|C−1ω ℙη⟩ .

Thus,

(C−1ω )
×T (Δ)C−1ω = ℙE (Δ)ℙ, ∀Δ ∈ Σ.

Hence, the POV measure T can be identified with the projection 
of a PV measure E on a larger rigged Hilbert space. 

4 Parseval frames, coherent states, 
and quantization

Let ω be a Parseval distribution frame; this fact can be expressed 
equivalently as follows:

⟨ f|g⟩ = ∫
X
⟨ f|ωx⟩⟨ωx|g⟩dμ, f,g ∈D, (6)

which, at least in the case when ω takes values in the Hilbert space, 
is called a resolution of the identity. This is a terminology more 
frequently used in Physics, particularly when dealing with coherent 
states that satisfy an equality corresponding to Equation 6 and 
some more conditions (in the classical formulation: saturation of 
the Heisenberg inequality, being eigenvectors of the annihilation 
operator, or being obtained by the action of the Weyl–Heisenberg 
group on some vacuum state). More general coherent states are 
often generated as orbits produced by a certain representation of a 
group (locally compact or Lie); these representations are supposed 
to be square-integrable. Non-square-integrable representations of 
groups can, however, also be envisaged (see [2, Ch.8] for a complete 
discussion). As already mentioned in the Introduction section, 
coherent states that are represented by non-square integrable 
functions or even by true distributions have also been considered 
in some applications. Thus, finally, it is not so exotic to take 
into account D×-valued functions satisfying (15), that is, Parseval 
distribution frames.

The quantization procedure is an important aspect of coherent 
states. It is obtained by associating to a sufficiently regular function 
α defined on X with the operator Aα that, in our language, can be 
formally written as follows:

⟨Aα f|g⟩ = ∫
X

α (x)⟨ f|ωx⟩⟨ωx|g⟩dμ. (7)

For discrete Parseval frames in Hilbert space, operators defined 
by obvious modifications of Equation 7 have been studied in [21, 22].

Finally, we remark that in the case of H-valued maps, operators 
of type Equation 8 are closely related with the continuous frame 
multipliers considered by Balasz et al. in [23] (see also [24]).

Let us begin with an example.

Example 4.1: [15, Example 4.1] Let ζ:x ∈ X→ ζx ∈D× be a Gel’fand 
distribution basis. Then, an operator A (type of diagonal operator) 
can be introduced as follows, starting from a (complex valued) 
measurable function α such that

∫
X
|α (x)⟨ f|ζx⟩ |2dμ <∞, ∀ f ∈D.

Put

A f = ∫
X

α (x)⟨ f|ζx⟩ζxdμ, f ∈D.

The assumptions imply that A maps D into H and it is a closable 
operator in H. The domain of its closure A is

D(A) = { f ∈H:∫
X
|α (x)(Cζ f)(x) |2dμ <∞}.

The operator A is bounded if, and only if, α ∈ L∞(X,μ). The 
spectrum σ(A) is given by the closure of the essential range of α, that 
is, the set of z ∈ ℂ such that

μ {x:|α (x) − z| < ϵ} > 0, ∀ϵ > 0.
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Moreover, if A and its adjoint A∗ leave D invariant, for almost 
every x ∈ X, α(x) is a generalized eigenvalue of A, in the sense of 
Gel’fand: A has an extension to D×, let us call it Â, and, for almost 
every x ∈ X,

⟨Âζx|g⟩ = α (x)⟨ζx|g⟩ , ∀g ∈D.

A similar construction is possible by starting from a Riesz 
distribution map. For details, we refer to [12]. 

Let us now consider a more general situation. It is assumed that ω
is a distribution map and we are given a measurable function α: X→
ℂ such that the sesquilinear form

Ωα ( f,g) = ∫
X

α (x)⟨ f|ωx⟩⟨ωx|g⟩dμ (8)

is defined for all f,g ∈D. Let us suppose that there exists a 
continuous semi-norm p′ such that

|Ωα ( f,g) | = |∫
X

α (x)⟨ f|ωx⟩⟨ωx|g⟩dμ| ≤ p′ ( f)p′ (g) , ∀ f,g ∈D.

Then, there exists an operator Λα ∈ L(D,D×) such that

Ωα ( f,g) = ⟨Λα f|g⟩ . ∀ f,g ∈D.

Let us assume that

∫
X
|α (x)⟨ f|ωx⟩ |2dμ <∞ ∀ f ∈D,

and that ω is bounded Bessel. In this case, using the inequality 
Equation 1, we obtain the following:

|Ωα ( f,g) | = |∫
X

α (x)⟨ f|ωx⟩⟨ωx|g⟩dμ|

≤ (∫
X
|α (x)⟨ f|ωx⟩ |2dμ)

1
2 (∫

X
| ⟨g|ωx⟩ |2dμ)

1
2 = K fB

1
2 ‖g‖.

(9)

 From Equation 9, it follows that

Λα f = ∫
X

α (x)⟨ f|ωx⟩ωxdμ, f ∈D

is a vector in H; for this reason, it is more convenient to adopt the 
notation A≔ Λα. As ω is a bounded Bessel distribution map, the 
operators Dω and Cω are bounded, so in particular,

‖A f‖2 ≤ B‖α⟨ f|ω⋅⟩‖22 = B∫
X
|α (x)⟨ f|ωx⟩ |2dμ, ∀ f ∈D.

It is then natural to choose

D (A) ≔ { f ∈H:∫
X
|α (x)⟨ f|ωx⟩ |2dμ <∞}.

In this case, the analysis operator Cω is bounded and admits a 
bounded extension to H, which is denoted again as Cω. We look for 
the adjoint A∗ of A. As is well known, the set D(A∗) is given for all 
g ∈H such that there exists g∗ ∈H, for which

⟨A f|g⟩ = ⟨ f|g∗⟩ , ∀ f ∈D.

We have D ⊂ D(A∗) as ⟨A f|g⟩ = ∫α(x)⟨ f|ωx⟩⟨ωx|g⟩dμ, by the 
definition of the sesquilinear form Ωα in Equation 8, and clearly,

g∗ = ∫α (x)⟨g|ωx⟩ωxdμ.

We now prove that

D (A∗) = {g ∈H:∫|α (x) (Cωg) (x) |2dμ <∞},

and

A∗g = ∫
X

α (x) (Cωg) (x)dμ, g ∈H.

Indeed, recalling that we have identified ∫Xα(x)⟨ f|ωx⟩ωxdμ
with A f ∈H, we have, for {gn} ⊂D, gn→ g ∈ D(A∗)

⟨A f|g⟩ = ⟨∫Xα (x)⟨ f|ωx⟩ωxdμ | g⟩ = ⟨∫Xα (x)⟨ f|ωx⟩ωxdμ | lim
n→∞

gn⟩
= lim

n→∞
⟨∫Xα (x)⟨ f|ωx⟩ωxdμ | gn⟩ = lim

n→∞
∫Xα (x)⟨ f|ωx⟩⟨ωx|gn⟩dμ

= ∫Xα (x)⟨ f|ωx⟩(Cωg) (x)dμ,

 by the continuity of the inner product of L2(X,μ).
In a similar way, we prove that

D (A∗∗) = { f ∈H:∫|α (x) (Cω f) (x) |2dμ <∞}

A∗∗ f = ∫
X

α (x) (Cω f) (x)dμ, f ∈H.

This also explicitly proves the statement about Ā
given in [15, Example 4.1].

All this also applies when ω is a Parseval frame, but in this case, 
something more can be said. In particular, we can characterize the 
boundedness of the operator A.

Proposition 4.2: Let ω be a Parseval frame, and A the operator 
is defined by

D (A) = { f ∈H:∫X|α (x)⟨ f|ωx⟩ |2dμ <∞}
A f = ∫Xα (x)⟨ f|ωx⟩ωxdμ, f ∈ D (A) .

Let us assume that

‖A f‖2 = ∫
x
|α (x)Cω f|2dμ, ∀ f ∈ D (A) .

Then, A is bounded if, and only if, α ∈ L∞(X,μ). 
Proof: the sufficiency is obvious. Let us assume that A is 

bounded, and let A be its closure (which is defined everywhere in 
H and bounded). Let us assume that α ∉ L∞(ℝ). Then, for every 
n ∈ ℕ, the set En = {x ∈ ℝ:|α(x)| > n} has positive measure. Let χn
denote the characteristic function of En. As ω is a Parseval frame, 
Cω is an isometry of H into L2(X,μ). The density of D in H implies 
that CωH is an infinite dimensional separable Hilbert space; hence, 
there exists a unitary operator V from L2(X,μ) to CωH; then, we can 
find an element fn ∈H such that Cω fn = Vχn and ‖ fn‖ = ‖Vχn‖2 =
‖χn‖2 = μ(En)1/2. Then,

‖A fn‖
2 = ∫
ℝ
|α (x) |2| (Cω fn) (x) |

2dμ > n2‖ fn‖
2,

is a contradiction.
Proposition 4.2 allows us to get some information on the 

spectrum of the operator A.
Let us first show that the operator defined through the function 

1
α(x)−λ

, when defined almost everywhere, is the natural candidate to 
produce the inverse of the operator defined by α(x) − λ. It is assumed 
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that the function h(x) ≔ (α(x) − λ)−1 is well defined and essentially 
bounded. Then, if f ∈D,

| ⟨ f|g⟩ | = |∫X
α (x) − λ
α (x) − λ ⟨ f|ωx⟩⟨ωx|g⟩dμ|

≤ ‖(α− λ)−1‖∞‖ (α− λ)⟨ f|ω⋅⟩‖2‖⟨ω⋅|g⟩‖2
= ‖(α− λ)−1‖∞‖ (α− λ)⟨ f|ω⋅⟩‖2‖g‖.

This implies that the vector ∫X(α(x) − λ)−1 ⟨ f|ωx⟩ωxdμ is in 
D(A− λI) and the following equality holds:

⟨ f|g⟩ = ⟨(A− λI)∫
X

1
α (x) − λ

⟨ f|ωx⟩ωxdμ|g⟩.

Then, if 1
α(x)−λ
∈ L∞(X,μ), the resolvent operator (A− λI)−1 is 

well defined and bounded, which implies that there exists M >
0 such that

μ{x ∈ ℝ: |α (x) − λ| <M−1} = 0.

In other words, if λ ∉ Imess α, then λ ∈ ρ(Aα). Equivalently,

σ (A) ⊂ {z ∈ ℂ:∀ϵ > 0 μ {x ∈ ℝ:|α (x) − z| < ϵ} > 0} .

Example 4.3: (the case of Riesz distribution bases, [15, Example 
4.2] revisited) Let ω be a Riesz distribution basis and θ
its dual. Let α be a (complex valued) measurable function
such that

∫
X
|α (x)⟨ f|θx⟩ |2dμ <∞, ∀ f ∈D.

A linear operator H on D can then be defined by

H f = ∫
X

α (x)⟨ f|θx⟩ωxdμ.

In addition, in this case, one can see that H f ∈H so that H:D→
H. Indeed, let us consider the sesquilinear form on D ×D:

Ω ( f,g) = ∫
X

α (x)⟨ f|ωx⟩⟨θx|g⟩dμ.

Then, as in Equation 7,

|Ω ( f,g) | ≤ (∫
X
|α (x)⟨ f|ωx⟩ |2dμ)

1
2 (∫

X
| ⟨g|θx⟩ |2dμ)

1
2 .

≤ K fB
1
2 ‖g‖ ∀g ∈D.

Hence, ∫Xα(x)⟨ f|ωx⟩θxdμ can be identified with a vector in H. 
Regarding the adjoint H∗, in similar way as before, we obtain

D (H∗) = {g ∈H:∫
X
|α (x) (Cθg) (x) |2dμ <∞}.

H∗g = ∫
X

α (x) (Cθg) (x)dμ.

Here, Cθ is (the extension of) the analysis operator corresponding to 
θ.
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