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In unmanned aerial vehicle (UAV) networks, efficient and reliable cooperation
among UAVs is crucial for enabling UAV-assisted internet of things (loT)
services. In this paper, we consider a hierarchical aerial computing framework
composed of multiple UAVs that assume different network roles based on their
capabilities, providing data collection and computation services for diverse loT
applications. We then formulate a task offloading problem subject to delay
and resource constraints, taking into account the service revenue requirements
and computational demands of different UAVs. The problem aims to meet the
service demands of UAVs while satisfying multiple constraints related to task
delay and resource availability, resulting in an integer programming problem
that is challenging to solve. Considering the complexity of exhaustive search,
we propose a matching game-based solution algorithm to obtain the optimal
task offloading decision among UAVs and prove that the algorithm is stable.
Simulation results show that the algorithm proposed in this paper outperforms
the benchmark scheme in terms of service benefits.

hierarchical aerial computing, match game, UAYV, task offloading, edge computing

1 Introduction

In recent years, Unmanned Aerial Vehicles (UAVs), due to their advantages such as
low cost, high altitude, and ease of deployment [1], have been widely applied in various
scenarios, such as Internet of vehicle [1] and marine IoT [2]. Depending on the service
requirements of different network scenarios, UAVs can play various roles in the network
[3]. UAVs can act as end-users and offload tasks to edge computing servers on the ground
for computation [4]. A UAV can be equipped with an edge server to function as an airborne
MEC server, assisting ground-based end devices with computation tasks [5]. The UAV can
serve as an airborne relay node that transmits user tasks to terrestrial edge servers (?). The
UAV can be used as a complement to the ground network to provide effective coverage in
areas where the ground infrastructure is unavailable or overloaded.

Existing IoT devices usually have very limited computational power and cannot handle
complex computational tasks [6]. UAVs can collect data in close proximity to sensors
and help process it in a timely manner [7]. Especially in complex, harsh, or remote
environments, UAVs serve as ideal tools for data collection. Meanwhile, edge computing
brings computational resources closer to devices and helps relieve the computational
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burden on the network. By equipping UAVs with edge computing
servers, IoT devices with limited computational power can oftload
their computationally intensive tasks to the UAV’s, thereby reducing
computational pressure and improving the overall performance of
the network [8].

Considering that UAVs in a UAV network may have different
capabilities, this can lead to a hierarchical structure. For example,
UAVs with abundant computational resources can assist other
UAVs in completing computational tasks. Additionally, due to
individual differences among UAVs, they can play various roles in
heterogeneous networks. Depending on the service requirements,
UAVs can function as computation servers or data collection nodes.
As a result, the service relationships among UAVs can directly
impact the overall performance of the network. Therefore, this
paper focuses on the computation offloading problem in hierarchical
UAV networks.

A hierarchical aerial computing system consists of ground
terminals and various types of vehicles, each with a different
level of computational resources. In [9], the authors consider
a hierarchical airborne computing framework that includes user
devices, UAVs, and high-altitude platforms (HAP), and propose
a deep reinforcement learning-based trajectory optimization and
task offloading algorithm to maximize network resource utilization.
In [10], the authors proposed an algorithm based on Multi-
agent proximal policy optimization (MAPPO) to maximize the
amount of computational tasks while satisfying the quality of
service requirements, taking into account the limited resources
and coverage of UAVs. In [11], a hierarchical framework based
on the Stackelberg game was proposed to address the energy
consumption problem of aerial computing networks from a
distributed perspective. In [12], UAVs and HAPs are considered
as aerial edge computing platforms. The authors consider the fixed
coverage area of UAVs and propose a multi-agent deep deterministic
policy gradient (MADDPG) algorithm for user association, partial
offloading and communication resource allocation to maximize
the IoT service satisfaction while minimizing their total energy
consumption. In [8], the authors formulate a discrete Stackelberg
game with multiple leaders and followers for a hierarchical multi-
coalition UAV MEC network to achieve joint computational
offloading for multiple UAVs. Although the above work investigates
the computational offloading problem for airborne hierarchical
computing, it ignores the service requirements of UAVs with
different roles in the UAV network.

In this paper, we address the task offloading decision-making
problem between UAVs by adopting a matching game approach.
First, the task offloading problem is analyzed using matching theory
and game theory, and a multi-objective optimization problem is
formulated based on the benefits of each party. Second, the problem
is modeled as a bilateral one-to-many matching game to analyze the
interactions among UAVs. The construction of preference lists for
each participant is a key step in solving the UAV-to-task matching
problem, as the objective function and multiple constraints must
be implicitly reflected in the preference lists. Additionally, since
offloading decisions between UAVs may alter these preference
lists, this phenomenon is referred to as an externality. Finally,
to handle the challenge of dynamic preference lists, we propose
stable matching algorithms that aim to achieve stable task-to-UAV
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assignments while balancing the interests of UAVs. Specifically, the
main contributions of this paper are summarized as follows.

e We propose a hierarchical computing offloading framework
involving multiple UAVs and multiple tasks. In this
computational framework, the benefits of each hierarchical
UAYV are not only considered, but also the service requirements
of the computational tasks.

e The optimization problem is modeled as a one-to-many
matching game between a set of tasks and UAVs. Meanwhile,
a task offloading algorithm based on bilateral matching is
proposed, which can effectively realize the allocation of UAV
computing tasks.

o The effectiveness of the proposed algorithm is verified through
simulations, and the performance of different algorithms is
evaluated based on numerical results. In addition, the impact of
system parameters, such as UAV computing power, on overall
system performance is also analyzed.

The rest of the paper is organized as follows. The system model
and problem formulation are given in Section 2. In Section 3, a
matching game based solution method is proposed. Numerical
simulations given in Section 4 validate the effectiveness of the
proposed scheme. Finally, Section 5 concludes the paper.

2 System model and problem
formulation

In this introduce the

communication model, energy consumption model, UAV utility

section, we network model,
function and problem formulation. For a clear understanding
of nations in this paper, their detailed descriptions are
provided in Table 1.

2.1 Network model

The network architecture of the multi-layer UAV-assisted edge
computing system considered in this paper is shown in Figure I,
which consists of a top layer, an middle layer and a lower layer. The
top layer consists of M UAVs, which are represented by the set M =
{1,2,....,m}. The middle layer consists of N UAVs, denoted by the
set N = {1,2,....,n}. The lower layer mainly consists of some ground
terminal devices. In this hierarchical architecture, the terminal
devices have no computing capability, and the UAVs in the middle
layer are responsible for collecting data from terminals within their
service coverage areas and dividing computing tasks based on the
collected data. Additionally, the UAV in the top layer acts as a
stable aerial base station. To facilitate the differentiation between
the different spatial layers of UAVs, we define the UAVs located in
the middle layer as data collection UAVs (DCUAVs) and the UAVs
located in the top layer as computational UAVs (CUAVs), based on
their functional characteristics. It is noted that rotary wing UAVs
are considered in the scheme, which are able to perform services
in the air in a hovering manner. Therefore, the hierarchical aerial
computing model in this paper is considered quasi-static [13-15].
All UAVs are equipped with edge computing servers, and CUAV's
have more load capacity than DCUAVs. The middle-layer UAVs
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TABLE 1 Description of key notation.

Notation Description
M The computational UAVs set.
N The data collection UAVs set.
Pix The k-th computational task of DCUAV i € N.
D The computational task size.
C The computational requirement to complete the task.
e The maximum tolerable delay of the computational task.
R The reward that can be obtained by completing the
computational task.
Ry The channel gain from UAV m to UAV n.
[ The transmission rate between UAV m and UAV n.
(%o Yo o) The spatial position coordinates of UAV m.
X The offloading decision.
E The energy consumption.
t The task completion delay.
U, The utility function of DCUAV.
U, The utility function of CUAV.
R
b
DCUVA™Ff™ . . .l
L. .
S e -
y X ‘k ' ;
. ﬁ | | terminal device ~ .*°
e i
FIGURE 1
System model.

can offload tasks to the top-layer UAV's to improve the efficiency of
network services.

Let ¢, = {D,C, T™%, R} denote the k-th computational task of
DCUAV i€ N, where D denotes the computational task size, C
denotes the computational requirement to complete the task, T
denotes the maximum tolerable delay of the computational task,
and R denotes the reward that can be obtained by completing the
computational task. We assume that the computing tasks of the
UAVs are atomic, i.e., the tasks are not splittable. The DCUAV
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can offload the computing tasks to the CUAV to improve the
computational efficiency. The computational power of a CUAV is
logically divided into homogeneous virtual resource units (VRU),
where each VRU has a computational power called F [16]. For a
CUAY, the number of the VRU, also known as its quota, is denoted
by g. Consider the variability of UAV loads, so the number of VRUs
and computational power may differ between UAVs. However, in the
same CUAV, we consider that each VRU has the same computational
power. Since a VRU can host a task, the maximum number of
parallels of the CUAV regarding the task processing depends on g.

2.2 Communication model

This paper primarily focuses on the computation task processing
of DCUAVs, while the data collection aspect is not the main subject
of consideration. Therefore, only the communication between
DCUAV and CUAV is considered in this paper. Considering the
height and maneuverability of UAVs, it is reasonable to assume that
the wireless link between UAV's and CUAV's mainly consists of Line-
of-Sight (LoS) communication links [17-20]. Therefore, the channel
gain from UAV m to UAV n can be expressed as

hO
(Hm - Hn)2 + (xm _xn)z + (ym _yn)z )

where h; denotes the channel gain at the reference distance for

mn

h ey

Im, and (x,,,y,,,H,,) and (x,,y,,H,) denote the spatial position
coordinates of UAV m and UAV n, respectively. Similar to [21], the
transmission rate between UAV m and UAV # can be expressed as

@)

where B, denotes the channel bandwidth between UAVs, p,
denotes the transmission power of UAV m, and N, denotes the
power noise.

2.3 Energy consumption model

In this paper, we define the energy consumption for completing
a task computation from the perspective of a DCUAV and a CUAV,
respectively. For each computing task, the DCUAV needs to decide
whether to process the task locally or offload the task to a CUAV with
idle computing resources for execution. The offloading decision is
denoted by the binary variable Xj; € {0,1}, where i € M,k € K, j € N,
where X;; = 1 denotes that the DCUAV i decided to offload its k-th
task to the CUAV j, and conversely, X = 0,denotes that the DCUAV
chose to be computing locally. Each task can only be processed by
one UAV or on a local device.

When the DCUAV chooses to process task k locally, the
energy consumption to accomplish the task computation mainly
depends on the local computation energy consumption. The local
computation energy consumption usually depends on the hardware
performance (e.g., processor speed) of the UAV, the complexity
of the task, etc. Here, we consider that different devices have
different processing speeds, and the power consumption of the
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device processor is proportional to the speed. Therefore, the DCUAV
local computational energy consumption is expressed as

I .
EX =yCfi,i€N, (3)

where y denotes the capacitance parameter of the DCUAV processor
and f; denotes the local computing power of the DCUAV.

Similar to the DCUAV local computation, the computational
energy consumption of CUAV can be expressed as

E = yCF,j € M, (4)

where F denotes the computational power of the VRU in the CUAV.

When the DCUAV offloads the computing task k to the
CUAYV, its energy consumption mainly consists of the DCUAV’s
transmission energy and the CUAV’s computing energy. The energy
consumption of UAV i offloading task k to UAV j can be expressed as

Efﬂzpi%wcﬁ,ieN,jeM, (5)

Based on the above analysis, the energy consumption of a

DCUAY includes the computational energy consumption for locally

executing a task, or the transmission energy consumption for

offloading a task. Therefore, the energy consumption of the CDUAV
with respect to task k can be expressed as

loc s
task (Xk X ) ) _ erOEtkO’ j=0 6)
tk] ikj>“*—ikj ) — off .
XyEyp  jeM
The total delay with respect to task k can be expressed as
C .
XikOJ_(’ j=0
task _ i
ti (X X_ag) = D C @
Xyl =+2 ), jeM
rij F

2.4 The UAV utility function

Based on the delay requirement T of the computational task and
the actual task completion delay ¢, consider the delay satisfaction of
the computational task as a negative exponential curve [22], which
can be expressed as

—

T>t

p= ®)
+ 7 03005y

O |
N3]

where v=t_T. To ensure satisfactory task computation while
minimizing the energy consumption of the DCUAYV, we define the
satisfactory utility function U,, of the DCUAV as

nm_Apnm EEnm’ (9)

where A and & denote the delay and energy consumption weight
factors, respectively. The values of A and & depend on the type of
computational tasks and business requirements. For delay-sensitive
services, appropriately increasing A can guide the selection of
CUAVs with sufficient computational resources, thereby improving
delay satisfaction.
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The benefit gained by a CUAV from performing task k is
defined as the difference between the task processing gain and the
computational energy consumption, and can be expressed as

Uk,m :Rk—(SEf,n, (10)

where § denotes the weighting factor for computing energy
consumption.

2.5 Problem formulation

Based on the above analysis, the objective of DCUAV is to
maximize its utility while considering the task delay constraints.
Therefore, the optimization problem of DCUAV can be written as,

maxy Un
Dy Cy
t.CLX, 1- ik 2k ) < max)
S. ikj f ( 1k])< rzkj F > ik o
C2:X i e{o 1} VjeMu{o},

C3:ZXZkJ_1 ieN,

where C1 denotes the delay constraint of the computing task,
C2 denotes the task offloading policy constraint, and C3 denotes
the selection of at most one UAV to be offloaded for each
computing task.

The objective of CUAV is to maximize its utility while taking
into account the computing service constraints. The optimization
problem of CUAV can be written as,

maxy U,

N K
s.t.Cl:Z Zsz] < qj,] €M,

=k , (12)
C2:Xy; €{0,1}  Vje MU{o},

M
C3:) Xy =LieN,

j=0

where C1 denotes the constraint on the number of task loads for a
CUAY, C2 denotes the constraint on task offloading, and C3 denotes
that each computing task is allowed to offload to only one CUAV.

Our overall goal is to maximize the utility of both DCUAV
and CUAV. Since the two optimization problems have the same
solution under the same variables, they can be expressed as a joint
optimization problem, denoted as

maxy U, & maxy U,

m
Dy Ci
stCle 1- X < ’+—>s7‘.‘“",
1kj f ( 1]) rzkj F ik
N K
C2y Y Xy <qpjeM, (13)
i=1k=1
C3:X i E{Ol} Vj e MU {0},
M
C4 Y Xyi=1LieN,
j=0

The above optimization problem is an NP-hard problem,
and the optimal solution can be found by searching all possible
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offloading decisions. To solve this problem efficiently with low
complexity, a task offloading strategy based on matching game
is proposed considering that the computing task of DCUAV is
independent from CUAV.

3 The task offloading policy based on
bidirectional matching

In this section, we first model the above task offloading problem
as a bilateral one-to-many matching game. Then, the preference
profiles of the players are considered and a matching algorithm
is proposed to realize task offloading. Finally, the stability of the
proposed algorithm is analyzed.

Based on matching game theory, UAVs can form several task
alliances according to different objectives. In matching games, each
participant can select the optimal matching object based on their
own resource status (such as remaining computing power and
battery capacity) and task attributes (such as computing power and
delay sensitivity). At the same time, the matching game can also
support distributed solutions in hierarchical air computing.

3.1 Matching game concepts

Let we transform the task offloading problem into a bilateral
one-to-many matching game. In the matching game model, it is
assumed that both DCUAVs and CUAVSs are rational, self-interested
participants who make matching decisions based on their personal
preferences. To model the optimization problem as a one-to-many
matching game with resource and delay constraints, we consider the
set of tasks T' = {1,2,...,n} x {1,2,...,K}, and the set of CUAVs M =
{1,2,... m} as the two sides of the participants. It is worth noting that
bilateral matching denotes that a task is accepted by a given CUAV
only if that CUAV recognizes that task. Next, we give the matching
game definition as shown in the following definition.

Definition 1: In the scenario considered in this paper, the bilateral
matching game is defined by a tuple G(I,N,>), where I' denotes
the set of computational tasks, N denotes the set of CUAVs and
> denotes the preference of a task (CUAV) with respect to a
CUAV (task).

Definition 2: Given two disjoint sets I and M, a one-to-many
matching function @ is defined such that all i and j satisfy the
following relationship:

1) @(r)<{m} and @(1)€{0,1};
2) ©om)c{r} and @(1)<q,,Tel,meM; (14)
3) O(n)=moe d(m)=11€l,meM.

In Definition 2, Condition 1 denotes that each computational
task is offloaded onto at most one CUAV, Condition 2 denotes the
maximum number of offloaded tasks that each CUAV can accept,
which corresponds to C2 of Problem P3, and Condition 3 denotes
that if a task T € I’ matches a CUAV n, then the CUAV # also matches
to a task 7. The output of the matching game as defined in this paper
is the set of matching pairs between a task and a CUAYV, i.e., (7,n).
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3.2 Preference profiles of players

For each player, the preference profile is used to rank the other
players. In the proposed game, tasks and CUAV's can construct their
preference lists with available information [23], respectively.

Definition 3: The preference of each task for different CUAVs can
be defined as

PT(m):)Lp+£rL,T€ T, (15)

m,T

The preference function based on Definition 3 is designed to
reduce the energy consumption and delay required to complete the
tasks. Each task prefers to associate with a CUAV at the maximum
transmission rate. Based on the preference function, the task
prioritizes the CUAV with larger bandwidth, more computational
resources, and closer proximity.

Definition 4: The preferences of each CUAV for different tasks can
be defined as

P, (1) :RT—Sé,m e M, (16)

For CUAV, computing tasks with low complexity can save its
computational energy consumption. Meanwhile, tasks with high
rewards can increase service revenue. Therefore, CUAV prefers tasks
with high rewards and requiring fewer CPU cycles.

3.3 Algorithm design

The task
is shown in Algorithm 1. In the beginning of the algorithm, all

matching  game-based offloading  algorithm
tasks are unmatched. First, each computing task constructs a
preference list based on network information and sorts the list.
Similarly, CUAV constructs their own preference list based on the
network information and completes the sorting of the list. Then,
the computing task selects the CUAV based on the preference list,
and the CUAV selects the computing task based on the preference.

Finally, the algorithm stops iterating until all tasks are matched.

3.4 Algorithm analysis

In this subsection, we analyze the stability of the proposed
algorithm in a theoretical way to evaluate the principle and
performance of the algorithm.

The goal of Algorithm 1 is to find a stable oftfloading decision
making both parties satisfied, where stability is a key concept in
matching theory [24]. In the stability of the algorithm, we first give
the relevant definitions as follows.

Definition 5: In the matching mechanism, a pair (r,m),7€I,m €
Mis defined as a blocking pair if and only if UAV m strictly
prefers task 7 to at least one of its currently assigned tasks, and
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1 Input: Computing task set Ly, maten - UAV network information.

2 Output: The set of matching results for stable matching.

3 Calculate the preference list L, for computing task and sort the list in descending order;
4 Calculate the preference list L ; for CUAV and sort the list in descending order;

5 while Lyynaten 7 0 do

6 | for7inEypmaten do

7 L Select CUAV based on the first preference in their preference list;
8 | if g <q""" then
9 g =qj+1;
10 L‘;ms” t_ LJM“’W Ur:
1 L Lunmatch = Lunmatch \ 7 3
222 1y else
13 L= L}m‘“‘" Ut
14 Select the first q;"” tasks in L;;
15 accept_list = L; [O‘ q;"””];
16 rejectlist = L; [q}”““' +1, :} ;
7 Ly = L;mm\ accept_list ;
18 | Lunmatch = Lunmatch U reject_list ;

19 for 7in Lynmaten do

20 L Lr=L;\j

21 if L; = NULL then

2 L Task 7 selects local computing.

Algorithm 1. Matching game-based task offloading algorithm.

task 7 strictly prefers UAV m to at least one of its currently
assigned UAVs.

Definition 6: A match ¢ is stable if there are no blocking pairs.

Theorem 1: The matching result obtained by Algorithm 1 is stable.

Proof: Assuming that the matches obtained by Algorithm 1
are unstable, there exists a pair of matching results (v,e)that
prefer each other over the current match. Then there are two
cases: 1) task v never sends a match request to CUAV e, which
means that task v prefers the current match to CUAV e, which
contradicts the hypothesis; and 2) task v sends a match request to
CUAV e, but it is rejected. This means that e prefers its current
match to v, which is contradictory to the hypothesis. Therefore,
there exists no such pair of matching results (v,e) and hence
the matching obtained by the algorithm is stable. According to
Definition 5, there is no blocking pair of matching results obtained
by Algorithm 1. According to Definition 6, the matching results
obtained by Algorithm 1 are stable.

4 Performance evaluation
4.1 Simulation settings

We consider that all UAVs are randomly distributed in an
aerial target area of 2000m x 2000m, where DCUAVSs fly at an
altitude of 100/ and CUAV: fly at an altitude of 200 m. Specifically,
DCUAVs fly at a low altitude to collect data from their coverage
area and generate the corresponding computational tasks, and
CUAVs fly at a high altitude to provide computational services.
The channel bandwidth between the UAVs is considered to be
20MHz, and the transmit power is 0.5W. The computing power
of the DCUAV is uniformly set to 0.5GHz, and that of the CUAV
is sized at [5,10] GHz. The input data size D and the required
CPU cycles C of each computational task are uniformly distributed
over [1,3] Mb and [0.1,1] Geycles, respectively. The default number
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of CUAVSs is 4 with quota [3,1,2,4] and the number of tasks per
DCUAV is 2.

In addition, to further evaluate the advantages of the models
and algorithms designed in this paper, we use the following baseline
task offloading algorithms for comparative analysis: 1) Randomized
offloading (RO) strategy: this strategy randomly assigns tasks
to CUAVs based on the number of computing tasks, offloading
constraints, and the load constraints of CUAVs; 2) Greedy task
utility (GTU) strategy: in this strategy, the computing task selects
the node that maximizes the utility of the computing task for
matching, i.e., the computing task selects the node with the
highest utility according to Equation 9; 3) Greedy computational
benefit (GCB) strategy: in this strategy, the CUAV selects the
task with the largest computing gain for matching, i.e., the
CUAV selects the computing task with the largest gain according
to Equation 10.
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4.2 Performance evaluation

Figure 2 illustrates the trend of computing task utility with
different number of DCUAVs. In Figure 2, the computing task
utility increases with the increase with the number of DCUAVs.
This is because as the number of DCUAVSs increases, the number
of computing tasks also increases gradually and thereby the total
utility of computing tasks also increases. It can be observed that the
algorithm proposed in this paper is able to achieve better computing
task benefits as compared to other strategies. This is because the
task offloading strategy based on the matching game considers the
benefits of each computing task during the matching process and
makes each computing task achieve better benefits under satisfied
constraints. Figure 3 illustrates the trend of CUAV benefits under
different numbers of CUAVs. In Figure 3, the overall benefit of
CUAV increases with the number of DCUAVs. This is because as
the number of DCUAVSs increases, the number of computing tasks
also increases gradually and the CUAYV is able to provide computing
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services for more computing tasks. It can be observed that the
algorithm proposed in this paper is able to achieve better CUAV
benefits. This is because the algorithm optimizes the computational
benefits of the CUAV. Meanwhile, the loss of total computational
benefit is caused to balance the benefits between the objectives.

We analyze the effect of bandwidth size on the utility of
computing tasks and the benefits of CUAVs, where the number of
DCUAVSs is considered to be 5. As shown in Figure 4, the total utility
of the computing tasks increases as the bandwidth increases. This is
because the increase in bandwidth increases the transmission rate
between the UAVs, which reduces the transmission delay of the
computing task. It can be observed that the algorithm proposed
in this paper is able to achieve a higher utility for the computing
tasks. The computing task utility of the algorithm proposed in
this paper is lower than that of the GTU strategy because the
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benefit of the CUAV needs to be considered in the matching game
process. From Figure 5, it can be seen that the benefit of CUAV is
not affected by the size of bandwidth. This is that the increase in
bandwidth does not change the task offloading strategy, so the CUAV
benefit does not change. The CUAV benefit changes dynamically
because the offloading strategy of RO strategy is randomized for
each time.

In addition, we analyze the effect of DCUAV transmission
power on the computing task utility and CUAV benefits, where
the number of DCUAVs is considered to be 5. As shown in
Figure 6, the total utility of the computing task increases with the
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increase of DCUAV transmission power. This is because the increase
in the DCUAV transmission power increases the transmission
rate between the UAVs, which reduces the transmission delay of
the computational task. It can be observed from Figure 7 that
the CUAV benefits are not affected by the DCUAV transmission
power. The DCUAV transmission power does not affect the task
offloading strategy, so there is no change in the CUAV benefits.
Meanwhile, the computing task benefit of the algorithm proposed
in this paper is lower than that of the GCB strategy because the
computing task utility needs to be considered in the matching game
process.
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To further evaluate the performance of the proposed algorithm,
we consider a large-scale UAV swarm scenario where each DCUAV
is assigned a single computing task and the swarm consists of 10
CUAVs. In this scenario, a learning-based task offloading (LTO)
algorithm with a e-greedy strategy is employed as the baseline for
comparison [25].

Figure 8 illustrates the utility of computational tasks for
UAV clusters of different sizes. It can be seen that for UAV
swarms of different sizes, significant differences exist in the
total utility of computational tasks among the algorithms.
Overall, the proposed algorithm consistently achieves the
highest utility, and its advantage becomes more pronounced
as the number of UAVs increases, demonstrating good
scalability and stability. Figure 9 depicts the CUAV utility
under different cluster sizes. The CUAV utility values obtained
by all methods remain high and relatively stable as the
number of drones increases. Compared to other methods, our
proposed algorithm achieves higher CUAV utility, indicating
superior task allocation and resource utilization. Based on
the proposed
advantages in enhancing both the

the above analysis, algorithm ~demonstrates

significant utility of
drone swarm computing tasks and CUAV service utility,
demonstrating its suitability for large-scale UAV swarm computing

scenarios.

5 Conclusion

In this paper, we investigate hierarchical aerial computing
systems, in which network services are provided to ground-
based IoT devices through collaboration among UAVs. First,
we propose a hierarchical computing offloading framework
for multiple UAVs. To implement this framework, the task
offloading process is modeled as a distributed multi-objective
maximization problem. Second, we consider that the complexity
of the task offloading problem increases with the problem
size, making it difficult to find a feasible solution efficiently.
To address this challenge and obtain a solution in polynomial
time, the offloading problem is formulated as a one-to-many
matching game between computational tasks and CUAVs.
Subsequently, we propose a matching game-based task oftfloading
algorithm and provide a rigorous theoretical analysis. Finally,
to verify the performance of the proposed solution, we present
a comparison with greedy and random strategies. Simulation
results demonstrate the correctness and effectiveness of the
proposed algorithm, particularly in delivering low-delay computing
services for IoT applications in hierarchical aerial computing
systems.
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