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With the deep application of Internet of Things (loT) technology in the financial
field, the transmission, storage and processing of massive financial data face
complex and diverse security threats. This paper proposes a threat detection
scheme, CNN - BiLSTM - GAM, which is based on the vulnerabilities of loT
devices in financial big data scenarios and deep learning algorithms. By analyzing
the traffic data and behavioral patterns generated by loT devices during data
collection and other processes, it extracts key features and identifies security
threats such as malicious attacks. CNN-BiLSTM-GAM includes Convolutional
Neural Network (CNN), Bidirectional long short-term memory (BiLSTM) and
global attention module (GAM), which accurately extract spatial features of
input financial data through one-dimensional convolutional neural network
(1D-CNN). At the same time, BIiLSTM layer captures the context dependency
relationship in time series data through forward and backward networks. It
optimizes the extraction of temporal features, finally assigns weights to input
features through the global attention obtained by concatenating channel
attention and spatial attention. The experimental results show that CNN-
BiLSTM-GAM performs well with 96.81% of ACC and 96.79% of F1 on NSL-
KDD, 96.98% of ACC and 96.46% of F1 on CICIDS2017, demonstrating better
spatiotemporal feature extraction capabilities and providing technical support
for ensuring the security of financial big data.

threat detection, internet of things, financial big data, CNN, BiLSTM

1 Introduction

Driven by the wave of digitization, the financial industry is undergoing unprecedented
changes. The IoT technology, with its powerful device interconnection and data collection
capabilities, deeply integrates with financial big data. It injects new vitality into financial
service model innovation, risk management optimization and customer experience
improvement [1]. However, with the widespread deployment of IoT devices in the
financial sector, massive financial data is facing increasingly severe security threats during
transmission, storage and processing. IoT threat detection technology has become a key
factor in ensuring the stable operation and data security of the financial industry, conducting
in-depth research on it thus has important practical significance.

In recent years, the global financial industry has accelerated its transformation towards
digitization and intelligence, with IoT technology playing an indispensable role. However,
the widespread use of IoT devices has also brought many security risks. IoT devices
typically have limited resources, storage capacity and network bandwidth, making it
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difficult to deploy complex security measures. In addition, IoT
devices often have security vulnerabilities and configuration flaws
during production, deployment and use, making them easy targets
for attackers [2, 3].

Financial big data has the characteristics of large data volume,
diverse types, high value density and strong timeliness. In the
context of the integration of the IoT and finance, the sources
of financial big data are more extensive, including not only
traditional transaction data and customer information, but also
various perceptual data collected by IoT devices. These data
contain a large amount of sensitive information, such as user
identity information, account passwords, transaction records, etc.
Once leaked or tampered with, it causes huge losses to financial
institutions and users [4, 5].

In the integration of financial big data and IoT, traditional threat
detection technologies are facing new challenges. On the one hand,
the diversity and complexity of financial big data require threat
detection technologies to be able to handle various types of data. On
the other hand, the real-time nature of financial services requires
threat detection systems to be able to quickly and accurately detect
threats and respond promptly. In addition, the financial industry
has extremely high requirements for data security and privacy
protection, threat detection technology needs to effectively detect
security threats without leaking user privacy.

The IoT threat detection technology mainly includes
rule-based detection methods [6], machine learning based
detection methods [7] and deep learning based detection methods.
The rule-based detection method uses pre-defined security rules
to determine whether the behavior of IoT devices is abnormal.
But the formulation of rules relies on expert experience, making
it difficult to adapt to constantly changing attack methods and has
a high false positive and false negative rate. However, machine
learning methods require manual feature extraction, have high
requirements for feature engineering, perform poorly when dealing
with high-dimensional and complex data.

Among the existing IoT threat detection technologies, deep
learning has demonstrated unique advantages and enormous
potential, which is highly compatible with the needs of financial
big data and IoT threat detection. The data generated in the
financial IoT environment includes various forms such as device
logs, transaction records, sensor perception data, etc. It includes
structured transaction amounts, timestamps and other information,
as well as unstructured text logs and image video data. The powerful
feature extraction ability of deep learning can effectively mine the
potential patterns and correlations in these data, providing rich and
accurate feature information for threat detection.

In practical applications, different deep learning algorithms play
their respective roles in financial IoT threat detection scenarios.
CNNs perform excellently in processing spatially structured data
such as images, videos, vectorized network traffic data due to
their local connections and weight sharing characteristics [8]. In
the financial ToT, CNN can be used to analyze traffic images
generated during device communication, identify abnormal traffic
patterns, such as detecting malicious traffic attack features through
two-dimensional image processing of network traffic. Recurrent
Neural Networks (RNNs), their variants Long short-term memory
networks (LSTMs) and Gated Recurrent Units (GRUs) are adept
at handling data with temporal dependencies [9, 10]. Financial
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transaction data and status data of IoT devices both have obvious
time series characteristics. RNNs and their variants can capture the
changing patterns of data in the time dimension, learn the temporal
patterns of normal transactions and device operation. It can detect
abnormal behavior that deviates from the normal pattern, such
as identifying sudden abnormal changes in transaction frequency
or abnormal fluctuations in device status and timely discovering
potential threats.

Although existing deep learning methods have some progress
in ToT threat detection, there are still three key limitations. One
reason is that spatiotemporal feature fusion is mostly shallow
concatenation, without considering the dynamic evolution of spatial
features over time. Secondly, attention mechanisms often adopt a
single channel or parallel fusion mode, making it difficult to guide
local feature learning through global dependencies. The third issue
is the insufficient ability to detect a few high-risk threats in financial
scenarios. The aim of this paper is to conduct a comprehensive
analysis of security threats in the integration of financial big data
and the IoT. By leveraging the advantages of deep learning, efficient
and accurate IoT threat detection techniques can be developed to
provide reliable technical support for the security of financial big
data and promote the safe development of the financial industry. Our
main contributions are summarized as follows.

1. This paper proposes a threat detection method that integrates
BiLSTM and provides a detailed description of the data
preprocessing process, including one-hot encoding and data

CNN-BiLSTM-GAM achieves

learning of spatial local features and temporal dynamic trends
through deep coupling of 1D-CNN and BiLSTM.

. The structure of CNN-BIiLSTM-GAM includes 1D-CNN,

BiLSTM and GAM. The 1D-CNN is responsible for extracting
spatial features of input financial big data, while BiLSTM

normalization. interactive

focuses on capturing dynamic features of time series data.

. In the experiment, it is verified that CNN-BiLSTM-GAM
has better spatiotemporal feature extraction capabilities and
can effectively improve the detection of IoT threats in
financial big data.

The rest of this paper consists of four parts. Section II; is related
literature. Section III provides a detailed introduction to the IoT
threat detection model based on CNN-BiLSTM-GAM. Section IV
designs comparative experiments for analysis based on multiple
baselines. Finally, Section V is the summary.

2 Literature review

With the surge of IoT data and the emergence of unknown
attacks, IoT threat detection technology has been widely studied.
Mahapatra etal. [11] proposed an adaptive threat detection
technique by introducing data mining concepts and techniques.
Applied in wireless ad hoc networks, this technology utilized data
mining algorithms to extract features from network traffic data and
used machine learning models for threat detection. Baig et al. [12]
proposed a multi class neural network model based on a cascaded
structure. This model converted the input network traffic data into
feature vectors and used multiple cascaded neural networks for
classification. Each cascaded neural network focused on different
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types of network attacks and made classification decisions based
on their unique features. Al-Sarayrah etal. [13] proposed the
Healthcare Analytics and Insight Framework (HAIF), in which the
Apriori algorithm can find meaningful connections and trends in
healthcare data. Polat etal. [14] proposed a multi-stage learning
model using a 1-dimensional convolutional neural network (1D-
CNN) and decision tree-based classification and validated its
effectiveness and advantages. Ilhan et al. [15] introduced a switch
port anomaly-based intrusion detection system (SPA-IDS) and
proposed a new automated threat classification model. The method
provided an effective and fast IDS approach to prevent attacks from
the network by analyzing data packets received at the second layer.
Jmila et al. [16] evaluated seven shallow classifiers and found that
different attacks have varying impacts on different classifiers. The
robustness of classifiers depended on the type of attack, a balance
between performance and robustness needed to be considered in
network threat detection scenarios. Martins et al. [17] presented a
review and unresolved issues regarding the anomaly detection of
host-based threat detection systems in IoT. It explored methods
and techniques for threat detection using host information in IoT
environment. Huang et al. [18] introduced an incremental lifecycle
learning-based intrusion detection system (ILL-IDS) for VANETS.
The system used incremental lifecycle learning to improve the
effectiveness of threat detection. The system constructed a threat
detection model by learning the characteristics and behavioral
patterns of the samples. By utilizing incremental learning techniques
to continuously update models to address new forms of threats, the
effectiveness of threat detection had been improved.

As an emerging technology in the area of machine learning,
deep learning had demonstrated outstanding capabilities in network
threat detection. Zhang et al. [19] proposed a method that combines
multi-scale CNNs with LSTMs to automatically extract temporal
and spatial features of network traffic data. By expanding the
network width, the ability to represent spatial features had been
enhanced, making feature extraction more efficient and accurate.
This method effectively utilized the spatial perception advantage
of CNN and the time series processing capability of LSTMs,
providing a powerful technical means for complex network traffic
analysis. Yao et al. [20] proposed a network threat detection method
that combines CNN and LSTM to achieve cross layer feature
fusion. CNN was used to capture global features, while LSTM
processed periodic features of time series. The fusion of the two
enhanced the models ability to identify network threats, not
only improving feature processing efficiency but also optimizing
the model’s adaptability to complex threat patterns, significantly
improving recognition accuracy. Lan etal. [21] proposed a multi
task learning based model that combines a memory enhanced
autoencoder and a prototype network. The introduction of these two
structures into CNN not only enhanced the discriminative ability
of data features, but also improved the robustness of the model,
making it more effective and accurate in detecting network threats.
This method of integrating mixed deep features demonstrated
its powerful ability to handle and identify threat behaviors in
complex network environments. Hacilar etal. [22] combined a
Deep Autoencoder (DAE)-based, vectorized and parallelized ABC
algorithm for training feed-forward artificial neural networks,
which was tested on the UNSW-NB15 and NF-UNSW-NB15-v2
datasets, achieving good classification performance for malicious
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behavior. Wu et al. [23] found that deep neural networks perform
better in data learning and generalization ability compared to
shallow neural networks. It integrated CNNs and GRUs into a sub
residual network framework, utilizing stacked residual modules
to deeply explore the deep features of the data. The design
enabled the model to effectively capture spatiotemporal features
in network traffic data, improving the efficiency of network threat
detection. This method demonstrated the powerful potential of
deep learning in complex pattern recognition scenarios, especially
when dealing with network security issues with time series
dependencies. Zha etal. [24] combined CNNs and LSTMs to
classify using spatiotemporal features and extracted features using
multiple convolution kernels of different sizes, effectively improving
the accuracy of classification. Su etal. [25] proposed an image
segmentation algorithm based on deep learning. This algorithm
combined convolutional neural networks with conditional random
fields and had been tested on multiple public datasets, achieving
better segmentation accuracy than traditional methods.

IoT security, cryptographic methods, 0 day attack detection
and data imbalance challenges were directly related to IoT
threat detection. Gabr etal. [26] proposed a memristive coupled
neural network for secure data management, offering insights
into advanced cryptographic methods that strengthened the
security narrative of IoT-based financial data. Alexan etal
[27] demonstrated the use of hyperchaotic maps for data
protection, highlighting novel encryption mechanisms relevant
to safeguarding sensitive IoT-financial datasets. Dai etal. [28]
presented a framework for detecting 0-day attacks in unseen
datasets, reinforcing the need to evaluate model robustness
against emerging and previously unobserved IoT threats. Yee et al.
[29] provided a comprehensive review of AI methods for 0-day
detection, supporting the manuscripts emphasis on Al-driven
security models and helping contextualize existing limitations.
Okmi etal. [30]offered a taxonomy of large-scale mobile data
analysis techniques, providing valuable parallels to IoT-financial
data handling and threat detection. Ainan etal. [31]discussed
handling class imbalance in financial prediction tasks, directly
relevant to the imbalance challenges noted in NSL-KDD and
CICIDS2017 datasets.

3 Research on threat detection
technology for financial big data

3.1 Financial big data preprocessing based
on loT

In actual financial big data sets, data quality issues such as
missing information, redundant data and inconsistent data types are
often encountered. The purpose of data preprocessing is to convert
these raw data into a format that algorithms can effectively process,
in order to improve the efficiency of model training and the accuracy
of predictions. The key steps of data preprocessing include but are
not limited to one-hot encoding and data normalization techniques.

The one-hot encoding is a commonly used method for handling
discrete features, which converts categorical variables into sparse
binary matrices that are easier for the algorithm to handle, helping
the model to more effectively parse categorical information. Data
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normalization is the process of adjusting the data scale to unify
the range of values for all features into a fixed interval, such
as [0,1] or [-1,1]. This step can reduce the bias caused by scale
differences between different IoT data features, while accelerating
model convergence and improving generalization ability.

3.1.1 One-hot encoding

In financial big datasets, it is common to encounter situations
that contain non numerical features, while most models can only
handle numerical features. Therefore, converting non numerical
features into numerical features is an important step in data
preprocessing.

In this conversion process, one-hot encoding is a commonly
used method. Compared to label encoding, one-hot encoding has its
obvious advantages. One-hot encoding transforms category features
by creating a new binary column for each category, ensuring that
the model does not misinterpret the numerical order or distance
between categories. The model can clearly distinguish each category
without mistakenly confusing numerical values with a certain order
or level. On the contrary, label encoding maps each category to
an integer value, where all categories are represented as different
numbers in the same column. Although this method is highly
efficient in handling certain category features with a clear order,
when dealing with category features without a fixed order, the model
may mistakenly believe that the size of the numbers represents
a certain order between categories, thereby affecting the model’s
understanding of the data and the final classification accuracy.
Therefore, for ensuring the accuracy and effectiveness of the model,
choosing one-hot encoding instead of label encoding is a more
suitable method when dealing with nominal category features. This
not only avoids misunderstandings of data by the model, but also
improves the accuracy of the model when processing complex
financial big data.

3.1.2 Normalization

In the preprocessing stage of financial big data in IoT, the scale
difference in processing feature data is crucial because it directly
affects the training speed and accuracy of the model. Features
from different dimensions often have significant differences in
magnitude. And if not properly processed, it may lead to low training
efficiency and limited improvement in model accuracy. Therefore,
data normalization has become an effective means to solve the
problem of scale differences. By adjusting the scale of feature data,
normalization can significantly improve the convergence speed of
the algorithm and the overall performance of the model. Adopting
maximum and minimum normalization is one of the commonly
used methods for handling scale differences in data. This method
adjusts the eigenvalues to a standard range between 0 and I,
in order to standardize the data scale. The specific calculation
is shown in Equation 1.

X—x

X = (1)
Xmax ~ Xmin

Among them, x represents the value of the original data point,
Xpax 18 the maximum value of the feature and x,;, is the minimum
value of the feature. In this way, the value range of all features is
normalized to the [0,1] interval, effectively alleviating the imbalance

caused by the difference of feature scale.
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This normalization process not only standardizes the scale of
financial big data, but also maintains the relative relationships in
the data. By applying maximum and minimum normalization, it
is possible to effectively avoid model training instability caused
by significant differences in feature scales, making the model
easier to train and accelerating its convergence speed, thus
achieving better performance in practical IoT threat detection
applications.

3.2 loT threat detection model based on
CNN-BiLSTM-GAM

3.2.1 Overview of CNN-BiLSTM-GAM

Existing deep learning research still has significant limitations.
Firstly, spatiotemporal feature fusion often stays at the shallow
level of concatenation, where the spatial features extracted by
convolutional neural networks are directly connected to the
temporal features captured by recurrent neural networks. The lack
of consideration for the dynamic changes in spatial features over
time has resulted in the disconnection of the intrinsic correlation
between device traffic characteristics and trading periods in financial
data. Secondly, there are shortcomings in the application of attention
mechanisms, as some studies only use single channel attention and
can only focus on the importance of channel dimensions. Although
some studies attempt to combine channel and spatial attention, a
parallel fusion mode is adopted, which cannot achieve guidance of
local details through global dependencies. At the same time, the lack
of effective response strategies for rare but highly harmful threat
samples in financial scenarios results in poor detection performance
for such threats.

CNN-BiLSTM-GAM combines 1D-CNN and BiLSTM for
processing and analyzing complex IoT data. Its overall architecture
is shown in Figure 1. This multi-level and multi technology
architecture enables the model to not only effectively handle the
multidimensional characteristics of financial big data, but also
capture complex relationships in IoT data, thereby improving the
accuracy of classification and detection. Figure 1 shows the process
of the threat detection model, which includes the proposed 1D-
CNN, BiLSTM and GAM.

CNN-BiLSTM-GAM extracts spatial features of financial
data using 1D-CNN and captures local features through two-
layer convolution combined with batch normalization and
max pooling. The two-layer convolution consists of 32 1 x 3
kernels and 64 1 x 3 kernels, respectively. Qazi et al. [32] pointed
out in network intrusion detection that 1 x 3 convolutional
kernel can effectively extract local correlations between adjacent
three features, which is superior to 1 x 1 (insufficient feature
interaction) and 1 x 5 (introduction of redundant noise). The
hidden dimension of the BiLSTM layer is 128, capturing the
before and after dependencies of the time series. Orthogonal
initialization and forget gate bias optimization enhance training
stability. Nazir etal. [33] used BiLSTM hidden layer dimension
128 in IoT threat detection, believing that this dimension can
fully learn the temporal correlation between device states and
attack patterns without significantly increasing computational
complexity. The channel attention of GAM generates weights
through MLP, combines spatial attention with grouped convolution
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CNN-BIiLSTM-GAM.

and channel shuffling to solve the problem of separating global
and local features in traditional attention. Finally, the classification
results are output through a fully connected layer and Softmax,
supplemented by L2 regularization and dropout to suppress
overfitting.

1. Data preprocessing layer. The main tasks of the preprocessing
layer include data cleaning and standardization to ensure the
consistency of the input financial big data. At this stage, the
classification data is first converted into numerical binary
variables using the one-hot encoding method, so that the
algorithm can more effectively handle non numerical category
data. Next, all feature values are scaled to a range of 0 to 1
through data normalization to eliminate the impact of different
datalevels, promote algorithm convergence speed and improve
model performance.

. Model threat detection layer. This layer constitutes the core
of CNN-BiLSTM-GAM, combining 1D-CNN, BiLSTM and
attention mechanisms to balance spatial and temporal data
analysis. The 1D-CNN effectively extracts spatial features
through its specialized structure, while BiLSTM optimizes
the processing of time series data, enabling the model to
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comprehensively learn the spatial and temporal information
of IoT data.

CNN-BiLSTM-GAM  forms value  through

multidimensional innovation based on the classic architecture. Its

unique

core innovation is reflected in the design of GAM, which is different
from existing single dimensional or parallel fusion attention
patterns. GAM adopts a channel to space sequential enhancement
logic, first incorporating spatial dimension information into channel
weight learning. By using grouped convolution to enhance spatial
local focus, the problem of separating global and local features in
traditional attention is solved. At the same time, max pooling is
removed and a large convolution kernel is used to cope with high-
frequency noise in financial data. Based on the characteristics of
financial IoT scenarios, CNN-BiLSTM-GAM integrates multimodal
features such as device identity, transaction behavior and network
traffic, dynamically adjusts the weighted loss function and attention
weight to enhance the detection capability of rare but high-risk
minority threats. This makes the model more in line with the
threat detection requirements of the alloy fusion IoT, breaking
through the limitations of existing general models in global and local
collaboration, spatiotemporal fusion depth and scene adaptability.
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3.2.2 Threat detection module
This module 1D-CNN and BiLSTM,
to improve the accuracy of sequence data processing for

integrates aiming
finance. It mainly consists of a feature extraction module and
a classification module. Furthermore, the feature extraction
module is refined into three key sub modules, namely, the
spatial feature extraction module, the temporal feature extraction
module and GAM.

In the feature extraction stage, the spatial feature extraction
module first effectively captures spatial correlations in financial
oriented sequence data through 1-DCNN. This network structure
utilizes the local connections and weight sharing mechanism
of convolutional layers, which not only significantly reduces
the parameters of CNN-BiLSTM-GAM, but also accurately
extracts key spatial features. Subsequently, the temporal feature
extraction module conducts in-depth analysis of the time dimension
characteristics of financial oriented sequence data through the
BiLSTM layer. The design of BiLSTM enables the model to
simultaneously learn the forward and backward information of
the sequence, comprehensively capturing the time series dynamics
in IoT data. To further enhance the feature extraction capability of
CNN-BIiLSTM-GAM, the attention mechanism is used to ensure
computational overhead. After feature extraction is completed, the
classification module is responsible for converting the extracted
features into specific threat security classification results. The
design of this module fully considers the characteristics of
financial oriented sequential data, as well as the impact of features
extracted from the two dimensions of space and time on the final
classification task.

3.2.2.1 Spatial feature extraction submodule
The design of this module adopts 1D-CNN and max pooling

layers to achieve the characteristics of parameter sharing, spatial
arrangement and local perception, thereby efficiently extracting
key features from time series data. This submodule effectively
reduces the computational costs of CNN-BiLSTM-GAM by utilizing
the structural characteristics of 1D-CNN layer. The parameter
sharing mechanism enables multiple neurons in the network to
share the same weights, which not only significantly reduces
the number of parameters in CNN-BiLSTM-GAM, but also
simplifies the complexity of the model, thereby reducing the
computational burden during model training and inference. The
ID-CNN layer captures and combines local spatial patterns
on the input feature map by moving along the window and
performing convolution operations to form a sparse feature
matrix. Each matrix element represents the degree of correlation
between different features, enabling CNN-BiLSTM-GAM to extract
more effective and representative features from the IoT for
financial big data.

In addition, the 1D-CNN layer uses ReLU activation function,
which helps to introduce non-linear processing capability [32],
enabling CNN-BiLSTM-GAM to learn more complex and deep
level data representations. The max pooling layer following the
1D-CNN layer further reduces the computational complexity of
CNN-BiLSTM-GAM by reducing the dimensionality and number
of parameters of the feature map. At the same time, it retains
the most significant feature information, effectively preventing
overfitting and providing the possibility for accelerating the training
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of CNN-BILSTM-GAM. The calculation formula is shown in
Equation 2.

hi= f(wex,+b) )

The f(.) represents the nonlinear activation function of ReLU,
w represents the convolution kernel, x;; represents the data feature
vector in multiple consecutive network education applications and
b represents the bias value.

3.2.2.2 Temporal feature extraction submodule
In LSTM, there are three state stages, namely, forget stage, select

memory stage and output stage. This stage selectively outputs [33]
and the calculation process is in Equations 3-8.

fr=0(Wp[h_y,x,]+by) (3)
ip=0o(W;-[h_p,x,] +b;) (4)
C, = tanh(We- [h_p,x,] + be) (5)
C,=f,%C_ +i*C, (6)

0, =0(W,[he_y,x,] +b,) (7)

hy = o, * tanh(C,) ()

In this context, ¢ represents the sigmoid layer, W and b
represent the weights and parameters of that layer, f; is called the
forget gate, i, is the input gate and h, is the selective forgetting
implemented by the sigmoid layer at time t. This process refers to
the output of the previous stage and the current input to make
selective forgetting. The second stage determines what information
is stored in the LSTM cell by obtaining candidate vectors through
the tanh function, multiplying the previous state value by the
corresponding forget gate. It adds the product of the candidate
value and the input gate i, to obtain the optimal cell state
parameter C.

However, for most text related tasks, LSTM requires neural
networks to rely on contextual information and a key discrimination
may be determined by multiple inputs before and after. Therefore,
BiLSTM is proposed. The BiLSTM plays a crucial role in the
CNN architecture, with the max pooling layer playing a crucial
role. Its main function is to simplify network computation
by reducing the spatial dimension of feature maps, effectively
capture core information in the IoT for financial big data
by selecting the most significant features. This operation not
only significantly reduces the computational load of CNN-
BiLSTM-GAM, but also helps alleviate overfitting problems,
thereby enhancing the generalization ability of CNN-BiLSTM-
GAM.

To further optimize network performance, the introduction
of batch normalization layers become a routine part of the CNN
intermediate layer. This technology normalizes the input of each
batch of data and the standardized IoT data is conducive to
gradient flow in the network, thereby enabling the model to
maintain stable response to subtle changes in the input of financial
big data oriented IoT. This accelerates the speed of the entire
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training process, significantly improving the stability of the model.
When processing financial oriented sequential data, the BiLSTM
layer, as a component of CNN-BiLSTM-GAM, typically requires
the introduction of a reshaping layer to adjust the data format
to meet the input requirements of subsequent BiLSTM layers.
The design of this reshaping layer ensures seamless transition
of data from one layer to another, allowing CNN-BiLSTM-GAM
to further explore and learn long-term dependencies of IoT
data, optimizing the efficiency of data flow transmission in the
network. The BiLSTM layer is used to simultaneously learn the
features of forward and backward time series data, consisting
of two units. One unit processes forward time series, while the
other unit processes backward time series. This design allows
the network to obtain information about past and future data
at each time step, improving its modeling ability and prediction
accuracy for long-term time series data. Each unit has the same
input and is connected to the same output. This arrangement
allows the network to consider both past and future data at each
time step, thereby better learning features to improve training
performance.

3.2.2.3 GAM

Hu et al. [34] designed a Squeeze and Excitation (SE) module,
which could be easily incorporated into CNNs to capture more
critical feature information in the channel direction. In addition,
Zhu etal. [35] studied that the Convolution Block Attention
Module (CBAM) could find the most important parts of the
network for processing. In addition to focusing only on spatial
domain information, the Convolution Block Attention Module
(CBAM) proposed by Woo etal. [36] could simultaneously focus
on spatial domain features and channel domain features. By
concatenating, the learned weights were assigned to the feature
maps in both channel and space, effectively improving the
network’s ability to extract attention region features. CNN-BiLSTM-
GAM designs GAM based on the CBAM module for use in
the network.

The core differences between GAM and CBAM are reflected
in the fusion mechanism, feature processing methods and
computational efficiency. GAM adopts a sequential fusion strategy
of “channel to space’, gradually focusing on features from
global to local, while CBAM adopts a parallel fusion mode
where channels and spaces are independently processed and
added element by element. In terms of channel attention, GAM
captures cross dimensional global dependencies through three-
dimensional arrangement and two-layer MLP, while CBAM only
relies on global pooling and single-layer MLP to model channel
relationships. In terms of spatial attention, GAM introduces
grouped convolution and channel shuffling to avoid information
loss caused by pooling. While CBAM relies on average or
maximum pooling plus standard convolution, which poses a
risk of detail loss. In terms of computational efficiency, GAM
reduces the parameter size through grouped convolution, which
is significantly better than the standard convolution structure of
CBAM. In addition, GAM’s feature focusing mode emphasizes
global consistency and preserves spatial structural information
through three-dimensional arrangement, while CBAM focuses on
local details and is prone to losing temporal features due to pooling
compression.
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TABLE 1 Dataset NSL-KDD and CICIDS2017.

Dataset Sample Sample Ratio (%)
category quantity
Normal 77054 51.89
DoS 53385 35.95
Probe 14077 9.48
NSL-KDD
R2L 3,882 2.61
U2R 119 0.08
Total 148517 100
Normal 2358036 83.32
DoS 294507 10.41
Prot Scan 158966 5.62
CICIDS2017 Pattor 13835 0.49
Web Attack 2,153 0.08
Bot 1966 0.07
Total 2830108 100

4 Experiment and result analysis
4.1 Experimental setup

This paper uses the Intel (R) Core (TM) i7 - 8550U CPU @
1.80 GHz. The experiment is carried out on a PC with 16.00 GB of
memory, which is installed with the Windows 11 operating system.
It uses Python 3 as the main programming language and develops
on the Anaconda platform.

This paper uses the NSL-KDD dataset [37] and CICIDS2017
dataset [38] as experimental data. NSL-KDD is designed to solve
the problems in the KDD Cup 99 dataset and is one of the widely
used datasets in the area of network security research, especially
suitable for research on network threat detection. CICIDS2017 is
jointly developed by the Canadian communications security agency
and the Canadian institute for cybersecurity, providing a testing
platform that includes real network traffic data. This dataset not only
covers normal background traffic, but also records various signs of
malicious activity in detail. The quantity and proportion of each
category of NSL-KDD and CICIDS2017 are shown as in Table 1.

The performance of models is comprehensively evaluated using
multidimensional evaluation indicators, including accuracy (ACC),
recall (REC), F1 score (F1) and precision (PRE) [39]. The calculation
of indicators is based on four core parameters, they are true positive
(TP), true negative (TN), false positive (FP) and false negative (FN).

ACC is defined as the proportion of correctly classified samples
to the total number of samples and is a fundamental indicator for

evaluating the overall performance, as shown in Equation 9.
TP+ TN

ACC= ——M 9)
TP+ TN+ FN + FP
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REC, also known as True Positive Rate (TPR), refers to the
proportion of abnormal samples correctly identified by the model to
the total number of actual abnormal samples. This indicator reflects
the sensitivity and effectiveness of the model in identifying threat
situations, as shown in Equation 10.
TP
- TP+FN

F1 is a performance indicator that comprehensively reflects
the ACC and REC. By balancing these two factors, it provides

REC (10)

a comprehensive evaluation, as shown in Equation 11. PRE
is shown in Equation 12.

_ 2 x Precision x Recall

F1 11
Precision + Recall ()
TP
PRE = ——— 12
TP + FP (12)

However, there is a serious class imbalance problem in datasets,
such as the U2R class accounting for only 0.08% in NSL-KDD
and the Normal class accounting for 83.32% in CICIDS2017. To
avoid misleading results caused by majority class dominance in high
ACC and REC, a mixed sampling mechanism is adopted during
the training phase. For minority classes such as U2R in NSL-KDD
and Web Attack in CICIDS2017, SMOTE oversampling is used.
SMOTE randomly selects samples from the k-nearest neighbors of
each minority class sample and generates synthetic samples, which
not only avoids overfitting caused by simply copying samples, but
also preserves the distribution characteristics of minority classes.
By synthesizing new samples to avoid overfitting caused by simple
replication, the number of neighbors is set to 5. For most classes,
such as Normal, random undersampling is used to preserve the core
distribution features. After sampling, the ratio of majority classes to
minority classes is controlled at 3:1 to balance the training sample
size of each classification. By randomly removing some samples to
reduce the amount of data, while ensuring the preservation of the
core distribution pattern of the majority of classes, the weights of
each class in training are effectively balanced.

Both datasets are divided using random stratified sampling,
with the core principle being to maintain the same proportion
of categories in each subset as the original dataset, in order to
avoid missing minority classes in a subset due to sampling bias.
The specific division ratio is 70% for the training set, 10% for the
validation set and 20% for the testing set. The complete dataset is
layered by category, where each category is treated as a separate
subset. Then, within each subset, random sampling is used to
allocate samples in a ratio of 7:1:2 to the training, validation and
testing sets. Finally, all sub samples of each category are merged to
form three sets. The reason for choosing random stratified sampling
instead of time partitioning is that the core difference between NSL-
KDD and CICIDS2017 lies in the type of attack rather than time
distribution. Threat detection models need to have generalization
ability for various types of attacks, rather than only adapting to
patterns within specific time windows. At the same time, stratified
sampling can avoid the problem of excessive sparsity of minority
samples in the test set that may be caused by random sampling,
ensuring that the evaluation indicators can truly reflect the model’s
ability to recognize all categories.

In terms of input data dimensions, each sample of NSL-
KDD contains 41 dimensional features after preprocessing. Among
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TABLE 2 Parameter selection ablation experiment.

Experiment type Parameter

selection

BiLSTM dimension 64/128/256 93.26~> 96.81-> 95.93

Convolutional kernel size 1x1/1x3/1x5 90.15-> 96.98> 94.32

Sequence length 10/30/50 91.54>96.81595.72

them, 34 dimensions are numerical features, seven dimensions
are categorical features and they are expanded to 122 dimensions
through one-hot encoding. The length of the time series is set
to 30, which means that every 30 consecutive samples form an
input sequence, suitable for sliding window processing in 1D-CNN.
Zhang et al. [19] validated in network traffic time-series modeling
that a window length of 30 can balance short-term burst patterns and
computational costs, outperforming 10 (incomplete information)
and 50 (increased redundancy).

The original feature of CICIDS2017 is 78 dimensions, including
traffic packet size, protocol type, etc. After hot encoding and
normalization, it is extended to 186 dimensions and the time series
length is also set to 30. Cross validation adopts a 5-fold hierarchical
cross validation method, which further divides subsets within the
training set. Each validation maintains the same category ratio as
the original data and the final model performance is taken as the
average of five validations to reduce sampling bias.

4.2 Ablation experiment

The empirical results of ablation for parameter selection
are shown in Table 2.

According to Table 2, BILSTM achieves the best balance between
accuracy and efficiency when the dimension is 128, with a 3.55%
improvement compared to 64 dimensions. When the size of the
convolution kernel is 1 x 3, the feature discrimination is the
highest, with a 6.83% improvement compared to 1 x 1. When the
sequence length is 30, it covers the complete temporal pattern,
which is 5.27% higher than when it is 10. The experiment
analyzes the threat detection capability of CNN-BiLSTM-GAM in
handling multi classification tasks on NSL-KDD and CICIDS2017.
By testing two datasets, the REC of each category are plotted as
shown in Figures 2, 3. The horizontal axis represents each data
category and the vertical axis represents the corresponding REC,
in percentage.

In Figures 2, 3, the test results show that when attention
mechanism is not used, the REC of the model is only 82.67%. After
introducing channel attention mechanism, the REC is increased to
88.31%. Adopting spatial attention mechanism, it further improves
to 90.67%. When using global attention mechanism, the REC is as
high as 96.54%. This indicates that the global attention mechanism
can enable CNN-BiLSTM-GAM to more effectively capture key
features in data, significantly enhancing its ability to identify normal
traffic and various threat traffic. It accurately distinguishes between
normal and abnormal network activities, significantly reduces the
risk of false negatives.
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FIGURE 2
REC of various ablation experiments based on NSL-KDD.
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FIGURE 3
REC of various ablation experiments based on CICIDS2017.

In contrast, even though the CICIDS2017 data features are
more complex, the model can still optimize the feature learning
process through a global attention mechanism. It significantly
improves the recognition recall of various attack behaviors
and maintains strong threat detection capabilities in complex
environments. This fully proves that CNN-BiLSTM-GAM has
strong generalization ability, can adapt to different characteristics
of financial big data and is reliable in detecting IoT network
threat behaviors.

In case of using the same network architecture, this paper adopts
a global attention mechanism to detect data and the threat detection
results show a significant improvement in performance. The
ablation experimental data is displayed in Table 3. The introduction
of attention mechanism, especially global attention mechanism,
has significantly improved the performance indicators of CNN-
BiLSTM-GAM on different datasets. This is because the attention
mechanism allows the model to focus on key data features, enhance
its ability to learn important information and ignore redundant
information. In the IoT threat detection scenario of financial big
data, the data is complex and contains a lot of noise. CNN-BiLSTM-
GAM can accurately capture threat related features and effectively
identify various threats.
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4.3 Effectiveness experimental analysis

4.3.1 Accuracy variation

The experiment constructs subsets of different sizes and
conducts detailed training experiments on these subsets, as
displayed in Figure 4. The horizontal axis represents the step size and
the vertical axis represents the corresponding accuracy.

In Figure 4, as the number gradually increased, CNN-BiLSTM-
GAM obtains more effective information from the data. The training
accuracy and validation accuracy gradually increased, reflecting the
continuous optimization of CNN-BiLSTM-GAM in the learning
process and the enhancement of its fitting ability to the data.
When trained to 1,100, the model accuracy reaches its peak and
shows stability. At this point, the training loss and validation loss
reach a relatively ideal balance. CNN-BiLSTM-GAM is able to
fully learn data features without falling into overfitting difficulties,
demonstrating good threat detection performance.

4.3.2 Horizontal comparison results

To verify the overall performance, a horizontal comparison of
the experimental results is conducted. Table 4 presents comparative
experiments between various baselines and the model proposed in
this paper, including CNN-SoftMax [40], CNN-LSTM [24], BILSTM
[41] and CNN-BiLSTM-AM [42]. CNN-BiLSTM-AM adopts a
single channel attention mechanism and its attention module is
based on the classical SE structure. It only assigns weights to the
channel dimensions of feature maps and does not involve fusion
design of SA.

By comparing the performance differences of different model
combinations in Table 4, it can be found that when comparing
CNN-BiLSTM-GAM and BiLSTM on NSL-KDD, it can be seen that
after removing CNN, ACC decreases by 4.44% and F1 decreases
by 6.48%. This indicates that CNN is indispensable in extracting
spatial features and its absence can weaken the model’s ability to
capture spatial correlations. Comparing CNN-BiLSTM-GAM with
CNN-BiLSTM-AM, it is found that after removing GAM, ACC
decreases by 3.17% and REC decreases by 2.32%. This indicates
that the global attention mechanism of GAM can optimize feature
weight allocation and its absence weakens the model’s ability to
focus on key features. Comparing CNN-BiLSTM-GAM with CNN-
SoftMax on CICIDS2017, after removing BiLSTM, REC decreases by
18.01% and F1 decreases by 13.86%. This highlights the crucial role
of BiLSTM in capturing dynamic temporal patterns, as its absence
can significantly reduce the model’s ability to detect dynamic threats.
In summary, BiLSTM is the core of performance improvement
and has the greatest impact on financial IoT data with strong
temporal dependencies. CNN is the foundation of spatial feature
extraction and plays a prominent role in complex scenes. GAM
further improves performance by optimizing feature weights and the
synergy of the three can achieve optimal model performance, fully
demonstrating the necessity of each submodule.

Based on the comprehensive horizontal comparison results, it
can be concluded that on NSL-KDD, CNN-SoftMax has an ACC of
80.24%, a REC of 78.62%, a PRE of 78.81% and an F1 of 80.86%.
The detection capability is limited, indicating that the improvement
in various indicators of CNN-LSTM is not significant. BiLSTM
performs well with an ACC of 92.37%, while CNN-BiLSTM-AM
further improves compared to BiLSTM. CNN-BiLSTM-GAM has
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TABLE 3 Comparison of attention mechanisms between NSL-KDD and CICIDS2017.

Dataset Attention mechanism ACC(%) ’ PRE(%) REC (%) F1 (%)
None 82.87 77.76 82.67 81.34
Channel attention 91.51 85.64 88.31 87.68
NSL-KDD
Spatial attention 92.04 85.49 90.67 88.59
Global attention 93.63 88.96 96.54 91.68
None 83.61 83.57 81.41 79.16
Channel attention 85.64 91.72 86.96 85.24
CICIDS2017
Spatial attention 86.76 87.78 91.76 88.74
Global attention 97.23 93.42 97.16 91.87
Lo— Tralning 1 ‘
—— Validotion
0 200 400 600 800 1000 1200 1400 1600
Steps
FIGURE 4
Acc variation.

an ACC of 96.81%, a REC of 94.70%, a PRE of 95.9% and an
F1 of 96.79%. With its unique structure, it accurately extracts
spatiotemporal features and performs the best. At CICIDS2017, the
overall performance of CNN-SoftMax is poor. The performance of
CNN-LSTM, BiLSTM and CNN-BiLSTM-AM gradually improves
but still falls short of CNN-BiLSTM-GAM. The experiment shows
that CNN-BiLSTM-GAM has significant advantages in various key
indicators and has excellent spatiotemporal feature extraction and
threat detection capabilities.

In Figure 5, compared to CNN-SoftMax, CNN-BiLSTM-GAM
improves ACC from 80.24% to 96.81%, which is 16.57% higher, and
REC from 78.62% to 94.70%, which is 16.08% higher. Compared
to CNN-LSTM, CNN-BiLSTM-GAM improves PRE by 15.09%
and F1 by 14.02%. Compared to BiLSTM, CNN-BiLSTM-GAM
improves ACC by 4.44%, REC by 3.28%, PRE by 4.50% and F1
by 6.48%. From this, it can be seen that CNN-BiLSTM-GAM is
significantly superior to other models in all key indicators and
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has obvious performance advantages in IoT threat detection of
financial big data.

In Figure 6, in terms of ACC, CNN-BiLSTM-AM is 90.92%,
while CNN-BiLSTM-GAM is as high as 96.98%. Compared
with other models, CNN-BiLSTM-GAM improves by 29.5%,
10.97%, 11.78% and 6.67%, respectively. In terms of PRE, CNN-
BiLSTM-GAM improves by 19.3%, 13.66%, 4.3% and 4.09%
compared to other models, respectively. Taking into account
various indicators, CNN-BiLSTM-GAM, with its unique structure,
has the advantage of extracting spatiotemporal features. When
detecting IoT threats, it has higher accuracy, fewer missed
detections and misjudgments. Its performance far exceeds other
comparative models, providing reliable guarantees for the security of
financial big data.

CNN-BIiLSTM-GAM outperforms baseline models such as
CNN-LSTM, mainly due to its precise weighting of features
through channel and spatial sequential attention, particularly
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TABLE 4 Comparison of threat detection results.

10.3389/fphy.2025.1633021

Dataset Model ACC(%) REC (%) PRE(%) ‘ F1 (%)
CNN-SoftMax 80.24 78.62 78.81 80.86
CNN-LSTM 78.28 78.77 80.89 82.7
NSL-KDD BiLSTM 9237 91.42 914 9031
CNN-BiLSTM-AM 93.64 9238 92.49 9234
CNN-BiLSTM-GAM 96.81 94.70 95.9 96.79
CNN-SoftMax 77.44 78.32 80.23 82.6
CNN-LSTM 87.39 81.67 8421 8236
CICIDS2017 BiLSTM 86.76 87.78 91.76 88.74
CNN-BiLSTM-AM 90.92 92.61 91.95 90.22
CNN-BiLSTM-GAM 96.98 96.33 95.71 96.46

CNN-BIiLSTM-GAM

CNN-BiLSTM-AM

BILSTM

CNN-LSTM

CNN-SoftMax

75.00 79.00 83.00 87.00 91.00 95.00 99.00
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FIGURE 5
Horizontal comparison based on NSL-KDD.
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FIGURE 6
Horizontal comparison based on CICIDS2017.
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in capturing attack patterns with cross dimensional correlations
and spatiotemporal dynamics. From the perspective of attention
mechanism, GAM’s channel attention submodule can transform
the global correlation of device IDs, transaction amounts and
traffic features in financial data into channel weights through three-
dimensional tensor modeling. For example, when detecting remote
control attacks such as U2R, it is possible to identify the combination
pattern of high-frequency small transactions and abnormal traffic
protocols of specific devices during abnormal periods. Specifically,
for multi-stage composite attacks such as Web Attack combined
with SQL injection and data leakage, GAM’s sequential attention
can first lock the global characteristics of abnormal HTTP request
types and database access frequency through channel weights. Then
it focuses on the time window of injected statements through
spatial attention, which is 15%-20% higher than the F1 of CNN-
BiLSTM-AM. However, CNN-BiLSTM-GAM is difficult to generate
effective weights due to the lack of prior knowledge in 0 day
attacks where features do not appear in the training set. It is
necessary to further optimize the generation of attention weights
by combining dynamically updated threat intelligence. In addition,
statistical significance tests are provided, as shown in Table 5, which
fully supports the effectiveness of CNN-BiLSTM-GAM in financial
big data IoT threat detection.

of CNN-BiLSTM-GAM in
financial IoT scenarios requires systematic optimization for

The deployment real-time
resource limitations of edge devices, financial level real-time
requirements, compliance requirement and business continuity
assurance. Effective implementation can be achieved through
model lightweighting, inference acceleration, interpretability
enhancement, edge cloud collaboration and fault-tolerant design.
In terms of model lightweighting, structured pruning is used to
reduce redundant parameters. The 1D-CNN layer retains the top
80% contribution of convolutional kernels, while the BiLSTM
layer prunes to 60% key hidden layer units. The heterogeneous
architecture of edge chips maps 1D-CNN convolution operations to
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TABLE 5 ANOVA experimental result.

Model ACC(%) ‘ F1 (%)
CNN-SoftMax 80.24 £ 1.32 80.86 + 1.21
CNN-LSTM 7828 +1.17 82.70 + 1.09
BiLSTM 92.37 £0.89 90.31 £ 0.87
CNN-BiLSTM-AM 93.64 £0.76 92.34 +0.79
CNN-BILSTM-GAM 96.81 £ 0.45 96.79 + 0.38

NPU dedicated computing units to improve efficiency by 5 times.
Edge cloud collaboration adopts the “edge inference + cloud update”
architecture, with lightweight models deployed at the edge to process
local data. In terms of fault-tolerant design, edge devices pre store
the distribution of normal behavior characteristics for nearly 7 days
and temporarily replace them with threshold methods when the
model fails.

The existing research uses NSL-KDD and CICIDS2017 as
benchmark datasets in the field of network security, but they have
limitations in the context of financial IoT. They are mainly collected
in general network environments such as campus networks and
enterprise intranets. Their traffic characteristics such as protocol
types, device types and data interaction modes differ from those of
financial IoT. The existing dataset lacks such features, resulting in
insufficient validation of the model’s ability to detect threats specific
to financial scenarios such as transaction message tampering and
malicious program implantation in terminal firmware. Moreover,
the attacks in the dataset are mostly general network attacks such
as DoS and port scanning, while targeted attacks in the financial
field such as account enumeration attacks, risk control rule bypass
attacks and side channel attacks on IoT terminals are rarely involved.
At the same time, there are obvious representative defects in a few
sample classes, such as the U2R attack in NSL-KDD with only 119
samples accounting for 0.08%, and the web attack in CICIDS2017
with only 2,153 samples accounting for 0.08%. This type of attack,
which has a low incidence but great harm in financial scenarios, can
lead to insufficient model learning due to sample scarcity, resulting
in the risk of underreporting. Developing a financial dedicated
IoT dataset is the core path to solving the above problems, which
should have scenario specificity and cover the real traffic of financial
IoT devices such as ATM machines, intelligent teller machines
and mobile payment terminals. And it includes multidimensional
features such as transaction data amount, time, account information,
device status data CPU usage, firmware version, network interaction
data communication protocol, encryption method, etc. For the
detection performance of minority attacks, supplementary sub
category indicators show that based on the average of 30 repeated
experiments, the ACC of U2R in NSL-KDD is 91.2% and the F1 of
R2L is 91.4%. The REC of Web Attack in CICIDS2017 is 93.2%, F1 is
92.3% and ACC of Bot is 95.3%. It can be seen that the REC of CNN-
BiLSTM-GAM for minority class attacks exceeds 89%, significantly
higher than the baseline model such as BiLSTM’s REC of only 76.3%
for U2R. This is due to GAM’s ability to focus on minority class
specific features such as privileged instruction sequences in U2R
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attacks. In response to the problem of 0 day threat unknown attacks
being difficult to learn directly due to a lack of samples, the model
uses feature generalization ability to cope. Known attack samples
are subjected to feature perturbations, such as randomly modifying
the traffic intensity and time interval of DoS attacks, to generate
unknown variant samples similar to 0 day threats. The model is
trained to identify abnormal features that deviate from normal
patterns rather than fixed attack patterns. In the test of simulating
0 day threats based on attack types not included in CICIDS2017, the
model detection rate reaches 82.3%, which is better than traditional
rule-based methods at 59.7%. Overall, although the existing datasets
provide preliminary validation for model performance, the special
nature of financial IoT scenarios requires more specialized datasets
to support it.

5 Conclusion

This paper focuses on the increasingly severe security
threats in the integration of financial big data and IoT and
conducts in-depth research on IoT threat detection technology.
A threat detection scheme based on CNN-BiLSTM-GAM is
proposed by integrating deep learning algorithms. CNN-BiLSTM-
GAM combines 1D-CNN, BiLSTM and GAM. The 1D-CNN
focuses on extracting local features from financial big data,
while BiLSTM captures the long-term dependencies of time
series data based on these features. This combination enables
the model to efficiently extract features in both spatial and
temporal dimensions, greatly enhancing the detection capability
of CNN-BiLSTM-GAM for IoT threat behavior. And a global
attention mechanism is introduced to calculate the correlation
between different positions. And then these correlations are
used as weights to weight the feature representation of each
position, thereby obtaining a richer global representation. The
experiment shows that compared with other detection models,
CNN-BiLSTM-GAM has better spatiotemporal feature extraction
ability, which can promote the safe development of the financial
industry. However, GAM is still limited by the strength of
feature signals and prior knowledge dependence, its attention
weight generation relies entirely on existing feature distributions.
And in terms of application scenario constraints, the model
currently only focuses on static threat detection and does not
cover extended tasks such as attack tracing and attack chain
prediction. Subsequent modeling can attack entity associations to
achieve full process protection. However, GAM currently relies
on existing feature distributions and prior knowledge, which
limits its adaptability to unseen feature patterns. In addition, the
model focuses on static threat detection and lacks the ability to
track or predict attack chains. In the future, CNN-BiLST-GAM
can be upgraded to meet the needs of financial IoT. One is to
integrate dynamic threat intelligence and adversarial generation
networks, enhance the ability to predict 0 day attacks through
incremental learning. The second is to introduce graph neural
networks and temporal prediction to achieve full traceability
and prediction of the attack chain, forming a closed loop of
detection traceability prediction. The third is to develop lightweight
variants through knowledge distillation, structured pruning and
hardware adaptation to meet the low latency and low resource
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consumption requirements of edge devices, ultimately building
a financial IoT security protection system that covers the entire
lifecycle of threat.
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