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In unmanned aerial vehicle (UAV) networks, efficient and reliable cooperation 
among UAVs is crucial for enabling UAV-assisted internet of things (IoT) 
services. In this paper, we consider a hierarchical aerial computing framework 
composed of multiple UAVs that assume different network roles based on their 
capabilities, providing data collection and computation services for diverse IoT 
applications. We then formulate a task offloading problem subject to delay 
and resource constraints, taking into account the service revenue requirements 
and computational demands of different UAVs. The problem aims to meet the 
service demands of UAVs while satisfying multiple constraints related to task 
delay and resource availability, resulting in an integer programming problem 
that is challenging to solve. Considering the complexity of exhaustive search, 
we propose a matching game-based solution algorithm to obtain the optimal 
task offloading decision among UAVs and prove that the algorithm is stable. 
Simulation results show that the algorithm proposed in this paper outperforms 
the benchmark scheme in terms of service benefits.
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 1 Introduction

In recent years, Unmanned Aerial Vehicles (UAVs), due to their advantages such as 
low cost, high altitude, and ease of deployment [1], have been widely applied in various 
scenarios, such as Internet of vehicle [1] and marine IoT [2]. Depending on the service 
requirements of different network scenarios, UAVs can play various roles in the network 
[3]. UAVs can act as end-users and offload tasks to edge computing servers on the ground 
for computation [4]. A UAV can be equipped with an edge server to function as an airborne 
MEC server, assisting ground-based end devices with computation tasks [5]. The UAV can 
serve as an airborne relay node that transmits user tasks to terrestrial edge servers (?). The 
UAV can be used as a complement to the ground network to provide effective coverage in 
areas where the ground infrastructure is unavailable or overloaded.

Existing IoT devices usually have very limited computational power and cannot handle 
complex computational tasks [6]. UAVs can collect data in close proximity to sensors 
and help process it in a timely manner [7]. Especially in complex, harsh, or remote 
environments, UAVs serve as ideal tools for data collection. Meanwhile, edge computing 
brings computational resources closer to devices and helps relieve the computational
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burden on the network. By equipping UAVs with edge computing 
servers, IoT devices with limited computational power can offload 
their computationally intensive tasks to the UAVs, thereby reducing 
computational pressure and improving the overall performance of 
the network [8].

Considering that UAVs in a UAV network may have different 
capabilities, this can lead to a hierarchical structure. For example, 
UAVs with abundant computational resources can assist other 
UAVs in completing computational tasks. Additionally, due to 
individual differences among UAVs, they can play various roles in 
heterogeneous networks. Depending on the service requirements, 
UAVs can function as computation servers or data collection nodes. 
As a result, the service relationships among UAVs can directly 
impact the overall performance of the network. Therefore, this 
paper focuses on the computation offloading problem in hierarchical 
UAV networks.

A hierarchical aerial computing system consists of ground 
terminals and various types of vehicles, each with a different 
level of computational resources. In [9], the authors consider 
a hierarchical airborne computing framework that includes user 
devices, UAVs, and high-altitude platforms (HAP), and propose 
a deep reinforcement learning-based trajectory optimization and 
task offloading algorithm to maximize network resource utilization. 
In [10], the authors proposed an algorithm based on Multi-
agent proximal policy optimization (MAPPO) to maximize the 
amount of computational tasks while satisfying the quality of 
service requirements, taking into account the limited resources 
and coverage of UAVs. In [11], a hierarchical framework based 
on the Stackelberg game was proposed to address the energy 
consumption problem of aerial computing networks from a 
distributed perspective. In [12], UAVs and HAPs are considered 
as aerial edge computing platforms. The authors consider the fixed 
coverage area of UAVs and propose a multi-agent deep deterministic 
policy gradient (MADDPG) algorithm for user association, partial 
offloading and communication resource allocation to maximize 
the IoT service satisfaction while minimizing their total energy 
consumption. In [8], the authors formulate a discrete Stackelberg 
game with multiple leaders and followers for a hierarchical multi-
coalition UAV MEC network to achieve joint computational 
offloading for multiple UAVs. Although the above work investigates 
the computational offloading problem for airborne hierarchical 
computing, it ignores the service requirements of UAVs with 
different roles in the UAV network.

In this paper, we address the task offloading decision-making 
problem between UAVs by adopting a matching game approach. 
First, the task offloading problem is analyzed using matching theory 
and game theory, and a multi-objective optimization problem is 
formulated based on the benefits of each party. Second, the problem 
is modeled as a bilateral one-to-many matching game to analyze the 
interactions among UAVs. The construction of preference lists for 
each participant is a key step in solving the UAV-to-task matching 
problem, as the objective function and multiple constraints must 
be implicitly reflected in the preference lists. Additionally, since 
offloading decisions between UAVs may alter these preference 
lists, this phenomenon is referred to as an externality. Finally, 
to handle the challenge of dynamic preference lists, we propose 
stable matching algorithms that aim to achieve stable task-to-UAV 

assignments while balancing the interests of UAVs. Specifically, the 
main contributions of this paper are summarized as follows. 

• We propose a hierarchical computing offloading framework 
involving multiple UAVs and multiple tasks. In this 
computational framework, the benefits of each hierarchical 
UAV are not only considered, but also the service requirements 
of the computational tasks.
• The optimization problem is modeled as a one-to-many 

matching game between a set of tasks and UAVs. Meanwhile, 
a task offloading algorithm based on bilateral matching is 
proposed, which can effectively realize the allocation of UAV 
computing tasks.
• The effectiveness of the proposed algorithm is verified through 

simulations, and the performance of different algorithms is 
evaluated based on numerical results. In addition, the impact of 
system parameters, such as UAV computing power, on overall 
system performance is also analyzed.

The rest of the paper is organized as follows. The system model 
and problem formulation are given in Section 2. In Section 3, a 
matching game based solution method is proposed. Numerical 
simulations given in Section 4 validate the effectiveness of the 
proposed scheme. Finally, Section 5 concludes the paper. 

2 System model and problem 
formulation

In this section, we introduce the network model, 
communication model, energy consumption model, UAV utility 
function and problem formulation. For a clear understanding 
of nations in this paper, their detailed descriptions are 
provided in Table 1.

2.1 Network model

The network architecture of the multi-layer UAV-assisted edge 
computing system considered in this paper is shown in Figure 1, 
which consists of a top layer, an middle layer and a lower layer. The 
top layer consists of M UAVs, which are represented by the set M =
{1,2,….,m}. The middle layer consists of N UAVs, denoted by the 
set N = {1,2,….,n}. The lower layer mainly consists of some ground 
terminal devices. In this hierarchical architecture, the terminal 
devices have no computing capability, and the UAVs in the middle 
layer are responsible for collecting data from terminals within their 
service coverage areas and dividing computing tasks based on the 
collected data. Additionally, the UAV in the top layer acts as a 
stable aerial base station. To facilitate the differentiation between 
the different spatial layers of UAVs, we define the UAVs located in 
the middle layer as data collection UAVs (DCUAVs) and the UAVs 
located in the top layer as computational UAVs (CUAVs), based on 
their functional characteristics. It is noted that rotary wing UAVs 
are considered in the scheme, which are able to perform services 
in the air in a hovering manner. Therefore, the hierarchical aerial 
computing model in this paper is considered quasi-static [13–15]. 
All UAVs are equipped with edge computing servers, and CUAVs 
have more load capacity than DCUAVs. The middle-layer UAVs 
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TABLE 1  Description of key notation.

Notation Description

M The computational UAVs set.

N The data collection UAVs set.

φik The k-th computational task of DCUAV i ∈ N.

D The computational task size.

C The computational requirement to complete the task.

Tmax The maximum tolerable delay of the computational task.

R The reward that can be obtained by completing the 
computational task.

hmn The channel gain from UAV m to UAV n.

rmn The transmission rate between UAV m and UAV n.

(xm,ym,hm) The spatial position coordinates of UAV m.

X The offloading decision.

E The energy consumption.

t The task completion delay.

Un The utility function of DCUAV.

Um The utility function of CUAV.

FIGURE 1
System model.

can offload tasks to the top-layer UAVs to improve the efficiency of 
network services.

Let φik = {D,C,T
max,R} denote the k-th computational task of 

DCUAV i ∈ N, where D denotes the computational task size, C
denotes the computational requirement to complete the task, T max

denotes the maximum tolerable delay of the computational task, 
and R denotes the reward that can be obtained by completing the 
computational task. We assume that the computing tasks of the 
UAVs are atomic, i.e., the tasks are not splittable. The DCUAV 

can offload the computing tasks to the CUAV to improve the 
computational efficiency. The computational power of a CUAV is 
logically divided into homogeneous virtual resource units (VRU), 
where each VRU has a computational power called F [16]. For a 
CUAV, the number of the VRU, also known as its quota, is denoted 
by q. Consider the variability of UAV loads, so the number of VRUs 
and computational power may differ between UAVs. However, in the 
same CUAV, we consider that each VRU has the same computational 
power. Since a VRU can host a task, the maximum number of 
parallels of the CUAV regarding the task processing depends on q. 

2.2 Communication model

This paper primarily focuses on the computation task processing 
of DCUAVs, while the data collection aspect is not the main subject 
of consideration. Therefore, only the communication between 
DCUAV and CUAV is considered in this paper. Considering the 
height and maneuverability of UAVs, it is reasonable to assume that 
the wireless link between UAVs and CUAVs mainly consists of Line-
of-Sight (LoS) communication links [17–20]. Therefore, the channel 
gain from UAV m to UAV n can be expressed as

hmn =
h0

(Hm −Hn)
2 + (xm − xn)

2 + (ym − yn)
2 , (1)

where h0 denotes the channel gain at the reference distance for 
1m, and (xm,ym,Hm) and (xn,yn,Hn) denote the spatial position 
coordinates of UAV m and UAV n, respectively. Similar to [21], the 
transmission rate between UAV m and UAV n can be expressed as

rmn = Blog2(1+
pnhmn

N0
),m ∈M,n ∈ N, (2)

where Bmn denotes the channel bandwidth between UAVs, pm
denotes the transmission power of UAV m, and N0 denotes the 
power noise. 

2.3 Energy consumption model

In this paper, we define the energy consumption for completing 
a task computation from the perspective of a DCUAV and a CUAV, 
respectively. For each computing task, the DCUAV needs to decide 
whether to process the task locally or offload the task to a CUAV with 
idle computing resources for execution. The offloading decision is 
denoted by the binary variable Xikj ∈ {0,1}, where i ∈M, k ∈ K, j ∈ N, 
where Xikj = 1 denotes that the DCUAV i decided to offload its k-th 
task to the CUAV j, and conversely, X = 0,denotes that the DCUAV 
chose to be computing locally. Each task can only be processed by 
one UAV or on a local device.

When the DCUAV chooses to process task k locally, the 
energy consumption to accomplish the task computation mainly 
depends on the local computation energy consumption. The local 
computation energy consumption usually depends on the hardware 
performance (e.g., processor speed) of the UAV, the complexity 
of the task, etc. Here, we consider that different devices have 
different processing speeds, and the power consumption of the 
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device processor is proportional to the speed. Therefore, the DCUAV 
local computational energy consumption is expressed as

Eloc
i = γC f2

i , i ∈ N, (3)

where γ denotes the capacitance parameter of the DCUAV processor 
and fi denotes the local computing power of the DCUAV.

Similar to the DCUAV local computation, the computational 
energy consumption of CUAV can be expressed as

Ec
j = γCF2, j ∈M, (4)

where F denotes the computational power of the VRU in the CUAV.
When the DCUAV offloads the computing task k to the 

CUAV, its energy consumption mainly consists of the DCUAV’s 
transmission energy and the CUAV’s computing energy. The energy 
consumption of UAV i offloading task k to UAV j can be expressed as

Eoff
i = pi

D
rij
+ γCF2, i ∈ N, j ∈M, (5)

Based on the above analysis, the energy consumption of a 
DCUAV includes the computational energy consumption for locally 
executing a task, or the transmission energy consumption for 
offloading a task. Therefore, the energy consumption of the CDUAV 
with respect to task k can be expressed as

etask
ikj (Xikj,X−ikj) =

{
{
{

Xik0Eloc
ik0, j = 0

XikjE
off
ikj, j ∈M

(6)

The total delay with respect to task k can be expressed as

ttask
ikj (Xikj,X−ikj) =

{{{{
{{{{
{

Xik0
C
fi
, j = 0

Xikj(
D
rij
+ C

F
), j ∈M

(7)

 

2.4 The UAV utility function

Based on the delay requirement T of the computational task and 
the actual task completion delay t, consider the delay satisfaction of 
the computational task as a negative exponential curve [22], which 
can be expressed as

ρ =
{
{
{

1, T ⩾ t
2
9
+ 7

9
e−0.3005ν, T < t

(8)

where ν = t−T. To ensure satisfactory task computation while 
minimizing the energy consumption of the DCUAV, we define the 
satisfactory utility function Un of the DCUAV as

Un,m = λρn,m − ξEoff
n,m, (9)

where λ and ξ denote the delay and energy consumption weight 
factors, respectively. The values of λ and ξ depend on the type of 
computational tasks and business requirements. For delay-sensitive 
services, appropriately increasing λ can guide the selection of 
CUAVs with sufficient computational resources, thereby improving 
delay satisfaction.

The benefit gained by a CUAV from performing task k is 
defined as the difference between the task processing gain and the 
computational energy consumption, and can be expressed as

Uk,m = Rk − δEc
m, (10)

where δ denotes the weighting factor for computing energy 
consumption. 

2.5 Problem formulation

Based on the above analysis, the objective of DCUAV is to 
maximize its utility while considering the task delay constraints. 
Therefore, the optimization problem of DCUAV can be written as,

maxX Un

s.t.C1:Xikj
Cik

fi
+ (1−Xikj)(

Dik

rikj
+

Cik

F
) ≤ Tmax

ik ,

C2:Xikj ∈ {0,1} ∀j ∈M∪ {0} ,

C3:
M

∑
j=0

Xikj ≤ 1, i ∈ N,

(11)

where C1 denotes the delay constraint of the computing task, 
C2 denotes the task offloading policy constraint, and C3 denotes 
the selection of at most one UAV to be offloaded for each 
computing task.

The objective of CUAV is to maximize its utility while taking 
into account the computing service constraints. The optimization 
problem of CUAV can be written as,

maxX Um

s.t.C1:
N

∑
i=1

K

∑
k=1

Xikj ≤ qj, j ∈M,

C2:Xikj ∈ {0,1} ∀j ∈M∪ {0} ,

C3:
M

∑
j=0

Xikj = 1, i ∈ N,

(12)

where C1 denotes the constraint on the number of task loads for a 
CUAV, C2 denotes the constraint on task offloading, and C3 denotes 
that each computing task is allowed to offload to only one CUAV.

Our overall goal is to maximize the utility of both DCUAV 
and CUAV. Since the two optimization problems have the same 
solution under the same variables, they can be expressed as a joint 
optimization problem, denoted as

maxX Un & maxX Um

s.t.C1:Xikj
Cik

fi
+ (1−Xikj)(

Dik

rikj
+

Cik

F
) ≤ Tmax

ik ,

C2:
N

∑
i=1

K

∑
k=1

Xikj ≤ qj, j ∈M,

C3:Xikj ∈ {0,1} ∀j ∈M∪ {0} ,

C4:
M

∑
j=0

Xikj = 1, i ∈ N,

(13)

The above optimization problem is an NP-hard problem, 
and the optimal solution can be found by searching all possible 

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2025.1634359
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Li et al. 10.3389/fphy.2025.1634359

offloading decisions. To solve this problem efficiently with low 
complexity, a task offloading strategy based on matching game 
is proposed considering that the computing task of DCUAV is 
independent from CUAV. 

3 The task offloading policy based on 
bidirectional matching

In this section, we first model the above task offloading problem 
as a bilateral one-to-many matching game. Then, the preference 
profiles of the players are considered and a matching algorithm 
is proposed to realize task offloading. Finally, the stability of the 
proposed algorithm is analyzed.

Based on matching game theory, UAVs can form several task 
alliances according to different objectives. In matching games, each 
participant can select the optimal matching object based on their 
own resource status (such as remaining computing power and 
battery capacity) and task attributes (such as computing power and 
delay sensitivity). At the same time, the matching game can also 
support distributed solutions in hierarchical air computing. 

3.1 Matching game concepts

Let we transform the task offloading problem into a bilateral 
one-to-many matching game. In the matching game model, it is 
assumed that both DCUAVs and CUAVs are rational, self-interested 
participants who make matching decisions based on their personal 
preferences. To model the optimization problem as a one-to-many 
matching game with resource and delay constraints, we consider the 
set of tasks Γ = {1,2,…,n} × {1,2,…,K}, and the set of CUAVs M =
{1,2,…m} as the two sides of the participants. It is worth noting that 
bilateral matching denotes that a task is accepted by a given CUAV 
only if that CUAV recognizes that task. Next, we give the matching 
game definition as shown in the following definition.

Definition 1: In the scenario considered in this paper, the bilateral 
matching game is defined by a tuple G (Γ,N,≻), where Γ denotes 
the set of computational tasks, N denotes the set of CUAVs and 
≻ denotes the preference of a task (CUAV) with respect to a 
CUAV (task). 

Definition 2: Given two disjoint sets Γ and M, a one-to-many 
matching function Φ is defined such that all i and j satisfy the 
following relationship:

1) Φ (τ) ⊆ {m} and Φ (τ) ∈ {0,1} ;

2) Φ (m) ⊆ {τ} and Φ (τ) ≤ qm,τ ∈ Γ,m ∈M;

3) Φ (τ) =m⇔ Φ (m) = τ,τ ∈ Γ,m ∈M.

(14)

In Definition 2, Condition 1 denotes that each computational 
task is offloaded onto at most one CUAV, Condition 2 denotes the 
maximum number of offloaded tasks that each CUAV can accept, 
which corresponds to C2 of Problem P3, and Condition 3 denotes 
that if a task τ ∈ Γ matches a CUAV n, then the CUAV n also matches 
to a task τ. The output of the matching game as defined in this paper 
is the set of matching pairs between a task and a CUAV, i.e., ⟨τ,n⟩. 

3.2 Preference profiles of players

For each player, the preference profile is used to rank the other 
players. In the proposed game, tasks and CUAVs can construct their 
preference lists with available information [23], respectively.

Definition 3: The preference of each task for different CUAVs can 
be defined as

Pτ (m) = λρ+ ξ 1
rm,τ
,τ ∈ Γ, (15)

The preference function based on Definition 3 is designed to 
reduce the energy consumption and delay required to complete the 
tasks. Each task prefers to associate with a CUAV at the maximum 
transmission rate. Based on the preference function, the task 
prioritizes the CUAV with larger bandwidth, more computational 
resources, and closer proximity.

Definition 4: The preferences of each CUAV for different tasks can 
be defined as

Pm (τ) = Rτ − δ 1
C
,m ∈M, (16)

For CUAV, computing tasks with low complexity can save its 
computational energy consumption. Meanwhile, tasks with high 
rewards can increase service revenue. Therefore, CUAV prefers tasks 
with high rewards and requiring fewer CPU cycles. 

3.3 Algorithm design

The matching game-based task offloading algorithm 
is shown in Algorithm 1. In the beginning of the algorithm, all 
tasks are unmatched. First, each computing task constructs a 
preference list based on network information and sorts the list. 
Similarly, CUAV constructs their own preference list based on the 
network information and completes the sorting of the list. Then, 
the computing task selects the CUAV based on the preference list, 
and the CUAV selects the computing task based on the preference. 
Finally, the algorithm stops iterating until all tasks are matched.

3.4 Algorithm analysis

In this subsection, we analyze the stability of the proposed 
algorithm in a theoretical way to evaluate the principle and 
performance of the algorithm.

The goal of Algorithm 1 is to find a stable offloading decision 
making both parties satisfied, where stability is a key concept in 
matching theory [24]. In the stability of the algorithm, we first give 
the relevant definitions as follows.

Definition 5: In the matching mechanism, a pair (τ,m) ,τ ∈ Γ,m ∈
Mis defined as a blocking pair if and only if UAV m strictly 
prefers task τ to at least one of its currently assigned tasks, and 
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Algorithm 1. Matching game-based task offloading algorithm.

task τ strictly prefers UAV m to at least one of its currently
assigned UAVs. 

Definition 6: A match φ is stable if there are no blocking pairs. 

Theorem 1: The matching result obtained by Algorithm 1 is stable. 
Proof: Assuming that the matches obtained by Algorithm 1 

are unstable, there exists a pair of matching results (v,e)that 
prefer each other over the current match. Then there are two 
cases: 1) task v never sends a match request to CUAV e, which 
means that task v prefers the current match to CUAV e, which 
contradicts the hypothesis; and 2) task v sends a match request to 
CUAV e, but it is rejected. This means that e prefers its current 
match to v, which is contradictory to the hypothesis. Therefore, 
there exists no such pair of matching results (v,e) and hence 
the matching obtained by the algorithm is stable. According to 
Definition 5, there is no blocking pair of matching results obtained 
by Algorithm 1. According to Definition 6, the matching results 
obtained by Algorithm 1 are stable. 

4 Performance evaluation

4.1 Simulation settings

We consider that all UAVs are randomly distributed in an 
aerial target area of 2000m× 2000m, where DCUAVs fly at an 
altitude of 100m and CUAVs fly at an altitude of 200 m. Specifically, 
DCUAVs fly at a low altitude to collect data from their coverage 
area and generate the corresponding computational tasks, and 
CUAVs fly at a high altitude to provide computational services. 
The channel bandwidth between the UAVs is considered to be 
20MHz, and the transmit power is 0.5W. The computing power 
of the DCUAV is uniformly set to 0.5GHz, and that of the CUAV 
is sized at [5,10] GHz. The input data size D and the required 
CPU cycles C of each computational task are uniformly distributed 
over [1,3]Mb and [0.1,1] Gcycles, respectively. The default number 

FIGURE 2
Total utility of computing tasks under different number of DCUAVs.

FIGURE 3
Total CUAV utility under different number of DCUAVs.

of CUAVs is 4 with quota [3,1,2,4] and the number of tasks per
DCUAV is 2.

In addition, to further evaluate the advantages of the models 
and algorithms designed in this paper, we use the following baseline 
task offloading algorithms for comparative analysis: 1) Randomized 
offloading (RO) strategy: this strategy randomly assigns tasks 
to CUAVs based on the number of computing tasks, offloading 
constraints, and the load constraints of CUAVs; 2) Greedy task 
utility (GTU) strategy: in this strategy, the computing task selects 
the node that maximizes the utility of the computing task for 
matching, i.e., the computing task selects the node with the 
highest utility according to Equation 9; 3) Greedy computational 
benefit (GCB) strategy: in this strategy, the CUAV selects the 
task with the largest computing gain for matching, i.e., the 
CUAV selects the computing task with the largest gain according
to Equation 10.
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FIGURE 4
Total utility of computing tasks under different bandwidth sizes.

FIGURE 5
Total CUAV utility under different bandwidth sizes.

4.2 Performance evaluation

Figure 2 illustrates the trend of computing task utility with 
different number of DCUAVs. In Figure 2, the computing task 
utility increases with the increase with the number of DCUAVs. 
This is because as the number of DCUAVs increases, the number 
of computing tasks also increases gradually and thereby the total 
utility of computing tasks also increases. It can be observed that the 
algorithm proposed in this paper is able to achieve better computing 
task benefits as compared to other strategies. This is because the 
task offloading strategy based on the matching game considers the 
benefits of each computing task during the matching process and 
makes each computing task achieve better benefits under satisfied 
constraints. Figure 3 illustrates the trend of CUAV benefits under 
different numbers of CUAVs. In Figure 3, the overall benefit of 
CUAV increases with the number of DCUAVs. This is because as 
the number of DCUAVs increases, the number of computing tasks 
also increases gradually and the CUAV is able to provide computing 

FIGURE 6
Total utility of computing tasks under different transmission 
power sizes.

FIGURE 7
Total utility of computing tasks under different transmission 
power sizes.

services for more computing tasks. It can be observed that the 
algorithm proposed in this paper is able to achieve better CUAV 
benefits. This is because the algorithm optimizes the computational 
benefits of the CUAV. Meanwhile, the loss of total computational 
benefit is caused to balance the benefits between the objectives.

We analyze the effect of bandwidth size on the utility of 
computing tasks and the benefits of CUAVs, where the number of 
DCUAVs is considered to be 5. As shown in Figure 4, the total utility 
of the computing tasks increases as the bandwidth increases. This is 
because the increase in bandwidth increases the transmission rate 
between the UAVs, which reduces the transmission delay of the 
computing task. It can be observed that the algorithm proposed 
in this paper is able to achieve a higher utility for the computing 
tasks. The computing task utility of the algorithm proposed in 
this paper is lower than that of the GTU strategy because the 
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FIGURE 8
Total utility of computing tasks in UAV swarms of different sizes.

FIGURE 9
Total CUAV utility in UAV swarms of different sizes.

benefit of the CUAV needs to be considered in the matching game 
process. From Figure 5, it can be seen that the benefit of CUAV is 
not affected by the size of bandwidth. This is that the increase in 
bandwidth does not change the task offloading strategy, so the CUAV 
benefit does not change. The CUAV benefit changes dynamically 
because the offloading strategy of RO strategy is randomized for
each time.

In addition, we analyze the effect of DCUAV transmission 
power on the computing task utility and CUAV benefits, where 
the number of DCUAVs is considered to be 5. As shown in 
Figure 6, the total utility of the computing task increases with the 

increase of DCUAV transmission power. This is because the increase 
in the DCUAV transmission power increases the transmission 
rate between the UAVs, which reduces the transmission delay of 
the computational task. It can be observed from Figure 7 that 
the CUAV benefits are not affected by the DCUAV transmission 
power. The DCUAV transmission power does not affect the task 
offloading strategy, so there is no change in the CUAV benefits. 
Meanwhile, the computing task benefit of the algorithm proposed 
in this paper is lower than that of the GCB strategy because the 
computing task utility needs to be considered in the matching game
process.
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To further evaluate the performance of the proposed algorithm, 
we consider a large-scale UAV swarm scenario where each DCUAV 
is assigned a single computing task and the swarm consists of 10 
CUAVs. In this scenario, a learning-based task offloading (LTO) 
algorithm with a ε-greedy strategy is employed as the baseline for 
comparison [25].

Figure 8 illustrates the utility of computational tasks for 
UAV clusters of different sizes. It can be seen that for UAV 
swarms of different sizes, significant differences exist in the 
total utility of computational tasks among the algorithms. 
Overall, the proposed algorithm consistently achieves the 
highest utility, and its advantage becomes more pronounced 
as the number of UAVs increases, demonstrating good 
scalability and stability. Figure 9 depicts the CUAV utility 
under different cluster sizes. The CUAV utility values obtained 
by all methods remain high and relatively stable as the 
number of drones increases. Compared to other methods, our 
proposed algorithm achieves higher CUAV utility, indicating 
superior task allocation and resource utilization. Based on 
the above analysis, the proposed algorithm demonstrates 
significant advantages in enhancing both the utility of 
drone swarm computing tasks and CUAV service utility, 
demonstrating its suitability for large-scale UAV swarm computing
scenarios. 

5 Conclusion

In this paper, we investigate hierarchical aerial computing 
systems, in which network services are provided to ground-
based IoT devices through collaboration among UAVs. First, 
we propose a hierarchical computing offloading framework 
for multiple UAVs. To implement this framework, the task 
offloading process is modeled as a distributed multi-objective 
maximization problem. Second, we consider that the complexity 
of the task offloading problem increases with the problem 
size, making it difficult to find a feasible solution efficiently. 
To address this challenge and obtain a solution in polynomial 
time, the offloading problem is formulated as a one-to-many 
matching game between computational tasks and CUAVs. 
Subsequently, we propose a matching game-based task offloading 
algorithm and provide a rigorous theoretical analysis. Finally, 
to verify the performance of the proposed solution, we present 
a comparison with greedy and random strategies. Simulation 
results demonstrate the correctness and effectiveness of the 
proposed algorithm, particularly in delivering low-delay computing 
services for IoT applications in hierarchical aerial computing
systems.
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