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Magnetically actuated micro-electro-mechanical systems (magMEMSs) are
pivotal for wearable sensor applications that need high sensitivity, fast
response, and compact integration, such as biomedical monitoring and motion-
tracking devices. In this paper, we investigate the dynamic pull-in instability
and periodic trajectory analysis of magMEMS models with current-carrying
filaments, addressing critical challenges in a miniaturized sensor design. A
simplified Galerkin approach is used to analyze a Lorentz-force-driven MEMS
oscillator, deriving approximate expressions for the dynamic pull-in threshold—a
key criterion for stable periodic operation—and the corresponding oscillation
frequency and periodic solutions. Extensive numerical simulations support and
validate the analytical results. These findings offer valuable insights to assist in
the design and optimization of MEMS devices in wearable sensors.

KEYWORDS

magMEMS, Galerkin approach, dynamic pull-in, periodic solutions, singular MEMS
oscillators, wearable sensors

1 Introduction

Micro-electro-mechanical systems (MEMSs) have revolutionized numerous fields by
enabling the development of miniaturized devices with exceptional performance and diverse
functionalities, particularly in wearable sensor technologies where compactness, low power
consumption, and high sensitivity are paramount. These systems combine mechanical,
electrical, and optical components in a single device of micrometric dimensions, forming
compact, multifunctional chips when integrated with electronic signal-processing units
[1, 2]. In wearable applications—such as biomedical monitoring (e.g., real-time health
tracking via magnetoencephalography probes), environmental sensing, and motion-
tracking systems—MEMSs offer unparalleled advantages, including their ability to detect
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minute physical changes (e.g., magnetic field fluctuations and
mechanical vibrations) with fast response times 3, 4]. Characterized
by their compact size and energy efficiency, MEMSs are ideal
for power-constrained wearable devices operating in the Internet
of Things (IoT) ecosystem [5, 6]. Among MEMS subclasses,
magnetically actuated MEMSs (magMEMSs) have emerged as a
promising solution for wearable sensors due to their linear response,
directional actuation, and dimensional stability at the nanoscale
[7, 8], making them suitable for applications requiring precise,
repeatable displacement control in dynamic environments (e.g.,
wearable accelerometers or flexible biosensors).

However, a major challenge in the performance and reliability
of magMEMSs is pull-in instability—a nonlinear phenomenon
that can significantly impair device operation. This instability
occurs when the magnetic attraction between a movable
microstructure (such as a beam, plate, or membrane) and a magnetic
actuator (typically a coil or permanent magnet) exceeds the
mechanical restoring force. Beyond a critical threshold—referred
to as the pull-in point—the structure collapses onto the
actuator, often irreversibly, leading to permanent device failure
[9-13].

This behavior is particularly problematic in magMEMS
actuators and sensors, where precise and repeatable displacement
The
in nanoelectromechanical

issue becomes even more critical
(NEMSs),
components typically smaller than 100 nm. At such scales,

control is crucial.

systems which utilize
proximity forces—including Van der Waals forces, covalent
bonding, and electrostatic interactions—can dominate over the
magnetic driving force, adding further complexity to the dynamics
[14, 15]. The strong nonlinear interaction between magnetic
forces and structural elasticity is typically modeled through
coupled magneto-mechanical equations [16], posing substantial
challenges for both theoretical analysis and practical design. A
rigorous investigation of pull-in dynamics under magnetostatic
loading is thus essential for ensuring robust and safe operation of
magMEMS devices.

To address this challenge, a variety of analytical, numerical,
and semi-analytical methods have been developed. The variational
iteration method (VIM) is widely appreciated for its flexibility
in handling nonlinear dynamics [17, 18]; however, its practical
application is often hindered by the difficulty in constructing
appropriate Lagrange multipliers. Alternatives include reduced-
order modeling, phase-plane analysis, and perturbation methods,
which aim to approximate the pull-in threshold and capture
critical behavior near instability points [9, 19, 20]. Energy-based
methods and bifurcation analysis offer qualitative insights into
collapse dynamics [11], whereas numerical continuation and
shooting methods allow for high-accuracy tracking of periodic
orbits and stability boundaries [10]. Semi-analytical frameworks
such as the homotopy perturbation method (HPM) are also
popular [21] although they are sensitive to initial guesses and
homotopy construction. To enhance convergence and reliability,
hybrid methods combining homotopy with Laplace transforms have
been proposed [22].

Di Barba etal. [23] developed a geometric formulation of
the electrostatic field in membrane MEMS devices, in which
the electric field magnitude is assumed to be proportional to
the membrane curvature. Although focused on electrostatic
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actuation, this work shares strong methodological parallels
with the present study. This parallel is particularly evident
in the treatment of singular nonlinearities and instability
conditions, for which rigorous existence results were established
using Schauder-Tychonoft’s fixed-point theorem. In fact, the
analytical insights from the electrostatic framework by Di Barba
etal. [23], especially those concerning solution existence and
uniqueness, also provide a mathematical foundation for the
magnetodynamic model developed here. Additionally, frequency-
based approximations have been explored by reformulating the
problem into a standard form amenable to harmonic solutions
[24-26]. Recently, there has been a resurgence of interest in classical
analytical techniques, which often yield surprisingly accurate results
with minimal computational effort [27, 28]. Frequency-based
methods, while conceptually simple and non-iterative, may sacrifice
some accuracy in capturing complex dynamics [29]. Algebraic
techniques leveraging Sturm’s theorem have also shown promise
as fast and reliable tools for approximating pull-in thresholds
(30, 31].

In this context, the present work makes a novel contribution
to the analysis of magMEMS by studying a Lorentz-force-
driven model involving current-carrying filaments using a simple
and effective Galerkin approximation. Unlike transformation-
based techniques required for harmonic approximations under
zero initial conditions [24], our method yields closed-form
expressions for the dynamic pull-in threshold, oscillation
frequency, and periodic trajectories. In particular, we derive
an explicit pull-in condition that serves as a practical criterion
for the existence of periodic orbits. The analytical results
are systematically validated through numerical simulations,
confirming their accuracy across a broad range of parameters.
This approach enhances the understanding of nonlinear dynamics
in magMEMS and offers a practical tool for device design and
optimization.

The paper is organized as follows. In Section 2, we derive
the nonlinear differential equation that governs the dynamics of
the magMEMS model under Lorentz actuation. Section 3 presents
the Galerkin method and outlines the derivation of approximate
periodic solutions and the dynamic pull-in threshold. Section 4
provides numerical results that validate the analytical predictions.
Finally, concluding remarks and potential directions for future
research are offered in Section 5.

2 Mathematical model for magMEMS
with current-carrying filaments

The fundamental principles governing magnetic actuation in
MEMS are briefly outlined in this section. In particular, in
magnetostatics, the attractive or repulsive force between two
current-carrying wires is typically described by Ampeére’s force
law, which assumes the existence of infinitely long, parallel
conductors. However, on the microscale—where wire lengths are
finite—Neumann’s formulation, based on the concept of mutual
inductance [32], provides a more appropriate model. In this
framework, the magnetic force between the wires can be expressed as
minus the negative gradient of the magnetic energy coupled between
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FIGURE 1
magMEMS with current-carrying filaments. The instantaneous
distance between filaments is b — X(t).

- with respect to their separation distance b as in the
study by Skrzypacz et al. [10].
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where i, and i, represent direct currents (DCs) flowing through the
wires, and y, = 47x 10”7 N/A? denotes the vacuum permeability.
The relative permeability y, (> 1) is a dimensionless quantity that
characterizes the ability to magnetize a material. In the limiting case,
as L — oo, Equation 1 reduces to the well-known expression:
Moy
© " 2mb

which confirms the validity of the magnetic force formula.

Furthermore, under certain assumptions (He etal. [9]), the
dynamics of the wires in the MEMS sensor can be approximated
by modeling each as a point mass, leading to a lumped-parameter
differential equation. In this formulation, the motion of the
filament is governed by Newtons second law, which leads to
Equation 2:

m¥ = Fp+ Fy, (2)

where m is the mass of the filament, Fy is the restoring force,
and F; is the magnetic attraction force between the current-
carrying filaments. The restoring force that arises from a linear
spring (or an array of springs) with stiffness constant k; can be
calculated as follows:

Fp=—kX

Ultimately, the motion of the platform, shown in Figure I,
satisfies differential Equation 3:

i ~ iliZIuOuur (b _%) L2 _
mx + kX — o + -1[=0.
\V(b-%)?+12 (b-7)%4 %H
©)

1 This quantity is also called the co-energy of the magnetic field.
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Note that the governing differential Equation 3 does not
include a damping term as the air resistance is assumed to be
negligible. This assumption is typically valid for sufficiently small
MEMS devices, for example, Rhoads [33], Gorelick etal. [34],
and references therein. However, in practical applications where
damping effects cannot be neglected or to extend the model’s
applicability, a damping term can be incorporated as discussed
in Section 3.

Furthermore, it is a common practice to rescale the single-
degree-of-freedom Equation 3 to facilitate interpretation. To this
end, we introduce the following dimensionless distance and
time variables

X - |k
x=% and t:t\j:, (4)
b m
respectively, in Equation4. The transformation yields
the following dimensionless form of the governing
Equation 5:
2
1-
X+x-K £a-% + L -&1=0, (5
E1-x+1 (1-x)\&(1-x72+1
and the excitation parameter K is defined in Equation 6:
Holt ril 12L
K=——, (6)
27k, b

and the dimensionless geometric parameter is given by

Finally, we complement Equation 5 with zero initial conditions
x(0) =x(0) =0,

and additionally, we assume that the currents in both wires are
unidirectional, that is, K > 0.
It should be noted that Equation 5 reduces to

frx- —— =0, %)
1-x

in the case where the filaments motion is driven by the
magnetic field of an infinite current-carrying conductor, that
is, £¢—>0%. For ¢&=0, the initial value problem described in
Equation 7 under zero initial conditions exhibits periodic
solutions when K < K;; otherwise, it leads to pull-in behavior.
Consequently, the dynamic pull-in threshold K; and the
corresponding maximum deflection A; are given in He etal. [9] as
Equation 8

K =0.203632188 ..., (8)

and

1+41-4K;
Ar=— Y

: =0.71533 ...,
2

respectively. In addition, the dynamic pull-in threshold Kg and
the maximum amplitude A; can also be calculated using the
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Lambert W function, as demonstrated in our previous work
(Skrzypacz et al. [35]).

Next, multiplying both sides of Equation5 by x and then
integrating with respect to f yields the conservation of the energy
Equation 9:

Exe(D)= S GOF 4320

- K| -\& (1 -x(1)*+1+artanh 1 —Ex(f)
VE (1 -x(1)*+1
—K|:\1+fl—artanh<

=)

from which it follows Equation 10:

€)

(D)’ =-2*(1)

+2K| =\& (1 -x())? + 1 +artanh S S— —&x(1)
VE(L-x(1)?+1
+2K[\/1+£’Z—artanh<

=)

As noted previously by He etal. [9] and Skrzypacz et al. [10],

(10)

the solution x(f) is periodic if the phase portrait in the (x,%) plane
forms a closed curve, and the corresponding graph of the energy
conservation equation, Equation 10, is also closed. This occurs when
Equation 11

fK’E(s):—52+2K —\&(1-5)2+1+artanh S —&s
VE(1-5)2+1
+2K | \1+& —artanh

1+&

(11

has a root in the interval (0, 1). The operation of magnetic MEMS or
magMEMS using filament wires of finite length can be described by
Equation 5. For the case of £ = 0, the existence of periodic solutions
is ensured if Equation 12

fK,O (s)=—s>—2K1In(1-5) (12)

has a root in the interval (0,1) (He etal. [9]). The first root
corresponds to the maximum value of x(¢), that is, the maximum
deflection of the oscillating component. Consequently, the solutions
to the magMEMS model given by Equation 5 are periodic if K < K;
and exhibit dynamic pull-in behavior if K > K;, where it has been
previously established that K; =0.203632188 ....

On the other hand, in the critical case K= K*, the function

fK,E(S) has a double root at s = A;.
This condition is satisfied when

Of ke
5 (47)=o0

fiee(4p) =0 and
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which leads to the following transcendental Equation 13 for A;:

A_? fz(l—Aé‘) N 1 £

2 \/£2(1—A;)2+1 (1-4;) 52(1—A;)2+1

= 52(1 —A*)2+ l+artanh | ——1 | -ga:
‘ £(1-4;) +1 E
+V1+& —artanh \/%{2
(13)

The value of A;, representing the maximum deflection, is obtained
numerically for various values of the parameter ¢ by solving

5

Equation 13. Once A g is known, the corresponding dynamic pull-in

threshold K; can be calculated using Equation 14:

EZ(I_A::) 1 )
K:;: +
{2(1—A;)2+1 (1-47) 52(1—A;)2+1

& AL

(14)

of x
£ *
gj (A g) = 0. Figure 2 illustrates

the effect of the geometry parameter & on both the maximum

which follows from the condition

deflection A; of the flexible part and the dynamic pull-in threshold
K; As & increases, the maximum deflection A; decreases due to a
weakening Lorentz force. Conversely, the dynamic pull-in threshold
K; increases with increasing £ for the same reason.

In the regime of small values of the geometric parameter &, an
asymptotic expansion yields the following approximation for the
function f,K,E(S) developed by Skrzypacz et al. [10]:

fee(s) = =2 = 2K log|1 - x| - 2Kst - %Ks(s —)2+0(&)
with its derivative given by

fK)f (s)=—-2s+ IZK

T 2KE- %K(Zs—Z)Ez +O(&Y.

To facilitate further analysis, we introduce the simplified
function in Equation 15:

nyf (s) = —s* = 2K log |1 —s| - 2K&s — %K{s(s -2)%, (15)
which captures the leading-order behavior of f; E(S) for small &

Under this approximation, the motion of the platform is governed
by the second-order nonlinear differential equation:

5= 3T ).

This leads to approximate model Equation 16 for the
magnetic MEMS:

2 2
j‘/+<l+%>y:%—l<&’+%, (16)
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Dynamic pull-in threshold K; and maximum deflection A; of the flexible part. Pairs (¢, K) below the separatrix K = K; (region R, lead to periodic

subject to the initial conditions Equation 17:

y(0)=0, y(0)=0. (17)

In the presence of damping effects, this equation can be
generalized to Equation 18:

K& K K&

pryp+( 14— |y= —— —Kt+—=

y+w+< o= >y = £+ =

; (18)
where >0 is the dimensionless damping coeflicient. In what
follows, we apply the Galerkin method to compute periodic
solutions of the magMEMS model described in Equations 16, 17 and

subsequently extend the analysis to include damping effects.

3 Dynamical model analysis via the
Galerkin approach

In this section, we apply the Galerkin approach to approximate
periodic solutions of the magMEMS model, first in the undamped
case and subsequently in the presence of damping.

3.1 Undamped case (y = 0)

Let us rewrite Equation 16 as follows:
2 2
1-y)y- (1 + %)yz+(1 ~KE+KE)y-K+KE~ KT =0.

To obtain the weak formulation, we need to find periodic y
satisfying the initial conditions by Equation 17 such that

T
J[(l—y)j'/—<l+KTEZ>)/2+(1—KE+KEZ))/—K+KE—KTEZ
0

vdt=0

(19)

Frontiers in Physics

holds for all ve L*(0,T). We seek a Galerkin approximation
in the form

J(t) =a(l-cos(wt)). (20)

Note that the periodic Galerkin ansatz by Equation 20 satisfies
the initial conditions
7(0)=0, j(H)=awsin(wt) = F(0)=0.

Substituting the corresponding Galerkin ansatz into the weak
formulation in Equation 19 and testing over one period T=
2m/w with test functions v € span{l,cos(wt)} yields the following
algebraic system:

(—2w? + 3KE +6) a® + (—4 — 4KE + 4KE) a + 2KE — 4KE + 4K = 0,
Ka&? - K& - aw? + KE+ w? +2a—-1=0.

@1
From the second equation in Equation2l, we obtain
Equation 22:
1-2a-Kal + K& — K&
2_ 2 _
W= W= - . (22)
As

J(t) =a(l-cos(wt)) =2usin2(%t),

the maximal deflection is 2a, and the requirement x < 1 imposes
as< % Substituting w* by Equation 22 into the first equation of
Equation 21 yields Equation 23:

5 —SKE+2KE-8 , 6KE -8KE+4K+4  —2K& +4KE-4K
a + a”+ a+ =

0.
K& +2 K& +2 K& +2

(23)
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Here,K>0,{>0,and0<a< % result from the Galerkin ansatz.
The roots of the cubic Equation 23 can be expressed in the following
trigonometric form as presented in Equation 24 [36]:

: L
-5 3(r 7 27) 3 2me
a,=2\- cos| =arccos - + —
3 P P’ 3
2(a-5) Va5
7%’, £=0,1,2, (24)

where Equation 25

e ~5K&+2KE-8  6KE —8KE+4K +4 ,_ “2KE +4KE- 4K

> >

K& +2 K& +2 K& +2
(25)
and Equation 26
3 3\ 2
P pq  2p
Age=—4(g-%= ) —27[ r-E+ =) >0. 2
K4 <q 3) <r 3+27>‘0 (26)

In our case, we obtain Equation 27:

21/(7E" + 48— 82) K + (3282 + 16§ - 24) K + 40

3(K& +2) @7
1 ) _5K52 2K£ -3
cos( 3 arCCOS(ﬁKxf) " ?ﬂ) B W

where (Equation 28)

ke =a1 =

(178 + 3087 — 485 + 28) K& + (1328 + 9682 — 1568 +72) K2 &

Bxe=

(7K2E" + 4K2E — 8K2E + 32KE + 16KE — 24K +40)
(31287 +485-72) K+224

(7K + 4K2E - 8KPE + 32KE: + 16KE - 24K +40)””
(28)

The condition Agg=0, that is, Equation 29

0= (& 8¢ — 28+ 128 - 56&* + 648 — 248) K*
+ (=328 + 488 — 1608 — 488 + 1768 - 64) K°

+ (168" + 648 + 168 - 544& +296) K* + (256 — 384) K + 64
(29)

constitutes the approximate separatrix.
If £ = 0, that is, the wire is infinite, we obtain Equation 30:

2V10-6K (1 28 -9K 2\ 4
a=ag,=———cos| = arccos] ———— |+= |+-.
’ 3 3 (10-6K?°?) 3 ) 3

(30)

Note  that  the  discriminant  condition Ao =
32(K*~ 2K +6K-1) =0 for cubic Equation 23 ensures that its
two roots coincide for &= 0. This corresponds to the approximate
pull-in case, where the approximate pull-in threshold is I~<; =0.19464.
This critical value is very close to the exact dynamic pull-in threshold
K; given by Equation 8. The approximate periodic solutions are given
for0 <K< I?; as shown in Equation 31:

i ot |1 2ak
J() =2agysin* | =[——— |, (31)
2\ 1-ag
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where the K-dependent coefficient ay, is defined by Equation 30.

Note that the ansatz in Equation 20 can be systematically
extended by incorporating additional terms from the Fourier
expansion. For instance, a single-term ansatz with adaptive
coeflicients may reduce computational effort without compromising
accuracy, which is consistent with minimalist modeling principles in
MEMS analysis. However, increasing the number of trigonometric
terms in the ansatz inevitably results in higher-order nonlinear
algebraic systems, which must be solved using numerical methods.
Accurate models are essential for capturing the nonlinear dynamics
of oscillators. Among the notable analytical-semi-analytical
techniques are the VIM [37] and the HPM [38, 39]. VIM is
particularly effective in treating strongly nonlinear systems and has
been successfully used to predict pull-in conditions in electrostatic
MEMS. HPM, a semi-analytical method that combines homotopy
theory with perturbation techniques, offers robust solutions to
problems with not well-defined initial guesses. It is especially
suitable for complex nonlinear scenarios as it can transform intricate
governing equations into tractable forms more efficiently than many
traditional approaches [37-39]. Recently, He’s frequency formula
and Ma’s modification have been applied to the analysis of fractal
vibration systems [40]. Both VIM and HPM demonstrated the
capability to yield approximate pull-in thresholds with relatively
high accuracy [18, 41]. For example, J.-H. He, in [18], used VIM
to determine the approximate pull-in threshold for the magMEMS
oscillator in the case of an infinitely long wire ({ = 0), obtaining the
value K~ = 0.20498 for Kg , corresponding to a relative error of less
than 1%.

3.2 Damped case (y > 0)

Let us rewrite Equation 18 as follows:

2 2
(1—y)j'/+y(1—y))'/—<1+%)y2+(1—KE+K52)y—K+KE—KT =0.

To obtain the weak formulation for the damped case, we
need to find a periodic y satisfying the initial conditions by
Equation 17 such that Equation 32

2

T

2
H(l—yww(lfy)yf(H %>f+(1,Kg+ng)y,K+Kg, KT
0

vdt=0 (32)

holds for all v € L?(0, T).

We seek a Galerkin approximation that includes both transient
damping effects and the correct steady-state behavior. Let y . denote
the steady-state solution satisfying the equilibrium Equation 33:

K2
<1+—f>y55: K -K&+
2 1_)/55

which follows from Equation 18 assuming y = j = 0.

K&
o

(33)

The Galerkin ansatz takes the form, as shown in Equation 34:

FO) =y (1-e ™) +ae ™ (1-cos(wyt)), (34)
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£=0, K, =0.203632188...
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FIGURE 3
Comparison between undamped and damped magMEMS solutions for different excitation parameters. It shows how damping affects transient

behavior while maintaining correct steady-state convergence. Galerkin approximations (solid lines) match numerical ODE solutions (dashed lines).

ODE vs Galerkin Solutions for Damped Case
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FIGURE 4
Comparison between numerical ODE solutions and analytical Galerkin approximations. The upper subplot shows the time evolution of both solutions.

The lower subplot displays the absolute error, demonstrating the accuracy of analytical approximation.

where « is the decay rate, w, is the damped frequency, and a is the This formulation recovers the undamped solution as y — 0 and
Galerkin coefficient from the undamped analysis. This formulation ~ provides accurate predictions for practical magMEMS applications,
ensures that 7(0) = 0 and lim,_,  j(¢) = y,. where y <« 1.

For the damped case, we use w;=w, and a=y/2, with y Figure 3 shows a comparison between undamped and damped

found numerically from Equation 33. The formulation capturesboth  solutions. The plots demonstrate how damping affects transient

transient and steady-state behaviors, converging to the equilibrium  behavior while maintaining correct steady-state convergence.

position y. For the pull-in threshold, we approximate Equation 35:  Galerkin approximations (solid lines) match numerical ODE
solutions (dashed lines).

AK,E,y = Ageo— o (VZ) = 0. (35) The accuracy of the Galerkin formulation is demonstrated in

Figure 4, which compares numerical ODE solutions with analytical

This leads to the damped pull-in threshold, as shown in Equation 36:  .1erkin approximations. The upper subplot shows the time

evolution of both solutions, whereas the lower subplot displays the

T T 2
Kf,y - KE)O +0(y). (36) absolute error between them.
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Displacement vs Excitation Parameter
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FIGURE 5

Effect of damping on maximum displacement as a function of the excitation parameter K. Damped solutions show reduced amplitudes compared to
undamped cases, particularly near pull-in threshold, demonstrating the stabilizing effect of damping.
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FIGURE 6

Profiles of Galerkin solutions y(t) (dashed lines) for é=0 and K = O.9Ké;0.7Kg;O.5Kg. Solid lines corresponds to numerical reference solutions x(t) of
Equation 5, which for £ = 0 coincides with the approximate model given by Equation 16.

Figure 5 shows the effect of damping on the maximum  The simulations were performed using Maple™ software [42], and
amplitude as a function of excitation parameter K. Damped  the resulting deflection profiles are illustrated in Figures 6-8. The

solutions show reduced amplitudes compared to the undamped case, ~ observed trends clearly reveal the dependency of the deflection
particularly as K approaches the pull-in threshold, demonstrating

amplitude, frequency, and pull-in time on the excitation parameter
the stabilizing effect of damping.

K while keeping the geometric parameter & fixed. In particular,
an increase in the value of K leads to a larger amplitude and a
longer period of deflection. In particular, for the given value of
4 Discussion and simulation results the geometric parameter £ > 0, the maximum deflection is attained
when K approaches the threshold value K;. In Figures 6-8, the
In this section, we present numerical simulations of the  periodic solutions with the highest deflection correspond to the
normalized deflection of the platform, y(t), as a function of  excitation valueK:0.9K;.
nondimensional time . We analyze the behavior of the periodic Note that the range of dimensionless parameters K and & is
solution y(f) under different sets of parameters K>0 and £>0.  already broad enough in this study for practical applications. In
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FIGURE 7
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Profiles of Galerkin solutions y(t) (dashed lines) for {=0.1 and K = O.9KS1;0.7%(&_1;0‘5,‘(;1 Solid lines correspond to numerical reference solutions x(t) of
Equation 5, whereas dot lines correspond to numerical solution y(t) of the approximate model given in Equation 16.
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FIGURE 8 .
Profiles of Galerkin solutions y(t) (dashed lines) for £ = 1.0 and K = 0.9K

1_0;0.7/‘(;»0'0.5}(;0. Solid lines correspond to the numerical reference solutions x(t)
of Equation 5, whereas dot lines correspond to the numerical solution y(t) of the approximate model given by Equation 16.
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the case of arbitrary K>0 and >0, the trajectories and their
approximations can be studied using the Maple™ and Python scripts
available at https://github.com/armanbolatov/magmems_damping.

Furthermore, as the value of ¢ increases, the maximum
deflection diminishes due to the weakened Lorentz force. In
Figure 9, the approximate separatrix I~<f, defined by Equation 29,

is compared with the exact separatrix K, as functions of the

geometric parameter & 'The approximate separatrix slightly
underestimates the dynamic pull-in threshold in the &-parameter
range [0,1.2]. The study clearly demonstrates that the pull-in
threshold, K*, depends sensitively on the geometric parameter
& As ¢ increases, corresponding to shorter filament lengths, the
pull-in threshold K; increases, whereas the maximum deflection

amplitude Ay decreases. Numerical simulations confirm this

Frontiers in Physics 09

* *
inverse relationship between K; and Ay . For the case of infinite

filaments (§{=0), the threshold is approximately K; =~ 0.2036,
providing a quantitative reference for designers to mitigate pull-in
instability.

The exact (harmonic) frequency of oscillations is defined as
shown in Equation 37:

2n
TK,E

ex _
K&

(37)

where Ty, denotes the exact period of oscillations. Integrating
Equation 10 yields Equation 38:

T, %
;CE _ J ds ’ (38)
0 \/fK,E(S)
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FIGURE 9 *
Exact and approximate separatrix. Pairs (¢ K) below exact separatrix KE (region Rpe,) lead to periodic solutions.

TABLE 1 High-precision frequencies wf& and their Galerkin approximations wy; for K = 0.9K;;0.7K;;0.5K; and £=0;0.1;1.0.

E=0 =0. £E=10
Reference Galerkin Reference Galerkin Reference Galerkin
ex ex ex
wK’S “)K.E (L)K,f “)K.E wK)E wK‘f
0.9K; 0.793365 0.795214 0.786575 0.787935 0.756180 0.723933
0.71<; 0.884522 0.885621 0.879793 0.880838 0.860555 0.875138
0.5K; 0.931667 0.931939 0.928546 0.928809 0.916498 0.930681
0 7A5 =0.71533..., A3, =0.70176... A%, =0.59455. ..
=== £=0.0 Galerkin
0.6 ; — £=0.0 exact '
T ; -==- £=0.1 Galerkin
- /I — £=0.1 exact
- £=1.0 Galerkin
— ¢£=1.0 exact
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FIGURE 10
Exact and Galerkin approximations of maximum displacements for & = 0;0.1;1.0and varying K.

where Ay, is the maximum displacement for the given 0 and in Equation 12 for §=0. The integrals in Equation 38 are
parameter pair K >0 and &> 0 such that K < K*. The value Ay, computed numerically. In Table 1, the high-precision values of
is the first positive root of fy ;(s), defined in Equation 11 for &> frequencies computed using Equation 37 are compared with their
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Galerkin approximations given by Equation 22. We observe that for
the geometric parameter £ = 0.1, the Galerkin approximation results
in an absolute error in frequencies of order 107, even for the value of
excitation parameter K, close to the pull-in threshold. The accuracy
improves for the smaller values of K and &. The decrease in the period
approximation accuracy for larger values of the geometric parameter
& and values of excitation parameter K close to the pull-in threshold
can be well observed in Figure 8.

In Figure 10, the maximal displacement and its Galerkin
approximation is presented versus varying excitation parameter K
for & = 0; 0.1; 1.0. The Galerkin approximation of the maximum
displacement is close to its exact value for small values of the
geometric parameter &.

5 Conclusions and outlooks

In this paper, the Galerkin approach is used to derive
approximate expressions for the pull-in threshold, oscillation
frequency, and periodic solutions of the magMEMS. It has been
demonstrated that these approximations maintain a high degree of
accuracy for excitation parameters below the critical pull-in value,
denoted by K; .

Furthermore, we have extended the analysis to include damping
effects for the small damping coefficient y <« 1 through an improved
Galerkin formulation that incorporates both transient decay
and correct steady-state behavior. The enhanced ansatz ensures
convergence to the physically appropriate equilibrium position
while maintaining the zero initial condition for displacement
and recovers the undamped solution in the limit as the damping
coefficient tends to zero. The method has proven to be of
particular value in the domains of MEMS design and performance
estimation, offering a combination of analytical depth and practical
implementability. By formulating the nonlinear governing equation
in its weak form and using a periodic cosine ansatz, closed-form
approximations for the dynamic pull-in threshold, oscillation
frequency, and periodic solutions have been obtained. This
approach represents a significant advancement as it mitigates the
computational demands associated with conventional numerical
techniques (e.g., shooting or continuation methods) while
preserving high accuracy suitable for engineering applications.
The Galerkin-based solutions effectively capture the influence
of the excitation parameter on the system’s dynamic response.
Moreover, unlike purely numerical ODE solutions, they provide
deeper insights into the interplay between excitation and geometric
parameters governing oscillator dynamics. Increasing the excitation
parameter leads to larger maximal deflections and a concomitant
elongation of the oscillation period. Conversely, increasing the
geometric parameter diminishes deflections by attenuating the
Lorentz forces. In particular, for the geometric parameter &=
0.1, frequency approximations exhibit errors as low as 1072,
thereby validating the robustness and precision of the method.
The analysis also reveals effective strategies for controlling the
system’s dynamic behavior, enabling the avoidance of pull-in
instability. This comprehensive analysis contributes to a more
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profound understanding of the system and may serve as a catalyst
for further research endeavors concerning related phenomena. The
findings of the present study provide critical design guidelines to
optimize magMEMS performance for wearable sensor applications.
By adjusting geometric parameters and excitation currents based
on the derived pull-in thresholds, engineers can ensure the
reliable operation of magnetically actuated wearable devices,
including biomedical sensors and motion-tracking modules.
This approach allows for the preservation of high sensitivity
to external stimuli while maintaining robust functionality. The
low-complexity nature of the Galerkin model further facilitates
its integration into real-time control algorithms for wearable
systems, addressing the power and computational constraints
inherent in portable electronics. This work paves the way for
the development of next-generation, reliable magMEMS-based
wearable technologies that demand precise dynamic response and
miniaturization.
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