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With the deep application of Internet of Things (IoT) technology in the financial 
field, the transmission, storage and processing of massive financial data face 
complex and diverse security threats. This paper proposes a threat detection 
scheme, CNN - BiLSTM - GAM, which is based on the vulnerabilities of IoT 
devices in financial big data scenarios and deep learning algorithms. By analyzing 
the traffic data and behavioral patterns generated by IoT devices during data 
collection and other processes, it extracts key features and identifies security 
threats such as malicious attacks. CNN-BiLSTM-GAM includes Convolutional 
Neural Network (CNN), Bidirectional long short-term memory (BiLSTM) and 
global attention module (GAM), which accurately extract spatial features of 
input financial data through one-dimensional convolutional neural network 
(1D-CNN). At the same time, BiLSTM layer captures the context dependency 
relationship in time series data through forward and backward networks. It 
optimizes the extraction of temporal features, finally assigns weights to input 
features through the global attention obtained by concatenating channel 
attention and spatial attention. The experimental results show that CNN-
BiLSTM-GAM performs well with 96.81% of ACC and 96.79% of F1 on NSL-
KDD, 96.98% of ACC and 96.46% of F1 on CICIDS2017, demonstrating better 
spatiotemporal feature extraction capabilities and providing technical support 
for ensuring the security of financial big data.
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 1 Introduction

Driven by the wave of digitization, the financial industry is undergoing unprecedented 
changes. The IoT technology, with its powerful device interconnection and data collection 
capabilities, deeply integrates with financial big data. It injects new vitality into financial 
service model innovation, risk management optimization and customer experience 
improvement [1]. However, with the widespread deployment of IoT devices in the 
financial sector, massive financial data is facing increasingly severe security threats during 
transmission, storage and processing. IoT threat detection technology has become a key 
factor in ensuring the stable operation and data security of the financial industry, conducting 
in-depth research on it thus has important practical significance.

In recent years, the global financial industry has accelerated its transformation towards 
digitization and intelligence, with IoT technology playing an indispensable role. However, 
the widespread use of IoT devices has also brought many security risks. IoT devices 
typically have limited resources, storage capacity and network bandwidth, making it
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difficult to deploy complex security measures. In addition, IoT 
devices often have security vulnerabilities and configuration flaws 
during production, deployment and use, making them easy targets 
for attackers [2, 3].

Financial big data has the characteristics of large data volume, 
diverse types, high value density and strong timeliness. In the 
context of the integration of the IoT and finance, the sources 
of financial big data are more extensive, including not only 
traditional transaction data and customer information, but also 
various perceptual data collected by IoT devices. These data 
contain a large amount of sensitive information, such as user 
identity information, account passwords, transaction records, etc. 
Once leaked or tampered with, it causes huge losses to financial 
institutions and users [4, 5].

In the integration of financial big data and IoT, traditional threat 
detection technologies are facing new challenges. On the one hand, 
the diversity and complexity of financial big data require threat 
detection technologies to be able to handle various types of data. On 
the other hand, the real-time nature of financial services requires 
threat detection systems to be able to quickly and accurately detect 
threats and respond promptly. In addition, the financial industry 
has extremely high requirements for data security and privacy 
protection, threat detection technology needs to effectively detect 
security threats without leaking user privacy.

The IoT threat detection technology mainly includes 
rule-based detection methods [6], machine learning based 
detection methods [7] and deep learning based detection methods. 
The rule-based detection method uses pre-defined security rules 
to determine whether the behavior of IoT devices is abnormal. 
But the formulation of rules relies on expert experience, making 
it difficult to adapt to constantly changing attack methods and has 
a high false positive and false negative rate. However, machine 
learning methods require manual feature extraction, have high 
requirements for feature engineering, perform poorly when dealing 
with high-dimensional and complex data.

Among the existing IoT threat detection technologies, deep 
learning has demonstrated unique advantages and enormous 
potential, which is highly compatible with the needs of financial 
big data and IoT threat detection. The data generated in the 
financial IoT environment includes various forms such as device 
logs, transaction records, sensor perception data, etc. It includes 
structured transaction amounts, timestamps and other information, 
as well as unstructured text logs and image video data. The powerful 
feature extraction ability of deep learning can effectively mine the 
potential patterns and correlations in these data, providing rich and 
accurate feature information for threat detection.

In practical applications, different deep learning algorithms play 
their respective roles in financial IoT threat detection scenarios. 
CNNs perform excellently in processing spatially structured data 
such as images, videos, vectorized network traffic data due to 
their local connections and weight sharing characteristics [8]. In 
the financial IoT, CNN can be used to analyze traffic images 
generated during device communication, identify abnormal traffic 
patterns, such as detecting malicious traffic attack features through 
two-dimensional image processing of network traffic. Recurrent 
Neural Networks (RNNs), their variants Long short-term memory 
networks (LSTMs) and Gated Recurrent Units (GRUs) are adept 
at handling data with temporal dependencies [9, 10]. Financial 

transaction data and status data of IoT devices both have obvious 
time series characteristics. RNNs and their variants can capture the 
changing patterns of data in the time dimension, learn the temporal 
patterns of normal transactions and device operation. It can detect 
abnormal behavior that deviates from the normal pattern, such 
as identifying sudden abnormal changes in transaction frequency 
or abnormal fluctuations in device status and timely discovering 
potential threats.

Although existing deep learning methods have some progress 
in IoT threat detection, there are still three key limitations. One 
reason is that spatiotemporal feature fusion is mostly shallow 
concatenation, without considering the dynamic evolution of spatial 
features over time. Secondly, attention mechanisms often adopt a 
single channel or parallel fusion mode, making it difficult to guide 
local feature learning through global dependencies. The third issue 
is the insufficient ability to detect a few high-risk threats in financial 
scenarios. The aim of this paper is to conduct a comprehensive 
analysis of security threats in the integration of financial big data 
and the IoT. By leveraging the advantages of deep learning, efficient 
and accurate IoT threat detection techniques can be developed to 
provide reliable technical support for the security of financial big 
data and promote the safe development of the financial industry. Our 
main contributions are summarized as follows. 

1. This paper proposes a threat detection method that integrates 
BiLSTM and provides a detailed description of the data 
preprocessing process, including one-hot encoding and data 
normalization. CNN-BiLSTM-GAM achieves interactive 
learning of spatial local features and temporal dynamic trends 
through deep coupling of 1D-CNN and BiLSTM.

2. The structure of CNN-BiLSTM-GAM includes 1D-CNN, 
BiLSTM and GAM. The 1D-CNN is responsible for extracting 
spatial features of input financial big data, while BiLSTM 
focuses on capturing dynamic features of time series data.

3. In the experiment, it is verified that CNN-BiLSTM-GAM 
has better spatiotemporal feature extraction capabilities and 
can effectively improve the detection of IoT threats in 
financial big data.

The rest of this paper consists of four parts. Section II; is related 
literature. Section Ⅲ provides a detailed introduction to the IoT 
threat detection model based on CNN-BiLSTM-GAM. Section Ⅳ 
designs comparative experiments for analysis based on multiple 
baselines. Finally, Section Ⅴ is the summary. 

2 Literature review

With the surge of IoT data and the emergence of unknown 
attacks, IoT threat detection technology has been widely studied. 
Mahapatra et al. [11] proposed an adaptive threat detection 
technique by introducing data mining concepts and techniques. 
Applied in wireless ad hoc networks, this technology utilized data 
mining algorithms to extract features from network traffic data and 
used machine learning models for threat detection. Baig et al. [12] 
proposed a multi class neural network model based on a cascaded 
structure. This model converted the input network traffic data into 
feature vectors and used multiple cascaded neural networks for 
classification. Each cascaded neural network focused on different 
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types of network attacks and made classification decisions based 
on their unique features. Al-Sarayrah et al. [13] proposed the 
Healthcare Analytics and Insight Framework (HAIF), in which the 
Apriori algorithm can find meaningful connections and trends in 
healthcare data. Polat et al. [14] proposed a multi-stage learning 
model using a 1-dimensional convolutional neural network (1D-
CNN) and decision tree-based classification and validated its 
effectiveness and advantages. Ilhan et al. [15] introduced a switch 
port anomaly-based intrusion detection system (SPA-IDS) and 
proposed a new automated threat classification model. The method 
provided an effective and fast IDS approach to prevent attacks from 
the network by analyzing data packets received at the second layer. 
Jmila et al. [16] evaluated seven shallow classifiers and found that 
different attacks have varying impacts on different classifiers. The 
robustness of classifiers depended on the type of attack, a balance 
between performance and robustness needed to be considered in 
network threat detection scenarios. Martins et al. [17] presented a 
review and unresolved issues regarding the anomaly detection of 
host-based threat detection systems in IoT. It explored methods 
and techniques for threat detection using host information in IoT 
environment. Huang et al. [18] introduced an incremental lifecycle 
learning-based intrusion detection system (ILL-IDS) for VANETs. 
The system used incremental lifecycle learning to improve the 
effectiveness of threat detection. The system constructed a threat 
detection model by learning the characteristics and behavioral 
patterns of the samples. By utilizing incremental learning techniques 
to continuously update models to address new forms of threats, the 
effectiveness of threat detection had been improved.

As an emerging technology in the area of machine learning, 
deep learning had demonstrated outstanding capabilities in network 
threat detection. Zhang et al. [19] proposed a method that combines 
multi-scale CNNs with LSTMs to automatically extract temporal 
and spatial features of network traffic data. By expanding the 
network width, the ability to represent spatial features had been 
enhanced, making feature extraction more efficient and accurate. 
This method effectively utilized the spatial perception advantage 
of CNN and the time series processing capability of LSTMs, 
providing a powerful technical means for complex network traffic 
analysis. Yao et al. [20] proposed a network threat detection method 
that combines CNN and LSTM to achieve cross layer feature 
fusion. CNN was used to capture global features, while LSTM 
processed periodic features of time series. The fusion of the two 
enhanced the model’s ability to identify network threats, not 
only improving feature processing efficiency but also optimizing 
the model’s adaptability to complex threat patterns, significantly 
improving recognition accuracy. Lan et al. [21] proposed a multi 
task learning based model that combines a memory enhanced 
autoencoder and a prototype network. The introduction of these two 
structures into CNN not only enhanced the discriminative ability 
of data features, but also improved the robustness of the model, 
making it more effective and accurate in detecting network threats. 
This method of integrating mixed deep features demonstrated 
its powerful ability to handle and identify threat behaviors in 
complex network environments. Hacılar et al. [22] combined a 
Deep Autoencoder (DAE)-based, vectorized and parallelized ABC 
algorithm for training feed-forward artificial neural networks, 
which was tested on the UNSW-NB15 and NF-UNSW-NB15-v2 
datasets, achieving good classification performance for malicious 

behavior. Wu et al. [23] found that deep neural networks perform 
better in data learning and generalization ability compared to 
shallow neural networks. It integrated CNNs and GRUs into a sub 
residual network framework, utilizing stacked residual modules 
to deeply explore the deep features of the data. The design 
enabled the model to effectively capture spatiotemporal features 
in network traffic data, improving the efficiency of network threat 
detection. This method demonstrated the powerful potential of 
deep learning in complex pattern recognition scenarios, especially 
when dealing with network security issues with time series 
dependencies. Zha et al. [24] combined CNNs and LSTMs to 
classify using spatiotemporal features and extracted features using 
multiple convolution kernels of different sizes, effectively improving 
the accuracy of classification. Su et al. [25] proposed an image 
segmentation algorithm based on deep learning. This algorithm 
combined convolutional neural networks with conditional random 
fields and had been tested on multiple public datasets, achieving 
better segmentation accuracy than traditional methods.

IoT security, cryptographic methods, 0 day attack detection 
and data imbalance challenges were directly related to IoT 
threat detection. Gabr et al. [26] proposed a memristive coupled 
neural network for secure data management, offering insights 
into advanced cryptographic methods that strengthened the 
security narrative of IoT-based financial data. Alexan et al. 
[27] demonstrated the use of hyperchaotic maps for data 
protection, highlighting novel encryption mechanisms relevant 
to safeguarding sensitive IoT-financial datasets. Dai et al. [28] 
presented a framework for detecting 0-day attacks in unseen 
datasets, reinforcing the need to evaluate model robustness 
against emerging and previously unobserved IoT threats. Yee et al. 
[29] provided a comprehensive review of AI methods for 0-day 
detection, supporting the manuscript’s emphasis on AI-driven 
security models and helping contextualize existing limitations. 
Okmi et al. [30]offered a taxonomy of large-scale mobile data 
analysis techniques, providing valuable parallels to IoT-financial 
data handling and threat detection. Ainan et al. [31]discussed 
handling class imbalance in financial prediction tasks, directly 
relevant to the imbalance challenges noted in NSL-KDD and 
CICIDS2017 datasets. 

3 Research on threat detection 
technology for financial big data

3.1 Financial big data preprocessing based 
on IoT

In actual financial big data sets, data quality issues such as 
missing information, redundant data and inconsistent data types are 
often encountered. The purpose of data preprocessing is to convert 
these raw data into a format that algorithms can effectively process, 
in order to improve the efficiency of model training and the accuracy 
of predictions. The key steps of data preprocessing include but are 
not limited to one-hot encoding and data normalization techniques.

The one-hot encoding is a commonly used method for handling 
discrete features, which converts categorical variables into sparse 
binary matrices that are easier for the algorithm to handle, helping 
the model to more effectively parse categorical information. Data 

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1633021
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia and Zhou 10.3389/fphy.2025.1633021

normalization is the process of adjusting the data scale to unify 
the range of values for all features into a fixed interval, such 
as [0,1] or [-1,1]. This step can reduce the bias caused by scale 
differences between different IoT data features, while accelerating 
model convergence and improving generalization ability. 

3.1.1 One-hot encoding
In financial big datasets, it is common to encounter situations 

that contain non numerical features, while most models can only 
handle numerical features. Therefore, converting non numerical 
features into numerical features is an important step in data 
preprocessing.

In this conversion process, one-hot encoding is a commonly 
used method. Compared to label encoding, one-hot encoding has its 
obvious advantages. One-hot encoding transforms category features 
by creating a new binary column for each category, ensuring that 
the model does not misinterpret the numerical order or distance 
between categories. The model can clearly distinguish each category 
without mistakenly confusing numerical values with a certain order 
or level. On the contrary, label encoding maps each category to 
an integer value, where all categories are represented as different 
numbers in the same column. Although this method is highly 
efficient in handling certain category features with a clear order, 
when dealing with category features without a fixed order, the model 
may mistakenly believe that the size of the numbers represents 
a certain order between categories, thereby affecting the model’s 
understanding of the data and the final classification accuracy. 
Therefore, for ensuring the accuracy and effectiveness of the model, 
choosing one-hot encoding instead of label encoding is a more 
suitable method when dealing with nominal category features. This 
not only avoids misunderstandings of data by the model, but also 
improves the accuracy of the model when processing complex 
financial big data. 

3.1.2 Normalization
In the preprocessing stage of financial big data in IoT, the scale 

difference in processing feature data is crucial because it directly 
affects the training speed and accuracy of the model. Features 
from different dimensions often have significant differences in 
magnitude. And if not properly processed, it may lead to low training 
efficiency and limited improvement in model accuracy. Therefore, 
data normalization has become an effective means to solve the 
problem of scale differences. By adjusting the scale of feature data, 
normalization can significantly improve the convergence speed of 
the algorithm and the overall performance of the model. Adopting 
maximum and minimum normalization is one of the commonly 
used methods for handling scale differences in data. This method 
adjusts the eigenvalues to a standard range between 0 and 1, 
in order to standardize the data scale. The specific calculation 
is shown in Equation 1.

x′ =
x− xmin

xmax − xmin
(1)

Among them, x represents the value of the original data point, 
xmax is the maximum value of the feature and xmin is the minimum 
value of the feature. In this way, the value range of all features is 
normalized to the [0,1] interval, effectively alleviating the imbalance 
caused by the difference of feature scale.

This normalization process not only standardizes the scale of 
financial big data, but also maintains the relative relationships in 
the data. By applying maximum and minimum normalization, it 
is possible to effectively avoid model training instability caused 
by significant differences in feature scales, making the model 
easier to train and accelerating its convergence speed, thus 
achieving better performance in practical IoT threat detection
applications. 

3.2 IoT threat detection model based on 
CNN-BiLSTM-GAM

3.2.1 Overview of CNN-BiLSTM-GAM
Existing deep learning research still has significant limitations. 

Firstly, spatiotemporal feature fusion often stays at the shallow 
level of concatenation, where the spatial features extracted by 
convolutional neural networks are directly connected to the 
temporal features captured by recurrent neural networks. The lack 
of consideration for the dynamic changes in spatial features over 
time has resulted in the disconnection of the intrinsic correlation 
between device traffic characteristics and trading periods in financial 
data. Secondly, there are shortcomings in the application of attention 
mechanisms, as some studies only use single channel attention and 
can only focus on the importance of channel dimensions. Although 
some studies attempt to combine channel and spatial attention, a 
parallel fusion mode is adopted, which cannot achieve guidance of 
local details through global dependencies. At the same time, the lack 
of effective response strategies for rare but highly harmful threat 
samples in financial scenarios results in poor detection performance 
for such threats.

CNN-BiLSTM-GAM combines 1D-CNN and BiLSTM for 
processing and analyzing complex IoT data. Its overall architecture 
is shown in Figure 1. This multi-level and multi technology 
architecture enables the model to not only effectively handle the 
multidimensional characteristics of financial big data, but also 
capture complex relationships in IoT data, thereby improving the 
accuracy of classification and detection. Figure 1 shows the process 
of the threat detection model, which includes the proposed 1D-
CNN, BiLSTM and GAM.

CNN-BiLSTM-GAM extracts spatial features of financial 
data using 1D-CNN and captures local features through two-
layer convolution combined with batch normalization and 
max pooling. The two-layer convolution consists of 32 1 × 3 
kernels and 64 1 × 3 kernels, respectively. Qazi et al. [32] pointed 
out in network intrusion detection that 1 × 3 convolutional 
kernel can effectively extract local correlations between adjacent 
three features, which is superior to 1 × 1 (insufficient feature 
interaction) and 1 × 5 (introduction of redundant noise). The 
hidden dimension of the BiLSTM layer is 128, capturing the 
before and after dependencies of the time series. Orthogonal 
initialization and forget gate bias optimization enhance training 
stability. Nazir et al. [33] used BiLSTM hidden layer dimension 
128 in IoT threat detection, believing that this dimension can 
fully learn the temporal correlation between device states and 
attack patterns without significantly increasing computational 
complexity. The channel attention of GAM generates weights 
through MLP, combines spatial attention with grouped convolution 
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FIGURE 1
CNN-BiLSTM-GAM.

and channel shuffling to solve the problem of separating global 
and local features in traditional attention. Finally, the classification 
results are output through a fully connected layer and Softmax, 
supplemented by L2 regularization and dropout to suppress
overfitting. 

1. Data preprocessing layer. The main tasks of the preprocessing 
layer include data cleaning and standardization to ensure the 
consistency of the input financial big data. At this stage, the 
classification data is first converted into numerical binary 
variables using the one-hot encoding method, so that the 
algorithm can more effectively handle non numerical category 
data. Next, all feature values are scaled to a range of 0 to 1 
through data normalization to eliminate the impact of different 
data levels, promote algorithm convergence speed and improve 
model performance.

2. Model threat detection layer. This layer constitutes the core 
of CNN-BiLSTM-GAM, combining 1D-CNN, BiLSTM and 
attention mechanisms to balance spatial and temporal data 
analysis. The 1D-CNN effectively extracts spatial features 
through its specialized structure, while BiLSTM optimizes 
the processing of time series data, enabling the model to 

comprehensively learn the spatial and temporal information 
of IoT data.

CNN-BiLSTM-GAM forms unique value through 
multidimensional innovation based on the classic architecture. Its 
core innovation is reflected in the design of GAM, which is different 
from existing single dimensional or parallel fusion attention 
patterns. GAM adopts a channel to space sequential enhancement 
logic, first incorporating spatial dimension information into channel 
weight learning. By using grouped convolution to enhance spatial 
local focus, the problem of separating global and local features in 
traditional attention is solved. At the same time, max pooling is 
removed and a large convolution kernel is used to cope with high-
frequency noise in financial data. Based on the characteristics of 
financial IoT scenarios, CNN-BiLSTM-GAM integrates multimodal 
features such as device identity, transaction behavior and network 
traffic, dynamically adjusts the weighted loss function and attention 
weight to enhance the detection capability of rare but high-risk 
minority threats. This makes the model more in line with the 
threat detection requirements of the alloy fusion IoT, breaking 
through the limitations of existing general models in global and local 
collaboration, spatiotemporal fusion depth and scene adaptability. 
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3.2.2 Threat detection module
This module integrates 1D-CNN and BiLSTM, aiming 

to improve the accuracy of sequence data processing for 
finance. It mainly consists of a feature extraction module and 
a classification module. Furthermore, the feature extraction 
module is refined into three key sub modules, namely, the 
spatial feature extraction module, the temporal feature extraction
module and GAM.

In the feature extraction stage, the spatial feature extraction 
module first effectively captures spatial correlations in financial 
oriented sequence data through 1-DCNN. This network structure 
utilizes the local connections and weight sharing mechanism 
of convolutional layers, which not only significantly reduces 
the parameters of CNN-BiLSTM-GAM, but also accurately 
extracts key spatial features. Subsequently, the temporal feature 
extraction module conducts in-depth analysis of the time dimension 
characteristics of financial oriented sequence data through the 
BiLSTM layer. The design of BiLSTM enables the model to 
simultaneously learn the forward and backward information of 
the sequence, comprehensively capturing the time series dynamics 
in IoT data. To further enhance the feature extraction capability of 
CNN-BiLSTM-GAM, the attention mechanism is used to ensure 
computational overhead. After feature extraction is completed, the 
classification module is responsible for converting the extracted 
features into specific threat security classification results. The 
design of this module fully considers the characteristics of 
financial oriented sequential data, as well as the impact of features 
extracted from the two dimensions of space and time on the final 
classification task. 

3.2.2.1 Spatial feature extraction submodule
The design of this module adopts 1D-CNN and max pooling 

layers to achieve the characteristics of parameter sharing, spatial 
arrangement and local perception, thereby efficiently extracting 
key features from time series data. This submodule effectively 
reduces the computational costs of CNN-BiLSTM-GAM by utilizing 
the structural characteristics of 1D-CNN layer. The parameter 
sharing mechanism enables multiple neurons in the network to 
share the same weights, which not only significantly reduces 
the number of parameters in CNN-BiLSTM-GAM, but also 
simplifies the complexity of the model, thereby reducing the 
computational burden during model training and inference. The 
1D-CNN layer captures and combines local spatial patterns 
on the input feature map by moving along the window and 
performing convolution operations to form a sparse feature 
matrix. Each matrix element represents the degree of correlation 
between different features, enabling CNN-BiLSTM-GAM to extract 
more effective and representative features from the IoT for
financial big data.

In addition, the 1D-CNN layer uses ReLU activation function, 
which helps to introduce non-linear processing capability [32], 
enabling CNN-BiLSTM-GAM to learn more complex and deep 
level data representations. The max pooling layer following the 
1D-CNN layer further reduces the computational complexity of 
CNN-BiLSTM-GAM by reducing the dimensionality and number 
of parameters of the feature map. At the same time, it retains 
the most significant feature information, effectively preventing 
overfitting and providing the possibility for accelerating the training 

of CNN-BiLSTM-GAM. The calculation formula is shown in
Equation 2.

hi = f(w⊗ xi:j + b) (2)

The f(.) represents the nonlinear activation function of ReLU, 
w represents the convolution kernel, xi:j represents the data feature 
vector in multiple consecutive network education applications and 
b represents the bias value. 

3.2.2.2 Temporal feature extraction submodule
In LSTM, there are three state stages, namely, forget stage, select 

memory stage and output stage. This stage selectively outputs [33] 
and the calculation process is in Equations 3–8.

ft = σ(W f · [ht−1,xt] + b f) (3)

it = σ(Wi · [ht−1,xt] + bi) (4)

C̃t = tanh(WC · [ht−1,xt] + bC) (5)

Ct = ft ∗Ct−1 + it ∗ C̃t (6)

ot = σ(Wo[ht−1,xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

In this context, σ represents the sigmoid layer, W and b
represent the weights and parameters of that layer, ft is called the 
forget gate, it is the input gate and ht is the selective forgetting 
implemented by the sigmoid layer at time t. This process refers to 
the output of the previous stage and the current input to make 
selective forgetting. The second stage determines what information 
is stored in the LSTM cell by obtaining candidate vectors through 
the tanh function, multiplying the previous state value by the 
corresponding forget gate. It adds the product of the candidate 
value and the input gate it to obtain the optimal cell state
parameter C.

However, for most text related tasks, LSTM requires neural 
networks to rely on contextual information and a key discrimination 
may be determined by multiple inputs before and after. Therefore, 
BiLSTM is proposed. The BiLSTM plays a crucial role in the 
CNN architecture, with the max pooling layer playing a crucial 
role. Its main function is to simplify network computation 
by reducing the spatial dimension of feature maps, effectively 
capture core information in the IoT for financial big data 
by selecting the most significant features. This operation not 
only significantly reduces the computational load of CNN-
BiLSTM-GAM, but also helps alleviate overfitting problems, 
thereby enhancing the generalization ability of CNN-BiLSTM-
GAM.

To further optimize network performance, the introduction 
of batch normalization layers become a routine part of the CNN 
intermediate layer. This technology normalizes the input of each 
batch of data and the standardized IoT data is conducive to 
gradient flow in the network, thereby enabling the model to 
maintain stable response to subtle changes in the input of financial 
big data oriented IoT. This accelerates the speed of the entire 
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training process, significantly improving the stability of the model. 
When processing financial oriented sequential data, the BiLSTM 
layer, as a component of CNN-BiLSTM-GAM, typically requires 
the introduction of a reshaping layer to adjust the data format 
to meet the input requirements of subsequent BiLSTM layers. 
The design of this reshaping layer ensures seamless transition 
of data from one layer to another, allowing CNN-BiLSTM-GAM 
to further explore and learn long-term dependencies of IoT 
data, optimizing the efficiency of data flow transmission in the 
network. The BiLSTM layer is used to simultaneously learn the 
features of forward and backward time series data, consisting 
of two units. One unit processes forward time series, while the 
other unit processes backward time series. This design allows 
the network to obtain information about past and future data 
at each time step, improving its modeling ability and prediction 
accuracy for long-term time series data. Each unit has the same 
input and is connected to the same output. This arrangement 
allows the network to consider both past and future data at each 
time step, thereby better learning features to improve training 
performance. 

3.2.2.3 GAM
Hu et al. [34] designed a Squeeze and Excitation (SE) module, 

which could be easily incorporated into CNNs to capture more 
critical feature information in the channel direction. In addition, 
Zhu et al. [35] studied that the Convolution Block Attention 
Module (CBAM) could find the most important parts of the 
network for processing. In addition to focusing only on spatial 
domain information, the Convolution Block Attention Module 
(CBAM) proposed by Woo et al. [36] could simultaneously focus 
on spatial domain features and channel domain features. By 
concatenating, the learned weights were assigned to the feature 
maps in both channel and space, effectively improving the 
network’s ability to extract attention region features. CNN-BiLSTM-
GAM designs GAM based on the CBAM module for use in
the network.

The core differences between GAM and CBAM are reflected 
in the fusion mechanism, feature processing methods and 
computational efficiency. GAM adopts a sequential fusion strategy 
of “channel to space”, gradually focusing on features from 
global to local, while CBAM adopts a parallel fusion mode 
where channels and spaces are independently processed and 
added element by element. In terms of channel attention, GAM 
captures cross dimensional global dependencies through three-
dimensional arrangement and two-layer MLP, while CBAM only 
relies on global pooling and single-layer MLP to model channel 
relationships. In terms of spatial attention, GAM introduces 
grouped convolution and channel shuffling to avoid information 
loss caused by pooling. While CBAM relies on average or 
maximum pooling plus standard convolution, which poses a 
risk of detail loss. In terms of computational efficiency, GAM 
reduces the parameter size through grouped convolution, which 
is significantly better than the standard convolution structure of 
CBAM. In addition, GAM’s feature focusing mode emphasizes 
global consistency and preserves spatial structural information 
through three-dimensional arrangement, while CBAM focuses on 
local details and is prone to losing temporal features due to pooling
compression. 

TABLE 1  Dataset NSL-KDD and CICIDS2017.

Dataset Sample 
category

Sample 
quantity

Ratio (%)

NSL-KDD

Normal 77054 51.89

DoS 53385 35.95

Probe 14077 9.48

R2L 3,882 2.61

U2R 119 0.08

Total 148517 100

CICIDS2017

Normal 2358036 83.32

DoS 294507 10.41

Prot Scan 158966 5.62

Pattor 13835 0.49

Web Attack 2,153 0.08

Bot 1966 0.07

Total 2830108 100

4 Experiment and result analysis

4.1 Experimental setup

This paper uses the Intel (R) Core (TM) i7 - 8550U CPU @ 
1.80 GHz. The experiment is carried out on a PC with 16.00 GB of 
memory, which is installed with the Windows 11 operating system. 
It uses Python 3 as the main programming language and develops 
on the Anaconda platform.

This paper uses the NSL-KDD dataset [37] and CICIDS2017 
dataset [38] as experimental data. NSL-KDD is designed to solve 
the problems in the KDD Cup 99 dataset and is one of the widely 
used datasets in the area of network security research, especially 
suitable for research on network threat detection. CICIDS2017 is 
jointly developed by the Canadian communications security agency 
and the Canadian institute for cybersecurity, providing a testing 
platform that includes real network traffic data. This dataset not only 
covers normal background traffic, but also records various signs of 
malicious activity in detail. The quantity and proportion of each 
category of NSL-KDD and CICIDS2017 are shown as in Table 1.

The performance of models is comprehensively evaluated using 
multidimensional evaluation indicators, including accuracy (ACC), 
recall (REC), F1 score (F1) and precision (PRE) [39]. The calculation 
of indicators is based on four core parameters, they are true positive 
(TP), true negative (TN), false positive (FP) and false negative (FN).

ACC is defined as the proportion of correctly classified samples 
to the total number of samples and is a fundamental indicator for 
evaluating the overall performance, as shown in Equation 9.

ACC = TP+TN
TP+TN+ FN+ FP

(9)
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REC, also known as True Positive Rate (TPR), refers to the 
proportion of abnormal samples correctly identified by the model to 
the total number of actual abnormal samples. This indicator reflects 
the sensitivity and effectiveness of the model in identifying threat 
situations, as shown in Equation 10.

REC = TP
TP+ FN

(10)

F1 is a performance indicator that comprehensively reflects 
the ACC and REC. By balancing these two factors, it provides 
a comprehensive evaluation, as shown in Equation 11. PRE 
is shown in Equation 12.

F1 = 2× Precision×Recall
Precision+Recall

(11)

PRE = TP
TP+ FP

(12)

However, there is a serious class imbalance problem in datasets, 
such as the U2R class accounting for only 0.08% in NSL-KDD 
and the Normal class accounting for 83.32% in CICIDS2017. To 
avoid misleading results caused by majority class dominance in high 
ACC and REC, a mixed sampling mechanism is adopted during 
the training phase. For minority classes such as U2R in NSL-KDD 
and Web Attack in CICIDS2017, SMOTE oversampling is used. 
SMOTE randomly selects samples from the k-nearest neighbors of 
each minority class sample and generates synthetic samples, which 
not only avoids overfitting caused by simply copying samples, but 
also preserves the distribution characteristics of minority classes. 
By synthesizing new samples to avoid overfitting caused by simple 
replication, the number of neighbors is set to 5. For most classes, 
such as Normal, random undersampling is used to preserve the core 
distribution features. After sampling, the ratio of majority classes to 
minority classes is controlled at 3:1 to balance the training sample 
size of each classification. By randomly removing some samples to 
reduce the amount of data, while ensuring the preservation of the 
core distribution pattern of the majority of classes, the weights of 
each class in training are effectively balanced.

Both datasets are divided using random stratified sampling, 
with the core principle being to maintain the same proportion 
of categories in each subset as the original dataset, in order to 
avoid missing minority classes in a subset due to sampling bias. 
The specific division ratio is 70% for the training set, 10% for the 
validation set and 20% for the testing set. The complete dataset is 
layered by category, where each category is treated as a separate 
subset. Then, within each subset, random sampling is used to 
allocate samples in a ratio of 7:1:2 to the training, validation and 
testing sets. Finally, all sub samples of each category are merged to 
form three sets. The reason for choosing random stratified sampling 
instead of time partitioning is that the core difference between NSL-
KDD and CICIDS2017 lies in the type of attack rather than time 
distribution. Threat detection models need to have generalization 
ability for various types of attacks, rather than only adapting to 
patterns within specific time windows. At the same time, stratified 
sampling can avoid the problem of excessive sparsity of minority 
samples in the test set that may be caused by random sampling, 
ensuring that the evaluation indicators can truly reflect the model’s 
ability to recognize all categories.

In terms of input data dimensions, each sample of NSL-
KDD contains 41 dimensional features after preprocessing. Among 

TABLE 2  Parameter selection ablation experiment.

Experiment type Parameter 
selection

ACC (%)

BiLSTM dimension 64/128/256 93.26→ 96.81→ 95.93

Convolutional kernel size 1 × 1/1 × 3/1 × 5 90.15→ 96.98→ 94.32

Sequence length 10/30/50 91.54→96.81→95.72

them, 34 dimensions are numerical features, seven dimensions 
are categorical features and they are expanded to 122 dimensions 
through one-hot encoding. The length of the time series is set 
to 30, which means that every 30 consecutive samples form an 
input sequence, suitable for sliding window processing in 1D-CNN. 
Zhang et al. [19] validated in network traffic time-series modeling 
that a window length of 30 can balance short-term burst patterns and 
computational costs, outperforming 10 (incomplete information) 
and 50 (increased redundancy).

The original feature of CICIDS2017 is 78 dimensions, including 
traffic packet size, protocol type, etc. After hot encoding and 
normalization, it is extended to 186 dimensions and the time series 
length is also set to 30. Cross validation adopts a 5-fold hierarchical 
cross validation method, which further divides subsets within the 
training set. Each validation maintains the same category ratio as 
the original data and the final model performance is taken as the 
average of five validations to reduce sampling bias. 

4.2 Ablation experiment

The empirical results of ablation for parameter selection 
are shown in Table 2.

According to Table 2, BiLSTM achieves the best balance between 
accuracy and efficiency when the dimension is 128, with a 3.55% 
improvement compared to 64 dimensions. When the size of the 
convolution kernel is 1 × 3, the feature discrimination is the 
highest, with a 6.83% improvement compared to 1 × 1. When the 
sequence length is 30, it covers the complete temporal pattern, 
which is 5.27% higher than when it is 10. The experiment 
analyzes the threat detection capability of CNN-BiLSTM-GAM in 
handling multi classification tasks on NSL-KDD and CICIDS2017. 
By testing two datasets, the REC of each category are plotted as 
shown in Figures 2, 3. The horizontal axis represents each data 
category and the vertical axis represents the corresponding REC,
in percentage.

In Figures 2, 3, the test results show that when attention 
mechanism is not used, the REC of the model is only 82.67%. After 
introducing channel attention mechanism, the REC is increased to 
88.31%. Adopting spatial attention mechanism, it further improves 
to 90.67%. When using global attention mechanism, the REC is as 
high as 96.54%. This indicates that the global attention mechanism 
can enable CNN-BiLSTM-GAM to more effectively capture key 
features in data, significantly enhancing its ability to identify normal 
traffic and various threat traffic. It accurately distinguishes between 
normal and abnormal network activities, significantly reduces the 
risk of false negatives.
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FIGURE 2
REC of various ablation experiments based on NSL-KDD.

FIGURE 3
REC of various ablation experiments based on CICIDS2017.

In contrast, even though the CICIDS2017 data features are 
more complex, the model can still optimize the feature learning 
process through a global attention mechanism. It significantly 
improves the recognition recall of various attack behaviors 
and maintains strong threat detection capabilities in complex 
environments. This fully proves that CNN-BiLSTM-GAM has 
strong generalization ability, can adapt to different characteristics 
of financial big data and is reliable in detecting IoT network
threat behaviors.

In case of using the same network architecture, this paper adopts 
a global attention mechanism to detect data and the threat detection 
results show a significant improvement in performance. The 
ablation experimental data is displayed in Table 3. The introduction 
of attention mechanism, especially global attention mechanism, 
has significantly improved the performance indicators of CNN-
BiLSTM-GAM on different datasets. This is because the attention 
mechanism allows the model to focus on key data features, enhance 
its ability to learn important information and ignore redundant 
information. In the IoT threat detection scenario of financial big 
data, the data is complex and contains a lot of noise. CNN-BiLSTM-
GAM can accurately capture threat related features and effectively 
identify various threats.

4.3 Effectiveness experimental analysis

4.3.1 Accuracy variation
The experiment constructs subsets of different sizes and 

conducts detailed training experiments on these subsets, as 
displayed in Figure 4. The horizontal axis represents the step size and 
the vertical axis represents the corresponding accuracy.

In Figure 4, as the number gradually increased, CNN-BiLSTM-
GAM obtains more effective information from the data. The training 
accuracy and validation accuracy gradually increased, reflecting the 
continuous optimization of CNN-BiLSTM-GAM in the learning 
process and the enhancement of its fitting ability to the data. 
When trained to 1,100, the model accuracy reaches its peak and 
shows stability. At this point, the training loss and validation loss 
reach a relatively ideal balance. CNN-BiLSTM-GAM is able to 
fully learn data features without falling into overfitting difficulties, 
demonstrating good threat detection performance. 

4.3.2 Horizontal comparison results
To verify the overall performance, a horizontal comparison of 

the experimental results is conducted. Table 4 presents comparative 
experiments between various baselines and the model proposed in 
this paper, including CNN-SoftMax [40], CNN-LSTM [24], BiLSTM 
[41] and CNN-BiLSTM-AM [42]. CNN-BiLSTM-AM adopts a 
single channel attention mechanism and its attention module is 
based on the classical SE structure. It only assigns weights to the 
channel dimensions of feature maps and does not involve fusion 
design of SA.

By comparing the performance differences of different model 
combinations in Table 4, it can be found that when comparing 
CNN-BiLSTM-GAM and BiLSTM on NSL-KDD, it can be seen that 
after removing CNN, ACC decreases by 4.44% and F1 decreases 
by 6.48%. This indicates that CNN is indispensable in extracting 
spatial features and its absence can weaken the model’s ability to 
capture spatial correlations. Comparing CNN-BiLSTM-GAM with 
CNN-BiLSTM-AM, it is found that after removing GAM, ACC 
decreases by 3.17% and REC decreases by 2.32%. This indicates 
that the global attention mechanism of GAM can optimize feature 
weight allocation and its absence weakens the model’s ability to 
focus on key features. Comparing CNN-BiLSTM-GAM with CNN-
SoftMax on CICIDS2017, after removing BiLSTM, REC decreases by 
18.01% and F1 decreases by 13.86%. This highlights the crucial role 
of BiLSTM in capturing dynamic temporal patterns, as its absence 
can significantly reduce the model’s ability to detect dynamic threats. 
In summary, BiLSTM is the core of performance improvement 
and has the greatest impact on financial IoT data with strong 
temporal dependencies. CNN is the foundation of spatial feature 
extraction and plays a prominent role in complex scenes. GAM 
further improves performance by optimizing feature weights and the 
synergy of the three can achieve optimal model performance, fully 
demonstrating the necessity of each submodule.

Based on the comprehensive horizontal comparison results, it 
can be concluded that on NSL-KDD, CNN-SoftMax has an ACC of 
80.24%, a REC of 78.62%, a PRE of 78.81% and an F1 of 80.86%. 
The detection capability is limited, indicating that the improvement 
in various indicators of CNN-LSTM is not significant. BiLSTM 
performs well with an ACC of 92.37%, while CNN-BiLSTM-AM 
further improves compared to BiLSTM. CNN-BiLSTM-GAM has 
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TABLE 3  Comparison of attention mechanisms between NSL-KDD and CICIDS2017.

Dataset Attention mechanism ACC(%) PRE(%) REC (%) F1 (%)

NSL-KDD

None 82.87 77.76 82.67 81.34

Channel attention 91.51 85.64 88.31 87.68

Spatial attention 92.04 85.49 90.67 88.59

Global attention 93.63 88.96 96.54 91.68

CICIDS2017

None 83.61 83.57 81.41 79.16

Channel attention 85.64 91.72 86.96 85.24

Spatial attention 86.76 87.78 91.76 88.74

Global attention 97.23 93.42 97.16 91.87

FIGURE 4
Acc variation.

an ACC of 96.81%, a REC of 94.70%, a PRE of 95.9% and an 
F1 of 96.79%. With its unique structure, it accurately extracts 
spatiotemporal features and performs the best. At CICIDS2017, the 
overall performance of CNN-SoftMax is poor. The performance of 
CNN-LSTM, BiLSTM and CNN-BiLSTM-AM gradually improves 
but still falls short of CNN-BiLSTM-GAM. The experiment shows 
that CNN-BiLSTM-GAM has significant advantages in various key 
indicators and has excellent spatiotemporal feature extraction and 
threat detection capabilities.

In Figure 5, compared to CNN-SoftMax, CNN-BiLSTM-GAM 
improves ACC from 80.24% to 96.81%, which is 16.57% higher, and 
REC from 78.62% to 94.70%, which is 16.08% higher. Compared 
to CNN-LSTM, CNN-BiLSTM-GAM improves PRE by 15.09% 
and F1 by 14.02%. Compared to BiLSTM, CNN-BiLSTM-GAM 
improves ACC by 4.44%, REC by 3.28%, PRE by 4.50% and F1 
by 6.48%. From this, it can be seen that CNN-BiLSTM-GAM is 
significantly superior to other models in all key indicators and 

has obvious performance advantages in IoT threat detection of
financial big data.

In Figure 6, in terms of ACC, CNN-BiLSTM-AM is 90.92%, 
while CNN-BiLSTM-GAM is as high as 96.98%. Compared 
with other models, CNN-BiLSTM-GAM improves by 29.5%, 
10.97%, 11.78% and 6.67%, respectively. In terms of PRE, CNN-
BiLSTM-GAM improves by 19.3%, 13.66%, 4.3% and 4.09% 
compared to other models, respectively. Taking into account 
various indicators, CNN-BiLSTM-GAM, with its unique structure, 
has the advantage of extracting spatiotemporal features. When 
detecting IoT threats, it has higher accuracy, fewer missed 
detections and misjudgments. Its performance far exceeds other 
comparative models, providing reliable guarantees for the security of
financial big data.

CNN-BiLSTM-GAM outperforms baseline models such as 
CNN-LSTM, mainly due to its precise weighting of features 
through channel and spatial sequential attention, particularly 
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TABLE 4  Comparison of threat detection results.

Dataset Model ACC(%) REC (%) PRE(%) F1 (%)

NSL-KDD

CNN-SoftMax 80.24 78.62 78.81 80.86

CNN-LSTM 78.28 78.77 80.89 82.7

BiLSTM 92.37 91.42 91.4 90.31

CNN-BiLSTM-AM 93.64 92.38 92.49 92.34

CNN-BiLSTM-GAM 96.81 94.70 95.9 96.79

CICIDS2017

CNN-SoftMax 77.44 78.32 80.23 82.6

CNN-LSTM 87.39 81.67 84.21 82.36

BiLSTM 86.76 87.78 91.76 88.74

CNN-BiLSTM-AM 90.92 92.61 91.95 90.22

CNN-BiLSTM-GAM 96.98 96.33 95.71 96.46

FIGURE 5
Horizontal comparison based on NSL-KDD.

FIGURE 6
Horizontal comparison based on CICIDS2017.

in capturing attack patterns with cross dimensional correlations 
and spatiotemporal dynamics. From the perspective of attention 
mechanism, GAM’s channel attention submodule can transform 
the global correlation of device IDs, transaction amounts and 
traffic features in financial data into channel weights through three-
dimensional tensor modeling. For example, when detecting remote 
control attacks such as U2R, it is possible to identify the combination 
pattern of high-frequency small transactions and abnormal traffic 
protocols of specific devices during abnormal periods. Specifically, 
for multi-stage composite attacks such as Web Attack combined 
with SQL injection and data leakage, GAM’s sequential attention 
can first lock the global characteristics of abnormal HTTP request 
types and database access frequency through channel weights. Then 
it focuses on the time window of injected statements through 
spatial attention, which is 15%–20% higher than the F1 of CNN-
BiLSTM-AM. However, CNN-BiLSTM-GAM is difficult to generate 
effective weights due to the lack of prior knowledge in 0 day 
attacks where features do not appear in the training set. It is 
necessary to further optimize the generation of attention weights 
by combining dynamically updated threat intelligence. In addition, 
statistical significance tests are provided, as shown in Table 5, which 
fully supports the effectiveness of CNN-BiLSTM-GAM in financial 
big data IoT threat detection.

The deployment of CNN-BiLSTM-GAM in real-time 
financial IoT scenarios requires systematic optimization for 
resource limitations of edge devices, financial level real-time 
requirements, compliance requirement and business continuity 
assurance. Effective implementation can be achieved through 
model lightweighting, inference acceleration, interpretability 
enhancement, edge cloud collaboration and fault-tolerant design. 
In terms of model lightweighting, structured pruning is used to 
reduce redundant parameters. The 1D-CNN layer retains the top 
80% contribution of convolutional kernels, while the BiLSTM 
layer prunes to 60% key hidden layer units. The heterogeneous 
architecture of edge chips maps 1D-CNN convolution operations to 
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TABLE 5  ANOVA experimental result.

Model ACC(%) F1 (%)

CNN-SoftMax 80.24 ± 1.32 80.86 ± 1.21

CNN-LSTM 78.28 ± 1.17 82.70 ± 1.09

BiLSTM 92.37 ± 0.89 90.31 ± 0.87

CNN-BiLSTM-AM 93.64 ± 0.76 92.34 ± 0.79

CNN-BiLSTM-GAM 96.81 ± 0.45 96.79 ± 0.38

NPU dedicated computing units to improve efficiency by 5 times. 
Edge cloud collaboration adopts the “edge inference + cloud update” 
architecture, with lightweight models deployed at the edge to process 
local data. In terms of fault-tolerant design, edge devices pre store 
the distribution of normal behavior characteristics for nearly 7 days 
and temporarily replace them with threshold methods when the 
model fails.

The existing research uses NSL-KDD and CICIDS2017 as 
benchmark datasets in the field of network security, but they have 
limitations in the context of financial IoT. They are mainly collected 
in general network environments such as campus networks and 
enterprise intranets. Their traffic characteristics such as protocol 
types, device types and data interaction modes differ from those of 
financial IoT. The existing dataset lacks such features, resulting in 
insufficient validation of the model’s ability to detect threats specific 
to financial scenarios such as transaction message tampering and 
malicious program implantation in terminal firmware. Moreover, 
the attacks in the dataset are mostly general network attacks such 
as DoS and port scanning, while targeted attacks in the financial 
field such as account enumeration attacks, risk control rule bypass 
attacks and side channel attacks on IoT terminals are rarely involved. 
At the same time, there are obvious representative defects in a few 
sample classes, such as the U2R attack in NSL-KDD with only 119 
samples accounting for 0.08%, and the web attack in CICIDS2017 
with only 2,153 samples accounting for 0.08%. This type of attack, 
which has a low incidence but great harm in financial scenarios, can 
lead to insufficient model learning due to sample scarcity, resulting 
in the risk of underreporting. Developing a financial dedicated 
IoT dataset is the core path to solving the above problems, which 
should have scenario specificity and cover the real traffic of financial 
IoT devices such as ATM machines, intelligent teller machines 
and mobile payment terminals. And it includes multidimensional 
features such as transaction data amount, time, account information, 
device status data CPU usage, firmware version, network interaction 
data communication protocol, encryption method, etc. For the 
detection performance of minority attacks, supplementary sub 
category indicators show that based on the average of 30 repeated 
experiments, the ACC of U2R in NSL-KDD is 91.2% and the F1 of 
R2L is 91.4%. The REC of Web Attack in CICIDS2017 is 93.2%, F1 is 
92.3% and ACC of Bot is 95.3%. It can be seen that the REC of CNN-
BiLSTM-GAM for minority class attacks exceeds 89%, significantly 
higher than the baseline model such as BiLSTM’s REC of only 76.3% 
for U2R. This is due to GAM’s ability to focus on minority class 
specific features such as privileged instruction sequences in U2R 

attacks. In response to the problem of 0 day threat unknown attacks 
being difficult to learn directly due to a lack of samples, the model 
uses feature generalization ability to cope. Known attack samples 
are subjected to feature perturbations, such as randomly modifying 
the traffic intensity and time interval of DoS attacks, to generate 
unknown variant samples similar to 0 day threats. The model is 
trained to identify abnormal features that deviate from normal 
patterns rather than fixed attack patterns. In the test of simulating 
0 day threats based on attack types not included in CICIDS2017, the 
model detection rate reaches 82.3%, which is better than traditional 
rule-based methods at 59.7%. Overall, although the existing datasets 
provide preliminary validation for model performance, the special 
nature of financial IoT scenarios requires more specialized datasets 
to support it. 

5 Conclusion

This paper focuses on the increasingly severe security 
threats in the integration of financial big data and IoT and 
conducts in-depth research on IoT threat detection technology. 
A threat detection scheme based on CNN-BiLSTM-GAM is 
proposed by integrating deep learning algorithms. CNN-BiLSTM-
GAM combines 1D-CNN, BiLSTM and GAM. The 1D-CNN 
focuses on extracting local features from financial big data, 
while BiLSTM captures the long-term dependencies of time 
series data based on these features. This combination enables 
the model to efficiently extract features in both spatial and 
temporal dimensions, greatly enhancing the detection capability 
of CNN-BiLSTM-GAM for IoT threat behavior. And a global 
attention mechanism is introduced to calculate the correlation 
between different positions. And then these correlations are 
used as weights to weight the feature representation of each 
position, thereby obtaining a richer global representation. The 
experiment shows that compared with other detection models, 
CNN-BiLSTM-GAM has better spatiotemporal feature extraction 
ability, which can promote the safe development of the financial 
industry. However, GAM is still limited by the strength of 
feature signals and prior knowledge dependence, its attention 
weight generation relies entirely on existing feature distributions. 
And in terms of application scenario constraints, the model 
currently only focuses on static threat detection and does not 
cover extended tasks such as attack tracing and attack chain 
prediction. Subsequent modeling can attack entity associations to 
achieve full process protection. However, GAM currently relies 
on existing feature distributions and prior knowledge, which 
limits its adaptability to unseen feature patterns. In addition, the 
model focuses on static threat detection and lacks the ability to 
track or predict attack chains. In the future, CNN-BiLST-GAM 
can be upgraded to meet the needs of financial IoT. One is to 
integrate dynamic threat intelligence and adversarial generation 
networks, enhance the ability to predict 0 day attacks through 
incremental learning. The second is to introduce graph neural 
networks and temporal prediction to achieve full traceability 
and prediction of the attack chain, forming a closed loop of 
detection traceability prediction. The third is to develop lightweight 
variants through knowledge distillation, structured pruning and 
hardware adaptation to meet the low latency and low resource

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2025.1633021
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia and Zhou 10.3389/fphy.2025.1633021

consumption requirements of edge devices, ultimately building 
a financial IoT security protection system that covers the entire 
lifecycle of threat.
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