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We analyze the engine noise of racecars to shed light on the interaction between 
the brains of the drivers and their racecars and also the interaction between 
the brains of different drivers for the International Automobile Federation (FIA) 
Formula 4, E4 Championship. Statistical analysis is performed using the same 
theoretical tools as those adopted in the recent past to study the brain of 
an orchestra director through the resulting music. The result of this statistical 
analysis is the evaluation of a scaling parameter that we compare between 
drivers. We interpret this scaling parameter as a measure of the driver’s ability, 
with 1 representing maximal adaptability and 0.5 representing random or 
minimal adaptability (less than 0.5 does not exist for the trajectory model we 
have). The results obtained show that higher values of the scaling parameter, 
measured in a single qualifying lap, correspond to better performance in their 
championship. We also study the training process that allows novice drivers to 
move from values of the scaling parameter around 0.7 to values very close to 
1 as they gain experience. We find that more experienced drivers have a larger 
scaling parameter and we also explore the effects of competition that can lead 
to a decrease of the said scaling parameter. This is in line with phenomenology 
theory, despite being temporary. This work suggests that the study of racecar 
noise can shed light on the difficult issue of cognition. Having in mind the 
therapeutic applications of music, we conjecture that this discovery may provide 
an important contribution to rehabilitation therapy. We also contribute to the 
emerging field of human-machine interaction by showing how to transmit 
crucial events to a machine and detect them.

KEYWORDS

scaling parameter, complexity matching effect, ergodicity breaking, cognition, human-
machine interaction, racecar driver 

 1 Introduction

This paper is devoted to the statistical analysis of the noise of racecar engines, and 
just to be clear, it is our position that this so-called ‘engine noise’ contains a great deal 
of information about the driver of the racecar. What we commonly think of as engine 
noise is actually a reflection of the choices being made by the racecar driver as the limits 
of the racecar are tested within the confines of a racetrack. It is our contention that
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the sound of the engine mirrors the actions of the driver’s motor 
control system, which because the driver is in a race the typically 
unconscious behavior of driving, say on a sunny day along a straight, 
flat, open highway, is raised to the level of consciousness, as would 
occur if a cloud burst of April showers coincided with a meandering 
road into the foothills.

The driver in both scenarios would switch from their usual 
relaxed unconscious driving habits in the sun to the more sharply 
tuned responses of their conscious driving habits in the rain. This 
shift from the unconscious to the conscious functioning of the 
brain is readily understood using the two system model of the 
human brain hypothesized by the winner of the 2002 Nobel Prize in 
Economics, Daniel Kahneman. He describes the two-system brain 
in his remarkable book, Thinking, Fast and Slow [1] and attributes 
the origin of the terms to K. Stanovich and B. West. In his book 
Kahneman describes the two brain systems as.

• System 1 operates automatically and quickly, with little or no 
effort and no sense of voluntary control.

• System 2 allocates attention to the effortful mental activities 
that demand it …The operations of System 2 are often 
associated with the subjective experience of agency, choice, and 
concentration.

Our purpose in introducing the two-brain model here is part 
of an attempt to contribute to the progress on the open issue of 
a data-supported theoretical interpretation of cognition. This is 
a “hard” problem in the sense of Chalmers [2], who coined the 
term “hard problem of consciousness” to distinguish the totality of 
consciousness from the easy problems that are amenable to reductive 
logic. This requires us to provide the reader with a clear illustration 
of a number of important theoretical concepts for characterizing a 
stochastic time series X(t) generated by a complex phenomenon of 
interest. The phenomenon of interest here is the sound of a racecar 
engine during a race. 

1.1 Scaling

We begin with the assumption that the racecar and its driver 
constitute a complex system in the sense defined by N. Wiener in 
his groundbreaking book that birthed the science of Cybernetics [3]. 
The existence of a quantitative measure of the undefined quantity 
“complexity” implies that there must be an underlying theory. 
Anderson maintained that complexity results from the fact that 
more is different [4] such that as a system becomes larger and larger 
there is more opportunity for behavior to emerge that could not 
exist in smaller (simpler) systems; see West and Grigolini [5] for a 
discussion of some of the nuances associated with defining terms. 
We have found it convenient to define the quantity complexity by 
a class of phenomena whose empirical time series scales such that, 
for a constant scale λ the empirical time series obeys an equation 
of the form

X (λt) = λδX (t) , (1)

and δ is a scaling parameter that measures the level of system 
complexity. This paper is about the implications of this equation and 

how we can process the empirical data to determine the mannner in 
which the scaling parameter tracks the level of system complexity.

If Equation 1 is so important how do we unambiguously 
interpret it? The most common way to interpret the scaling relation 
is through the phase space probability density function P(x,t). The 
probability that the random variate X(t) lies in the phase space 
interval (x,x+ dx) at time t is given by P(x, t)dx. One way to obtain 
the PDF from the data in by using the empirical time series X(t)
to construct a diffusion process under the assumption that the time 
series scales to obtain the empirical probability density function:

P (x, t) = 1
tδ

F( x
tδ
). (2)

where F (•) is an unknown probability density funciton in general. 
This scaling probability density function is “scale-free” in that the 
variable y = x/tδ is dimensionless.

Consider a particle moving with constant velocity, without 
change of direction; it will explore distances proportional to times, 
producing the maximum scaling parameter of δ = 1. The adoption 
of renormalization group theory [6, 7] leads to a more appropriate 
mathematical definition that yields a scaling parameter of δ = 0.5
for frequent uncorrelated changes of direction. Note that this value 
of the scaling parameter means that the underlying process is a 
simple diffusion, and the unknown probability density function 
becomes a Gaussian distribution. To obtain scaling parameter 
values, we use the method of diffusion entropy analysis [8–10] as 
described in Section 2.3. 

1.2 Multiscaling and ergodicity breakdown

It is necessary to interpret the time series associated with 
anomalous diffusion processes, that is, for non-Gaussian processes 
regardless of the value of their scaling parameter δ. Even in the 
simple case where with each step the system must choose randomly 
between opposite directions, the process does not generate only 
a single scaling but remains scale-free. Thus, multi-scaling or 
multiscale processes are ubiquitous in complex phenomena and 
are given by fractals, such processes are typically time dependent, 
and are also denoted as multifractals, as explained, for example, in 
Allegrini et al. [11].

In the case where the time interval between two consecutive 
changes of direction is characterized by a waiting–time probability 
density function with an inverse power law index μ <∞, a new 
important property emerges. Time series with an inverse power law 
index in the interval 1 < μ < 2 is not ergodic, whereas those with the 
inverse power law index in the interval 2 < μ < 3 are ergodic and, as 
is well known in Classical Statistical Mechanics, an ergodic process 
has time averages and ensemble averages, which are equivalent. 
However, the non-ergodic time series are non-stationary, so the 
two time correlations of the fluctuating velocity Ẋ(t) are no longer 
stationary. That is, < Ẋ(t)Ẋ(t′) >  where the brackets denote the 
averaging process and the two time correlation depends on the two 
times t and t′ separately and not on the time difference given |t− t′|. 
This property is called aging or weak ergodicity breaking. The non-
stationary properties become evident when μ < 2 and μ = 2 is the 
border between the ergodic and non-ergodic time series. From the 
vast literature on ergodic and non-ergodic processes, we invite the 
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readers to consult [12–15], which are reliable examples of a correct 
approach to these complexity phenomena. 

1.3 Complexity matching effect

The complexity matching effect was introduced by 
West et al. [16] as one way to understand the ubiquitous aspects 
of complex networks such as the appearance of non-stationary 
and non-ergodic statistical processes and inverse power law 
probability density functions. They reviewed the traditional 
dynamical and phase-space methods for modeling such networks 
as their complexity increases and focuses on the limitations of these 
procedures in explaining complex networks. Of course they were 
not be able to review the entire field of network science, so they 
limited themselves to a micro-review of how certain complexity 
barriers have been surmounted using newly applied theoretical 
concepts such as aging, renewal, non-ergodic statistics and the 
fractional calculus. One emphasis of their review is the transport 
of information between complex networks, which requires a 
fundamental change in perception that we express as a transition 
from the familiar idea of stochastic resonance to the newer concept 
of complexity matching.

The complexity matching effect is an interesting phenomenon 
generated by aging and weak ergodicity breaking that forces us to 
make hypotheses (falsifiable conjectures) about the challenging issue 
of cognition [17–21]. These papers address the important issue of how 
complex processes characterized by aging and ergodicity breaking 
respond to perturbations that we may use to aid in developing 
an understanding of these complex processes. The answer to the 
question afforded by this research work is that these complex processes 
respond only to perturbation time series with the same (or higher) 
complexity. This is the reason why the term “complexity matching 
effect” was coined. It is important to note that the theory used to 
explain the complexity matching effect is the popular linear response 
theory of Kubo et al. [20]. The theoretical foundation of the linear 
response theory is quantum mechanical. The work on complexity 
matching, especially that of [19] is based on the conjecture that 
quantum mechanics may be compatible with the existence of ergodicity 
breaking; see also the appendix in West and Grigolini [5]. 

This is where this paper establishes a connection with the open 
issue of cognition [21, 22]. We hypothesize that the approach taken 
herein, based on the assumption of ergodicity breaking that is 
compatible with quantum mechanics, may be a bridge between the 
arguments adopted by Tononi [21] and those of Faggin [19]. This 
paper is intended to contribute a new dimension to the discussion 
on the validity of this conjecture.

Now that we have illustrated the important scientific/mathematical 
concepts utilized in this paper, we find it necessary to also illustrate 
the key conjectures that we introduce here. These conjectures are 
explicitly fleshed out in Section 1.4 and Section 1.5. 

1.4 The brain-engine analogy; for better or 
worse

In this section, we introduce an unlikely analogy between 
musicians playing musical scores in an orchestra and professional 

racecar drivers competing in a race on a professional racetrack. We 
selected music as the field most studied from a science perspective, 
particularly from the perspective of the music being complex, as we 
shall briefly review.

Stewart et al. [23] studied neuroplasticity in the brains of 
musicians. They also examined the motor and sensory abilities of 
the musicians. This is not unlike the motor and sensory abilities 
required to drive a professional racecar [24]. Additionally, the 
human brain has recently been compared to the role of an orchestra 
conductor [25] conducting music, interpreted as mirroring the 
mind [26] of its composer and player. Pease et al. [27] found 
complexity within human performances, noting a difference in 
the complexity measures between computer-played and human-
played performances of the same musical score. They determined 
that the complexity for a computer-conducted piece is significantly 
lower than that for a human-conducted performance. In the case of 
human-conducted performance, we achieve more than one scaling 
parameter [11]. These multiple scaling parameters are defined as 
multifractal dimensionality [28–33], which we use here as a working 
measure of complexity.

In the present study, we assume that a racecar engine in idle 
mode is analogous to a computer-played piece of music, while an 
engine responding to a racecar driver exhibits a level of complexity 
analogous to a human-played piece of music that is above and 
beyond the computer-played same piece of music [26, 34–37]. We 
further expand on this analogy by analyzing the complexity of 
the sound of the idle engine as well as the driven engine, using 
diffusion entropy analysis, and obtain the scaling parameter “δ“ 
[8–10]. From our perspective, the scaling parameter reflects the 
fact that while the computer simply plays the notes as written, 
without interpretation, humans bring their knowledge, experience, 
and feelings to the performance [26]. These factors play a role in the 
analysis of “changes” in their play versus “changes” of a computer 
performing the same score. It is important to note that here we 
analyze the “changes” in the frequency of the engine pitch (engine 
music) as a direct response to driver’s behavior.

A driver in this study is viewed as analogous to a musician 
playing an instrument called a “racecar.” A racecar driver performs 
on a track in the same way that a musician performs a piece of music. 
Shifting gears at specific points on the circuit is analogous to striking 
the piano keys, plucking guitar strings, or bowing a violin, for each 
instrument being guided by the musical score. In this way, using 
the “musical instrument” that is, the racecar, the driver performs a 
“composition.”

However, we cannot ignore the not-so-subtle difference between 
professionally driving a racecar and professionally playing an 
instrument. The common characteristics of a high-level athlete (that 
is, a professional racecar driver) and a professional musician are 
that both are highly specialized activities that require extensive 
training, so the literature describes associated specific neural 
substrate modifications, both in the context of motorsports [38, 39] 
and music performance [23, 40]. The brain adapts to the unique 
and demanding requirements of these distinct complex tasks and 
becomes specialized in managing a definite tool such as a piano, a 
guitar, or a racecar. Mastering these instruments develops unique 
skills and their sounds reflect information about the player or driver, 
as they directly result from individual, intentional actions, such as 
shifting gears and breaking into curves.
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The brain appears to have the ability to specialize in the 
management of a definite tool such as a piano, a guitar, a drum, 
or a racecar. Beyond the particular skills developed to master one 
of these instruments, they produce a sound that necessarily carries 
information about the player (or the driver) since it is the direct 
effect of the individual and “voluntary” acts of a single human 
interacting with the tool (or the machine). Specifically, this study 
focuses on observing and analyzing these individual acts in order to 
study possible differences among players (drivers) while proposing 
an interpretive hypothesis. It could be argued that the performance 
of a musician and a racing driver differs fundamentally, e.g., in terms 
of physical demands, where driving a Formula 4 car subjects the 
athlete to significant physical strain due to the vehicle moving, which 
involves strong accelerations as well as various mechanical stresses 
[34, 35].

Auto racing poses unique environmental stressors (e.g., heat, 
humidity, exposure to toxicants, noise, g-forces) and cognitive 
(competition stress, focused attention, fatigue) and physiological 
(cardiovascular, muscular) challenges for racecar drivers [41, 42]. 
Steering on road courses (Formula 4) is on average 157 N per turn, 
while the brake pedal forces range from 600 to 1,200 N [43, 44]. 
Acquiring the skills and expertise of racecar driving and developing 
the adaptive cognitive-motor control mechanisms, endurance, and 
strength required by racing require high levels of cognitive task 
organization and complexity of the hierarchical organization of 
neurophysiological and motor control systems. The driver of an 
average passenger car was discussed in detail in the work of Lohani 
et al. [45]. Two other research groups [46, 47] contributed to the 
analysis of the driving workload. They also discuss the workload of 
an ordinary driver.

The average passenger car driver does not experience the 
same difficulties and precision movements that a racecar driver 
experiences, as emphasized in Section 2.1, which describes in 
detail the demographic and skill required by a racecar driver. This 
emphasizes the skill necessary to drive a racecar, which might 
include stress [48], similarly to the skill necessary to play a musical 
instrument at the highest level. The authors believe that workload 
research might have an important connection to dealing with stress 
and control factors [49]. 

1.5 Quality of the brain-engine analogy

Similarly to the conjecture made by Vanni and Grigolini [26] 
and Pease et al. [27] and verified that human-played music is 
more complex than a computer-playing the same music. Here, 
we conjecture that a driven racecar exhibits a higher degree of 
complexity than does an idle racecar. We conjecture that, as in the 
case of music, the source of the added complexity is the activation of 
cognition in the racecar driver to control the instrument.

In the present study, the racecar driver is viewed as a musician 
playing an instrument called a “racecar.” A racecar driver performs 
on a track in the same way that a musician performs a piece of 
music. Shifting gears at specific points on the track is analogous to 
hitting the piano keys, plucking guitar strings, or bowing a violin, 
each movement being guided by the musical score. In this way, using 
the “musical instrument” of the racecar, the racecar driver performs 
a “composition” In this work, the empirical scaling parameter δ is 

interpreted as a unique measure of the complexity of each member 
of a group of drivers from the Formula 4 E4 Championship of the 
International Automobile Federation (FIA).

It is important to emphasize that the racecars used in this study 
feature a manual transmission that requires conscious decision-
making (System 2 in the two-brain model), in contrast to an 
automatic transmission which is electronically controlled and 
operates independently of the driver. In the musical context, a 
computer plays a musical score with less complexity than an 
‘intelligent’ human musician [27]. In the context of racecar drivers, 
the scaling parameter δ is determined by different levels of 
performance, and in this sense, driving a racecar would activate 
cognition in the same way as playing a musical instrument. 

1.6 Organization of the paper

This article is organized as follows. In Section 2 of Statistical 
Analysis, we explain how we obtain our data and how we analyze 
them using DEA. Cognition generates an ergodicity breakdown (as 
described in Section 1.2). Following the earlier work of Pease et al. 
[27] in Section 2.2, in which we interpret this effect as the occurrence 
of crucial events. It is important to note that according to Allegrini 
et al. [10], crucial events are invisible, much as a person becomes 
invisible on Time Square in New York on New Year’s Eve. The 
problem of detecting unseen crucial events was solved through the 
development of DEA, as we subsequently show in Section 2.3. In 
this section on finding and analyzing crucial events, we indicate the 
conditions under which the observational data were collected and 
explain why crucial events become visible based on the new analysis 
of the properties of Lévy walks to analyze the engine pitch (engine 
music) of racecars using the DEA method to detect otherwise 
invisible crucial events. This makes it possible for us to activate 
this method as a proper way to deal with the racecar problem and 
calculate a scaling parameter δ for each driver, which provides a 
quantitative measure of the degree of complexity associated with 
the particular driver-car symbiosis. The results of the championship 
races are discussed in Section 2.4.

In Section 3, we analyze the training process and how it 
applies to the “learning curve” of the driver. In Section 4, we 
discuss the psychological implications and effects of human-
machine interactions and how they may relate to our study. Section 5 
is devoted to conclusions and illustrates how this research can 
contribute to understanding human-machine interaction and to 
rehabilitation processes activated by “crucial paradigms.” 

2 Statistical analysis

2.1 Data collection

This study adopts the perspective of analyzing the behavior of a 
racecar driver as if they were a musician for the reasons discussed in 
the Introduction. We focus exclusively on their fastest lap during the 
qualifying session of single championship event of the E4 Formula 4 
Championship. To test the utility of the engine-instrument analogy 
with data, we adopt an approach similar to the study of music 
and treat racecar engine noise as if it were, in fact, music. For this 
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FIGURE 1
Example of Pitch vs. Time making up the pitch-change time series for this driver. This is the driver-engine interaction data from which the scaling index 
δ is determined for this driver and racecar.

reason, rather than analyzing the “standard” signal of the engine 
in terms of Revolutions Per Minute (RPM) or the exact points on 
the track where gear shifts occur, the complex sound of the racecar 
was sampled as if it were the actual auditory result of a musical 
instrument.

The technical equipment used consists of an onboard camera 
(equipped with a microphone) mounted on the racecars. The same 
camera model (Smarty-Cam 3 GP by AIM Tech S.r.l., data sheets 
available on request) is used in all racecars and is installed in 
the same relative position. The data recorded by the camera are 
saved to digital storage and analyzed after the race using Python 
programming language to perform the analysis. The logic of the 
Python script is described next. Upon analyzing the audio portions 
of the racecar videos, the frequency of engine noise was sampled 
every 1/16 s. This time interval was chosen to ensure that it is smaller 
than the fastest gear change by the driver, as the gears are changed by 
a button on the steering wheel and may occur very rapidly. Note that 
this time series defined for each driver in the same way constitutes 
what we call the signal; Figure 1 shows an example of the pitch of the 
signal versus time in graphic form.

The size of the scaling parameter δ was obtained by processing 
the engine signals of each of the drivers obtained from the recordings 
during the same official qualification session conducted from 8:30 
a.m. to 8:46 a.m; the official weather conditions were: humidity 74 
percent, “dry” condition, Air temperature 22 °C, Track temperature 
21 °C [16]. The track name and the race date are not given to 
guaranty anonymity of the participants.

There are no other specific eligibility requirements, but the 
standard physiological minimum values of an agonist athlete. Of 
all entrants, 12 drivers participated in this study. They have ages in 
the range = 16.25 ± 0.86 (Mean ± Standard Deviation (SD)). Before 
entering this category, each of them had several years of “carting” 
experience: 8.83 ± 2.98 (Mean ± Standard Deviation (SD)) years. 

This refers to experience in a more rudimentary type of vehicle. All 
drivers were male. Note that the analysis covers every racecar driver 
who voluntarily participated in the study (authorized by the legal 
supervisor), without any entry selection to control possible selection 
or confirmation bias. The identities of the racecar drivers have been 
kept secret. For this reason, the 12 racecar drivers are referred to as 
‘A’ through ‘L.’

It is interesting to note that the examined racecar drivers 
represent a group of athletes who, despite their young age, are already 
de facto professional racecar drivers. This can be shown beyond their 
actual performance on the track, from their extensive prior carting 
experience, and from the lifestyle they report leading. In fact, for 
example, 10 out of the 12 drivers analyzed (83 percent) state that 
they attend online school to free up more time every day for racing 
simulators and gym training specifically aimed at improving the 
physical traits essential for driving performance.

In the professional motorsports career, Formula 4 is the first 
category in which drivers can compete after carting. According to 
the objectives of the International Automobile Federation (FIA), 
the main purpose of the E4 Formula 4 championship is to serve 
as a training category (despite the very high level of the athletes), 
preparation for higher formulas such as Formula 3, 2, and 1, or other 
advanced series so that it is a category where efforts are made to 
standardize the racecars as much as possible to highlight the skills 
of the drivers.

To achieve this, the racecars (named Tatuus T-421) are built, 
as far as possible, by the same manufacturer to strict technical 
specifications dictated by a well-defined regulation. This situation 
differs greatly from other championships, e.g., Formula 1 where each 
team is free to design and build almost every part of the racecar as 
the technical side is a fundamental part of challenge. In contrast, in 
Formula 4, the main goal of the manufacturer is to have the racecars 
as similar as possible. Of course, there are likely minor differences 

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1633608
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Singh et al. 10.3389/fphy.2025.1633608

between individual racecars, but their effects are difficult to quantify, 
especially in objectively clear terms. To the best of our knowledge, 
there are no scientific studies on the matter, and this is a limitation 
of this study, but considering that having identical racecars is a 
fundamental pillar of the manufacturer and of the organizers, this 
type of championship appears to offer the most balanced competitive 
environment in which to address the realistic objectives of this study.

In short, all drivers used the same type of racecar, were 
on the same race track, and were observed during the same 
qualifying session using the same camera model and using the 
very same analysis tool. In essence, our goal was to create an 
optimal experimental setup that, despite the many limitations and 
constraints of this study, enables the best achievable and attainable 
data collection in a real-world racing environment during an official 
competition.

This study adopts the perspective of analyzing the behavior of a 
driver as if they were a musician. For this reason, the focus has been 
placed on the engine sound they produce. 

2.2 Finding and analyzing crucial events

Cognition generates an ergodicity breakdown as defined in 
Section 1.2. Following the earlier work of Allegrini et al. [50], we 
interpret this effect as the occurrence of crucial events. We define a 
crucial event as an input into the engine by the driver, whether visible 
or invisible. Each individual gear shift may or may not be perceived 
as a crucial event. It is important to note that according to Allegrini 
et al. [50], crucial events are typically invisible, but fortunately a 
method has been developed to detect unseen crucial events. The 
theoretical foundation of the analysis used in this paper is given 
by the 2001 work [10]. This paper is an approach to the adoption 
of diffusion entropy analysis discussed in [8, 9] and in the more 
recent publication [51]. The first paper, which we call Foundation 
#1 [10], provides a technique to detect invisible crucial events, and 
the second, which we call Foundation #2 [51], provides an intuitive 
explanation of why crucial events are invisible. Foundation #2 is a 
contribution to the study of cell motility with the main purpose of 
fighting Glioblastoma, a cancerous cell that spreads in the brain. 
This cell is assumed to adopt a Lévy walk in a two-dimensional 
reference system. The cell swims with constant velocity along one 
given direction, and from time to time it changes its swimming 
direction. The swimming process is modeled as the result of many 
small jumps of equal value that make the cell move with constant 
velocity. The projection along either the x- or the y-axis has the 
effect of changing the intensity of these small jumps, and the invisible 
change of direction is signaled by the time at which the small visible 
jumps change intensity to reveal the effect of the direction changes. 
We investigate the time interval between any two consecutive crucial 
events to be given by the waiting-time Probability Density Function:

ψ (τ) = (μ− 1) Tμ−1

(τ+T)μ
, (3)

with 1 < μ <∞. Physiological processes correlated with brain 
dynamics are characterized by the scaling parameter:

δ = 1
μ− 1
, (4)

which achieves the maximum scaling parameter value of δ = 1 for 
μ ≥ 2, which is usually interpreted as a manifestation of maximum 
intelligence or “adaptability” [52]. It is the “adaptability” that we 
measure in the short term, for a reflection of long term success. 
For a better understanding of what the driver is adapting to, 
please consider Section 2.1.

We analyze the engine pitch (signal) of racecars using 
Foundation #1 to detect the invisible crucial events. This makes it 
possible for us to activate Foundation #2 for the statistical analysis. 
The time distance between two consecutive gear changes is filled 
with 1 or −1 at the flip of a fair coin. Consequently, sometimes the 
fair coin results in subsequent similar realizations. In cases like this, 
we rely on Foundation #2 to find the crucial events. Foundation #2 
is adopted to assign the scaling parameter, δ, to each driver.

In conclusion, as a result of this procedure, we generate a time 
series of crucial events with the ith event separated by the (i+ 1)th

event by the time length ni. The work of Grigolini et al. [9] illustrates 
three different proposals to convert the time series of crucial events 
into a time series ξ(t) to analyze with the diffusion entropy analysis 
method. We choose the “velocity model” as our method to generate 
ξ(t) (the trajectory). Despite the fact that [10] shows that the 
integration process necessary to evaluate the scaling is done with 
the rule of making a step ahead when a crucial event occurs, we 
decided to adopt the velocity model proposal corresponding to 
filling the laminar regions between two consecutive crucial events 
with constant velocities of 1 or −1. The reason for this choice is 
the assumption that the velocity model is more appropriate for the 
dynamics of racecars. This choice led us to establish a connection 
with the work of Shah et al. [51]. Figure 2 shows an example of ξ(t)
using this strategy.

After successfully assigning 1 or −1 to each region, we then 
integrate ξ(t) to find the trajectory x(t):

x (t) = ∫
t

0
ξ(t′) dt′ (5)

Figure 3 shows x(t) as given by the integral in Equation 5.

2.3 Diffusion entropy analysis

The method of diffusion entropy analysis was modified with the 
introduction of “stripes” [10]. This modification is referred to as 
Modified Diffusion Entropy Analysis (MDEA). Modified diffusion 
entropy analysis as devised in Allegrini et al. [10] was used to detect 
temporal complexity within time series data. Modified diffusion 
entropy analysis first detects crucial events in the time series, defined 
as the zero crossing times of that time series, and then to process the 
time series, it assigns the number +1 to those times and 0 otherwise, 
and finally transfers the sequence of 1s and 0s into the diffusion 
trajectory by cumulative summation of crucial events (as defined 
by the sequence of 1s and 0s). The modified diffusion entropy 
analysis measures the scaling parameter δ of the diffusion process. 
The evaluated scaling parameter δ is connected to the temporal 
complexity index μ of the sequence of interevent time intervals τ
between such crucial events, where the waiting-time probability 
density function has an inverse power law which may be obtained 
from the asymptotic form (τ ≫ T) of Equation 3 with 2 < μ < 3
and as mentioned earlier the physiological processes correlated with 
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FIGURE 2
1 or −1 for each region between gear shifts.

FIGURE 3
Trajectory “x(t)“.

brain dynamics are characterized by the relation between the scaling 
indices μ and δ: μ = 1+ 1

δ
.

Modified diffusion entropy analysis is used to detect additional 
crucial events by means of a finer coarse graining. In this 
new method, to define the crucial events, rather than one 
threshold (zero-crossing), a number of stripes define the crucial 
events as the times at which the time series passes from 
one stripe to another. For further details on the theory and 

method of modified diffusion entropy analysis, see, for example
[53, 54].

Two basic assumptions supporting both modified diffusion 
entropy analysis and complexity synchronization analysis are 
that the crucial events extracted from the empirical time series 
have independent time intervals between crucial events and 
that these sequential time intervals have an inverse power law 
probability density function. These assumptions will be tested 
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FIGURE 4
Example Shannon Entropy Graph (the δ is determined as the slope of the intermediate asymptotic shown in orange).

when determining the optimal parameters for modified diffusion 
entropy analysis processing of heterogeneous data in our proposed 
research. For modified diffusion entropy analysis processing, two 
important things are important. These are the determination of 
the best stripe size and the linear fit region of the entropy versus 
the logarithm of window length plot, see Figure 4 for an example 
of such a plot. In a recent paper, Schizas et al. [54] discussed the 
theory and methods of complexity synchronization analysis and 
how to automate the selection of both parameters for large-scale 
analyses. Briefly, the systematic variation of the stripe size and 
compare the empirical distribution of τ’s with the theoretical inverse 
power law probability density function using the Kolmogorov-
Smirnoff statistic. The KS statistic quantifies the maximum 
absolute difference between the inverse power law complementary 
cumulative distribution function of empirical crucial event time 
intervals and a candidate theoretical inverse power law probability 
density function as a function of the stripe size (see Equation 3 in
Schizas et al. [54]).

Another option is to verify that the crucial events extracted from 
the under-sampled signal match a theoretical inverse power law 
probability density function, and if it does, the results may be valid 
but would need to be further tested using surrogate data with known 
properties; see, e.g., [54]. In addition, other measures of complexity 
that are better suited to shorter time series could also be tested, e.g., 
detrended fluctuation analysis, 1/f spectra, permutation entropy,
etc.).

The method of diffusion entropy analysis [10, 51] is 
based on the information approach to entropy proposed 

by Shannon [55]. This leads us to the use of the Gibbs
entropy:

S (t) = −∫
∞

−∞
dx P (x, t) log P (x, t) , (6)

where P(x, t)dx is the probability that the integration of the time 
series ξ(t) generates the PDF that a single walker has the distance 
x from the origin at time t. To evaluate P(x, t), we should generate 
a large set of trajectories of the same kind as the trajectory 
X(t) of Figure 3 that has length “L“. All of these trajectories are found 
at x = 0 at time t = 0, generating a cloud of increasing size with time.

On the other hand, we only have one trajectory, so we address the 
problem with the procedure of utilizing a moving window of size l. 
We assume that the trajectory of Figure 3 has a total length L and 
divide the trajectory of Figure 3 into L/l trajectories of size l. The 
window l increases incrementally. Each of these trajectories is shifted 
in time and space in such a way that the left pair of values for x and 
t coincides with x = 0 and t = 0. Unfortunately, L/l is not yet a large 
enough number to yield an accurate evaluation of P(x, t). For this 
reason, rather than using L/l non-overlapping trajectories, we use 
overlapping trajectories. The first trajectory moves from x = 0 and 
t = 0 to x = X(l) and t = l. The second trajectory moves from X(1) at 
t = 1 to X(1+ l) at t = l+ 1. The trajectory nth moves from x = X(n) at 
time t = n to x = X(n+ l) at time t = l+ n. Of course, there is an upper 
limit to the number of different trajectories, due to the fact that we 
cannot use trajectories with a right border at values x larger than 
the length L of the trajectory of Figure 3. The empirical trajectory 
provides the same scaling δ whether 1 or −1 alternate or are assigned 
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at the flip of a fair coin. As the window size increases, the number of 
sub-trajectories decreases.

The values found in this manner are then weighed against 
each other to find the probability of any given value P(x, t)dx. The 
probability density function P(x, t) is entered into the Shannon 
entropy formula S(t) given by Equation 6, for every P(x, t). The 
probability density function may be described as follows, according 
to the renormalization group approach [6, 7]:

P (x, t) = 1
tδ

F( x
tδ
). (7)

Inserting Equation 7 into Equation 6 yields the following equation, 
where “A” is a constant reference Shannon entropy:

S (t) = A+ δ log (t) . (8)

This approach enables us to find the intermediate asymptotic of the 
Shannon entropy graph, S(t), Equation 8 allowing us to calculate δ
[6, 7]. Figure 4 shows an example of a Shannon entropy graph. 

2.4 Championship results

The actual scaling value δ has been evaluated for a single lap 
of the track (see Section 1, Section 2, Section 3). To investigate 
the potential significance of δ, this parameter was correlated with 
two objective performance indicators. Specifically, the analysis 
considered the final standings of the qualifying session whose engine 
noise is analyzed in this study and the final ranking of the entire 
E4 Formula 4 Championship (a global parameter consisting of nine 
races) each driver accrued by the end of the championship.

It is interesting that the final results of the qualifying session 
exhibit a statistically significant Pearson linear correlation with δ, 
yielding r = − .86 (p <  0.001) as recorded in Table 1. Moreover, 
it should be noted that the final ranking of the entire E4 Formula 
4 Championship shows Pearson linear correlation parameters that 
exhibit a strong statistically significant correlation with δ being r =
− .90 (p <  0.001). It is important to note that the results of the 
championship statistically compensate for lucky and unlucky events 
and more accurately reflect the skill of the racecar driver. These 
findings suggest that higher scaling δ is associated with better overall 
performance of the racecar driver.

As a further finding of this work, another racecar driver (referred 
to as driver “X”) has been studied in addition to drivers “A” through 
“L”. Driver “X” drove in the same championship and performed the 
same qualifying laps as racecar drivers had done, but some years 
earlier in a previous edition of the same championship. It has been 
considered because driver “X” currently competes in top-tier racing 
categories being regarded as one of the best drivers in the world. The 
scaling δ of driver “X” has been analyzed in the same way as the 
other racecar drivers of this work, finding δ = .98, higher than the 
best found among the 12 other racecar drivers analyzed. This result 
can be viewed as consistent with the interpretation of this work. A 
high degree of accuracy for the scaling parameter δ is chosen because 
the values can be very similar. 

TABLE 1  Comparison of δ and qualifying lap standings.

Driver Qualifying lap rank δ

A 1 0.9735

B 2 0.9374

G 3 0.8314

C 4 0.8968

D 7 0.8519

E 10 0.8441

H 11 0.8112

F 14 0.8318

J 17 0.7515

K 19 0.7452

I 24 0.7833

L 25 0.6274

X Didn’t race in championship 0.9801

3 Training process

3.1 Anonymous driver #1

Table 1 shows the relationship between driver performance 
(time of fastest qualifying lap) and δ calculated as 
described in Section 2.3. This relationship reveals that a higher δ
for the fastest qualifying lap is associated with a better overall driver 
performance in their championship.

A similar comparison can be made with a single racecar driver 
training over many practice laps. A different racecar driver, who will 
remain anonymous and therefore named “AD1” (a novice driver 
that has not yet been studied in the earlier sections of this paper), 
was analyzed for δ of each lap they drove in a practice session. This 
racecar driver drove 20 laps in succession on “Day 1” using the same 
type of racecar that was used by racecar drivers “A” through “L.” 
These practice sessions are referred to as “long runs.” The racecar 
driver slowly drives the course for laps 1 and 2 to warm the tires 
and the engine, and then “pushes” for the remaining laps. The term 
used is “warm-warm-push.” This driver is also alone on the track 
(drivers maneuver the course at great distances from one another) 
and has a great deal of freedom. This provides an opportunity to 
view them at their maximal “adaptability.” However, external factors 
can inhibit the measurement of their full potential. Each lap time 
for “day 1” is weighed against the δ computed for that lap. This is 
illustrated in Figure 5.

The trend in Figure 5 is similar to that in Table 1 (excluding laps 
18 & 19). The exact values are shown in Table 2.

During lap 11, AD1 caught up with a different driver who 
previously started the practice session because of an initial different 
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FIGURE 5
AD1, day 1 δ vs. lap time. Laps 4–17 & 20 are very close, thus there is a portion zoomed for better visibility.

driving pace. During laps 18 & 19, the distance between AD1 and the 
car before him became very close. This caused a “difficulty” which 
is apparent in the measurement of δ. In fact, the two cars engaged 
in a sort of “racing behavior” in terms of a “one-on-one fight”, with 
evident effects. For example, on lap 18, AD1 hit the brakes abruptly 
to avoid the car ahead experiencing what is called a “locked up” tire. 
This is very risky because it can lead to a “flat spot” on the tire. During 
lap 19, AD1 had to avoid the same car because that car suddenly used 
the brakes and experienced a “lock up.” The phenomenon of scaling 
δ lowering during apparent challenges in laps 18 & 19 is in line 
with the hypothesis of Correll [56, 57]. Correll states that 1/ f noise 
tends towards white noise (white noise corresponds to δ = 0.5) in the 
presence of a difficult task. These difficult tasks affect adaptability 
in the way described in [58, 59]. The authors of [57] found that 
the transition to white noise from 1/ f noise is due to the modified 
neuron interaction generated by the goal of settling a difficult task. 
This is an important issue that leads us to establish a connection with 
the open issue of cognition [21, 60]. This is in line with the approach 
of Heidegger [61], adopted by Dotov [62, 63]. The Psychological 
experiments conducted by Dotov are interpreted as a decrease of 
the scaling δ due to a difficult task. According to [57], this generates 
the transition to white noise for extremely difficult tasks. We believe 
that the small decreases of δ are a sign of the same process as that of
[56, 57, 62, 63].

AD1 also drove a new training session consisting of 8 laps on 
“day 2.” It is notable that AD1 did not encounter any other racecars 
during this run thus there are no significant deviations from the 
“learning curve” of the laps. This is also in line with Heidegger 

[61–63]. Figure 6 shows a graph of δ versus lap time for AD1 on 
“day 2” and Table 3 shows the exact values.

Figure 6 represents a clear improvement from “day 1” to 
“day 2.” It is important to stress that external factors, such as 
weather, humidity, temperature, and barometric pressure, can play 
a significant role in lap times and driver performance. However, 
the scaling index δ can be used as a tool to help analyze the 
“adaptability” of the driver during that lap. Although δ is not an 
absolute measurement of success, it seems to correlate quite well with 
driver performance. 

3.2 Anonymous driver #1 vs. anonymous 
driver #2

A second anonymous racecar driver, named “AD2” (more 
experienced than AD1), was analyzed in the same manner. AD1 and 
AD2 drove independently on “day 2” and were compared against 
each other.

In numerical terms (please see Table 4), the greater experience 
of AD2 is evident in the mean lap-time value (AD#2 is more than 
1 s lower than AD#1) and δ moves accordingly and consistently. 
Interestingly, δ expresses a Standard Deviation one order of 
magnitude lower in AD2 (whereas lap-time standard deviations 
are similar), showing a much more constant behavior in the more 
experienced driver.

The higher experience of AD2 is apparent in Figure 7 and Table 4 
when comparing the scaling δ with the lap times.
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TABLE 2  AD1: Comparison of day 1 δ (scaling indices) & lap times in 
order of lap driven.

Lap Lap times (s) δ

1 115.18 0.8496

2 99.49 0.909

3 97.18 0.9238

4 96.32 0.9654

5 95.47 0.976

6 95.68 0.9713

7 95.78 0.9766

8 96.05 0.978

9 95.88 0.9782

10 96.06 0.979

11 96.98 0.9732

12 95.67 0.9731

13 95.5 0.9751

14 95.88 0.978

15 95.83 0.9795

16 95.64 0.9757

17 96.03 0.983

18 96.43 0.8971

19 96.95 0.8955

20 95.96 0.9832

AD2 exhibits behavior that is also in line with Correll [56, 57] 
and Heidegger [61–63] as the trend shows in Table 5. AD2 has much 
more learning experience and, therefore, knows how to adapt more 
efficiently than a novice driver with less experience. 

4 Model of motor skill learning

Organized auto racing may be conceived as a sociocultural 
activity that requires highly advanced perceptuomotor skills of 
racecar drivers, in which spatiotemporal relationships between the 
performer and the performance environment continually interact 
while exchanging energy, matter and information [64]. More 
broadly, from a motor learning and control perspective, these results 
may be interpreted from the non-equilibrium model of motor 
learning [64, 65].

Compared to the average brain development of a novice racecar 
driver, professional Formula drivers showed a smaller volume 

recruitment of the sensorimotor, parietal, and prefrontal regions, 
stronger connections among these regions, and greater integration 
of information, as reflected by a higher temporal variability of the 
signal during motor reaction and visuospatial tasks [39]. These 
findings suggest ‘increased efficiency in attentional and sensory 
information processing along with reduced resource consumption 
in racecar drivers, as well as a greater ability to adapt to rapid changes 
in environmental demands. These findings are consistent with the 
non-equilibrium model of motor learning.

In a longitudinal learning study, Sultana et al. [66] examined 
novice racecar drivers in a simulator over the course of 10 
training sessions while recording their electroencephalograms 
(EEG’s). They observed decreases in theta (4–8 Hz) band power 
across nine regions of interest during the 10 training sessions 
and a positive correlation between theta power and lap times, 
suggesting a decreasing need for high-level cognitive control as 
skills become more automated. They also observed increases in 
effective connectivity between frontocentral and occipital regions 
in the alpha band (8–12 Hz) during training sessions, suggesting 
‘greater functional coordination between motor planning and visual 
processing areas as they adapted to the racing task. In general, the 
authors concluded that the general mechanistic principle underlying 
learning was increased efficiency enabled by the plasticity of 
cognitive processing and visuomotor coordination.

Most neuroimaging studies on racecar drivers have used 
simulators or passive viewing of races (see [38] for a review). In a 
unique real-world racing study Rito Lime et al. [34] conducted a 
case study on a Formula E Champion driving on a race track under 
extreme conditions (high speed, low visibility, low temperature, wet 
track) while recording electroencephalograms and eye and body 
kinematics of the racecar driver. They found positive correlations 
for the acceleration and rotation of the hands with the alpha 
and beta powers, and a negative correlation with the delta power. 
Alpha and beta power increases preceded steering movements 
by 100 ms, while delta power decreases were synchronized with 
steering movements. They also showed that during straight segments 
of the track, there were no correlations between steering movements 
and electroencephalogram spectra, but during curved segments, the 
delta power decreased while the alpha and beta power increased. 
This study by [34] showed for the first time interactions between the 
neural and behavioral systems of a racing champion under extreme 
driving conditions.

According to the non-equilibrium model of motor learning, two 
cyclic processes constantly interact during the course of learning and 
performing motor skills. The first process, functional stabilization, 
is the emergence of a motor pattern whose spatio-temporal 
structure reconciles order and disorder. The second process, 
adaptation, results in a growing complexity of the hierarchical 
organization of neurophysiological and neuromuscular systems, 
which facilitates self-organization, flexibility, and adaptability of 
the functionally stable system to perturbations or challenges [64]. 
As hierarchically organized systems, macro and microstructural 
levels are conceived in the non-equilibrium model of motor 
learning model [64]. The macrostructural level reflects a general 
spatio-temporal configuration of a task-specific motor skill, which 
emerges from the interaction among components of that motor 
skill and is constrained by the coupling of intention and task 
specificity (e.g., navigating a racecourse faster than opponents 
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FIGURE 6
AD1, day 2 δ vs. lap time. Laps 4–8 are very close, thus there is a portion zoomed for better visibility.

TABLE 3  AD1: comparison of day 2 δ (scaling indices) & lap times in order 
of lap driven.

Lap Lap times (s) δ

1 109.93 0.6602

2 99.17 0.7369

3 96.21 0.9377

4 94.13 0.962

5 94.04 0.9856

6 94.05 0.9881

7 94.03 0.9962

8 94.02 0.9937

TABLE 4  The mean and standard deviation of δ and lap time for 
AD1 and AD2.

AD#1 lap 
time

AD#1 δ AD#2 lap 
time

AD#2 δ

Mean 95.565 0.977 94.413 0.989

SD 0.838 0.022 0.881 0.002

TABLE 5  AD2: comparison of day 1 δ(scaling indices) & lap times in order 
of lap driven.

Lap Lap times (s) δ

1 106.93 0.7429

2 99.24 0.985

3 96.21 0.9887

4 94.13 0.9892

5 94.04 0.9903

6 94.05 0.9868

7 94.03 0.9912

8 94.02 0.9928

while avoiding collisions and accidents). The microstructural 
level, on the other hand, refers to the specific components 
of that motor skill (e.g., accelerating/decelerating, steering, 
shifting gears). These two component processes continuously 
interact such that they co-exist as complementary or cooperative 
functions from which spontaneous behavior of the whole
emerges.

The learning of motor skills, then, proceeds along a continuum 
that involves cycles of functional stabilization and adaptation [64]. 
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FIGURE 7
AD2, day 1 δ vs. lap time. Laps 4–8 are very close, thus there is a portion zoomed for better visibility.

The greater the opportunity to experience perturbations to the 
functional stability of a motor skill (i.e., its macrostructure), the 
greater the opportunity for that pattern to reorganize itself (via its 
microstructure), and the greater the complexity of the hierarchical 
organization of neurophysiological and neuromuscular systems, and 
the greater the refinement and improvement of the motor skill. 
Perturbations may come from both internal sources (perceptual, 
cognitive, and affective states) and external sources (task and 
environment). When such perturbations occur, positive feedback 
mechanisms function to amplify the discrepancy, and through 
adaptation a new stability regime may emerge that takes order from 
disorder [64]. The ability to gain from disorder was shown by [67] to 
be a new kind of complex interaction which he named antifragile.

In the context of the present study, the drivers are relatively 
young and may be considered to be in early stages of learning 
(exhibiting a multi-stable regime), and individual differences 
in skills among drivers may be quite variable. In addition, 
individuals may vary considerably in cognitive and affective 
state/trait variables relating to competitiveness, arousal, anxiety, 
coping mechanisms, pre-competition preparations, etc. According 
to the Hanin individual zones of optimal functioning model [68], 
the performance of athletes is best when they’re in their individually 
optimal zone of functioning. Thus, intra-individual differences 
may also be considerable from one performance to the next, 
depending on variations in pre-competition readiness. With these 
considerations in mind, it is conceivable that the negative correlation 
observed in this study between complexity scaling indices and race 
performance (higher scaling associated with a lower numeric rank, 
indicating higher level performance) reflects the more advanced 

adaptation of more successful drivers who exhibit greater complexity 
in the hierarchical organization of the neurophysiological and 
neuromuscular systems that underlie performance.

From a broader ecological perspective [69, 70], the driver and 
the racecar are merged into one complex system, along with the 
environment, and cognition is embodied and distributed beyond the 
body to the racecar (i.e., driver-racecar unit [36, 37]). Embodied 
models of motor learning [24, 70, 71] view the mind, body, and 
environment as continuously mutually influencing each other and 
shaping the emergence of behavior. The neural, physiological and 
environmental systems are all informationally, energetically and 
mechanically coupled, and movement patterns emerge during the 
performance of the task depending on the specific constraints on the 
performer, the task, and the environment (based on the constraints, 
the advantages provide opportunities or invitations for actions [70]). 
There exists a paradoxical relationship between stability and variability, 
in which the performer seeks to consistently repeat a performance 
outcome, although the movement pattern used to achieve this outcome 
varies from performance to performance. The transition between the 
stable and unstable phases occurs through self-organizing processes 
that facilitate the learning of motor skills. 

5 Conclusion

These findings show that higher scaling δ is associated with 
better overall driver performance over a long period of time. This 
result is consistent with the literature on music and brain effort. 
In particular, previous studies exploring the relationship between 
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music and cognition have shown that a computer exhibits a lower 
scaling value δ, while humans display higher scaling values [27]. 
The results obtained in this experiment may lead to interesting 
interpretative hypotheses. The most straightforward conjecture 
suggests that as the δ value increases, it corresponds to an 
enhancement of a skill parameter related to cognitive ability, 
as this is the primary factor distinguishing a computer from a 
“human musician.” Essentially, better driving performance can be 
influenced by human-specific characteristics possibly linked to 
increased cognitive effort.

It is important to note that a limitation of this study is the low 
number of racecar drivers analyzed. However, the high quality of the 
results obtained, along with the consistency of our theoretical results 
with the empirical findings of other investigators, is significant. 
The very strong correlation found and the case of “Driver X,” pose 
these results as a very promising research direction. Moreover, 
the intuitive study of anonymous drivers AD1 and AD2 shows a 
consistent behavior that possibly makes this research direction even 
more worthy of a deeper consideration. This work is preliminary and 
further studies need to be done; however, it is very interesting that a 
single parameter δ could capture the behavior of the driver’s mind. 
We aim to investigate the potential implications for the therapeutic 
and cognitive performance of CERT [72]. This is related to the work 
of [45, 48].

Finally, we want to stress that this paper may favor a debate on 
the open issue of cognition [21, 22] and the challenging issue of how 
it may relate to machine learning. The analogy between music and 
racecars has its foundation in the complexity matching effect. Its 
quantum mechanical origin seems to be very appropriate to establish 
a bridge between Tononi [21] and Faggin [22].
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