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Reduced-order aerodynamic 
model of a starting plate with 
discrete-vortex merging

Xi Xia* and  Lingyun Shangguan

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

This study employs potential flow theory with a discrete-vortex method to 
model the unsteady aerodynamics of a flat plate, with a particular focus on 
the coupled dynamics of leading-edge and trailing-edge vortices (LEVs and 
TEVs). Through the simulation of an impulsively starting plate at 45° angle-
of-attack, we demonstrate that the initial strong lift production maintaining 
for approximately two chord lengths of travel arises from differential vortex 
advection rates—rapid TEV shedding generates strong positive lift, while slow 
LEV movement over the plate produces weaker negative contributions. This 
finding provides new physical insight into the LEV-induced lift enhancement 
that it is likely a consequence of reduced negative lift rather than enhanced 
positive lift generation, as the LEV slows down to become more stable. To 
reduce computational complexity while preserving physical fidelity, we develop 
a novel vortex merge algorithm based on conservations of circulation and 
momentum, coupled with a condition enforcing minimal velocity perturbation 
to the plate surface. Through comparisons with both single-vortex and full 
discrete-vortex models, we demonstrate the superior performance of our 
reduced-order approach in capturing wake structure evolution and predicting 
unsteady lift, while balancing computational efficiency across a tunable range 
of precision. The developed model proves especially effective for long-time or 
small-time-step calculations, offering significant computational savings without 
compromising the fidelity of vortex dynamics or force predictions.

KEYWORDS

starting flat plate, discrete vortex, potential flow, unsteady aerodynamics, vortex merge, 
LEV, TEV 

 1 Introduction

Research in low-Reynolds-number unsteady aerodynamics has been profoundly 
influenced by studies of insect flight and flapping wings, motivated by the remarkable 
lift-generating capabilities observed in these biological systems [1–5]. Early experimental 
investigations employing flow visualization techniques [6–8] revealed that lift enhancement 
is fundamentally linked to unsteady wing motion, which promotes the formation and 
maintenance of a stable leading-edge vortex (LEV). Such an LEV exhibits significantly 
greater stability than its steady-flow counterpart, resulting in delayed vortex shedding and 
stall [9–13].

The theoretical explanation of lift enhancement via vortex attachment traces back to 
Saffman & Sheffield [14], who employed two-dimensional (2D) potential flow theory to 
demonstrate that a steady flow over a wing with an attached vortex produces increased lift. 
Subsequent developments by Chow & Huang [15] and Mourtos & Brooks [16] extended
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this framework to account for airfoil thickness, camber, and 
spanwise flow effects. These early studies have established that 
vortex stabilization on the upper airfoil surface provides enhanced 
lift, based on the assumption that the vortex remains stabilized at 
an equilibrium position for Kutta–Joukowski lift calculations. The 
stabilization mechanism of the LEV was first investigated by Rossow 
[17], who introduced a point sink at the vortex core to model the 
effects of spanwise flow on vorticity transport. This formulation 
enabled quasi-steady modeling of vortex dynamics through a linear 
system framework, permitting evaluation of vortex equilibrium and 
stability characteristics; however, the analysis ultimately failed to 
demonstrate LEV stabilization. Most recently, Xia & Mohseni [18] 
resolved this issue by replacing the point sink with a finite-area sink, 
allowing fully coupled vortex-sink interactions. This modification 
enabled the first mathematical proof of LEV stabilization under 
conditions of spanwise vorticity transport. However, the quasi-
steady formulation inherently neglects the unsteady characteristics 
of flapping wings, including the dynamic vortex formation and 
shedding processes.

Subsequent modeling efforts have focused on resolving the 
unsteady dynamics of flapping wings through vortex methods to 
better capture wake evolution and lift generation mechanisms. 
Significant improvements in unsteady aerodynamic modeling 
have been achieved through high-fidelity resolution of wake 
vorticity distributions, implemented via two primary approaches, 
the discrete-vortex methods [19–26] and the continuous vortex 
sheet/panel techniques [27–30]. In particular, Ansari et al.s model 
[22, 31] showed good agreement in both force predictions and 
wake development in comparison with previous experimental 
results [1, 32]. Recent advances in these frameworks have yielded 
accurate predictions of both wake vortex dynamics and unsteady 
aerodynamic forces, particularly through the development of 
theoretical formulations for rotating flat plates [23] and arbitrary 
airfoil geometries [26, 33] as well as fundamental criteria for vortex 
shedding, including the leading-edge suction parameter [24] and 
generalized unsteady Kutta conditions [26, 34–36].

The continuous introduction of new vortex elements into 
the wake leads to progressively increasing computational costs. 
Alternatively, the complexity of the wake system can be significantly 
reduced by modeling only the main vortex cores with individual 
point vortices. Specifically, attached vortices with varying 
circulations are evolved based on the Brown–Michael equation 
[37], which essentially requires the vortex force to be conserved for a 
growing vortex. And detached vortices are treated as freely-advected 
vortices with frozen circulations. For example, Michelin & Smith 
[38] applied this approach to modeling vortex shedding dynamics 
of multi-edge bodies, while Wang & Eldredge [39] developed a 
two-vortex model for coupled LEV–TEV dynamics, incorporating 
an impulse-matching scheme to eliminate nonphysical force jumps 
during vortex shedding. However, the single-vortex models are over-
simplified in resolving near-field vortical structures of complicate 
geometries, leading to inaccuracies in both vortex evolution and 
force predictions. A more fundamental limitation is the absence of 
physical criteria for vortex shedding timing, which constrains the 
models’ ability to capture long-term wake development. Recently, 
Darakananda & Eldredge [40] and Dumoulin et al. [33] developed 
a hybrid low-order vortex method that combines near-field vortex 
sheet resolution with far-field representation by a limited number 

of detached point vortices, where the transition between these 
representations is governed by a threshold condition based on vortex 
force discrepancy. However, this approach remains imperfect from 
a physical perspective, as the detachment of point vortices does not 
fully align with the natural timing of coherent vortex formation and 
shedding in the wake.

This work is focused on further exploring model reduction 
based on our previous unsteady aerodynamic model of a flat plate 
[23]. Our reduction approach here was inspired by Spalart [41] and 
Ansari et al. [22] who implemented vortex merge/amalgamation 
schemes based on minimizing velocity variation at the far field 
away from the merging site. However, in addition to their merging 
principle, we propose that the merge process should also conserve 
the total momentum of all vortices involved so as to prevent spurious 
force generation. Through comparisons with experiment, single-
vortex models, and the original discrete-vortex model, we aim 
to demonstrate the computational efficiency and accuracy of the 
present model for possible low-order applications. 

2 Theoretical approach

To investigate unsteady aerodynamics of a 2D flat plate, the 
present study employs the unsteady potential flow model developed 
by Xia & Mohseni [23], with discrete vortices introduced to capture 
the shear layer dynamics and vortex shedding behaviors at both 
the leading and trailing edges, as illustrated in Figure 1. This 
framework entails the default assumption of inviscid, incompressible 
2D flow, which has several limitations. For example, it is unable 
to capture three-dimensional effects, such as vortex breakdown 
and tip vortex that are essential to a low-aspect-ratio wing. 
Furthermore, the viscous effects cannot be sufficiently resolved. 
Although vortex formation and shedding can be predicted using 
unsteady Kutta condition, major uncertainties could arise due to 
its inability to account for the formation of boundary layer and the 
viscous diffusion of shear layer and vortex core. Nevertheless, in 
terms of reduced-order modeling, potential flow still has its own 
advantage. In particular, it gives explicit expression of the flow 
field without solving the Navier–Stokes equation, thereby providing 
a mathematical foundation for analyzing the vortex dynamics 
while maintaining computational tractability. Combined with the 
discrete-vortex method, it is able to offer reasonably accurate 
predictions of the wake vortex evolutions and aerodynamic forces, 
especially the lift resulting from vortex circulation.

2.1 Unsteady potential flow model

We start by introducing the unsteady potential flow model 
in Figure 1, where the flow around a flat plate in the laboratory 
coordinate system (denoted as the z-plane, z = x+ iy) is mapped 
to an equivalent flow around a cylinder in an imaginary ζ-plane 
(ζ = ξ+ iη) via the Joukowski transformation,

z = ζ+ a2

ζ
+ x0, (1)

where a denotes the cylinder radius, related to the chord length c
of the flat plate by a = c/4. In Equation 1, x0 represents the offset 
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FIGURE 1
Diagram illustrating the unsteady potential flow model of a 2D flat plate, with discrete vortices shedding from the leading and trailing edges. The flow in 
the physical z-plane is mapped to that in the virtual ζ-plane using Joukowski transformation.

distance between the plate’s midpoint and the origin. The incoming 
flow has a time-varying velocity, U(t), and a fixed angle of attack 
(AoA), α.

Considering the background flow and the vortex singularities 
in Figure 1, we may apply the rule of superposition and the 
circle theorem [42] to express the complex potential in ζ-plane as

wζ (ζ) = |U|e−iα (ζ+ x0) + |U|eiα (a2/ζ+ x0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Translational

− i
2π

M

∑
j=1

ΓLj ln(
ζ− ζLj

ζ− a2/ ̄ζLj
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
LEVs

− i
2π

N

∑
k=1

ΓTk ln(
ζ− ζTk

ζ− a2/ ̄ζTk
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TEVs

,

(2)

where the first two terms account for the translational motion of 
the plate, while the last two terms describe the induced effects of 
the discrete vortices associated with the LEVs and TEVs, including 
those from their image vortices within the cylinder. Here, M and 
N denote the total number of vortices in the LEVs and TEVs, 
respectively. Lj and Tk refer to the jth and kth vortices in the LEVs 
and TEVs, respectively; they correspond to the locations zLj and zTk
in the physical plane and ζLj and ζTk in the cyliner plane, with the 
circulations of ΓLj and ΓTk.

The evaluation of Equation 2 requires precise determination of 
both circulations and positions for all discrete point vortices. For the 
circulation, each vortex element generating from either the leading 
or trailing edge is assigned a strength governed by the classical 
steady-state Kutta condition:

∂wζ (ζ)
∂ζ
= 0 for ζ→±a. (3)

This condition enforces stagnation points at the edges of the cylinder 
in the ζ-plane, which corresponds to maintaining finite velocities 
at the sharp edges of the flat plate in the physical z-plane. While 
this condition is inherently satisfied at the trailing edge, its validity 
at the leading edge is restricted to large AoA, which is justified by 
the presence of significant reverse flow on the windward side [23]. 
Consequently, the current analysis focuses only on the large-AoA 

scenario where this assumption holds. In the present discrete-vortex 
framework, Equation 3 can be further calculated as

∂w∗ζ (ζ)

∂ζ
−

iΓLm

2π
⁢ ∂
∂ζ
⁢ (ln (

ζ− ζLm

ζ− a2/ ̄ζLm
))

−
iΓTn

2π
⁢ ∂
∂ζ
⁢ (ln (

ζ− ζTn

ζ− a2/ ̄ζTn
)) = 0 for ζ→±a, (4)

where Lm and Tn are the new vortices forming at the leading and 
trailing edges, respectively. w

∗
ζ (ζ) represents the complex potential 

excluding the contributions from the newly generated vortices. 
The unknowns in Equation 4 are the positions, ζLm and ζTn, and 
circulations, ΓLm and ΓTn, of the two new vortices. To close the 
system, we adopt a key physical assumption that the vorticity flux 
from the edge to the shear layer is treated as quasi-steady, with 
its rate determined by the local flow advection. It follows that the 
initial placement of new vortices satisfies the 1/3-arc rule [22, 23, 
43], meaning that each new vortex should be positioned at the one-
third point of the arc between the shedding edge and the previously 
released vortex. Of course, this arc has to be tangential to the sharp 
edge according to the Kutta condition. Then, the vortex positions 
zLm and zTn obtained through this geometric condition can be 
transformed back to the ζ-plane and substituted into Equation 4 to 
solve for the unknown circulations, ΓLm and ΓTn.

Once generated, the vortices in the wake are assumed to 
hold constant circulations, as dictated by the Helmholtz’s laws of 
vortex motion. However, the spatial evolution of a vortex follows 
Lagrangian advection via a de-singularized velocity (for a point 
vortex Lv in the LEVs):

uLv − ivLv =
ζ2

Lv

2π(ζ2
Lv − a2)
[2π|U|(e−iα − a2eiα

ζ2
Lv
)−

M

∑
j=1,j≠v

iΓLj

ζLv − ζLj

+
M

∑
j=1

iΓLj

ζLv − a2/ ̄ζLj
−

N

∑
k=1
(

iΓTk

ζLv − ζTk
−

iΓTk

ζLv − a2/ ̄ζTk
)]

+
iΓLv

π
ζLva2

(a2 − ζ2
Lv)

2 .

(5)
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The final term of Equation 5 represents the Routh correction 
[44, 45], accounting for the self-induced velocity due to the vortex’s 
interaction with its image vortex in the cylinder. An analogous 
expression for a vortex Tv in the TEVs can be obtained through 
substitution of indices and excluding the singularity at ζ = ζTv.

Based on the potential flow model, the unsteady aerodynamic 
force can be calculated by employing the unsteady Bernoulli 
equation and then computing the unsteady Blasius integrals [23], 
which gives

Fx − iFy = 2πρa2|U̇| (e−iα − eiα)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Added Mass

− iρ
M

∑
j=1
[ΓLj

d
dt
( ̄ζLj −

a2

ζLj
)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
LEVs

−iρ
N

∑
k=1
[ΓTk

d
dt
( ̄ζTk −

a2

ζTk
)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TEVs

,

(6)

where ρ is fluid density. This formula suggests that a major unsteady 
force contribution, other than the ‘added mass’ effect owing to 
background flow acceleration, is from the LEVs and TEVs in the 
wake. Specifically, these terms highlight the importance of the 
relative advective movements between the vortices and their image 
counterparts. 

2.2 Vortex merge algorithm

In the potential flow model, the incorporation of the discrete-
vortex method enables the tracking of wake vortex evolution and 
the estimation of unsteady aerodynamic forces arising from vortex 
motion. However, as vortices are continuously introduced into the 
flow field at each time step, the computational cost escalates and the 
efficiency degrades significantly over time or with reduced time steps 
owing to the accumulating vortex population. A critical question 
thus arises: can a vortex merge algorithm be devised to amalgamate 
proximate vortices, thereby improving computational efficiency 
without compromising much simulation fidelity? To address this, 
we focus on the most basic scenario of a double-vortex system and 
propose two physical hypotheses governing the merging process:

(i) The merging process must obey the basic conservations 
of circulation and momentum.

(ii) The global flow field should remain largely unaffected by 
the merging.

Based on the preceding analysis, the merging process of 
two point vortices with circulations Γ1 and Γ2 is illustrated in 
Figure 2. The resultant vortex after merging has a circulation Γ3, 
which satisfies Γ3 = Γ1 + Γ2 by the conservation of circulation. The 
momentum equation for a single vortex (with circulation vector Γ) 
can be expressed in terms of a vortex force, fv, as [46].

fv + ρ(U−Uv) × Γ = 0, (7)

where U denotes the background flow velocity, which is also the 
vortex velocity as if it were a free vortex, and Uv is the actual 
advective velocity of the vortex. Equation 7 dictates that any net 
force acting on a vortex, resulting from its interaction with the 
surrounding fluid or structures, must be balanced by a deviation in 
its advective velocity from that of an equivalent free vortex. Based on 

the vortex locations before and after merging, as shown in Figure 2, 
Equation 7 can be respectively derived for the merging vortices in 
the forms of

fv1 + ρ[
P′1 (t+Δt) −P1 (t)

Δt
−
P3 (t+Δt) −P1 (t)

Δt
]× Γ1 = 0 (8)

fv2 + ρ[
P′2 (t+Δt) −P2 (t)

Δt
−
P3 (t+Δt) −P2 (t)

Δt
]× Γ2 = 0, (9)

where P1(t) and P2(t) denote the initial positions of the vortices, 
and P3(t+Δ) is the position of the merged vortex location after 
an infinitesimal merging period Δt. Here, P′1(t+Δt) and P′2(t+Δt)
correspond to the hypothetical positions of the merging vortices as 
if they were advected freely without merging. Within the present 
potential flow framework, the summation of Equations 8, 9 yields

( fv1 + fv2)Δt
ρ
= (z′1 − z3)Γ1 + (z

′
2 − z3)Γ2, (10)

where z′1, z′2, and z3 are the complex-plane positions at t+Δt, 
corresponding to P′1, P′2, and P3, respectively. Now, hypothesis (i) 
can be implemented by requiring the momentum conservation 
( fv1 + fv2) and the circulation conservation (Γ3 = Γ1 + Γ2), which 
reduces Equation 10 to

z3 =
Γ1z′1 + Γ2z′2

Γ3
. (11)

This result reveals that the merged vortex’s position z3 is determined 
by the circulation-weighted centroid of the double-vortex system—a 
direct consequence of momentum conservation. Equation 11 aligns 
with the findings of Spalart [41], derived via Taylor expansion 
to match the far-field induced velocities pre- and post-merging. 
Mathematically, Equation 11 applies to the merging of any vortex 
pair, irrespective of their rotation directions. Physically, however, 
merging is only meaningful for same-signed vortices, meaning Γ1, 
Γ2, and Γ3 all have the sign. This is because, in the actual viscous 
flow, two approaching same-signed vortices are subject to vorticity 
diffusion that tends to smear their individual vorticity peaks into 
a single peak, resulting in the vortex merge. Conversely, opposite-
sign vortices undergo annihilation as vorticity diffusion enforces 
a zero-vorticity boundary between them, thereby preventing the 
merge. It should be noted that, vortex annihilation remains a 
challenge for the present singularity-based model, which cannot 
yield the information of vorticity distribution that dictates the 
diffusive process of annihilation. Nevertheless, future effort can 
be made to offer an approximate solution to this problem, 
based on modeling the characteristic annihilation time of two 
approaching vortices.

Regarding hypothesis (ii), while the change in velocity induction 
inevitably introduces some near-field disturbances—making 
complete neutrality impossible—this hypothesis can be relaxed to 
a problem-specific condition. In this study, as aerodynamic forces 
are of primary interest, which result from the interactions between 
the plate and the wake vortices as indicated from Equation 6), this 
condition can be established based on minimizing the change in 
velocity induction exerted by the vortex system on the plate surface. 
To establish such a condition, we consider the induced velocity at 
zs, a point on the plate surface that is closest to the merged point z3. 
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FIGURE 2
Merging process of two point vortices. Initially, the two vortices (of 
circulations Γ1 and Γ2) are located at P1 and P2, respectively. After a 
period of Δt, they merge into one vortex of circulation Γ3 at P3.

The velocity difference between the cases with and without merging 
can be expressed as

ΔVs = −
i

2π
(

Γ1

zs − z′1
+

Γ2

zs − z′2
−

Γ3

zs − z3
). (12)

By further applying the Taylor expansion to the first two terms at z′1 =
z3 and z′2 = z3, respectively, Equation 12 can be further derived as

2πiΔVs =
Γ1

zs − z3
[1+

z′1 − z3

zs − z3
+(

z′1 − z3

zs − z3
)

2

+ o((
z′1 − z3

zs − z3
)

2

)]

+
Γ2

zs − z3
[1+

z′2 − z3

zs − z3
+(

z′2 − z3

zs − z3
)

2

+ o((
z′2 − z3

zs − z3
)

2

)]−
Γ3

zs − z3
,

(13)

 where the convergence of the Taylor series requires |z′1 − z3| < |zs −
z3| and |z′2 − z3| < |zs − z3|.

Combining Equations 11, 13 and neglecting the small-order 
terms yield

|2πiΔVs| ≈ |
Γ1

zs − z3
(

z′1 − z3

zs − z3
)

2

+
Γ2

zs − z3
(

z′2 − z3

zs − z3
)

2

|

≤ |
Γ1

zs − z3
| |(

z′1 − z3

zs − z3
)

2

| + |
Γ2

zs − z3
| |(

z′2 − z3

zs − z3
)

2

| .
(14)

Equation 14 can be recast to give the inequality of the relative change 
in induced velocity at zs:

|
ΔVs

Vs
| ≤ δM =

Γ1

Γ3
|(

z′1 − z3

zs − z3
)

2

| +
Γ2

Γ3
|(

z′2 − z3

zs − z3
)

2

| , (15)

where Vs is the velocity induced by the merged vortex (of circulation 
Γ3) at zs. To satisfy hypothesis (ii), which requires the velocity 
induced by the merging vortices on the plate surface being 
negligible, the parameter δM must take an infinitesimal value. 
Consequently, we can prescribe δM as a small threshold value, 
serving as the criterion for determining whether two vortices should 
undergo instantaneous merging. 

3 Results and discussion

The unsteady potential flow framework with discrete vortices 
has been demonstrated to yield accurate predictions of both wake 
evolutions and unsteady lift variations in the previous work [23]. The 
present study extends this analysis by examining two key aspects: 
(1) the physical mechanisms underlying different contributions to 
unsteady lift generation on an impulsively starting plate, and (2) 
the efficacy of the proposed vortex merge algorithm for model 
reduction. 

3.1 Contributions to unsteady lift 
generation

The lift generation mechanisms are investigated through 
simulating an impulsively starting flat plate experiment, originally 
conducted by Dickinson and Gotz [32]. The flat plate has a chord 
length of 5 cm with an angle of attack fixed at 45°. The plate 
accelerates uniformly at 62.5 cm/s2 from rest, attaining a steady-
state velocity of 10 cm/s after 0.16 s. The plate motion ceases after a 
travel distance (s) of 7.5 chord lengths. The characteristic Reynolds 
number (Re) is estimated to be 192 based on the chord length 
and the steady-state plate speed. Figure 3A (to row) displays the 
flow visualization images from the original experimental study [32], 
showing four representative snapshots at travel distances ranging 
from 1 to 4 chord lengths. The second row plots the corresponding 
flow field predictions obtained from the current model. A time 
step of 0.005 s was employed in the simulations, which has been 
demonstrated to provide an optimal balance between computational 
accuracy and efficiency [23].

Next, the predicted lift coefficient is compared with validated 
CFD results (Re = 250) from Knowles et al. [47] in Figure 3B, 
showing overall good agreement. For more validation cases, the 
interested readers are referred to our previous works that have 
demonstrated the performance of this discrete vortex model in 
predicting the wake structures and aerodynamic/hydrodynamic 
forces of not only the staring or the pitching plates [23] but also 
NACA-series airfoils with various prescribed swimming motions 
[26]. Here, the lift coefficient is computed using Equation 6 based on 
the total force component of Fx + iFy normal to the incoming flow. 
Combining Figures 3A,B, substantial lift generation occurs during 
the initial 2 chord lengths of travel, coinciding with leading-edge 
vortex (LEV) formation and trailing-edge vortex (TEV) shedding. 
Specifically, analysis of the lift contribution components reveals 
that the post-startup peak results from the combined effects of the 
added-mass and the positive lift contributed by the TEV. However, 
Knowles et al.s CFD result exhibits a much weaker initial peak, 
indicating a lower added-mass contribution associated with the 
initial acceleration. This discrepancy likely originates from the 
viscous effect in the CFD simulation, which forms a boundary layer 
that moves with the plate, thereby reducing the effective acceleration 
experienced by the plate. This indicates that the present inviscid 
model has a tendency of overestimating aerodynamic force during 
rapid flow transition. During steady plate motion, the TEV and LEV 
exhibit opposing trends—the former maintains gradual increase of 
positive lift while the latter shows progressive decrease of negative 
lift. This behavior suggests that the net positive lift stems from the 
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FIGURE 3
(A) Flow visualization images (top) of a starting plate at 45° AoA during 1–4 chord lengths of travel [32]. Snapshots of streamline and wake pattern 
(bottom) simulated by the present model. (B) The corresponding lift coefficient variation with chord length of travel (s/c). Here, the lift coefficient (Cl)
is estimated as Cl = 2L/(ρU2c), with the lift given by L = Fy cos α− Fx sin α. The total lift ClTotal is validated against Knowles et al.s CFD result 
[47]. Based on Equation 6, contributions to ClTotal can be divided into three components originating from the LEVs (ClLEVs), TEVs (ClTEVs), and added 
mass (ClAddedmass), respectively. It is interesting to note that LEVs generate negative lift while TEVs generate positive lift.

differential between TEV and LEV contributions established during 
the initial phase of plate startup, which is maintained up to s =
2c. However, after that, there appears a pronounced lift reduction, 
i.e., stall, corresponding to a plateaued lift generation associated 
with the TEV; physically, this is likely attributed to the formation 
of the secondary TEV, which disrupts the feeding shear layer of 
the primary TEV, as is evident from Figure 3A. When s >3c, the 
lift generation from TEVs resumes increasing, leading to the total 
lift recovery.

It should be emphasized that this result provides important 
physical insights into vortex-dominated unsteady lift generation 
mechanisms, which has intrinsic connections to insect flight. While 
previous experimental observations have reported the prominent 
correlation between significant lift enhancement and a stabilized 
LEV, our analysis reveals that this phenomenon should not be 
attributed to the LEV alone. In fact, the apparent LEV ‘stabilization’ 
likely reflects its slower advective velocity relative to the TEV. 
Our findings from Figure 3 suggest that the positive net lift arises 
from a balance between vortex contributions—the faster shedding 
TEV provides substantial positive lift while the LEV with a slower 
downstream advection generates comparatively weaker negative 
lift. From a vortex dynamics perspective, the characteristic stall 
behavior occurs when the feeding shear layer of the primary TEV 

ruptures, thereby inhibiting the shear layer’s downstream advection 
and further reducing positive lift generation from the newly formed 
TEV. Detailed flow analysis reveals that this transition stems 
from LEV–TEV interactions. As evident in Figure 3, the growing 
LEV extends to the trailing edge after s = 2c, which significantly 
influences the trailing-edge flow field. This interaction exerts strong 
impact on the Kutta condition at the trailing edge, which further 
disturbs the feeding shear layer of the existing TEV. Consequently, 
the detachment of the previous TEV and the subsequent formation 
of a new TEV are promoted, causing an interruption to the total lift 
generation.

Despite the overall promising performance demonstrated through 
this simple case, the present discrete-vortex model has an inherent 
limitation in handling viscous diffusion, which is associated with 
the growth of shear layer thickness or the spreading of vortex core. 
Specifically, viscosity can influence the redistribution of vorticity inside 
the LEV, thereby rendering the model inaccurate in capturing the 
vortex core location, which could further affect force predictions. 
Furthermore, viscosity also plays an important role in the vortex-
surface interaction. As the LEV or TEV approaches the plate surface, 
the vortex circulation would decay owing to vorticity annihilation 
between the vortex and its induced shear layer along the surface, 
which is of opposite-sign vorticity; similar effect is also prominent in 
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FIGURE 4
Snapshots of simulated flow field at 1–4 chord lengths of travel. The result of (A) the ‘discrete-vortex’ model serves as a benchmark, which is compared 
with those of three single-vortex models: (B) ‘single-LEV’, (C) ‘single-TEV’, and (D) ‘single-LEV&TEV’.

FIGURE 5
Comparisons of (A) unsteady lift coefficient, (B) vortex circulation, and (C) horizontal locations of vortex centroid predicted by the ‘discrete-vortex’ 
model with the single-vortex models, corresponding to the different cases in Figure 4. Knowles et al.s CFD result [47] is plotted as a reference in (A).
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TABLE 1  Mean absolute errors (MAE) of Cl, Γ, and sv for different 
reduced-order models.

Model ϵCl ϵΓLEV ϵΓTEV ϵsLEV ϵsTEV

single-LEV 0.666 0.826 0.496 0.065 0.123

single-TEV 1.914 2.211 1.801 0.214 0.140

single-LEV&TEV 1.974 2.821 1.030 0.216 0.117

discrete-vortex (σM = 0.002) 0.218 0.231 0.087 0.028 0.043

discrete-vortex (σM = 0.001) 0.148 0.127 0.091 0.015 0.059

discrete-vortex (σM = 0.0005) 0.177 0.054 0.149 0.006 0.042

discrete-vortex (σM = 0.0002) 0.103 0.035 0.021 0.007 0.023

the interaction of an LEV–TEV couple. Without resolving such effects, 
the potential flow model likely over-predicts the vortex circulation, 
which could affect not only the magnitude of the force calculation but 
also the timings for vortex roll-up and shedding, causing uncertainties 
in predicting the long-term evolutions. 

3.2 Reduced-order model performance

The growing complexity of discrete-vortex systems in long-
duration or small-time-step simulations necessitates model 
simplification. This study explores the vortex amalgamation scheme, 
based on applying the merging criterion established in Section 3 
to systematically reduce the discrete vortex population while 
preserving the main vortex dynamics. The performance of this 
approach is quantified by comparing the variations of lift coefficient, 
flow field pattern, and the vortex population with alternative 
reduced-order models.

Before presenting the simulation results obtained based on 
discrete-vortex merging, we first examine the performance of single-
vortex models to offer references for both wake capture and lift 
estimation of the starting-plate problem. The analysis here serves 
two purposes. One is to assess whether the over-simplified single-
vortex representations can adequately capture the flow field and 
vortex dynamics; the other is to provide context for evaluating 
the newly proposed amalgamation approach. Here, four different 
models are implemented, including a baseline model named the 
‘discrete-vortex’, which refers to the original discrete-vortex model 
without any reduction, and three single-vortex models, namely, 
‘single-LEV’, ‘single-TEV’, and ‘single-LEV&TEV’. For the single-
vortex representations, each model employs a single point vortex 
of constant circulation to account for either the primary LEV, the 
primary TEV, or both. It should be mentioned that, in previous 
single-vortex models [38, 39], the vortex circulation was treated as 
a time-dependent variable, with its location evolved based on the 
Brown–Michael equation [37]. However, our implementation here 
has two key distinctions. First, we introduce one more point vortex 
near the shedding edges, in addition to the main vortex, to represent 
the effect of the feeding shear layer. Furthermore, new vortices are 
continuously introduced at each time step to model the vorticity 

feeding of the shear layer, meanwhile the preceding vortex in the 
feeding shear layer is merged into the main vortex; the position 
of the merged LEV is determined by Equation 11 that was derived 
based on the momentum conservation. In this way, our approach 
is consistent with the essence of the Brown–Michael equation while 
offering greater authority in capturing the dynamics of the feeding 
shear layer, which has crucial influences on the vorticity generation 
and vortex shedding conditions at the edges.

To implement the single-vortex models, all cases are initialized 
with the ‘discrete-vortex’ setting during the first chord length of 
travel. At s = c, the single-vortex algorithms are activated by first 
merging all the discrete vortices in either the LEV or TEV based 
on the conservations of circulation and momentum, which can be 
readily extended from hypothesis (i) in Section 2.2. This transition 
scheme ensures smooth switching between vortex representations 
while matching the fundamental physics. Then, at each subsequent 
time step, a new vortex is introduced near the edge to capture 
the physics of vorticity generation, whereas the preceding vortex 
merges with the main vortex to emulate vorticity feeding from the 
edge-attached shear layer.

The simulated flow fields and wake patterns are presented 
in Figure 4, which enables quantitative evaluation of the single-
vortex methods through direct comparison with the ‘discrete-
vortex’ model (benchmark) at representative flow evolution stages. 
The ‘single-LEV’ demonstrates qualitative agreement with the 
‘discrete-vortex’ results up to s = 3c. However, by s = 4c, discernible 
differences emerge in the TEV topology during the formation 
of the secondary TEV, revealing the limitations of the ‘single-
LEV’ model in resolving near-field flow features. Notably, these 
discrepancies appear confined to the near field, as the far-
field wake characteristics, particularly the primary TEV, remain 
consistent between Figures 4A,B. The single-TEV model exhibits 
significant shortcomings in capturing both the TEV position 
and LEV configuration, as shown in Figure 4C. This deficiency 
stems primarily from the model’s inability to properly account 
for secondary TEV generation—a critical process evident in the 
‘discrete-vortex’ solution after s = 2c, where the extensively-grown 
LEV disturbs the trailing-edge shear layer and triggers the formation 
of a secondary TEV. However, in the ‘single-TEV’ scenario, all 
vorticity generated from the trailing edge is absorbed into the 
primary TEV, creating an artificially strong TEV that induces the 
unphysical down-wash of the LEV off the trailing edge (final 
snapshot of Figure 4C). As seen in Figure 4D, the combined 
‘single-LEV&TEV’ model inherits limitations from both constituent 
approaches, resulting in similarly compromised performance in 
resolving the flow field pattern and vortex positions.

Figure 5A further compares the lift calculations corresponding 
to the simulated results in Figure 4. For a more comprehensive 
assessment of the different models, the total circulations of both 
the LEV and TEV as well as the horizontal positions sv of their 
centroids (circulation-weighted) are tracked in Figures 5B,C. In 
general, the results reveal inferior performance of the single-vortex 
models in tracking the unsteady lift variation compared to the 
‘discrete-vortex’ model. A particularly notable discrepancy emerges 
at the one-chord-length point of merging transition, where both 
the ‘single-LEV’ and ‘single-LEV&TEV’ models display abrupt lift 
decline upon activation. This is somewhat surprising as the merging 
process conserves the total momentum of all merged vortices, 
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FIGURE 6
Snapshots of simulated flow field at 1–4 chord lengths of travel. The ‘discrete-vortex’ results with different vortex-merge levels (A–D) are compared 
with (E) the benchmark case without merging. For the cases employing the proposed merge scheme, the merging criterion δM is configured as (A)
0.002, (B) 0.001, (C) 0.0005, and (D) 0.0002, respectively.

meaning that the aerodynamic force should be maintained in 
theory. The apparent contradiction can be explained again from 
the perspective of vortex–edge interactions. Upon vortex merging, 
while the momentum conservation holds for isolated vortex system, 
the rate of vorticity generation at the plate edge varies dramatically 
owing to the change in the induced velocity by the different vorticity 
distribution. This is particularly evident from the abrupt increase 
in the LEV circulation magnitude after s/c = 1, for the ‘single-LEV’ 
and ‘single-LEV&TEV’ models shown in Figure 5B. Consequently, 
the sudden lift drop can be attributed to the abruptly-intensified 
LEV circulation, given that LEV advection yields negative lift as 
discussed in Section 3.1. This lift drop implies a limitation of the 
single-vortex model that, even when satisfying the Brown–Michael 
equation, it cannot adequately resolve the dynamical effects of 
discrete vortex clouds, especially when the vortex is in the near 
field. Interestingly, the ‘single-TEV’ model demonstrates a smoother 
post-merging transition in unsteady lift and the rate of circulation 
generation at trailing edge seems to be less affected by the merging 
event at s/c = 1. This can be understood that the TEV is farther away 
from its vorticity-generating edge, so the induced velocity at the edge 
by the TEV is less affected by the change in its vorticity distribution. 
Although the ‘single-TEV’ exhibits better merging initialization, 
significant deviations develop with increasing travel distance due to 
the model’s fundamental inability to accurately represent near-field 
vortical structures, as discussed previously.

Based on the data in Figure 5, the performance of the 
three single-vortex models are further assessed quantitatively in 
Table 1 via computing the mean absolute errors (MAEs) of five 
variables, including the lift coefficient Cl, the nondimensional total 
circulations ΓLEV/cU and ΓTEV/cU of the LEV and TEV, and the 
horizontal positions sLEV and sTEV of the LEV and TEV’s centroids. 
Note that these MAEs are calculated relative to the benchmark 
results of the ‘discrete-vortex’ model, based on the data in the 
range of 1 < s/c <4.5. Among these three models, the ‘single-LEV’ 
corresponds to the lowest errors in tracking the lift coefficient and 
wake vortices, consistent with the observations from Figures 4, 5. 
The results of the single-vortex models offer two general implications 
for future improvement. The first is to enhance the representation of 
near-field vorticial structures, especially the vorticity-feeding shear 
layer. On the other hand, a proper physical condition is needed 
to precisely determine the transition timing for the shedding of 
the old vortex and the generation of the new vortex. Given the 
inherent limitations of the single-vortex approach in the near-field 
representation, it makes the discrete-vortex approach indispensable 
for problems requiring accurate wake and force predictions, despite 
its greater computational expense.

Next, we investigate the performance of the vortex merging 
scheme based on the discrete-vortex framework. The parameter δM, 
which is the merging criterion (Equation 15) controlling the error 
of the vortex system’s induced velocity on the plate surface, is varied 
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FIGURE 7
Comparisons of (A) unsteady lift coefficient, (B) vortex circulation, and (C) horizontal locations of vortex centroid predicted by the ‘discrete-vortex’ 
model with various settings for vortex merging, corresponding to the different cases in Figure 6. Knowles et al.s CFD result [47] is plotted as a reference 
in (A).

FIGURE 8
Comparison of vortex population among ‘discrete-vortex’ models of different vortex-merge levels gauged by δM. (A) Vortex population M in LEV, (B)
vortex population N in TEV.

between 0.0002 and 0.002. The simulation results are presented in 
Figure 6, showing that the reduced-order models are able to capture 
the overall flow field characteristics, including the position and 
morphology of the primary vortices as well as the formation of the 
secondary TEV, even at larger δM values; and the fidelity of the wake 
details tends to improve as δM decreases. Figure 7 further shows 
good agreement of the predictions by different simplified models 
with the original ‘discrete-vortex’ model, through the comparisons 
of the lift calculations as well as the evolutions of vortex circulation 

and location, demonstrating improved accuracy with smaller δM
values in general. Similar to the analysis of the single-vortex models, 
the MAEs corresponding to the data in Figure 7 are also evaluated 
for the different merging models, as listed in Table 1. The error 
values are significantly lower than those of the single-vortex models. 
Furthermore, the MAEs also exhibit general declining trends 
as the merging threshold parameter δM decreases, quantitatively 
justifying the efficacy of δM in tuning the accuracy of the discrete-
vortex models.
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Last, to assess effectiveness of the vortex merge algorithm in 
reducing the system’s complexity, the evolutions of the discrete 
vortex population are compared in Figure 8, with M and N being 
the total numbers of discrete vortices associated with LEV and 
TEV, respectively. It reveals that larger δM values lead to greater 
reduction, particularly for the primary TEV that quickly advects 
downstream, which is also evident from Figure 6. Furthermore, the 
results also demonstrate that the present model-reduction scheme 
tends to promote far-field reduction while maintaining near-field 
resolution, which exactly aligns with our original motivation. Owing 
to this feature of preferential reduction in the far field, it is likely 
that the vortex population would achieve approximate saturation as 
time proceeds. This presents a significant computational advantage 
over conventional discrete-vortex models, especially for long-term 
or small-time-step simulations, as it inhibits the linear growth 
of vortex population while preserving essential flow physics in 
the critical near-field wake. The overall good performance in 
both computational accuracy and efficiency justifies our proposal 
for the reduced-order aerodynamic model based on discrete-
vortex merging.

Before closing, it is worth discussing the practical choice of 
δM. Based on Table 1, we can divide the ϵCl by the average Cl of 
the benchmark model during 1 < s/c <4.5. This yields the relative 
MAEs to be 12.1%, 8.2%, 9.8%, and 5.7% for the four different 
levels of δM, respectively. For applications involving low-order 
aerodynamic force prediction, it is usually desirable to keep the 
error within 10%, corresponding to δM ≤0.001. As for the efficiency, 
based on the data in Figure 8, we can divide the total vortex 
population, M+N, by that of the benchmark model to obtain the 
relative vortex population. Consequently, the mean relative vortex 
populations during 1 < s/c <4.5 are estimated to be 19.5%, 30.7%, 
43.5%, and 67.2% for the four merging levels, respectively. Assuming 
a requirement of at least 50% reduction in computational cost, we 
should select δM ≥0.0005. In balancing the above conditions for 
accuracy and efficiency, we recommend setting δM between 0.0005 
and 0.001. This guideline may be applicable to more complicated 
flow situations, as the present merge scheme is derived to consider a 
general vortex–body interaction. 

4 Conclusion

This study employs the potential flow theory to examine the 
aerodynamics of a flat plate undergoing unsteady translational 
motion at an angle-of-attack of 45°. A discrete-vortex approach is 
adopted to capture the coupled dynamics of the LEVs and TEVs in 
the wake. The LEV and TEV contributions to lift generation are first 
investigated by modeling the problem of an impulsively starting flat 
plate. The results reveal that, during the initial phase, downstream 
advection of the LEV generates negative lift, while the TEV produces 
a stronger positive lift owing to its significantly faster streamwise 
advection. This differential advection behavior creates a net positive 
lift that persists for approximately two chord lengths of travel, 
when the LEV undergoes substantial growth with relatively slow 
advection. This offers new insight into the experimental observation 
of lift enhancement by LEV stabilization that the slowed-down 
advection of the LEV causes less negative lift rather than more 
positive lift, from an unsteady aerodynamics perspective. A dynamic 

stall occurs beyond two chord lengths as the extensive-grown LEV 
interacts with the trailing-edge flow, leading to disruption of the 
TEV feeding shear layer and triggering formation of a new TEV. 
Unlike its predecessor, this secondary TEV tends to linger over the 
plate under the LEV influence, resulting in diminished positive lift 
production and the observed stall behavior.

To improve computational efficiency while preserving physical 
fidelity, a vortex merge scheme is developed based on two physical 
assumptions for the merging process: (i) conservations of circulation 
and momentum and (ii) negligible velocity difference induced 
on the plate surface. The latter ensures a sufficient accuracy in 
resolving vortex-plate interactions, especially in the critical near-
plate region where vortex-induced effects dominate. The efficacy 
of the proposed reduced-order model is evaluated in comparison 
with the single-vortex models as well as the original discrete-
vortex model without reduction. The analysis of the single-vortex 
models serves as a reference to demonstrate their limitations in 
accurately resolving the near-field wake, when a distributed vorticity 
field is replaced by a single vortex. In contrast, the vortex merge 
algorithm developed in this study exhibits substantially improved 
performance, which is able to accurately capturing both flow field 
evolution and lift generation while maintaining computational 
efficiency; the balance between computation precision and cost can 
be adjusted through a threshold merge parameter δM. The results 
show promises for long-term or small-time-step simulations, where 
significant computational saving is possible without compromising 
physical fidelity. Finally, to offer a practical guideline for selecting 
δM, we recommend its range to be 0.0005-0.001 in satisfying the 
conditions of <10% error in lift prediction and >50% reduction in 
computational cost.
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Glossary

z complex coordinate of the physical plane

x horizontal coordinate of the physical plane

y vertical coordinate of the physical plane

ζ complex coordinate of the imaginary plane

ξ horizontal coordinate of the imaginary plane

η vertical coordinate of the imaginary plane

a cylinder radius of the imaginary plane

c chord length of the flat plate

s distance traveled by the plate

sv horizontal location of a vortex centroid

x0 offset distance of the coordinate origin

U incoming flow velocity magnitude

α angle of attack

wζ complex potential in the ζ-plane

t time

Δt time increment

M total number of vortices in the LEVs

N total number of vortices in the TEVs

Γ vortex circulation

u x-component velocity

v y-component velocity

Fx x-component aerodynamic force

Fy y-component aerodynamic force

ρ density

fv vortex force

U background flow velocity

Uv advective velocity of a vortex

Γ directional vortex circulation

P vortex position in Cartesian coordinate

V complex velocity

ΔV complex velocity difference

δM threshold merge parameter

Cl coefficient of lift
L lift (force magnitude)

ϵ mean absolute error

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1632903
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Theoretical approach
	2.1 Unsteady potential flow model
	2.2 Vortex merge algorithm

	3 Results and discussion
	3.1 Contributions to unsteady lift generation
	3.2 Reduced-order model performance

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary

