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Magnetically actuated micro-electro-mechanical systems (magMEMSs) are 
pivotal for wearable sensor applications that need high sensitivity, fast 
response, and compact integration, such as biomedical monitoring and motion-
tracking devices. In this paper, we investigate the dynamic pull-in instability 
and periodic trajectory analysis of magMEMS models with current-carrying 
filaments, addressing critical challenges in a miniaturized sensor design. A 
simplified Galerkin approach is used to analyze a Lorentz-force-driven MEMS 
oscillator, deriving approximate expressions for the dynamic pull-in threshold—a 
key criterion for stable periodic operation—and the corresponding oscillation 
frequency and periodic solutions. Extensive numerical simulations support and 
validate the analytical results. These findings offer valuable insights to assist in 
the design and optimization of MEMS devices in wearable sensors.
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magMEMS, Galerkin approach, dynamic pull-in, periodic solutions, singular MEMS 
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 1 Introduction

Micro-electro-mechanical systems (MEMSs) have revolutionized numerous fields by 
enabling the development of miniaturized devices with exceptional performance and diverse 
functionalities, particularly in wearable sensor technologies where compactness, low power 
consumption, and high sensitivity are paramount. These systems combine mechanical, 
electrical, and optical components in a single device of micrometric dimensions, forming 
compact, multifunctional chips when integrated with electronic signal-processing units 
[1, 2]. In wearable applications—such as biomedical monitoring (e.g., real-time health 
tracking via magnetoencephalography probes), environmental sensing, and motion-
tracking systems—MEMSs offer unparalleled advantages, including their ability to detect
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minute physical changes (e.g., magnetic field fluctuations and 
mechanical vibrations) with fast response times [3, 4]. Characterized 
by their compact size and energy efficiency, MEMSs are ideal 
for power-constrained wearable devices operating in the Internet 
of Things (IoT) ecosystem [5, 6]. Among MEMS subclasses, 
magnetically actuated MEMSs (magMEMSs) have emerged as a 
promising solution for wearable sensors due to their linear response, 
directional actuation, and dimensional stability at the nanoscale 
[7, 8], making them suitable for applications requiring precise, 
repeatable displacement control in dynamic environments (e.g., 
wearable accelerometers or flexible biosensors).

However, a major challenge in the performance and reliability 
of magMEMSs is pull-in instability—a nonlinear phenomenon 
that can significantly impair device operation. This instability 
occurs when the magnetic attraction between a movable 
microstructure (such as a beam, plate, or membrane) and a magnetic 
actuator (typically a coil or permanent magnet) exceeds the 
mechanical restoring force. Beyond a critical threshold—referred 
to as the pull-in point—the structure collapses onto the 
actuator, often irreversibly, leading to permanent device failure 
[9–13].

This behavior is particularly problematic in magMEMS 
actuators and sensors, where precise and repeatable displacement 
control is crucial. The issue becomes even more critical 
in nanoelectromechanical systems (NEMSs), which utilize 
components typically smaller than 100 nm. At such scales, 
proximity forces—including Van der Waals forces, covalent 
bonding, and electrostatic interactions—can dominate over the 
magnetic driving force, adding further complexity to the dynamics 
[14, 15]. The strong nonlinear interaction between magnetic 
forces and structural elasticity is typically modeled through 
coupled magneto-mechanical equations [16], posing substantial 
challenges for both theoretical analysis and practical design. A 
rigorous investigation of pull-in dynamics under magnetostatic 
loading is thus essential for ensuring robust and safe operation of 
magMEMS devices.

To address this challenge, a variety of analytical, numerical, 
and semi-analytical methods have been developed. The variational 
iteration method (VIM) is widely appreciated for its flexibility 
in handling nonlinear dynamics [17, 18]; however, its practical 
application is often hindered by the difficulty in constructing 
appropriate Lagrange multipliers. Alternatives include reduced-
order modeling, phase-plane analysis, and perturbation methods, 
which aim to approximate the pull-in threshold and capture 
critical behavior near instability points [9, 19, 20]. Energy-based 
methods and bifurcation analysis offer qualitative insights into 
collapse dynamics [11], whereas numerical continuation and 
shooting methods allow for high-accuracy tracking of periodic 
orbits and stability boundaries [10]. Semi-analytical frameworks 
such as the homotopy perturbation method (HPM) are also 
popular [21] although they are sensitive to initial guesses and 
homotopy construction. To enhance convergence and reliability, 
hybrid methods combining homotopy with Laplace transforms have 
been proposed [22].

Di Barba et al. [23] developed a geometric formulation of 
the electrostatic field in membrane MEMS devices, in which 
the electric field magnitude is assumed to be proportional to 
the membrane curvature. Although focused on electrostatic 

actuation, this work shares strong methodological parallels 
with the present study. This parallel is particularly evident 
in the treatment of singular nonlinearities and instability 
conditions, for which rigorous existence results were established 
using Schauder–Tychonoff ’s fixed-point theorem. In fact, the 
analytical insights from the electrostatic framework by Di Barba 
et al. [23], especially those concerning solution existence and 
uniqueness, also provide a mathematical foundation for the 
magnetodynamic model developed here. Additionally, frequency-
based approximations have been explored by reformulating the 
problem into a standard form amenable to harmonic solutions 
[24–26]. Recently, there has been a resurgence of interest in classical 
analytical techniques, which often yield surprisingly accurate results 
with minimal computational effort [27, 28]. Frequency-based 
methods, while conceptually simple and non-iterative, may sacrifice 
some accuracy in capturing complex dynamics [29]. Algebraic 
techniques leveraging Sturm’s theorem have also shown promise 
as fast and reliable tools for approximating pull-in thresholds 
[30, 31].

In this context, the present work makes a novel contribution 
to the analysis of magMEMS by studying a Lorentz-force-
driven model involving current-carrying filaments using a simple 
and effective Galerkin approximation. Unlike transformation-
based techniques required for harmonic approximations under 
zero initial conditions [24], our method yields closed-form 
expressions for the dynamic pull-in threshold, oscillation 
frequency, and periodic trajectories. In particular, we derive 
an explicit pull-in condition that serves as a practical criterion 
for the existence of periodic orbits. The analytical results 
are systematically validated through numerical simulations, 
confirming their accuracy across a broad range of parameters. 
This approach enhances the understanding of nonlinear dynamics 
in magMEMS and offers a practical tool for device design and 
optimization.

The paper is organized as follows. In Section 2, we derive 
the nonlinear differential equation that governs the dynamics of 
the magMEMS model under Lorentz actuation. Section 3 presents 
the Galerkin method and outlines the derivation of approximate 
periodic solutions and the dynamic pull-in threshold. Section 4 
provides numerical results that validate the analytical predictions. 
Finally, concluding remarks and potential directions for future 
research are offered in Section 5.

2 Mathematical model for magMEMS 
with current-carrying filaments

The fundamental principles governing magnetic actuation in 
MEMS are briefly outlined in this section. In particular, in 
magnetostatics, the attractive or repulsive force between two 
current-carrying wires is typically described by Ampère’s force 
law, which assumes the existence of infinitely long, parallel 
conductors. However, on the microscale—where wire lengths are 
finite—Neumann’s formulation, based on the concept of mutual 
inductance [32], provides a more appropriate model. In this 
framework, the magnetic force between the wires can be expressed as 
minus the negative gradient of the magnetic energy coupled between 
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FIGURE 1
magMEMS with current-carrying filaments. The instantaneous 
distance between filaments is b− ̃x(t).

the wires, Vm,1 with respect to their separation distance b as in the 
study by Skrzypacz et al. [10].

FL ≔ −
∂Vm

∂b
=

i1i2μ0μr

2π
[[[[

[

b
√b2 + L2

+ L2

b2√ L2

b2 + 1
− 1
]]]]

]

, (1)

where i1 and i2 represent direct currents (DCs) flowing through the 
wires, and μ0 = 4π× 10−7 N/A2 denotes the vacuum permeability. 
The relative permeability μr (≥ 1) is a dimensionless quantity that 
characterizes the ability to magnetize a material. In the limiting case, 
as L→∞, Equation 1 reduces to the well-known expression:

F∞ =
μ0μri1i2

2πb
,

which confirms the validity of the magnetic force formula.
Furthermore, under certain assumptions (He et al. [9]), the 

dynamics of the wires in the MEMS sensor can be approximated 
by modeling each as a point mass, leading to a lumped-parameter 
differential equation. In this formulation, the motion of the 
filament is governed by Newton’s second law, which leads to
Equation 2:

m ̈̃x = FR + FL, (2)

where m is the mass of the filament, FR is the restoring force, 
and FL is the magnetic attraction force between the current-
carrying filaments. The restoring force that arises from a linear 
spring (or an array of springs) with stiffness constant ks can be 
calculated as follows:

FR = −ksx̃.

Ultimately, the motion of the platform, shown in Figure 1, 
satisfies differential Equation 3:

m ̈̃x+ ksx̃−
i1i2μ0μr

2π
[[[[

[

(b− x̃)

√(b− x̃)2 + L2
+ L2

(b− x̃)2√ L2

(b−x̃)2
+ 1
− 1
]]]]

]

= 0.

(3)

1 This quantity is also called the co-energy of the magnetic field.

Note that the governing differential Equation 3 does not 
include a damping term as the air resistance is assumed to be 
negligible. This assumption is typically valid for sufficiently small 
MEMS devices, for example, Rhoads [33], Gorelick et al. [34], 
and references therein. However, in practical applications where 
damping effects cannot be neglected or to extend the model’s 
applicability, a damping term can be incorporated as discussed 
in Section 3.

Furthermore, it is a common practice to rescale the single-
degree-of-freedom Equation 3 to facilitate interpretation. To this 
end, we introduce the following dimensionless distance and 
time variables

x = x̃
b

and t = ̃t√
ks

m
, (4)

respectively, in Equation 4. The transformation yields 
the following dimensionless form of the governing
Equation 5:

ẍ+ x−K[[

[

ξ2 (1− x)

√ξ2 (1− x)2 + 1
+ 1

(1− x)√ξ2 (1− x)2 + 1
− ξ]]

]

= 0, (5)

and the excitation parameter K is defined in Equation 6:

K =
μ0μri1i2L

2πks b2 , (6)

and the dimensionless geometric parameter is given by

ξ = b
L
.

Finally, we complement Equation 5 with zero initial conditions

x (0) = ẋ (0) = 0,

and additionally, we assume that the currents in both wires are 
unidirectional, that is, K ≥ 0.

It should be noted that Equation 5 reduces to

ẍ+ x− K
1− x
= 0, (7)

in the case where the filament’s motion is driven by the 
magnetic field of an infinite current-carrying conductor, that 
is, ξ→ 0+. For ξ = 0, the initial value problem described in 
Equation 7 under zero initial conditions exhibits periodic 
solutions when K < K

∗
0 ; otherwise, it leads to pull-in behavior. 

Consequently, the dynamic pull-in threshold K
∗
0  and the 

corresponding maximum deflection A
∗
0  are given in He et al. [9] as

Equation 8

K∗0 = 0.203632188…, (8)

and

A∗0 =
1+√1− 4K∗0

2
= 0.71533…,

respectively. In addition, the dynamic pull-in threshold K
∗
0  and 

the maximum amplitude A
∗
0  can also be calculated using the 
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Lambert W function, as demonstrated in our previous work 
(Skrzypacz et al. [35]).

Next, multiplying both sides of Equation 5 by ẋ and then 
integrating with respect to t yields the conservation of the energy 
Equation 9:

EK,ξ (t) =
1
2
(ẋ (t))2 + 1

2
x2 (t)

−K[[

[

−√ξ2 (1− x (t))2 + 1+ artanh( 1

√ξ2 (1− x (t))2 + 1
)− ξx (t)]]

]

−K[[

[

√1+ ξ2 − artanh( 1

√1+ ξ2
)]]

]

,

(9)

 from which it follows Equation 10:

(ẋ (t))2 =− x2 (t)

+ 2K[[

[

−√ξ2 (1− x (t))2 + 1+ artanh( 1

√ξ2 (1− x (t))2 + 1
)− ξx (t)]]

]

+ 2K[[

[

√1+ ξ2 − artanh( 1

√1+ ξ2
)]]

]

.

(10)

As noted previously by He et al. [9] and Skrzypacz et al. [10], 
the solution x(t) is periodic if the phase portrait in the (x, ẋ) plane 
forms a closed curve, and the corresponding graph of the energy 
conservation equation, Equation 10, is also closed. This occurs when 
Equation 11

fK,ξ (s) = −s
2 + 2K[[

[

−√ξ2 (1− s)2 + 1+ artanh( 1

√ξ2 (1− s)2 + 1
)− ξs]]

]

+ 2K[[

[

√1+ ξ2 − artanh( 1

√1+ ξ2
)]]

]
(11)

 has a root in the interval (0,1). The operation of magnetic MEMS or 
magMEMS using filament wires of finite length can be described by 
Equation 5. For the case of ξ = 0, the existence of periodic solutions 
is ensured if Equation 12

fK,0 (s) = −s
2 − 2K ln (1− s) (12)

has a root in the interval (0,1) (He et al. [9]). The first root 
corresponds to the maximum value of x(t), that is, the maximum 
deflection of the oscillating component. Consequently, the solutions 
to the magMEMS model given by Equation 5 are periodic if K < K

∗
0

and exhibit dynamic pull-in behavior if K > K
∗
0 , where it has been 

previously established that K
∗
0 = 0.203632188….

On the other hand, in the critical case K = K
∗
ξ , the function 

fK,ξ(s) has a double root at s = A
∗
ξ .

This condition is satisfied when

fK∗ξ ,ξ
(A∗ξ ) = 0 and

∂ fK∗ξ ,ξ

∂s
(A∗ξ ) = 0.

which leads to the following transcendental Equation 13 for A
∗
ξ :

A∗ξ
2
[[[[

[

ξ2 (1−A∗ξ )

√ξ2 (1−A∗ξ )
2
+ 1
+ 1

(1−A∗ξ )√ξ2 (1−A∗ξ )
2
+ 1
− ξ
]]]]

]

= −√ξ2 (1−A∗ξ )
2
+ 1+ artanh( 1

√ξ2 (1−A∗ξ )
2
+ 1
)− ξA∗ξ

+√1+ ξ2 − artanh( 1

√1+ ξ2
).

(13)

The value of A
∗
ξ , representing the maximum deflection, is obtained 

numerically for various values of the parameter ξ by solving 
Equation 13. Once A

∗
ξ  is known, the corresponding dynamic pull-in 

threshold K
∗
ξ  can be calculated using Equation 14:

K∗ξ =
[[[[

[

ξ2 (1−A∗ξ )

√ξ2 (1−A∗ξ )
2
+ 1
+ 1

(1−A∗ξ )√ξ2 (1−A∗ξ )
2
+ 1
− ξ
]]]]

]

−1

A∗ξ ,

(14)

which follows from the condition 
∂f

K
∗
ξ ,ξ

∂s
(A
∗
ξ ) = 0. Figure 2 illustrates 

the effect of the geometry parameter ξ on both the maximum 
deflection A

∗
ξ  of the flexible part and the dynamic pull-in threshold 

K
∗
ξ . As ξ increases, the maximum deflection A

∗
ξ  decreases due to a 

weakening Lorentz force. Conversely, the dynamic pull-in threshold 
K
∗
ξ  increases with increasing ξ for the same reason.

In the regime of small values of the geometric parameter ξ, an 
asymptotic expansion yields the following approximation for the 
function f′K,ξ(s) developed by Skrzypacz et al. [10]:

fK,ξ (s) = −s
2 − 2K log |1− x| − 2Ksξ− 1

2
Ks (s− 2)ξ2 +O (ξ4)

with its derivative given by

f′K,ξ (s) = −2s+ 2K
1− x
− 2Kξ− 1

2
K (2s− 2)ξ2 +O (ξ4) .

To facilitate further analysis, we introduce the simplified 
function in Equation 15:

̃fK,ξ (s) = −s
2 − 2K log |1− s| − 2Kξs− 1

2
Kξs(s− 2)2, (15)

which captures the leading-order behavior of f′K,ξ(s) for small ξ. 
Under this approximation, the motion of the platform is governed 
by the second-order nonlinear differential equation:

ÿ = 1
2
̃f′K,ξ (y) .

This leads to approximate model Equation 16 for the 
magnetic MEMS:

ÿ+(1+
Kξ2

2
)y = K

1− y
−Kξ+

Kξ2

2
, (16)
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FIGURE 2
Dynamic pull-in threshold K

∗
ξ  and maximum deflection A

∗
ξ  of the flexible part. Pairs (ξ,K) below the separatrix K

∗
= K
∗
ξ  (region Rper) lead to periodic 

solutions.

subject to the initial conditions Equation 17:

y (0) = 0, ẏ (0) = 0. (17)

In the presence of damping effects, this equation can be 
generalized to Equation 18:

ÿ+ γẏ+(1+
Kξ2

2
)y = K

1− y
−Kξ+

Kξ2

2
, (18)

where γ ≥ 0 is the dimensionless damping coefficient. In what 
follows, we apply the Galerkin method to compute periodic 
solutions of the magMEMS model described in Equations 16, 17 and 
subsequently extend the analysis to include damping effects. 

3 Dynamical model analysis via the 
Galerkin approach

In this section, we apply the Galerkin approach to approximate 
periodic solutions of the magMEMS model, first in the undamped 
case and subsequently in the presence of damping. 

3.1 Undamped case (γ = 0)

Let us rewrite Equation 16 as follows:

(1− y) ÿ−(1+
Kξ2

2
)y2 + (1−Kξ+Kξ2)y−K+Kξ−

Kξ2

2
= 0.

To obtain the weak formulation, we need to find periodic y
satisfying the initial conditions by Equation 17 such that

T

∫
0

[(1− y) ÿ−(1+
Kξ2

2
)y2 + (1−Kξ+Kξ2)y−K+Kξ−

Kξ2

2
] vdt = 0

(19)

 holds for all v ∈ L2(0,T). We seek a Galerkin approximation 
in the form

̃y (t) = a (1− cos (ωt)) . (20)

Note that the periodic Galerkin ansatz by Equation 20 satisfies 
the initial conditions

̃y (0) = 0, ̇ ̃y (t) = aω sin (ωt) ⇒  ̇ ̃y (0) = 0.

Substituting the corresponding Galerkin ansatz into the weak 
formulation in Equation 19 and testing over one period T =
2π/ω with test functions v ∈ span{1,cos (ωt)} yields the following 
algebraic system:

(−2ω2 + 3Kξ2 + 6)a2 + (−4− 4Kξ2 + 4Kξ)a+ 2Kξ2 − 4Kξ+ 4K = 0,

Kaξ2 −Kξ2 − aω2 +Kξ+ω2 + 2a− 1 = 0.
(21)

From the second equation in Equation 21, we obtain
Equation 22:

ω2 = ω2
K,ξ =

1− 2a−Kaξ2 +Kξ2 −Kξ
1− a

. (22)

As

̃y (t) = a (1− cos (ωt)) = 2a sin2(ωt
2
),

the maximal deflection is 2a, and the requirement x ≤ 1 imposes 
a ≤ 1

2
. Substituting ω2 by Equation 22 into the first equation of 

Equation 21 yields Equation 23:

a3 +
−5Kξ2 + 2Kξ− 8

Kξ2 + 2
a2 +

6Kξ2 − 8Kξ+ 4K+ 4
Kξ2 + 2

a+
−2Kξ2 + 4Kξ− 4K

Kξ2 + 2
= 0.

(23)
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Here, K > 0, ξ ≥ 0, and 0 < a ≤ 1
2

 result from the Galerkin ansatz. 
The roots of the cubic Equation 23 can be expressed in the following 
trigonometric form as presented in Equation 24 [36]:

aℓ = 2√−
q− p2

3
3

cos( 1
3

arccos(
3(r− pq

3 +
2p3

27 )

2(q− p2

3 )
√−

3

q− p2

3

)+ 2πℓ
3
)

−
p
3
, ℓ = 0,1,2, (24)

 where Equation 25

p =
−5Kξ2 + 2Kξ− 8

Kξ2 + 2
, q =

6Kξ2 − 8Kξ+ 4K+ 4
Kξ2 + 2

, r =
−2Kξ2 + 4Kξ− 4K

Kξ2 + 2
,

(25)

 and Equation 26

ΔK,ξ = −4(q−
p2

3
)

3

− 27(r−
pq
3
+

2p3

27
)

2

≥ 0. (26)

In our case, we obtain Equation 27:

aK,ξ = a1 =
2√(7ξ4 + 4ξ3 − 8ξ2)K2 + (32ξ2 + 16ξ− 24)K+ 40

3(Kξ2 + 2)

cos(1
3

arccos(βK,ξ) +
2π
3
)−
−5Kξ2 + 2Kξ− 8

3(Kξ2 + 2)
,

(27)

where (Equation 28)

βK,ξ =
(17ξ3 + 30ξ2 − 48ξ+ 28)K3ξ3 + (132ξ3 + 96ξ2 − 156ξ+ 72)K2 ξ

(7K2ξ4 + 4K2ξ3 − 8K2ξ2 + 32Kξ2 + 16Kξ− 24K+ 40)3/2

+
(312ξ2 + 48ξ− 72)K+ 224

(7K2ξ4 + 4K2ξ3 − 8K2ξ2 + 32Kξ2 + 16Kξ− 24K+ 40)3/2
.

(28)

The condition ΔK,ξ = 0, that is, Equation 29

0 = (ξ8 − 8ξ7 − 2ξ6 + 12ξ5 − 56ξ4 + 64ξ3 − 24ξ2)K4

+ (−32ξ5 + 48ξ4 − 160ξ3 − 48ξ2 + 176ξ− 64)K3

+ (−16ξ4 + 64ξ3 + 16ξ2 − 544ξ+ 296)K2 + (256ξ− 384)K+ 64
(29)

constitutes the approximate separatrix.
If ξ = 0, that is, the wire is infinite, we obtain Equation 30:

a = aK,0 =
2√10− 6K

3
cos(1

3
arccos( 28− 9K

(10− 6K)3/2
)+ 2π

3
)+ 4

3
.

(30)

Note that the discriminant condition ΔK,0 =
32(K3 − 37

8
K2 + 6K− 1) = 0 for cubic Equation 23 ensures that its 

two roots coincide for ξ = 0. This corresponds to the approximate 
pull-in case, where the approximate pull-in threshold is K̃

∗
0 = 0.19464. 

This critical value is very close to the exact dynamic pull-in threshold 
K
∗
0  given by Equation 8. The approximate periodic solutions are given 

for 0 < K < K̃
∗
0  as shown in Equation 31: 

̃y (t) = 2aK,0 sin2( t
2
√

1− 2aK,0

1− aK,0
), (31)

where the K-dependent coefficient aK,0 is defined by Equation 30.
Note that the ansatz in Equation 20 can be systematically 

extended by incorporating additional terms from the Fourier 
expansion. For instance, a single-term ansatz with adaptive 
coefficients may reduce computational effort without compromising 
accuracy, which is consistent with minimalist modeling principles in 
MEMS analysis. However, increasing the number of trigonometric 
terms in the ansatz inevitably results in higher-order nonlinear 
algebraic systems, which must be solved using numerical methods. 
Accurate models are essential for capturing the nonlinear dynamics 
of oscillators. Among the notable analytical–semi-analytical 
techniques are the VIM [37] and the HPM [38, 39]. VIM is 
particularly effective in treating strongly nonlinear systems and has 
been successfully used to predict pull-in conditions in electrostatic 
MEMS. HPM, a semi-analytical method that combines homotopy 
theory with perturbation techniques, offers robust solutions to 
problems with not well-defined initial guesses. It is especially 
suitable for complex nonlinear scenarios as it can transform intricate 
governing equations into tractable forms more efficiently than many 
traditional approaches [37–39]. Recently, He’s frequency formula 
and Ma’s modification have been applied to the analysis of fractal 
vibration systems [40]. Both VIM and HPM demonstrated the 
capability to yield approximate pull-in thresholds with relatively 
high accuracy [18, 41]. For example, J.-H. He, in [18], used VIM 
to determine the approximate pull-in threshold for the magMEMS 
oscillator in the case of an infinitely long wire (ξ = 0), obtaining the 
value K

∗
= 0.20498 for K

∗
0 , corresponding to a relative error of less 

than 1%. 

3.2 Damped case (γ > 0)

Let us rewrite Equation 18 as follows:

(1− y) ÿ+ γ (1− y) ẏ−(1+
Kξ2

2
)y2 + (1−Kξ+Kξ2)y−K+Kξ−

Kξ2

2
= 0.

To obtain the weak formulation for the damped case, we 
need to find a periodic y satisfying the initial conditions by 
Equation 17 such that Equation 32

T

∫
0

[(1− y) ÿ+ γ (1− y) ẏ−(1+
Kξ2

2
)y2 + (1−Kξ+Kξ2)y−K+Kξ−

Kξ2

2
]

vdt = 0 (32)

holds for all v ∈ L2(0,T).
We seek a Galerkin approximation that includes both transient 

damping effects and the correct steady-state behavior. Let yss denote 
the steady-state solution satisfying the equilibrium Equation 33:

(1+
Kξ2

2
)yss =

K
1− yss
−Kξ+

Kξ2

2
, (33)

which follows from Equation 18 assuming ÿ = ẏ = 0.
The Galerkin ansatz takes the form, as shown in Equation 34:

̃y (t) = yss (1− e−αt) + ae−αt (1− cos(ωdt)) , (34)
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FIGURE 3
Comparison between undamped and damped magMEMS solutions for different excitation parameters. It shows how damping affects transient 
behavior while maintaining correct steady-state convergence. Galerkin approximations (solid lines) match numerical ODE solutions (dashed lines).

FIGURE 4
Comparison between numerical ODE solutions and analytical Galerkin approximations. The upper subplot shows the time evolution of both solutions. 
The lower subplot displays the absolute error, demonstrating the accuracy of analytical approximation.

where α is the decay rate, ωd is the damped frequency, and a is the 
Galerkin coefficient from the undamped analysis. This formulation 
ensures that ̃y(0) = 0 and limt→∞ ̃y(t) = yss.

For the damped case, we use ωd = ω0 and α = γ/2, with yss
found numerically from Equation 33. The formulation captures both 
transient and steady-state behaviors, converging to the equilibrium 
position yss. For the pull-in threshold, we approximate Equation 35:

ΔK,ξ,γ ≈ ΔK,ξ,0 −O (γ2) ≥ 0. (35)

This leads to the damped pull-in threshold, as shown in Equation 36:

K̃∗ξ,γ = K̃∗ξ,0 +O (γ
2) . (36)

This formulation recovers the undamped solution as γ→ 0 and 
provides accurate predictions for practical magMEMS applications, 
where γ≪ 1.

Figure 3 shows a comparison between undamped and damped 
solutions. The plots demonstrate how damping affects transient 
behavior while maintaining correct steady-state convergence. 
Galerkin approximations (solid lines) match numerical ODE 
solutions (dashed lines).

The accuracy of the Galerkin formulation is demonstrated in
Figure 4, which compares numerical ODE solutions with analytical 
Galerkin approximations. The upper subplot shows the time 
evolution of both solutions, whereas the lower subplot displays the 
absolute error between them.
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FIGURE 5
Effect of damping on maximum displacement as a function of the excitation parameter K. Damped solutions show reduced amplitudes compared to 
undamped cases, particularly near pull-in threshold, demonstrating the stabilizing effect of damping.

FIGURE 6
Profiles of Galerkin solutions ̃y(t) (dashed lines) for ξ = 0 and K = 0.9K

∗
0;0.7K

∗
0;0.5K

∗
0. Solid lines corresponds to numerical reference solutions x(t) of 

Equation 5, which for ξ = 0 coincides with the approximate model given by Equation 16.

Figure 5 shows the effect of damping on the maximum 
amplitude as a function of excitation parameter K. Damped 
solutions show reduced amplitudes compared to the undamped case, 
particularly as K approaches the pull-in threshold, demonstrating 
the stabilizing effect of damping.

4 Discussion and simulation results

In this section, we present numerical simulations of the 
normalized deflection of the platform, y(t), as a function of 
nondimensional time t. We analyze the behavior of the periodic 
solution y(t) under different sets of parameters K > 0 and ξ ≥ 0. 

The simulations were performed using Maple™ software [42], and 
the resulting deflection profiles are illustrated in Figures 6–8. The 
observed trends clearly reveal the dependency of the deflection 
amplitude, frequency, and pull-in time on the excitation parameter 
K while keeping the geometric parameter ξ fixed. In particular, 
an increase in the value of K leads to a larger amplitude and a 
longer period of deflection. In particular, for the given value of 
the geometric parameter ξ ≥ 0, the maximum deflection is attained 
when K approaches the threshold value K

∗
ξ . In Figures 6–8, the 

periodic solutions with the highest deflection correspond to the 
excitation value K = 0.9K

∗
ξ .

Note that the range of dimensionless parameters K and ξ is 
already broad enough in this study for practical applications. In 
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FIGURE 7
Profiles of Galerkin solutions ̃y(t) (dashed lines) for ξ = 0.1 and K = 0.9K

∗
0.1;0.7K

∗
0.1;0.5K

∗
0.1. Solid lines correspond to numerical reference solutions x(t) of 

Equation 5, whereas dot lines correspond to numerical solution y(t) of the approximate model given in Equation 16.

FIGURE 8
Profiles of Galerkin solutions ̃y(t) (dashed lines) for ξ = 1.0 and K = 0.9K

∗
1.0;0.7K

∗
1.0;0.5K

∗
1.0. Solid lines correspond to the numerical reference solutions x(t)

of Equation 5, whereas dot lines correspond to the numerical solution y(t) of the approximate model given by Equation 16.

the case of arbitrary K > 0 and ξ ≥ 0, the trajectories and their 
approximations can be studied using the Maple™ and Python scripts 
available at https://github.com/armanbolatov/magmems_damping.

Furthermore, as the value of ξ increases, the maximum 
deflection diminishes due to the weakened Lorentz force. In 
Figure 9, the approximate separatrix K̃

∗

ξ , defined by Equation 29, 
is compared with the exact separatrix K

∗

ξ  as functions of the 
geometric parameter ξ. The approximate separatrix slightly 
underestimates the dynamic pull-in threshold in the ξ-parameter 
range [0,1.2]. The study clearly demonstrates that the pull-in 
threshold, K

∗

ξ , depends sensitively on the geometric parameter 
ξ. As ξ increases, corresponding to shorter filament lengths, the 
pull-in threshold K

∗

ξ  increases, whereas the maximum deflection 

amplitude A
∗

ξ  decreases. Numerical simulations confirm this 

inverse relationship between K
∗

ξ  and A
∗

ξ . For the case of infinite 

filaments (ξ = 0), the threshold is approximately K
∗
0 ≈ 0.2036, 

providing a quantitative reference for designers to mitigate pull-in
instability.

The exact (harmonic) frequency of oscillations is defined as 
shown in Equation 37:

ωex
K,ξ =

2π
TK,ξ
, (37)

where TK,ξ denotes the exact period of oscillations. Integrating 
Equation 10 yields Equation 38:

TK,ξ

2
=

AK,ξ

∫
0

ds

√ fK,ξ (s)
, (38)
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FIGURE 9
Exact and approximate separatrix. Pairs (ξ,K) below exact separatrix K

∗
ξ  (region Rper) lead to periodic solutions.

TABLE 1  High-precision frequencies ωex
K,ξ and their Galerkin approximations ωK,ξ for K = 0.9K

∗

ξ ;0.7K
∗

ξ ;0.5K
∗

ξ  and ξ = 0;0.1;1.0.

K ξ = 0 ξ = 0.1 ξ = 1.0

Reference
ωex
K,ξ

Galerkin
ωK,ξ

Reference 
ωex
K,ξ

Galerkin
ωK,ξ

Reference
ωex
K,ξ

Galerkin
ωK,ξ

0.9K
∗
ξ 0.793365 0.795214 0.786575 0.787935 0.756180 0.723933

0.7K
∗
ξ 0.884522 0.885621 0.879793 0.880838 0.860555 0.875138

0.5K
∗
ξ 0.931667 0.931939 0.928546 0.928809 0.916498 0.930681

FIGURE 10
Exact and Galerkin approximations of maximum displacements for ξ = 0;0.1;1.0and varying K.

where AK,ξ is the maximum displacement for the given 
parameter pair K > 0 and ξ ≥ 0 such that K < K

∗

ξ . The value AK,ξ
is the first positive root of fK,ξ(s), defined in Equation 11 for ξ >

0 and in Equation 12 for ξ = 0. The integrals in Equation 38 are 
computed numerically. In Table 1, the high-precision values of 
frequencies computed using Equation 37 are compared with their 
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Galerkin approximations given by Equation 22. We observe that for 
the geometric parameter ξ = 0.1, the Galerkin approximation results 
in an absolute error in frequencies of order 10−3, even for the value of 
excitation parameter K, close to the pull-in threshold. The accuracy 
improves for the smaller values of K and ξ. The decrease in the period 
approximation accuracy for larger values of the geometric parameter 
ξ and values of excitation parameter K close to the pull-in threshold 
can be well observed in Figure 8.

In Figure 10, the maximal displacement and its Galerkin 
approximation is presented versus varying excitation parameter K
for ξ = 0; 0.1; 1.0. The Galerkin approximation of the maximum 
displacement is close to its exact value for small values of the 
geometric parameter ξ. 

5 Conclusions and outlooks

In this paper, the Galerkin approach is used to derive 
approximate expressions for the pull-in threshold, oscillation 
frequency, and periodic solutions of the magMEMS. It has been 
demonstrated that these approximations maintain a high degree of 
accuracy for excitation parameters below the critical pull-in value, 
denoted by K

∗
ξ .

Furthermore, we have extended the analysis to include damping 
effects for the small damping coefficient γ≪ 1 through an improved 
Galerkin formulation that incorporates both transient decay 
and correct steady-state behavior. The enhanced ansatz ensures 
convergence to the physically appropriate equilibrium position 
while maintaining the zero initial condition for displacement 
and recovers the undamped solution in the limit as the damping 
coefficient tends to zero. The method has proven to be of 
particular value in the domains of MEMS design and performance 
estimation, offering a combination of analytical depth and practical 
implementability. By formulating the nonlinear governing equation 
in its weak form and using a periodic cosine ansatz, closed-form 
approximations for the dynamic pull-in threshold, oscillation 
frequency, and periodic solutions have been obtained. This 
approach represents a significant advancement as it mitigates the 
computational demands associated with conventional numerical 
techniques (e.g., shooting or continuation methods) while 
preserving high accuracy suitable for engineering applications. 
The Galerkin-based solutions effectively capture the influence 
of the excitation parameter on the system’s dynamic response. 
Moreover, unlike purely numerical ODE solutions, they provide 
deeper insights into the interplay between excitation and geometric 
parameters governing oscillator dynamics. Increasing the excitation 
parameter leads to larger maximal deflections and a concomitant 
elongation of the oscillation period. Conversely, increasing the 
geometric parameter diminishes deflections by attenuating the 
Lorentz forces. In particular, for the geometric parameter ξ =
0.1, frequency approximations exhibit errors as low as 10−3, 
thereby validating the robustness and precision of the method. 
The analysis also reveals effective strategies for controlling the 
system’s dynamic behavior, enabling the avoidance of pull-in 
instability. This comprehensive analysis contributes to a more 

profound understanding of the system and may serve as a catalyst 
for further research endeavors concerning related phenomena. The 
findings of the present study provide critical design guidelines to 
optimize magMEMS performance for wearable sensor applications. 
By adjusting geometric parameters and excitation currents based 
on the derived pull-in thresholds, engineers can ensure the 
reliable operation of magnetically actuated wearable devices, 
including biomedical sensors and motion-tracking modules. 
This approach allows for the preservation of high sensitivity 
to external stimuli while maintaining robust functionality. The 
low-complexity nature of the Galerkin model further facilitates 
its integration into real-time control algorithms for wearable 
systems, addressing the power and computational constraints 
inherent in portable electronics. This work paves the way for 
the development of next-generation, reliable magMEMS-based 
wearable technologies that demand precise dynamic response and 
miniaturization.
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