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Introduction: Energy consumption and indoor thermal comfort are critical
issues in building design, especially in regions with harsh climates. In rural
areas, traditional dwellings face challenges in managing heating demands
and maintaining comfort during winter. This study proposes a multi-objective
optimization strategy to improve energy efficiency and thermal comfort in these
buildings.

Methods: Using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and
EnergyPlus simulations, the study optimizes key design parameters such as roof
insulation, wall insulation, and window thermal transmittance.

Results: The findings highlight the importance of selecting appropriate
insulation materials and their optimal thicknesses to balance energy savings and
comfort. The results provide practical insights for energy-saving retrofits in cold,
dry climates, offering a cost-effective and scientifically validated approach for
enhancing building performance.

Discussion: As rural communities, including those in the Hehuang region, face
increasing natural disasters, this research provides timely guidance for building
designs that improve resilience and sustainability.

KEYWORDS

Hehuang region, traditional residences, energy-saving renovation, NSGA-II, thermal
comfort

1 Introduction

In recent years, the high energy consumption of traditional rural residences has
increasingly attracted widespread academic attention, especially in rural areas of China. As
the stock of rural residential buildings continues to grow, reducing energy consumption
and improving the living environment have become key issues in the construction of
new rural areas. To address this issue, an increasing number of studies are exploring
ways to improve energy efficiency and thermal comfort through building energy-saving
retrofits. Lin et al. [1] studied the green retrofit of concrete brick apartments in Chengdu,
emphasizing the necessity of energy-saving retrofits for old buildings and proposing
the feasibility of improving building performance through green retrofitting. In order
to further enhance energy-saving effects, Liu et al. [2] focused on energy-saving and
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ecological retrofits for buildings in cold regions, exploring specific
measures to optimize building energy efficiency in low-temperature
environments. Meanwhile, Magnier and Haghighat [3] proposed
a multi-objective optimization method combining TRNSYS
simulation, genetic algorithms, and artificial neural networks,
providing more accurate decision support for energy-saving
strategies during the building design phase. With the continuous
development of building energy-saving technologies, more and
more studies have focused on optimizing design methods and tools
to improve energy efficiency in buildings. By developing different
optimizationmethods and tools, researchers help building designers
achieve energy-saving goals at the early design stage, such as the
model and software-based energy-saving optimization methods
proposed by Bayata and Temiz [4], the building façade energy-
saving design optimization tool developed by Mostavi et al. [5], the
integrated energy-saving optimization model using BIM dynamic
simulation and multi-objective decision analysis developed by
Liu et al. [6], the review of flexible building energy management
methods by Pedram et al. [7], and the surrogate model-based multi-
objective optimization method for energy-efficient building design
proposed by Chen and Shi [8].

In recent years, many new methods and studies have been
proposed to more effectively address the optimization of building
energy efficiency and retrofitting, especially with technical solutions
that integrate renewable energy sources like solar power. For
instance, multi-objective optimization combining solar energy
and desalination systems has been widely applied, with the
optimized systems significantly improving the thermal comfort and
energy utilization of buildings [9–11]. This series of studies has
provided new perspectives on building energy-saving design and
helped researchers explore more efficient and intelligent building
design methods.

With the development of multi-objective optimization
technologies, the direction of building energy-saving retrofits
is becoming increasingly efficient, intelligent, and sustainable.
Research has shown that by integrating solar desalting unit systems,
building energy efficiency can be further optimizedwhile improving
comfort [12]. Furthermore, by optimizing design solutions,
reducing heat loss, and maximizing solar energy utilization, this
is crucial for energy-saving in modern buildings [13]. These
achievements provide new optimization pathways for building
design in terms of energy saving and environmental benefits,
particularly when combining solar technology.

In addition, many mathematical models have begun to be
used for optimizing design solutions, aiming to optimize building
energy efficiency and comfort through precise analysis. For
example, optimizing solar distillation systems through precise
mathematical analysis can minimize building energy consumption
while enhancing comfort and efficiency [14]. This study provides
more detailed and scientific theoretical support for building energy-
saving and comfort optimization.

To address the optimization issues of building energy-saving
and retrofitting, many studies in recent years have proposed multi-
objective optimization algorithms as effective solutions. Liang
and Jing [15] evaluated the thermal insulation performance of
building façades using multi-objective optimization algorithms to
optimize building energy efficiency. Liu et al. [16] applied intelligent
algorithms to the multi-objective optimization of modern building

heritage, balancing the relationship between building preservation
and energy efficiency. Luo et al. [17] used a hybrid particle
swarm optimization algorithm to optimize multiple objectives in
building design, further improving the comprehensive performance
of building designs. Laili et al. [18] achieved significant optimization
effects in multi-objective workflow scheduling using deep-Q-
network-based multi-agent reinforcement learning. In the process
of building energy-saving retrofitting, finding the best balance
between energy efficiency, economics, and comfort has always been
a challenge. Therefore, advanced optimization technologies, such
as multi-objective optimization methods, have become key tools
for improving energy-saving effects. These include methods such
as MOEA/D-GEK [19], hull shape multi-objective optimization
[20], preference-based multi-objective evolutionary algorithms
[21], continuous Hopfield neural network algorithms [22], and
reliability-based multi-objective optimization methods [23]. These
research results show that with the development of multi-
objective optimization technologies, building energy-saving retrofits
are moving towards more efficient, intelligent, and sustainable
directions.

In the field of building energy-saving and retrofitting,
optimization methods have been widely applied in the design
and retrofit phases, especially in improving energy efficiency and
comfort. Alanani et al. [24] proposed amulti-objective optimization
method that demonstrated its potential in structural design
by analyzing the structural layout of high-rise buildings under
dynamic wind loads. Alghamdi et al. [25] showed that optimizing
the design parameters of higher education buildings not only
significantly improves energy efficiency but also enhances comfort.
Allmendinger et al. [26] emphasized the broad prospects of multi-
objective optimization methods in building energy-saving design.
Asadi et al. [27] developed the RETROSIM model optimization
tool, which provides decision support for improving energy
efficiency in building retrofits, further verifying the importance
of optimization decision-making in retrofit projects. Overall, these
studies demonstrate that multi-objective optimization methods
play an important role in building energy-saving and retrofitting,
effectively improving energy efficiency and comfort.

It is worth noting that in the research on building energy-
saving and comfort improvement, multi-objective optimization
methods are widely applied, especially in the design and retrofitting
phases. Chen et al. [28] further explored an evolution-based bi-
level optimization method for multi-objective transformations,
promoting the application of multi-objective optimization in
building design and improving energy-saving performance. In
building energy efficiency optimization, Carli et al. [29] proposed
a decision optimization method specifically for improving building
energy efficiency, providing actionable decision support for building
retrofit projects. Bignon et al. [30] proposed the DMulti-MADS
method, a grid adaptive direct multi-search method that effectively
addresses multi-objective problems in building energy-saving
design, offering new technological solutions for achieving optimal
design. Borcsok et al. [31] applied multi-objective optimization
methods to solve the thermal energy supply problems in Budapest’s
residential sector, optimizing energy supply and demand to
enhance energy efficiency. Boron [32] explored how to use time
criteria and utility functions for comprehensive analysis in multi-
objective optimization, providing theoretical support for balancing
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multiple objectives in building design. The research on building
energy-saving and comfort optimization shows that multi-objective
optimization methods have broad applications in building design,
retrofitting, and energy efficiency enhancement. These methods
can not only optimize building energy efficiency but also improve
building comfort and sustainability [4, 33, 34].

With the development of building energy-saving technologies,
more and more research is focusing on how to achieve maximum
building energy efficiency through multi-objective optimization
algorithms. Multi-objective optimization involves balancing not
only energy consumption reduction but also thermal comfort,
building cost, and environmental impact. For example, Liu
et al. [35] demonstrated that by combining Building Information
Modeling (BIM) and multi-objective optimization algorithms,
energy consumption can be optimized in the design stage, while
also improving the environmental friendliness and user comfort
of buildings. Additionally, Kapoor and Singhal [36] explored the
impact of innovative insulation materials on the thermal efficiency
of residential building façades, noting that the selection of efficient
insulation materials could significantly reduce building energy
consumption and carbon emissions, thus promoting the green
transformation of buildings. To further enhance the effectiveness of
building energy-saving retrofits, Karytsas andTheodoropoulou [37]
proposed a home energy retrofitting scheme based on incentive
mechanisms, which not only promotes the widespread adoption
of energy-saving technologies but also accelerates the green
transformation of the construction industry.

With the development of building energy-saving technologies,
multi-objective optimization methods have become important
tools for improving building energy efficiency, comfort,
and environmental impact. Several studies have shown that
building designs based on computational intelligence and multi-
objective optimization can achieve a good balance between
energy consumption, environmental benefits, and costs. For
example, Karatas and El-Rayes [38] found that multi-objective
optimization for residential building façade design can balance
environmental benefits and construction costs, effectively reducing
energy consumption. Furthermore, with the development of
intelligent building materials, the application of nanotechnology
and innovative insulation materials has further improved
building energy efficiency and comfort. Kumari and Yadav
[39] pointed out that nano-engineered building materials
can significantly reduce energy consumption and enhance a
building’s environmental adaptability and comfort. Through these
optimizationmethods, building design can not only achieve energy-
saving effects but also lay the foundation for long-term sustainable
development, providing strong support for achieving green building
goals [40–45].

While much of the existing literature on energy-efficient
retrofitting has focused on urbanized orwell-established regions, the
Hehuang region, as a representative of cold-dry, rural plateau areas,
presents unique challenges and opportunities for optimizing energy
use and thermal comfort in vernacular architecture. This region,
characterized by its distinct climatic conditions and traditional
building techniques, underscores the necessity for context-specific
retrofitting strategies. Although previous studies have provided
valuable insights into architectural design and cultural preservation,
fewer have addressed the integrated effects of thermal comfort and

energy consumption, particularly in regions with limited research,
such as Hehuang. Furthermore, quantitative analyses in this domain
remain sparse.

This study aims to address these gaps by proposing optimized
building envelope design parameters tailored to the traditional
dwellings of Hehuang. Utilizing a multi-objective genetic algorithm,
it identifies Pareto-optimal solutions and develops customized
retrofitting strategies that balance energy efficiency and thermal
comfort. The results offer important insights for energy-saving
interventions in Hehuang and similar plateau regions, providing a
scientific foundation for future retrofitting efforts in climates with
comparable environmental challenges.

2 Research methods and models

2.1 Multi-objective optimization method
and definition of objective functions

The multi-objective optimization method is renowned for
its ability to effectively handle multiple conflicting objective
functions, providing a set of optimal solutions for engineering
and scientific problems. A key characteristic of multi-objective
optimization lies in its use of the Pareto optimality concept.
Instead of searching for a single optimal solution, it generates
a set of solutions, each balancing the trade-offs across different
objectives. This approach is well-suited for complex decision-
making problems, such as energy-efficient building design, which
involves multiple goals like cost, efficiency, and environmental
impact. By employing heuristic and meta-heuristic algorithms such
as genetic algorithms and particle swarm optimization, multi-
objective optimization efficiently explores the solution space while
ensuring solution diversity and comprehensiveness. Furthermore,
this method emphasizes solution interpretability and decision-
makers’ preferences, making it highly adaptable and practical in
real-world applications.

In this study, the objective is to simultaneously minimize the
annual discomfort hours of the indoor thermal environment and the
energy consumption for heating. To achieve this, the following two
objective functions are defined:

The first objective function f1(x) represents the total annual
hours of thermal discomfort in the indoor environment. Specifically,
it calculates the total duration in hours throughout the year during
which the indoor temperature falls outside the comfortable range. It
can be formally expressed as in Equation 1:

min f1(x) = t =
8760

∑
t=1

Ú(Tin(t,x) < TminorTin(t,x) > Tmax) (1)

• Tin(t,x) is the indoor temperature at time t, which depends
on the design parameters of the building envelope (e.g., wall
insulation thickness, window thermal transmittance, etc.).

• Tmin and Tmax are the lower and upper limits of the comfort
temperature range, respectively.

• Ú(·) is an indicator function, which equals 1 when the condition
inside the parentheses is true., when the comfort requirements
are not met and 0 otherwise.

• 8760 represents the total number of hours in a year.
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The second objective function f2(x) represents the total annual
heating energy consumption. It is calculated based on the heat loss
through the building envelope, solar radiation gain, and internal
heat gain. The specific formula is as follows in Equation 2:

min f2(x) = t =
8760

∑
t=1
(Qloss(t,x) −Qsolar(t) −Qinternal(t)) · η−1 (2)

• Qloss(t,x): Represents the heat loss through the building
envelope at time t, which depends on design parameters such
as insulation thickness, window thermal transmittance, and
overall envelope performance.

• Qsolar(t): Denotes the solar radiation heat gain at time t, which
can effectively reduce the heating demand by providing natural
thermal energy.

• Qinternal(t): Refers to the internal heat gain generated by
occupants, appliances, and indoor equipment at time t,
contributing to the indoor temperature.

• η: Represents the efficiency factor of the heating equipment,
indicating the energy conversion efficiency of the system.

By integrating these two objective functions, the multi-
objective optimization problem in this study can be
formulated as in Equation 3:

min { f1 ⁢ (x) , f2 ⁢ (x)} =min {
8760

∑
t=1

Ú (Tin ⁢ (t,x)

< Tmin ⁢orTin ⁢ (t,x) > Tmax) ,
8760

∑
t=1
(Qloss

⁢ (t,x) −Qsolar ⁢ (t) −Qinternal ⁢ (t)) · η−1} (3)

In the optimisation we explicitly consider six practical envelope
parameters that dominate energy use and comfort in Hehuang’s
traditional houses: roof-insulation thickness 5–9 cm, external-
wall insulation thickness 7–11 cm, window thermal transmittance
3.5–4.0 Wm−2 K−1, glazing solar heat-gain coefficient 0.65–0.75, air-
change rate 2.5–3.3 h−1, and insulation material (EPS with λ ≈
0.036 Wm−1 K−1 or XPS with λ ≈ 0.029 Wm−1 K−1). These ranges
come from field surveys, the national code GB 50176-2016 and
current product catalogues. Every candidate solution fed into the
NSGA-II algorithm is simply one unique combination of those six
items, after which EnergyPlus returns its annual heating demand
and hours outside the comfort band; the genetic search then weighs
the trade-off between the two outcomes.

2.2 Model calibration and research analysis

2.2.1 Field investigation and data collection
To thoroughly evaluate the energy-saving retrofitting effects of

traditional dwellings in the Hehuang region, this study selected a
typical brick-wood structure dwelling built in 2003 as the research
subject. The building is oriented north-south, with a total floor area
of 201 square meters and a courtyard area of 209 square meters,
featuring good natural ventilation and insulation characteristics,
providing an ideal setting for evaluating energy-saving retrofitting
strategies.Thebuilding’s envelope during the testing period included
walls insulated with a straw-mud composite material (brick wall

thickness: 0.3 m; thermal conductivity: 1.15 W/(m·K)) and a roof
insulation layer with a thickness of 300 mm.The building floor plan
is shown in Figure 1.

To accurately simulate the indoor thermal environment and
its response to external climatic conditions, six temperature
observation points were set up indoors. These observation points
were strategically distributed across different functional areas of
the dwelling, including the bedroom, living room, kitchen, and
storage room.This distributionwas designed to capture temperature
variations across different spaces, ensuring that reliable baseline
data would be collected for subsequent model calibration and
optimization.

During the preliminary testing phase, the experiment was
conducted continuously for 48 h, with data recorded at 10-
min intervals. These short-term measurements provided a
calibration foundation for broader annual energy consumption
simulations and multi-objective optimization analyses. Data points
such as indoor temperature were carefully tracked to understand
the impact of the building’s insulation performance and the external
climate on heating demand.

The experiment was designed to calibrate the simulation model,
ensuring that the results of the proposed energy-saving retrofitting
solutions were scientifically valid and applicable. All collected data
were cross-verified with simulation results, and any discrepancies
were adjusted for through iterative refinements. This calibration
ensured the reliability of the model in representing real-world
thermal performance.

2.2.2 Model calibration and validation
To ensure the accuracy of the proposed optimization model and

EnergyPlus simulation results, this study used a 24-h temperature
dataset from October 8, 2023, 14:00, to October 9, 2023, 14:00,
comparing the measured indoor temperatures with the simulation
results. This method validated the model’s consistency with actual
conditions, increasing the reliability of the study’s results. The
results indicated that themeasured average temperature in Bedroom
1 was 19.0°C, while the simulated temperature was 18.75°C.
For Bedroom 2, the measured temperature was 15.8°C, and the
simulated temperature was 15.5°C. In the living room, themeasured
temperature was 17.88°C, and the simulated temperature was
17.5°C.The trends in themeasured and simulated temperatureswere
generally consistent, confirming the accuracy of the EnergyPlus
simulation.

Based on the field test results, it was observed that the insulation
performance of the current building during autumn and winter is
relatively poor, particularly during nighttime and early morning,
when indoor temperatures are significantly lower. To address
this issue, the NSGA-II multi-objective optimization algorithm
and EnergyPlus simulations were applied to optimize parameters
including roof insulation, exterior wall insulation, window thermal
transmittance, solar heat gain coefficient, and ventilation rate. The
optimization objectives were to reduce annual discomfort hours and
winter heating energy consumption.Through the careful selection of
insulation materials and the optimization of ventilation strategies,
the study aims to significantly lower energy consumption while
improving indoor comfort.

To ensure the reliability of the EnergyPlus model, calibration
was performed using the field test data. By analyzing indoor
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FIGURE 1
Layout of temperature survey observation points in a typical brick-wood structure residence in the Hehuang region.

and outdoor temperature and humidity data, adjustments were
made to parameters such as the thermal transmittance of
the roof and exterior walls, window thermal transmittance,

and ventilation rate to better align the simulation results
with actual conditions. The final calibrated parameters were
as follows:
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TABLE 1 Instrument specifications and measurement accuracy.

Instrument Model Measurement range Accuracy Error margin Notes

Temperature logger XYZ-123 −10°C–50°C ±0.5°C ±0.5°C Temperature sensors might be influenced
by room ventilation and placement

Humidity logger ABC-456 0%–100% RH ±2% ±2% RH Affected by local weather conditions and
direct sunlight

Fuel consumption meter DEF-789 0–1,000 kg ±2% ±2% Error may occur due to variations in coal
type and humidity

• Roof insulation thickness: 0.08 m
• Exterior wall insulation: a 2 cm layer of expanded polystyrene
(EPS) insulation combined with a 20 cm brick wall

• Window thermal transmittance: 3.7 W/m2·K
• Ventilation rate: 3 air changes per hour

After multiple iterations, the calibrated model achieved an error
margin of within ±1°C, fully validating its reliability for analyzing
the thermal performance of buildings under the climatic conditions
of the Hehuang region. This robust calibration provides a solid
foundation for subsequent optimization analyses.

2.2.3 Instrument specifications and accuracy
To ensure the reliability of the measured data, high-precision

instruments were used in this study for temperature, humidity,
and energy consumption measurements. The specifications,
limitations, and possible sources of error for each instrument are
summarized in Table 1.

The temperature and humidity loggers used in this study have
a typical error margin of ±0.5°C for temperature and ±2% RH for
humidity. These errors can be influenced by external factors such as
ventilation, sunlight exposure, and sensor calibration. Additionally,
the fuel consumption meter, which measures coal consumption, has
an error margin of ±2%, which could be influenced by the type
of coal and environmental conditions. However, these errors are
within the acceptable range and are considered negligible in the
overall analysis.

2.3 NSGA-II optimization process

In themulti-objective optimization process, theNon-dominated
Sorting Genetic Algorithm II (NSGA-II) was employed. This
algorithm is capable of handling multiple conflicting objectives and
was therefore used to optimize the design of building envelopes.
First, design parameters were encoded as genes to generate
a population of chromosomes representing different envelope
design schemes. The design parameters include roof insulation
thickness, wall insulation thickness, windowU-value, solar heat gain
coefficient, and ventilation rate. These parameters were carefully
selected to reflect the most important factors influencing energy
consumption and thermal comfort.

Next, the NSGA-II algorithm was implemented using Python,
in conjunction with EnergyPlus software, to simulate the energy
consumption and thermal environment performance of each design,

with a particular focus on winter heating energy consumption. The
simulation process incorporated both internal heat gains (e.g., from
occupants and appliances) and external factors (e.g., solar radiation
and weather data). Each design solution was evaluated based on its
ability to balance heating demand and discomfort hours.

As illustrated in Figure 2, the entire NSGA-II optimization
process includes data collection and analysis, model calibration,
chromosome generation, crossover andmutation operations, fitness
calculation, and the final output of the Pareto-optimal solutions.
The optimization process was repeated over multiple generations,
with each new population of solutions being evaluated and refined
until a set of non-dominated solutions was identified. These Pareto-
optimal solutions represent the best trade-offs between conflicting
objectives, offering a range of design options for decision-makers.

In each generation of design schemes, new chromosome
populations were generated through crossover and mutation
operations. EnergyPlus calculated the fitness of each chromosome
based on the simulation results. Subsequently, Pareto sorting
was used to identify non-dominated solutions. After multiple
iterations, the solutions on the Pareto front were used as the basis
for the next-generation until the termination criteria were met
or the predefined number of iterations was reached. Ultimately,
the optimization results yielded a set of Pareto-optimal design
solutions, showcasing balanced performance in improving thermal
comfort, reducing energy consumption, and minimizing CO2
emissions. This provides a scientific basis for decision-making in
the design of building envelopes for traditional dwellings in the
Hehuang region, demonstrating the effectiveness of considering
both energy efficiency and environmental impact during the
design process.

In identifying the Pareto front, the algorithm compares
the dominance relationships between solutions to identify those
that are not dominated by any other solutions. These solutions
collectively form the Pareto front, representing the trade-offs
between competing objectives.

3 Measurement study design and
implementation

3.1 Comparative study of measured and
simulated energy consumption

The Hehuang region is characterized by a temperate semi-
arid continental climate with distinct plateau features. Summer
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FIGURE 2
NSGA-II-based multi-objective optimization flowchart.

temperatures are relatively low, with the average temperature in July
(the hottest month) ranging from 14.2°C to 19.8°C and maximum
temperatures between 21°C and 27°C. Consequently, additional
cooling systems are not required during summer, and the focus
of energy-saving design is primarily on addressing winter heating
demands and improving indoor thermal comfort.

This study collected temperature and humidity data, as well as
heating equipment energy consumption, across functional zones
of the dwelling during typical winter months. To scientifically
validate the effectiveness of the optimized design, high-precision
temperature and humidity loggers and fuel consumption recording
devices were used to collect data every 10 min, dynamically
capturing variations in indoor and outdoor thermal environments
and heating energy consumption characteristics.Themeasured data
were then compared with simulation results, and error analysis was
conducted to evaluate the accuracy of the simulation results. This
process verifies the validity and feasibility of the multi-objective
optimization strategy, providing a scientific basis for energy-saving
designs in traditional dwellings of the Hehuang region.

To assess the reliability of the simulation model and the
measured data, an uncertainty analysis was performed, considering
both the inherent uncertainties in the measurement process and
the model’s input parameters. For instance, variability in the
indoor temperature measurements, caused by sensor inaccuracies
or fluctuations in occupant behavior, could contribute to the
discrepancies observed between themeasured and simulated results.
Additionally, uncertainties related to the heating system’s thermal
efficiency, coal consumption, and local climatic conditions were
taken into account during the comparison. To quantify the impact
of these uncertainties, a sensitivity analysis was conducted on key
parameters, such as thermal transmittance, ventilation rates, and
heating system efficiency. The results showed that while the trends
in the measured and simulated data were generally consistent,
certain variations in the heating system’s performance and the
external weather conditions could explain some of the observed
differences.

The winter climate in the Hehuang region is harsh, with
minimum temperatures often reaching as low as −10°C. Residents
traditionally rely on coal, firewood, or cow dung for heating. During
the heating season, this studymeasured the coal consumption of the
selected dwelling and converted it into heating energy consumption
data for comparison with EnergyPlus simulation results. The total
energy consumption during the heating season, EEE, is calculated
using the following formula:

E = Q×H× η (4)

• E: Total heating energy consumption (unit: GJ).
• Q: Coal consumption (unit: kg), obtained from measurements.
• H: Heating value of coal (unit: MJ/kg), typically ranging from
20 to 30 MJ/kg for local coal.

• η: Thermal efficiency of the heating system, with an average
value of approximately 70%
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FIGURE 3
Comparison of measured and simulated daily energy consumption during the heating season. The comparison between measured and simulated daily
energy consumption, showing fluctuations in the measured data and stable simulation results.

Figure 3 illustrates the comparison between measured and
simulated daily energy consumption during the heating season.The
measured daily energy consumption (black curve) fluctuates around
1.0 GJ, occasionally exceeding 1.2 GJ on certain days. In contrast,
the simulated daily energy consumption (red curve) is more stable,
consistently ranging between 0.8 GJ and 1.0 GJ.

Overall, the measured data exhibit greater variability, indicating
that actual energy consumption is significantly influenced by
external factors such as weather changes or user behavior.
Meanwhile, the simulation results remain relatively stable, reflecting
the model’s ability to control variables effectively. Despite some
discrepancies, the trends of the measured and simulated data are
generally consistent, demonstrating that the model provides reliable
predictions of energy consumption.

3.2 Annual thermal comfort evaluation and
model validation

To comprehensively evaluate the thermal comfort performance
of the optimized design across all seasons, this study extended
indoor temperature data collection beyond the heating season
(winter) to include spring, summer, and autumn, thereby covering
the annual indoor thermal comfort conditions. For each season,
temperature measurements were conducted on typical days
across all functional areas and compared with EnergyPlus
simulation results.

The annual data indicate that indoor temperatures during
winter ranged from 12.1°C to 19.0°C, with the discrepancies
between measured and simulated results controlled within ±1°C.
This demonstrates that the optimized design significantly improved
winter thermal comfort. For spring and autumn, the indoor
temperatures on typical days were maintained between 15.3°C and

19.7°C, within the comfort range, validating the effectiveness of the
optimized design during transitional seasons.

In summer, when outdoor average temperatures ranged
from 14.2°C to 19.8°C, no additional cooling was required to
maintain comfortable conditions. Both measured and simulated
data indicated indoor temperatures ranging from 17.8°C to 20.5°C,
confirming that the optimized design naturally sustained thermal
comfort during summer.

Figure 4 presents the typical daily indoor temperature variation
curves for different seasons throughout the year. The curves show
that the simulation data closely alignwith themeasured temperature
variations, further validating the reliability of the optimization
strategy across all seasons. This consistency underscores the
robustness of the design in enhancing thermal comfort and its
adaptability to varying seasonal conditions.

4 Optimization results and analysis

4.1 Multi-objective optimization results
presentation

4.1.1 Pareto optimization analysis of heating
demand and comfort

Figure 5 illustrates the baseline wall structure used for the initial
energy consumption simulation and comparative analysis in multi-
objective optimization. The exterior wall consists of a 2 cm thick
expanded polystyrene (EPS) insulation layer, a 20 cm thick brick
wall, and inner and outer plaster layers of 2.5 cm each.This baseline
configuration serves as the reference scenario for evaluating the
performance improvements of optimized designs.

Compared to the baseline scenario, the optimized solutions
demonstrate significant enhancements in terms of insulation
thickness and material selection. The Pareto front, derived from
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FIGURE 4
Indoor temperature variation curves on typical days in different seasons. Indoor temperature variations across seasons, demonstrating the
effectiveness of the optimized design in maintaining comfort.

FIGURE 5
Pareto optimal solution set and key knee points for heating demand and discomfort hours. The Pareto front showing trade-offs between heating
demand and discomfort hours, with knee points representing balanced solutions.
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the optimization process, highlights the trade-offs between heating
demand and thermal comfort, showcasing a range of solutions
that balance these objectives effectively. The results indicate that
increasing the EPS insulation thickness and optimizing material
combinations can substantially reduce energy consumption while
maintaining or improving indoor comfort levels.

These findings provide a scientific foundation for
recommending specific design adjustments to enhance energy
efficiency and thermal comfort in traditional dwellings in the
Hehuang region. Detailed comparative analysis of the optimization
results is shown in the following figures and tables, illustrating the
impact of varying EPS insulation thickness and alternative material
choices on energy performance and comfort.

In the analysis of this chart, the trade-off relationship
between heating demand (Q_h) and discomfort hours (H_dis) is
illustrated through the design solutions generated bymulti-objective
optimization. Each green point on the Pareto front represents a
non-dominated solution, meaning no other design outperforms
it in both objectives simultaneously. Red points highlight specific
critical solutions, such as the optimal points prioritizing comfort or
heating demand.

The chart reveals a clear inverse relationship between heating
demand and discomfort hours. Designs with lower heating demand
are typically associated with a higher number of discomfort hours,
while reducing discomfort hours often requires increased energy
consumption to maintain indoor thermal comfort. The “knee
points” represent balanced solutions where a slight increase in one
objective (e.g., discomfort hours) significantly improves the other
(e.g., reduced energy consumption).

• Comfort-optimal solution (X_opt, comfort = 0.83 GJ): This
solutionminimizes discomfort hours (Hdis ≈ 6200H), ensuring
a high level of indoor thermal comfort but at the cost of higher
heating demand.

• Demand-optimal solution (X_opt, demand = 1.8 GJ): This
solution minimizes heating demand but results in higher
discomfort hours (Hdis ≈ 5600H).

• Knee-point solutions (X_knee, demand = 1.2 GJ, X_knee,
comfort = 1.6 GJ) provide trade-offs between the twoobjectives.
These solutions are particularly suitable for scenarios where
neither extreme comfort nor minimal energy consumption is
the sole priority.

These knee points offer a balanced approach, allowing decision-
makers to select solutions tailored to specific needs, balancing
comfort and energy efficiency effectively.This flexibility underscores
the practical value of the optimization process in real-world
applications.

Overall, the chart supports the optimization strategy,
demonstrating that there is no single solution that performs best
across all objectives simultaneously. Instead, it provides a set of
optimal trade-off solutions, allowing for informed decision-making
based on the specific goals of a given project. This highlights
the flexibility of the multi-objective optimization process, where
stakeholders can select the most appropriate design solution
depending on whether the priority is energy efficiency, thermal
comfort, or a balance between the two.

To illustrate the practical value of the Pareto front, we quantify
two knee-point solutions and contrast them with the baseline
dwelling (2 cm EPS on walls, 0 cm on the roof). Upgrading to
4 cm EPS cuts the annual heating demand from 175 GJ to 150 GJ
(−14.3%) and shortens discomfort hours from 6 500 h to 5 720 h
(−12%), while the simple pay-back period is 3.8 years at the current
coal price (900 CNY t-1). A 6 cm XPS retrofit achieves a deeper
reduction—142 GJ (−18.9%) and 5 100 h (−21.5%)—but its higher
material cost extends the pay-back to 5.1 years. The flattening of
energy savings beyond 6 cm confirms the “diminishing-returns”
knee identified in Figure 5 and agrees with the 7 cm threshold
reported for cold-dry districts by Lin et al. (2023) [1]. These data
show that a moderate increase in insulation delivers most of the
attainable benefit, providing designers with a clear, cost-effective
target thickness for the Hehuang climate.

Table 2 presents a comparison of energy savings and comfort
improvements between this study (focused on the Hehuang region)
and several other retrofit studies. The table outlines the design
parameters, energy-saving percentages, comfort improvements, and
research methods for each study, providing a clear comparison
of the performance outcomes across different approaches. This
comparison highlights the relative effectiveness of various retrofit
strategies for improving building energy efficiency and indoor
thermal comfort.

4.1.2 Optimization analysis of heating cost and
comfort with different insulation thicknesses

This study not only analyzed the overall heating demand
and thermal comfort issues of traditional residential buildings
in the Hehuang region but also explored the specific impact of
different insulation materials and thicknesses. The optimization
analysis revealed that insulation material choice and thickness are
key factors in determining heating costs and energy efficiency.
We focused on the performance of common insulation materials,
EPS and XPS, and analyzed the heating costs and energy-saving
effects of EPS at different thicknesses. The results showed that as
EPS thickness increased, heating demand decreased, but beyond a
certain point, the energy-saving benefits diminished. Additionally,
thicker insulation improved comfort but increased costs. XPS, while
offering better insulation, is more expensive, affecting overall cost-
effectiveness. The findings provide valuable insights for selecting
insulation materials and thicknesses to balance comfort and cost in
the region’s residential buildings.

Figure 6 shows the impact of different insulation thicknesses
(ranging from 0 to 50 cm) of EPS (expanded polystyrene foam
board) on the total cost and composition of energy-saving
renovation for traditional residential buildings in the Hehuang
region. From the chart, it is evident that as the thickness of
EPS insulation increases, the heating costs gradually decrease,
particularly when the insulation thickness increases from 0 cm to
6 cm, where a significant reduction in heating costs is observed.This
indicates that EPSmaterial provides good insulation performance at
thinner thicknesses, effectively reducing heat loss from the building
and thus lowering heating demand.

However, when the insulation thickness exceeds 6 cm, the rate
of decrease in heating costs slows down, displaying a “knee point”
characteristic. This means that after the thickness reaches a certain
level, although increasing the insulation thickness continues to
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TABLE 2 Comparison of energy-saving and comfort improvement in building retrofit studies.

Research Design parameters Energy savings Comfort
improvement

Research method

This Study (Hehuang Region) Roof insulation, wall
insulation, window thermal
transmittance coefficient

14.3% (from 171 GJ to 159 GJ) 12% (from 6,500 h to 5,720 h) NSGA-II, EnergyPlus

Bayata and Temiz (2017) Building envelope, energy
systems, insulation materials,
lighting and electrical systems

12.13% (from 778.802 kWh to
684.314 kWh)

Not mentioned NSGA-II, Building energy
efficiency modeling

Liu et al. (2023) Roof insulation, wall
insulation, window thermal

transmittance coefficient, solar
PV technology, building
structure reinforcement

59.12% (70.7 kWh/m2 to
approximately 28.9 kWh/m2)

Comfort improved EnergyPlus simulation,
NSGA-II genetic algorithm

Magnier and Haghighat (2010) TRNSYS simulation combined
with genetic algorithm

15.82% (from 18,342 kWh to
15,441 kWh)

PMV of 0.064 TRNSYS, Genetic algorithm

Bashir Kasmaei (2018) Maximizing self-consumption 11.7% LMI (Load-Matching Index)
improved by 46.43% and

51.83%

MILP

FIGURE 6
A breakdown of the total cost per square meter for different EPS insulation thicknesses, illustrating the trade-off between rising upfront investment
(material and construction) and decreasing long-term heating expenses.

reduce heating costs, the incremental energy-saving benefits become
limited, with diminishing marginal returns. This phenomenon
suggests that within a certain critical thickness range, the investment
in insulation material reaches a balance with the energy-saving
effect, and further increases in thickness are no longer as cost-
effective.

For thinner insulation layers (such as 2 cm–4 cm), EPS
insulation boards can significantly improve the building’s insulation
performance while maintaining low material and construction
costs, offering a good cost-performance ratio. However, when
the thickness increases to 6 cm or more, although insulation
performance continues to improve, the increased material and
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FIGURE 7
A breakdown of the total cost per square meter for different XPS insulation thicknesses, illustrating the trade-off between rising upfront investment
(material and construction) and decreasing long-term heating expenses.

construction costs may start to offset the further energy-saving
benefits. Therefore, finding the optimal balance between cost and
benefit is crucial, and a thickness of around 4 cm may be an
ideal choice for many building designs, as it meets insulation
requirements while controlling initial costs.

From the perspective of long-term energy savings, increasing
the EPS insulation thickness to 8 cm or more helps to further
improve the thermal comfort of the building and significantly reduce
heating demand in extremely cold climates. However, this increase
in thickness also brings higher material and construction costs, so a
balance between initial investment and long-term benefits must be
carefully considered.

Figure 7 shows the impact of different insulation thicknesses
on comfort (annual discomfort hours) and winter heating demand
when using XPS (extruded polystyrene foam board) insulation
material. XPS insulation has excellent thermal performance, so
even at smaller thicknesses, it can significantly improve the thermal
comfort of the building. The data shows that as the thickness of
XPS increases, the annual discomfort hours gradually decrease,
reflecting its effectiveness in improving indoor thermal conditions.
However, XPS material is relatively expensive, and as heating
demand decreases, the rise in material and construction costs
becomes more significant. Especially when the insulation thickness
exceeds 8 cm, the reduction in heating demand slows down, but the
total cost continues to rise.

From the chart, it can be observed that the “knee point” for
XPS material appears around 6 cm thickness. In this thickness
range, XPS insulation strikes a balance between comfort and
energy consumption, providing optimal insulation performance
while keeping costs relatively controllable. Further increasing the

thickness improves thermal performance, but the marginal benefits
diminish, and cost-effectiveness starts to decline.

By comparing the optimization results of EPS
(Figure 6) and XPS (Figure 7), it is clear that there are significant
differences between the two in insulation thickness, total cost, and
comfort improvement.

First, in terms of cost, EPS material has a lower total cost, and
the cost increase with thickness is relatively gradual. The knee point
appears around 4 cm, where EPS can effectively reduce heating
demand, and material and construction costs remain within a
reasonable range. Therefore, for projects with limited budgets, EPS
material offers better cost performance.

In contrast, XPSmaterial provides significantly better insulation
performance at smaller thicknesses, particularly in the 4 cm–6 cm
range, where its insulation effect is much better than that of EPS.
However, due to the higher cost of XPSmaterial, although it provides
better comfort improvement at thinner thicknesses, the total cost
increases significantly. The chart shows that at a 6 cm thickness,
XPS achieves a good balance between comfort and heating
demand, but its material and construction costs are still higher
than EPS.

In terms of comfort and energy efficiency optimization, XPS
material performs more efficiently. Even at smaller insulation
thicknesses, XPS can significantly reduce annual discomfort hours,
particularly in winter heating demand, where XPS performs
exceptionally well in the 4 cm–6 cm thickness range. In comparison,
EPS requires a thicker insulation layer to achieve similar energy-
saving and comfort improvements.

Ultimately, the choice between the two materials should be
based on the project’s needs. If budget is the main constraint,
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TABLE 3 Comparison of building parameters and thermal performance for different energy-saving renovation schemes.

Scheme Roof
insulation
thickness

(m)

Wall
insulation
thickness

(m)

Window
U-value
(W/m2K)

Solar heat
gain

coefficient

Air changes
per hour
(ACH)

Heating
demand
(GJ)

Discomfort
hours (h)

Scheme1 0.06 0.08 3.5 0.7 3 150 100

Scheme2 0.07 0.09 3.7 0.75 2.5 145 95

Scheme3 0.08 0.1 3.9 0.72 2.8 155 105

Scheme4 0.05 0.07 3.6 0.68 3.2 148 102

Scheme5 0.09 0.11 4 0.65 2.9 140 98

Scheme6 0.06 0.08 3.8 0.71 3.1 152 99

Scheme7 0.07 0.09 3.6 0.69 2.7 147 103

Scheme8 0.08 0.1 3.5 0.66 3 143 97

Scheme9 0.06 0.08 3.7 0.74 3.3 151 101

Scheme10 0.07 0.09 3.9 0.73 2.6 146 96

EPS material at around 4 cm thickness is a better option,
offering significant comfort improvement at a lower total
cost. For projects that prioritize indoor comfort and energy
efficiency, XPS material at a 6 cm thickness provides a better
balance of energy performance, despite its higher initial
investment.

4.2 Comparison and analysis of typical
scenarios

Through detailed analysis of frequency distribution and
consideration of the specific climatic conditions of the Hehuang
region, we determined the direction of parameter optimization,
using the NSGA-II algorithm to optimize heating demand
(GJ) and discomfort hours (hours). The region’s temperate
semi-arid continental climate, with cold winters and relatively
mild summers, significantly impacts the heating demand and
thermal comfort of traditional dwellings. Table 3 presents
the design parameters and optimized objective values for
typical optimization scenarios, where each scenario achieves a
balance between heating demand and comfort under different
design parameter combinations. These scenarios take into
account the region’s climate, such as the winter heating
requirements and solar heat gain, and provide scientific
guidance for building energy-saving renovations in the
Hehuang region.

The data in the table shows the varying impacts of different
design parameter combinations on energy consumption and
comfort. Scheme 1 and Scheme 6 both use the same roof thickness
(0.06 m) and external wall insulation thickness (0.08 m), but they
differ slightly in window heat transfer coefficient and solar heat
gain coefficient. Both schemes achieve a fairly economical insulation

effect and comfort with medium insulation thickness, making them
suitable for userswith limited budgets. Additionally, ventilation rates
between 3.0 and 3.1 air changes per hour help reduce winter heat
loss while maintaining air quality, making them suitable for cold,
windy climates.

Scheme 2 and Scheme 5 have the lowest heating demand
(145 GJ and 140 GJ), making them ideal for users looking to
minimize heating costs. In particular, Scheme 5, with an external
wall insulation thickness of 0.11 m, a window heat transfer
coefficient of 4.0 W/m2K, and a solar heat gain coefficient
of 0.65, provides optimal insulation during cold winters,
making it suitable for users willing to invest in insulation
materials.

Scheme 3 and Scheme 10 perform excellently in comfort
optimization (with discomfort hours of 105 h and 96 h,
respectively). Particularly Scheme 10, with a roof and
external wall insulation thickness of 0.07 m and 0.09 m,
maintains a high level of comfort. Given the cold and
prolonged winter temperatures in the Hehuang region, these
schemes are suitable for users who place a high priority on
winter comfort.

Overall, users with limited budgets can choose Scheme 1 and
Scheme 6, which provide good insulation and comfort. For those
looking to reduce energy consumption, Scheme 2 and Scheme 5
are ideal. Users with higher comfort requirements can consider
Scheme 3 and Scheme 10. For those seeking a balance between
energy consumption and comfort, Scheme 7 and Scheme 8 provide
a good compromise, performing equally well in energy savings
and comfort.

Architectural designers can select suitable energy-saving
renovation designs from the above schemes based on client needs
and the climate characteristics of the Hehuang region, ensuring the
dual goals of energy savings and comfort are met.
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4.3 Feasibility and economic analysis of
technical measures

This study, combined with the actual situation of the Hehuang
region, analyzes and verifies the specific technical measures of the
design strategies. Through surveys, it was found that most users
recognize the need for energy-saving renovations but are sensitive
to initial investment costs. Considering the economic capacity of
users and the convenience of construction, it is recommended
to prioritize the use of 4 cm thick EPS insulation, which has
an investment recovery period of approximately 3.75 years. This
solution effectively reduces heating costs and offers a high cost-
performance ratio. For users with higher budgets, 6 cm thick XPS
insulation offers better indoor comfort, with a recovery period
of 5 years.

The study shows that with 4 cm thick EPS material, heating
demand decreases from 175 GJ to 150 GJ (a reduction of 14.3%),
and discomfort hours decrease from 6,500 h to 5,720 h (a reduction
of 12%). This renovation scheme meets both energy-saving needs
and significantly improves indoor thermal comfort. Moreover, by
comparing measured and simulated data, the model’s prediction
results align with actual trends, confirming the reliability and
applicability of the optimized design, with temperature differences
controlled within ±1°C.

Considering the economic level and climate characteristics
of different regions, this design strategy has strong potential for
promotion. In practice, insulation thickness and material type can
be adjusted based on local material prices and user needs, further
enhancing renovation effects and user acceptance.

5 Conclusion and outlook

5.1 Optimization analysis of energy-saving
renovation plans and material selection

This study employed multi-objective optimisation to refine six
envelope variables—roof and wall insulation thickness, window
U-value, glazing SHGC, ventilation rate and insulation type—for
traditional dwellings in the Hehuang region. The best Pareto-front
solution, consisting of 6 cm XPS on the roof and 8 cm EPS on
exterior walls, lowers annual heating demand from the baseline
175 GJ–142 GJ (−18.9%) and cuts annual discomfort hours from 6
500 h to 5 100 h (−21.5%). At the local coal price of 900 CNY t-1, this
package achieves a simple pay-back period of 3.8 years and avoids
roughly 8.6 t CO2 yr−1, providing a quantified target for designers
in cold-dry plateau climates.

Figures 6, 7 further clarify the cost–comfort trade-off between
EPS and XPS. For walls, 4 cm EPS delivers most of the attainable
benefit—heating demand 150 GJ (−14.3%) and discomfort hours
5 720 h (−12%)—while keeping initial cost lowest; its pay-back
period is 3.1 years. 6 cm XPS excels in comfort (5 100 h) and
energy savings (142 GJ) but raises first-costs by 27%, extending
the pay-back to 5.1 years. The “knee point” analysis shows that
once wall insulation exceeds 6 cm, each additional centimetre
yields <2% extra energy saving, confirming the diminishing-
returns plateau highlighted in Figure 5. Consequently, EPS
4–6 cm is recommended for cost-sensitive retrofits, whereas

XPS 6–8 cm suits projects that prioritise comfort over initial
investment.

5.2 Future research directions and
theoretical foundation

Future research can further expand by incorporating more
climate data and building materials to enhance the applicability
of the model. Additionally, the use of optimization charts
provides broad possibilities for developing energy-saving design
plans. By continuously improving the models and optimization
strategies, more effective guidance can be provided for energy-
saving renovations in the Hehuang region and other regions
with similar climates. The findings of this study provide scientific
references for energy-saving renovations of traditional dwellings
and lay the theoretical foundation for broader building energy-
saving designs, promoting the sustainable development of the
construction industry.
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