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Magnetically actuated micro-electro-mechanical systems (magMEMSs) are pivotal for wearable sensor applications that need high sensitivity, fast response, and compact integration, such as biomedical monitoring and motion-tracking devices. In this paper, we investigate the dynamic pull-in instability and periodic trajectory analysis of magMEMS models with current-carrying filaments, addressing critical challenges in a miniaturized sensor design. A simplified Galerkin approach is used to analyze a Lorentz-force-driven MEMS oscillator, deriving approximate expressions for the dynamic pull-in threshold—a key criterion for stable periodic operation—and the corresponding oscillation frequency and periodic solutions. Extensive numerical simulations support and validate the analytical results. These findings offer valuable insights to assist in the design and optimization of MEMS devices in wearable sensors.
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1 INTRODUCTION
Micro-electro-mechanical systems (MEMSs) have revolutionized numerous fields by enabling the development of miniaturized devices with exceptional performance and diverse functionalities, particularly in wearable sensor technologies where compactness, low power consumption, and high sensitivity are paramount. These systems combine mechanical, electrical, and optical components in a single device of micrometric dimensions, forming compact, multifunctional chips when integrated with electronic signal-processing units [1, 2]. In wearable applications—such as biomedical monitoring (e.g., real-time health tracking via magnetoencephalography probes), environmental sensing, and motion-tracking systems—MEMSs offer unparalleled advantages, including their ability to detect minute physical changes (e.g., magnetic field fluctuations and mechanical vibrations) with fast response times [3, 4]. Characterized by their compact size and energy efficiency, MEMSs are ideal for power-constrained wearable devices operating in the Internet of Things (IoT) ecosystem [5, 6]. Among MEMS subclasses, magnetically actuated MEMSs (magMEMSs) have emerged as a promising solution for wearable sensors due to their linear response, directional actuation, and dimensional stability at the nanoscale [7, 8], making them suitable for applications requiring precise, repeatable displacement control in dynamic environments (e.g., wearable accelerometers or flexible biosensors).
However, a major challenge in the performance and reliability of magMEMSs is pull-in instability—a nonlinear phenomenon that can significantly impair device operation. This instability occurs when the magnetic attraction between a movable microstructure (such as a beam, plate, or membrane) and a magnetic actuator (typically a coil or permanent magnet) exceeds the mechanical restoring force. Beyond a critical threshold—referred to as the pull-in point—the structure collapses onto the actuator, often irreversibly, leading to permanent device failure [9–13].
This behavior is particularly problematic in magMEMS actuators and sensors, where precise and repeatable displacement control is crucial. The issue becomes even more critical in nanoelectromechanical systems (NEMSs), which utilize components typically smaller than 100 nm. At such scales, proximity forces—including Van der Waals forces, covalent bonding, and electrostatic interactions—can dominate over the magnetic driving force, adding further complexity to the dynamics [14, 15]. The strong nonlinear interaction between magnetic forces and structural elasticity is typically modeled through coupled magneto-mechanical equations [16], posing substantial challenges for both theoretical analysis and practical design. A rigorous investigation of pull-in dynamics under magnetostatic loading is thus essential for ensuring robust and safe operation of magMEMS devices.
To address this challenge, a variety of analytical, numerical, and semi-analytical methods have been developed. The variational iteration method (VIM) is widely appreciated for its flexibility in handling nonlinear dynamics [17, 18]; however, its practical application is often hindered by the difficulty in constructing appropriate Lagrange multipliers. Alternatives include reduced-order modeling, phase-plane analysis, and perturbation methods, which aim to approximate the pull-in threshold and capture critical behavior near instability points [9, 19, 20]. Energy-based methods and bifurcation analysis offer qualitative insights into collapse dynamics [11], whereas numerical continuation and shooting methods allow for high-accuracy tracking of periodic orbits and stability boundaries [10]. Semi-analytical frameworks such as the homotopy perturbation method (HPM) are also popular [21] although they are sensitive to initial guesses and homotopy construction. To enhance convergence and reliability, hybrid methods combining homotopy with Laplace transforms have been proposed [22].
Di Barba et al. [23] developed a geometric formulation of the electrostatic field in membrane MEMS devices, in which the electric field magnitude is assumed to be proportional to the membrane curvature. Although focused on electrostatic actuation, this work shares strong methodological parallels with the present study. This parallel is particularly evident in the treatment of singular nonlinearities and instability conditions, for which rigorous existence results were established using Schauder–Tychonoff’s fixed-point theorem. In fact, the analytical insights from the electrostatic framework by Di Barba et al. [23], especially those concerning solution existence and uniqueness, also provide a mathematical foundation for the magnetodynamic model developed here. Additionally, frequency-based approximations have been explored by reformulating the problem into a standard form amenable to harmonic solutions [24–26]. Recently, there has been a resurgence of interest in classical analytical techniques, which often yield surprisingly accurate results with minimal computational effort [27, 28]. Frequency-based methods, while conceptually simple and non-iterative, may sacrifice some accuracy in capturing complex dynamics [29]. Algebraic techniques leveraging Sturm’s theorem have also shown promise as fast and reliable tools for approximating pull-in thresholds [30, 31].
In this context, the present work makes a novel contribution to the analysis of magMEMS by studying a Lorentz-force-driven model involving current-carrying filaments using a simple and effective Galerkin approximation. Unlike transformation-based techniques required for harmonic approximations under zero initial conditions [24], our method yields closed-form expressions for the dynamic pull-in threshold, oscillation frequency, and periodic trajectories. In particular, we derive an explicit pull-in condition that serves as a practical criterion for the existence of periodic orbits. The analytical results are systematically validated through numerical simulations, confirming their accuracy across a broad range of parameters. This approach enhances the understanding of nonlinear dynamics in magMEMS and offers a practical tool for device design and optimization.
The paper is organized as follows. In Section 2, we derive the nonlinear differential equation that governs the dynamics of the magMEMS model under Lorentz actuation. Section 3 presents the Galerkin method and outlines the derivation of approximate periodic solutions and the dynamic pull-in threshold. Section 4 provides numerical results that validate the analytical predictions. Finally, concluding remarks and potential directions for future research are offered in Section 5.
2 MATHEMATICAL MODEL FOR MAGMEMS WITH CURRENT-CARRYING FILAMENTS
The fundamental principles governing magnetic actuation in MEMS are briefly outlined in this section. In particular, in magnetostatics, the attractive or repulsive force between two current-carrying wires is typically described by Ampère’s force law, which assumes the existence of infinitely long, parallel conductors. However, on the microscale—where wire lengths are finite—Neumann’s formulation, based on the concept of mutual inductance [32], provides a more appropriate model. In this framework, the magnetic force between the wires can be expressed as minus the negative gradient of the magnetic energy coupled between the wires, Vm,1 with respect to their separation distance b as in the study by Skrzypacz et al. [10].
FL≔−∂Vm∂b=i1i2μ0μr2πbb2+L2+L2b2L2b2+1−1,(1)
where i1 and i2 represent direct currents (DCs) flowing through the wires, and μ0=4π×10−7 N/A2 denotes the vacuum permeability. The relative permeability μr (≥1) is a dimensionless quantity that characterizes the ability to magnetize a material. In the limiting case, as L→∞, Equation 1 reduces to the well-known expression:
F∞=μ0μri1i22πb,
which confirms the validity of the magnetic force formula.
Furthermore, under certain assumptions (He et al. [9]), the dynamics of the wires in the MEMS sensor can be approximated by modeling each as a point mass, leading to a lumped-parameter differential equation. In this formulation, the motion of the filament is governed by Newton’s second law, which leads to Equation 2:
mx̃̈=FR+FL,(2)
where m is the mass of the filament, FR is the restoring force, and FL is the magnetic attraction force between the current-carrying filaments. The restoring force that arises from a linear spring (or an array of springs) with stiffness constant ks can be calculated as follows:
FR=−ksx̃.
Ultimately, the motion of the platform, shown in Figure 1, satisfies differential Equation 3:
mx̃̈+ksx̃−i1i2μ0μr2πb−x̃b−x̃2+L2+L2b−x̃2L2b−x̃2+1−1=0.(3)
[image: Diagram of a mechanical system with a gray rectangular layer and a yellow base connected by blue compression springs. Two currents, \(i_1\) and \(i_2\), are shown along with distances \(b\) and \(L\). The system is labeled with \( \widetilde{X}(t) \) representing displacement.]FIGURE 1 | magMEMS with current-carrying filaments. The instantaneous distance between filaments is b−x̃(t).Note that the governing differential Equation 3 does not include a damping term as the air resistance is assumed to be negligible. This assumption is typically valid for sufficiently small MEMS devices, for example, Rhoads [33], Gorelick et al. [34], and references therein. However, in practical applications where damping effects cannot be neglected or to extend the model’s applicability, a damping term can be incorporated as discussed in Section 3.
Furthermore, it is a common practice to rescale the single-degree-of-freedom Equation 3 to facilitate interpretation. To this end, we introduce the following dimensionless distance and time variables
x=x̃bandt=t̃ksm,(4)
respectively, in Equation 4. The transformation yields the following dimensionless form of the governing Equation 5:
ẍ+x−Kξ2 1−xξ2 1−x2+1+11−xξ2 1−x2+1−ξ=0,(5)
and the excitation parameter K is defined in Equation 6:
K=μ0μri1i2L2π ks b2,(6)
and the dimensionless geometric parameter is given by
ξ=bL.
Finally, we complement Equation 5 with zero initial conditions
x0=ẋ0=0,
and additionally, we assume that the currents in both wires are unidirectional, that is, K≥0.
It should be noted that Equation 5 reduces to
ẍ+x−K1−x=0,(7)
in the case where the filament’s motion is driven by the magnetic field of an infinite current-carrying conductor, that is, ξ→0+. For ξ=0, the initial value problem described in Equation 7 under zero initial conditions exhibits periodic solutions when K<K0*; otherwise, it leads to pull-in behavior. Consequently, the dynamic pull-in threshold K0* and the corresponding maximum deflection A0* are given in He et al. [9] as Equation 8
K0*=0.203632188 …,(8)
and
A0*=1+1−4K0*2=0.71533 …,
respectively. In addition, the dynamic pull-in threshold K0* and the maximum amplitude A0* can also be calculated using the Lambert W function, as demonstrated in our previous work (Skrzypacz et al. [35]).
Next, multiplying both sides of Equation 5 by ẋ and then integrating with respect to t yields the conservation of the energy Equation 9:
EK,ξt=12ẋt2+12x2t−K−ξ2 1−xt2+1+artanh1ξ2 1−xt2+1−ξ xt−K1+ξ2−artanh11+ξ2,(9)
from which it follows Equation 10:
ẋt2=−x2t+2K−ξ2 1−xt2+1+artanh1ξ2 1−xt2+1−ξ xt+2K1+ξ2−artanh11+ξ2.(10)
As noted previously by He et al. [9] and Skrzypacz et al. [10], the solution x(t) is periodic if the phase portrait in the (x,ẋ) plane forms a closed curve, and the corresponding graph of the energy conservation equation, Equation 10, is also closed. This occurs when Equation 11
fK,ξs=−s2+2K−ξ2 1−s2+1+artanh1ξ2 1−s2+1−ξ s+2K1+ξ2−artanh11+ξ2(11)
has a root in the interval (0,1). The operation of magnetic MEMS or magMEMS using filament wires of finite length can be described by Equation 5. For the case of ξ=0, the existence of periodic solutions is ensured if Equation 12
fK,0s=−s2−2K⁡ln1−s(12)
has a root in the interval (0,1) (He et al. [9]). The first root corresponds to the maximum value of x(t), that is, the maximum deflection of the oscillating component. Consequently, the solutions to the magMEMS model given by Equation 5 are periodic if K<K0* and exhibit dynamic pull-in behavior if K>K0*, where it has been previously established that K0*=0.203632188 ….
On the other hand, in the critical case K=Kξ*, the function fK,ξ(s) has a double root at s=Aξ*.
This condition is satisfied when
fKξ*,ξAξ*=0and∂fKξ*,ξ∂sAξ*=0.
which leads to the following transcendental Equation 13 for Aξ*:
Aξ*2ξ2 1−Aξ*ξ2 1−Aξ*2+1+11−Aξ*ξ2 1−Aξ*2+1−ξ=−ξ2 1−Aξ*2+1+artanh1ξ2 1−Aξ*2+1−ξ Aξ*+1+ξ2−artanh11+ξ2.(13)
The value of Aξ*, representing the maximum deflection, is obtained numerically for various values of the parameter ξ by solving Equation 13. Once Aξ* is known, the corresponding dynamic pull-in threshold Kξ* can be calculated using Equation 14:
Kξ*=ξ2 1−Aξ*ξ2 1−Aξ*2+1+11−Aξ*ξ2 1−Aξ*2+1−ξ−1Aξ*,(14)
which follows from the condition ∂fKξ*,ξ∂s(Aξ*)=0. Figure 2 illustrates the effect of the geometry parameter ξ on both the maximum deflection Aξ* of the flexible part and the dynamic pull-in threshold Kξ*. As ξ increases, the maximum deflection Aξ* decreases due to a weakening Lorentz force. Conversely, the dynamic pull-in threshold Kξ* increases with increasing ξ for the same reason.
[image: Graph with \( K_{\xi}^* \) and \( A_{\xi}^* \) plotted against \( \xi \). The blue solid line represents \( K_{\xi}^* \), increasing from 0.2 to 0.8. The red dashed line represents \( A_{\xi}^* \), decreasing slightly. \( R_{pull-in} \) and \( R_{per} \) are labeled. \( \xi \) ranges from 0 to 3.]FIGURE 2 | Dynamic pull-in threshold Kξ* and maximum deflection Aξ* of the flexible part. Pairs (ξ,K) below the separatrix K*=Kξ* (region Rper) lead to periodic solutions.In the regime of small values of the geometric parameter ξ, an asymptotic expansion yields the following approximation for the function fK,ξ′(s) developed by Skrzypacz et al. [10]:
fK,ξs=−s2−2K⁡log|1−x|−2Ksξ−12Kss−2ξ2+Oξ4
with its derivative given by
fK,ξ′s=−2s+2K1−x−2Kξ−12K2s−2ξ2+Oξ4.
To facilitate further analysis, we introduce the simplified function in Equation 15:
f̃K,ξs=−s2−2K⁡log|1−s|−2Kξ s−12Kξ ss−22,(15)
which captures the leading-order behavior of fK,ξ′(s) for small ξ. Under this approximation, the motion of the platform is governed by the second-order nonlinear differential equation:
ÿ=12f̃K,ξ′y.
This leads to approximate model Equation 16 for the magnetic MEMS:
ÿ+1+Kξ22y=K1−y−Kξ+Kξ22,(16)
subject to the initial conditions Equation 17:
y0=0,ẏ0=0.(17)
In the presence of damping effects, this equation can be generalized to Equation 18:
ÿ+γẏ+1+Kξ22y=K1−y−Kξ+Kξ22,(18)
where γ≥0 is the dimensionless damping coefficient. In what follows, we apply the Galerkin method to compute periodic solutions of the magMEMS model described in Equations 16, 17 and subsequently extend the analysis to include damping effects.
3 DYNAMICAL MODEL ANALYSIS VIA THE GALERKIN APPROACH
In this section, we apply the Galerkin approach to approximate periodic solutions of the magMEMS model, first in the undamped case and subsequently in the presence of damping.
3.1 Undamped case (γ=0)
Let us rewrite Equation 16 as follows:
1−y ÿ−1+Kξ22y2+1−Kξ+Kξ2y−K+Kξ−Kξ22=0.
To obtain the weak formulation, we need to find periodic y satisfying the initial conditions by Equation 17 such that
∫0T1−y ÿ−1+Kξ22y2+1−Kξ+Kξ2y−K+Kξ−Kξ22 v dt=0(19)
holds for all v∈L2(0,T). We seek a Galerkin approximation in the form
ỹt=a1−cosωt.(20)
Note that the periodic Galerkin ansatz by Equation 20 satisfies the initial conditions
ỹ0=0,ỹ̇t=a ω⁡sinωt ⇒ ỹ̇0=0.
Substituting the corresponding Galerkin ansatz into the weak formulation in Equation 19 and testing over one period T=2π/ω with test functions v∈span{1,cos(ωt)} yields the following algebraic system:
−2ω2+3Kξ2+6a2+−4−4Kξ2+4Kξa+2Kξ2−4Kξ+4K=0,Kaξ2−Kξ2−aω2+Kξ+ω2+2a−1=0.(21)
From the second equation in Equation 21, we obtain Equation 22:
ω2=ωK,ξ2=1−2a−Kaξ2+Kξ2−Kξ1−a.(22)
As
ỹt=a1−cosωt=2a⁡sin2ωt2,
the maximal deflection is 2a, and the requirement x≤1 imposes a≤12. Substituting ω2 by Equation 22 into the first equation of Equation 21 yields Equation 23:
a3+−5Kξ2+2Kξ−8Kξ2+2a2+6Kξ2−8Kξ+4K+4Kξ2+2a+−2Kξ2+4Kξ−4KKξ2+2=0.(23)
Here, K>0, ξ≥0, and 0<a≤12 result from the Galerkin ansatz. The roots of the cubic Equation 23 can be expressed in the following trigonometric form as presented in Equation 24 [36]:
aℓ=2−q−p233cos13arccos3r−pq3+2p3272q−p23−3q−p23+2πℓ3−p3,ℓ=0,1,2,(24)
where Equation 25
p=−5Kξ2+2Kξ−8Kξ2+2,q=6Kξ2−8Kξ+4K+4Kξ2+2,r=−2Kξ2+4Kξ−4KKξ2+2,(25)
and Equation 26
ΔK,ξ=−4q−p233−27r−pq3+2p3272≥0.(26)
In our case, we obtain Equation 27:
aK,ξ=a1=27ξ4+4ξ3−8ξ2K2+32ξ2+16ξ−24K+403Kξ2+2cos13 arccosβK,ξ+2π3−−5Kξ2+2Kξ−83Kξ2+2,(27)
where (Equation 28)
βK,ξ=17ξ3+30ξ2−48ξ+28K3ξ3+132ξ3+96ξ2−156ξ+72K2⁡ξ7K2ξ4+4K2ξ3−8K2ξ2+32Kξ2+16Kξ−24K+403/2+312ξ2+48ξ−72K+2247K2ξ4+4K2ξ3−8K2ξ2+32Kξ2+16Kξ−24K+403/2.(28)
The condition ΔK,ξ=0, that is, Equation 29
0=ξ8−8ξ7−2ξ6+12ξ5−56ξ4+64ξ3−24ξ2K4+−32ξ5+48ξ4−160ξ3−48ξ2+176ξ−64K3+−16ξ4+64ξ3+16ξ2−544ξ+296K2+256ξ−384K+64(29)
constitutes the approximate separatrix.
If ξ=0, that is, the wire is infinite, we obtain Equation 30:
a=aK,0=210−6K3 cos13 arccos28−9K10−6K3/2+2π3+43.(30)
Note that the discriminant condition ΔK,0=32K3−378K2+6K−1=0 for cubic Equation 23 ensures that its two roots coincide for ξ=0. This corresponds to the approximate pull-in case, where the approximate pull-in threshold is K̃0*=0.19464. This critical value is very close to the exact dynamic pull-in threshold K0* given by Equation 8. The approximate periodic solutions are given for 0<K<K̃0* as shown in Equation 31:
ỹt=2aK,0⁡sin2t21−2aK,01−aK,0,(31)
where the K-dependent coefficient aK,0 is defined by Equation 30.
Note that the ansatz in Equation 20 can be systematically extended by incorporating additional terms from the Fourier expansion. For instance, a single-term ansatz with adaptive coefficients may reduce computational effort without compromising accuracy, which is consistent with minimalist modeling principles in MEMS analysis. However, increasing the number of trigonometric terms in the ansatz inevitably results in higher-order nonlinear algebraic systems, which must be solved using numerical methods. Accurate models are essential for capturing the nonlinear dynamics of oscillators. Among the notable analytical–semi-analytical techniques are the VIM [37] and the HPM [38, 39]. VIM is particularly effective in treating strongly nonlinear systems and has been successfully used to predict pull-in conditions in electrostatic MEMS. HPM, a semi-analytical method that combines homotopy theory with perturbation techniques, offers robust solutions to problems with not well-defined initial guesses. It is especially suitable for complex nonlinear scenarios as it can transform intricate governing equations into tractable forms more efficiently than many traditional approaches [37–39]. Recently, He’s frequency formula and Ma’s modification have been applied to the analysis of fractal vibration systems [40]. Both VIM and HPM demonstrated the capability to yield approximate pull-in thresholds with relatively high accuracy [18, 41]. For example, J.-H. He, in [18], used VIM to determine the approximate pull-in threshold for the magMEMS oscillator in the case of an infinitely long wire (ξ=0), obtaining the value K*=0.20498 for K0*, corresponding to a relative error of less than 1%.
3.2 Damped case (γ>0)
Let us rewrite Equation 18 as follows:
1−y ÿ+γ1−yẏ−1+Kξ22y2+1−Kξ+Kξ2y−K+Kξ−Kξ22=0.
To obtain the weak formulation for the damped case, we need to find a periodic y satisfying the initial conditions by Equation 17 such that Equation 32
∫0T1−y ÿ+γ1−yẏ−1+Kξ22y2+1−Kξ+Kξ2y−K+Kξ−Kξ22 v dt=0(32)
holds for all v∈L2(0,T).
We seek a Galerkin approximation that includes both transient damping effects and the correct steady-state behavior. Let yss denote the steady-state solution satisfying the equilibrium Equation 33:
1+Kξ22yss=K1−yss−Kξ+Kξ22,(33)
which follows from Equation 18 assuming ÿ=ẏ=0.
The Galerkin ansatz takes the form, as shown in Equation 34:
ỹt=yss1−e−αt+a e−αt1−cosωdt,(34)
where α is the decay rate, ωd is the damped frequency, and a is the Galerkin coefficient from the undamped analysis. This formulation ensures that ỹ(0)=0 and limt→∞ỹ(t)=yss.
For the damped case, we use ωd=ω0 and α=γ/2, with yss found numerically from Equation 33. The formulation captures both transient and steady-state behaviors, converging to the equilibrium position yss. For the pull-in threshold, we approximate Equation 35:
ΔK,ξ,γ≈ΔK,ξ,0−Oγ2≥0.(35)
This leads to the damped pull-in threshold, as shown in Equation 36:
K̃ξ,γ*=K̃ξ,0*+Oγ2.(36)
This formulation recovers the undamped solution as γ→0 and provides accurate predictions for practical magMEMS applications, where γ≪1.
Figure 3 shows a comparison between undamped and damped solutions. The plots demonstrate how damping affects transient behavior while maintaining correct steady-state convergence. Galerkin approximations (solid lines) match numerical ODE solutions (dashed lines).
[image: Graph depicting displacement over time for different damping and stiffness conditions. Three main curves represent displacements for \( K = 0.5K_0^* \), \( K = 0.7K_0^* \), and \( K = 0.9K_0^* \) with both undamped and damped conditions (\( \gamma = 0.02, 0.05 \)). The displacement values range from 0 to 0.7, with time ranging from 0 to 25. Distinct colors and line styles differentiate data sets.]FIGURE 3 | Comparison between undamped and damped magMEMS solutions for different excitation parameters. It shows how damping affects transient behavior while maintaining correct steady-state convergence. Galerkin approximations (solid lines) match numerical ODE solutions (dashed lines).The accuracy of the Galerkin formulation is demonstrated in Figure 4, which compares numerical ODE solutions with analytical Galerkin approximations. The upper subplot shows the time evolution of both solutions, whereas the lower subplot displays the absolute error between them.
[image: Two plots compare ODE and Galerkin solutions for a damped case. The top plot shows oscillating functions with varying parameters \(K\) and \(\gamma\) over time \(t\). The bottom plot displays the absolute error between ODE and Galerkin solutions, indicating differences in their accuracy over time. Both plots use similar color-coded legends.]FIGURE 4 | Comparison between numerical ODE solutions and analytical Galerkin approximations. The upper subplot shows the time evolution of both solutions. The lower subplot displays the absolute error, demonstrating the accuracy of analytical approximation.Figure 5 shows the effect of damping on the maximum amplitude as a function of excitation parameter K. Damped solutions show reduced amplitudes compared to the undamped case, particularly as K approaches the pull-in threshold, demonstrating the stabilizing effect of damping.
[image: Graph showing the relationship between displacement and excitation parameter. The x-axis represents \( K/K_0^* \) and the y-axis indicates maximum displacement. Three lines are plotted: black solid for undamped max displacement, red dashed for damped max displacement (\(\gamma=0.05\)), and blue dotted for damped (\(\gamma=0.1\)). All lines show an upward trend.]FIGURE 5 | Effect of damping on maximum displacement as a function of the excitation parameter K. Damped solutions show reduced amplitudes compared to undamped cases, particularly near pull-in threshold, demonstrating the stabilizing effect of damping.4 DISCUSSION AND SIMULATION RESULTS
In this section, we present numerical simulations of the normalized deflection of the platform, y(t), as a function of nondimensional time t. We analyze the behavior of the periodic solution y(t) under different sets of parameters K>0 and ξ≥0. The simulations were performed using Maple™ software [42], and the resulting deflection profiles are illustrated in Figures 6–8. The observed trends clearly reveal the dependency of the deflection amplitude, frequency, and pull-in time on the excitation parameter K while keeping the geometric parameter ξ fixed. In particular, an increase in the value of K leads to a larger amplitude and a longer period of deflection. In particular, for the given value of the geometric parameter ξ≥0, the maximum deflection is attained when K approaches the threshold value Kξ*. In Figures 6–8, the periodic solutions with the highest deflection correspond to the excitation value K=0.9Kξ*.
[image: Graph showing displacement over time for different \(K\) values with \(\xi = 0\) and \(K_0^* = 0.203632188\). Three pairs of curves are shown: magenta for \(K = 0.9K_0^*\), black for \(K = 0.7K_0^*\), and blue for \(K = 0.5K_0^*\). Solid lines represent \(x(t)\) and dashed lines represent \(\tilde{y}(t)\). Displacement ranges from 0 to 0.7 and time from 0 to 25.]FIGURE 6 | Profiles of Galerkin solutions ỹ(t) (dashed lines) for ξ=0 and K=0.9K0*;0.7K0*;0.5K0*. Solid lines corresponds to numerical reference solutions x(t) of Equation 5, which for ξ=0 coincides with the approximate model given by Equation 16.[image: Graph showing displacement over time with three sets of curves: magenta, black, and blue, each with dotted, solid, and dashed lines. The legend specifies different \( K \) values relative to \( K_{0.1}^* = 0.2156245093 \). Displacement oscillates in varying amplitudes, indicating different behaviors based on the \( K \) settings.]FIGURE 7 | Profiles of Galerkin solutions ỹ(t) (dashed lines) for ξ=0.1 and K=0.9K0.1*;0.7K0.1*;0.5K0.1*. Solid lines correspond to numerical reference solutions x(t) of Equation 5, whereas dot lines correspond to numerical solution y(t) of the approximate model given in Equation 16.[image: Graph showing displacement over time for different parameter values K. It includes multiple sinusoidal curves represented in pink, black, and blue, each corresponding to specific values of K (0.9, 0.7, and 0.5) compared to a constant, K1.0. The legend details the color and line style for each curve. The x-axis is labeled "t" and the y-axis "displacement." The parameters ξ equals 1.0 and K1.0 equals approximately 0.358 are noted above.]FIGURE 8 | Profiles of Galerkin solutions ỹ(t) (dashed lines) for ξ=1.0 and K=0.9K1.0*;0.7K1.0*;0.5K1.0*. Solid lines correspond to the numerical reference solutions x(t) of Equation 5, whereas dot lines correspond to the numerical solution y(t) of the approximate model given by Equation 16.Note that the range of dimensionless parameters K and ξ is already broad enough in this study for practical applications. In the case of arbitrary K>0 and ξ≥0, the trajectories and their approximations can be studied using the Maple™ and Python scripts available at https://github.com/armanbolatov/magmems_damping.
Furthermore, as the value of ξ increases, the maximum deflection diminishes due to the weakened Lorentz force. In Figure 9, the approximate separatrix K̃ξ*, defined by Equation 29, is compared with the exact separatrix Kξ* as functions of the geometric parameter ξ. The approximate separatrix slightly underestimates the dynamic pull-in threshold in the ξ-parameter range [0,1.2]. The study clearly demonstrates that the pull-in threshold, Kξ*, depends sensitively on the geometric parameter ξ. As ξ increases, corresponding to shorter filament lengths, the pull-in threshold Kξ* increases, whereas the maximum deflection amplitude Aξ* decreases. Numerical simulations confirm this inverse relationship between Kξ* and Aξ*. For the case of infinite filaments (ξ=0), the threshold is approximately K0*≈0.2036, providing a quantitative reference for designers to mitigate pull-in instability.
[image: Line graph depicting two curves labeled \( K_{\xi}^* \) (solid blue) and \( \bar{K}_{\xi}^* \) (dashed black) plotted against \( \xi \) on the horizontal axis, ranging from zero to one point two. The vertical axis represents \( K \), ranging from zero to zero point five. The curves show an increasing trend, with \( R_{pull-in} \) and \( R_{per} \) labels between them.]FIGURE 9 | Exact and approximate separatrix. Pairs (ξ,K) below exact separatrix Kξ* (region Rper) lead to periodic solutions.The exact (harmonic) frequency of oscillations is defined as shown in Equation 37:
ωK,ξex=2πTK,ξ,(37)
where TK,ξ denotes the exact period of oscillations. Integrating Equation 10 yields Equation 38:
TK,ξ2=∫0AK,ξdsfK,ξs,(38)
where AK,ξ is the maximum displacement for the given parameter pair K>0 and ξ≥0 such that K<Kξ*. The value AK,ξ is the first positive root of fK,ξ(s), defined in Equation 11 for ξ>0 and in Equation 12 for ξ=0. The integrals in Equation 38 are computed numerically. In Table 1, the high-precision values of frequencies computed using Equation 37 are compared with their Galerkin approximations given by Equation 22. We observe that for the geometric parameter ξ=0.1, the Galerkin approximation results in an absolute error in frequencies of order 10−3, even for the value of excitation parameter K, close to the pull-in threshold. The accuracy improves for the smaller values of K and ξ. The decrease in the period approximation accuracy for larger values of the geometric parameter ξ and values of excitation parameter K close to the pull-in threshold can be well observed in Figure 8.
TABLE 1 | High-precision frequencies ωK,ξex and their Galerkin approximations ωK,ξ for K=0.9Kξ*;0.7Kξ*;0.5Kξ* and ξ=0;0.1;1.0.	K	ξ=0	ξ=0.1	ξ=1.0
	Reference
ωK,ξex	Galerkin
ωK,ξ	Reference 
ωK,ξex	Galerkin
ωK,ξ	Reference
ωK,ξex	Galerkin
ωK,ξ
	0.9Kξ*	0.793365	0.795214	0.786575	0.787935	0.756180	0.723933
	0.7Kξ*	0.884522	0.885621	0.879793	0.880838	0.860555	0.875138
	0.5Kξ*	0.931667	0.931939	0.928546	0.928809	0.916498	0.930681


In Figure 10, the maximal displacement and its Galerkin approximation is presented versus varying excitation parameter K for ξ = 0; 0.1; 1.0. The Galerkin approximation of the maximum displacement is close to its exact value for small values of the geometric parameter ξ.
[image: Graph showing maximal displacement (vertical axis) versus \( K \) (horizontal axis) with six curves. Blue and pink curves represent \(\xi = 0.0\) and \(\xi = 0.1\), respectively, with dashed lines for Galerkin method and solid lines for exact computations. Black curves represent \(\xi = 1.0\), similarly divided into dashed for Galerkin and solid for exact. Coefficients \( A^*_0 = 0.71533 \), \( A^*_{0.1} = 0.70176 \), and \( A^*_{1.0} = 0.59455 \) are noted at the top.]FIGURE 10 | Exact and Galerkin approximations of maximum displacements for ξ=0;0.1;1.0and varying K.5 CONCLUSIONS AND OUTLOOKS
In this paper, the Galerkin approach is used to derive approximate expressions for the pull-in threshold, oscillation frequency, and periodic solutions of the magMEMS. It has been demonstrated that these approximations maintain a high degree of accuracy for excitation parameters below the critical pull-in value, denoted by Kξ*.
Furthermore, we have extended the analysis to include damping effects for the small damping coefficient γ≪1 through an improved Galerkin formulation that incorporates both transient decay and correct steady-state behavior. The enhanced ansatz ensures convergence to the physically appropriate equilibrium position while maintaining the zero initial condition for displacement and recovers the undamped solution in the limit as the damping coefficient tends to zero. The method has proven to be of particular value in the domains of MEMS design and performance estimation, offering a combination of analytical depth and practical implementability. By formulating the nonlinear governing equation in its weak form and using a periodic cosine ansatz, closed-form approximations for the dynamic pull-in threshold, oscillation frequency, and periodic solutions have been obtained. This approach represents a significant advancement as it mitigates the computational demands associated with conventional numerical techniques (e.g., shooting or continuation methods) while preserving high accuracy suitable for engineering applications. The Galerkin-based solutions effectively capture the influence of the excitation parameter on the system’s dynamic response. Moreover, unlike purely numerical ODE solutions, they provide deeper insights into the interplay between excitation and geometric parameters governing oscillator dynamics. Increasing the excitation parameter leads to larger maximal deflections and a concomitant elongation of the oscillation period. Conversely, increasing the geometric parameter diminishes deflections by attenuating the Lorentz forces. In particular, for the geometric parameter ξ=0.1, frequency approximations exhibit errors as low as 10−3, thereby validating the robustness and precision of the method. The analysis also reveals effective strategies for controlling the system’s dynamic behavior, enabling the avoidance of pull-in instability. This comprehensive analysis contributes to a more profound understanding of the system and may serve as a catalyst for further research endeavors concerning related phenomena. The findings of the present study provide critical design guidelines to optimize magMEMS performance for wearable sensor applications. By adjusting geometric parameters and excitation currents based on the derived pull-in thresholds, engineers can ensure the reliable operation of magnetically actuated wearable devices, including biomedical sensors and motion-tracking modules. This approach allows for the preservation of high sensitivity to external stimuli while maintaining robust functionality. The low-complexity nature of the Galerkin model further facilitates its integration into real-time control algorithms for wearable systems, addressing the power and computational constraints inherent in portable electronics. This work paves the way for the development of next-generation, reliable magMEMS-based wearable technologies that demand precise dynamic response and miniaturization.
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