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An efficient explicit group
method for time fractional
Burgers equation
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Fractional Burgers-type equations are essential mathematical models for
describing the cumulative effect of wall friction through the boundary layer,
along with the unidirectional propagation of weakly nonlinear acoustic waves.
It is a major challenge to develop efficient, stable, and accurate numerical
schemes that simulate the corresponding complex physical phenomena due to
the nonlinearity and nonlocality properties in these equations. The objective of
this article is to design a linearized modified fractional explicit group method
for solving the two-dimensional time-fractional Burgers equation with suitable
initial and boundary conditions. For the construction of the proposed method,
the L1 discretization formula is used to handle the fractional temporal derivative,
whereas a linearized difference scheme on a coarse mesh is employed to
approximate the spatial derivatives. Meanwhile, a linearized Crank–Nicolson
difference method (LCNDM) is formulated for checking the efficiency of the
proposed method. The stability and convergence of the presented methods are
rigorously studied and proven. Numerical simulations are performed, and the
results are reported in terms of error norm and CPU time, demonstrating that
the linearized grouping method reduces computation time by 70%–90% while
maintaining comparable accuracy to the linearized Crank–Nicolson method in
solving the time-fractional Burgers model.
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1 Introduction

In recent years, the interest in the fractional calculus (FC), dealing with differential
and integral operators of arbitrary orders, has witnessed a remarkable mutation. In contrast
to the classical differential operator, the fractional differential operator considers not only
the immediate past of the relevant function but also its historical values. The memory
and history dependence properties of fractional differential operators are considered the
golden features of FC, which make it favorable for describing numerous real-life complex
phenomena. Fractional differential equations are the basic tools of FC for handling the
anomalous phenomena in diverse complex systems. For extra information on the definitions
and properties of FC, the reader can refer to [1–3]. Fractional differential equations can
be divided into fractional ordinary differential equations (FODEs) and fractional partial
differential equations (FPDEs). In the past few years, many researchers and scholars from
different scientific backgrounds have utilized fractional differential equations (FODEs and
FPDEs) as efficient mathematical models for dealing with numerous real-world complex
problems. For instance, among recent applications, fractional differential equations have
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been used for describing several phenomena, including COVID-19
transmission [4], regulation of atmospheric carbon dioxide levels,
and battery temperature estimation [5]. Other interesting works
highlighting the importance and applications of FC can be found
in [6–9].

In line with the wide-ranging applications of FC and to better
understand complex real-life systems, solving fractional differential
equations has become indispensable. This study is concerned with
the solution of an important type of FPDEs, namely, the time-
fractional Burgers equation. An overview of the general form and
significance of the aforementioned mathematical model is provided
in the next section. Due to the unusual properties of fractional
differential operators, such as the violation of the chain rule, Leibniz
rule, and semigroup property, explicit analytic solutions of FPDEs
cannot be easily obtained [10]. As a result, approximate analytical
and numerical methods for solving FPDEs have received significant
attention. The homotopy analysis method [11], variational iterative
method [12, 13], perturbation analysis method [14], and differential
transform method [14] are examples of approximate analytical
methods that have been applied for solving the fractional Burgers
equation. One drawback of the aforementioned analytical methods
is that most of them consider only the initial condition and
neglect the spatial boundary conditions of the fractional Burgers
model. However, boundary conditions are of great importance for
characterizing and modeling real-world processes. To surmount
this issue, numerical methods capable of solving the fractional
Burgers model with suitable initial and boundary conditions can be
developed, which is the first motivation of this work.

In the literature, several research articles are devoted to solving
the time-fractional Burgers equation numerically. In this study,
we recall some of them. [15] introduced an implicit spectral
collocation method for solving the one-dimensional time-fractional
Burgers equation. The unconditional stability and convergence are
proved theoretically and affirmed through numerical experiments.
[16] established a second-order linearized difference scheme to
solve the one-dimensional time-fractional Burgers equation. The
theoretical analysis shows that the scheme is unconditionally
stable and convergent. [17] combined the finite integration
method with the shifted Chebyshev polynomials to solve the
one- and two-dimensional time-fractional Burgers equations.
[18] scrutinized an implicit difference scheme for the solution
of the one-dimensional time-fractional Burgers equation. [19]
utilized the L1 scheme on a temporal graded mesh and the
Legendre–Galerkin spectral approach in space to account for the
solution of the one-dimensional time-fractional Burgers equation.
[20] derived a Crank–Nicolson difference scheme to deal with
the one-dimensional time-fractional Burgers equation. The stability
and convergence of the proposed scheme are not discussed. A
computational scheme based on a finite difference in time and a
cubic trigonometric B-spline in space for the one-dimensional time-
fractional Burgers equation was suggested by [21]. [22] constructed
a non-standard finite difference method for the one-dimensional
complex-order Burgers equation. [23] suggested a finite difference
scheme for the one-dimensional fractional Burgers equation
involving the Atangana–Baleanu temporal derivative. [24] used the
finite difference technique in time and the extended cubic B-spline
approach in space for the solution of the one-dimensional time-
fractional Burgers equation. [25] developed a space–time spectral

collocation method to solve the one-dimensional time-fractional
Burgers equation. [26] introduced a linear implicit difference
scheme for the one-dimensional fractional Burgers equation,
including the generalized temporal Atangana–Baleanu derivative.
An explicit decoupled group method for the two-dimensional
time-fractional Burgers equation was introduced by [27]. [28]
designed a finite difference scheme for the one-dimensional time-
fractional Burgers model subject to artificial boundary conditions
on unbounded domains. [29] proposed a differential quadrature
method based on a modified hybrid B-spline basis function for the
one-dimensional time-fractional Burgers equation. [30] developed a
local projection stabilization virtual elementmethod for the solution
of the two-dimensional time-fractional Burgers equation. Other
recent numerical treatments of the time-fractional Burgers equation
can be found in [31–33]. We note that the mentioned research
work is almost limited to one-dimensional problems, while the
numerical treatment of two-dimensional Burgers models is limited
in the literature. This is our second motivation for finding the
numerical solution of the two-dimensional time-fractional Burger
model presented in the next section.

The definition of the time-fractional derivative has an integral
form, which leads to the non-locality of the fractional differential
operator. This means that the storage of the solution values at
all previous time levels is crucial for computing the solution
at the current time level. Such a phenomenon causes several
difficulties and challenges related to the computational complexity
and theoretical analysis of time FPDEs. For instance, a two-
dimensional time-fractionalmodel withmesh sizeN in the temporal
direction and mesh points M in the spatial direction requires
a computational cost of O(N2) and a storage requirement of
O(NM). The implementation process of a long-time or large-
domain simulation is still very difficult, evenwith high-performance
computers. Consequently, the development of unconditionally
stable, accurate, and computationally efficient numerical schemes
for solving multi-dimensional time FPDEs is considered one of
the open problems in this field [34]. This is the third motivation
for our work.

In the last few years, explicit group methods have gained
popularity in the numerical research field. These methods can
be established based on finite difference approximations, where
the solution is computed iteratively on a group of spatial mesh
points rather than on a single point in the point-wise iterative
schemes. Fractional diffusion equations [35–38], fractional cable
equations [39–41], fractional mobile/immobile equations [42, 43],
and fractional telegraph equations [44, 45] are solved successfully
using thesemethods. Explicit group iterativemethods can effectively
refine the spectral properties of the iteration matrix and accelerate
the rate of convergence of numerical algorithms. In addition,
they can be implemented on parallel computers, making them a
favored choice for simulation purposes. Moreover, since they rely
on the finite difference method, explicit group methods inherit
simplicity and universal applicability to a wide range of fractional
problems. The primary goal of this paper is to propose an explicit
group approach, namely, the linearized modified fractional explicit
group method (LMFEGM), for the numerical solution of the two-
dimensional time-fractional Burgers model. For the construction
of the LMFEGM, we deal with the time-fractional derivative
using the L1 discretization formula, while a linearized difference
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scheme based on double mesh spacing is used for the partial
space derivatives. To evaluate the computational efficiency of the
proposed method for solving the fractional Burgers equation,
a linearized Crank–Nicolson difference method (LCNDM) is
established as a reference method. The stability and convergence
of the presented methods are analyzed in detail using the Fourier
method. Furthermore, several numerical experiments are carried
out to verify our considerations. The corresponding numerical
results show the efficiency of the LMFEGM in terms of accuracy
and reduction of computing effort compared to the LCNDM. To our
knowledge, the current work, driven by the stated motivations, is
novel as no attempt to solve the fractional Burgers equation using
the LMFEGM has been reported in the literature.

In summary, the contributions of this work are listed as follows:

• the development of the LMFEGM for efficiently solving the
two-dimensional time fractional Burgers equation;
• the derivation of the LCNDM as a reference method for
verifying accuracy and computational efficiency;
• the analysis of the stability and convergence properties of the
proposed scheme; and
• the execution and discussion of several numerical simulations.

The remainder of this article is arranged as follows. Section 2
provides an overview of the considered time-fractional Burgers
model. Section 3 is devoted to the formulation of the proposed
linearized numerical schemes. The stability and convergence
properties of the presented methods are discussed in complete
detail in Sections 4, 5, respectively. In Section 6, we implement
several numerical experiments to test the performance and
validate the theoretical statements. Finally, a brief conclusion is
provided in Section 7.

2 Time-fractional Burgers model

The Burgers equation, named after J. M. Burgers (1895–1981),
is one of the basic partial differential equations (PDEs) with
numerous applications in science and engineering. In the literature,
the solution and analysis of PDEs are one of the major topics in
applied mathematics, due to their significant role in describing
numerous phenomena in physics, chemistry, finance, biology,
viscoelasticity, fluid mechanics, etc. In particular, the Burgers
mathematical model has been applied in various disciplines such
as gas dynamics, turbulent flows, shock wave theory, longitudinal
elastic waves in isotropic solids, nonlinear wave propagation, growth
ofmolecular interfaces, sedimentation of polydispersive suspensions
and colloids, cosmology, and traffic flow. Furthermore, Burgers-type
equations can be utilized as a reference for solving theNavier–Stokes
equations as they share a similar structure but lack a pressure
gradient. For details on applications of the Burgers equation, readers
can refer to [46]. The general form of the one-dimensional Burgers
equation is as follows:

wt (x, t) − νwxx (x, t) +w (x, t)wx (x, t) = f (x, t) . (1)

The abovementioned integer-order Burgers equation is a
mathematical model involving nonlinear propagation effects along
with diffusion effects. Due to the fact that integer-order derivatives

cannot describe the memory and hereditary properties of complex
systems compared to fractional-order derivatives, many researchers
have extended Equation 1 to its fractional-order counterpart. This
can be achieved by replacing the integer-order derivatives in
Equation 1 with time and/or space fractional derivatives to capture
the true behavior of physical phenomena. In this work, we consider
the following two-dimensional time-fractional Burgers model:

{{
{{
{

C
0D

α
tw(x, t) − νΔw(x, t) +w(x, t)(∇w(x, t) ⋅ 1) = f(x, t), (x, t) ∈Ω× (0 , T] ,

w(x,0) = g0(x), x ∈Ω∪ ∂Ω,
w(x, t) = g1(x, t), (x, t) ∈ ∂Ω× (0 , T] ,

(2)

where x = (x,y), 1 = (1,1), Δw(x, t) = wxx(x, t) +wyy(x, t)
is the Laplacian operator, and w(x, t)(∇w(x, t) ⋅ 1) =
w(x, t)(wx(x, t) +wy(x, t)). In this equation, Ω = [0,Lx] × [0,Ly] is a
rectangular bounded domain included inR2, and ∂Ω is its boundary.
ν = 1/RE, where RE is the Reynolds number used to describe the
transport properties of a fluid or a particle moving in a fluid [47],
and g0(x), g1(x, t), and f(x, t) are known smooth functions. C

0D
α
t

w(x, t) is the Caputo-type fractional temporal derivative, which is
defined as follows:

C
0D

α
t w (x, t) =

{{{
{{{
{

1
Γ (1− α)

∫
t

0
(t− ξ)−α

∂w (x,ξ)
∂ξ

dξ, 0 < α < 1,

∂w (x, t)
∂t
, α = 1.

The involvement of the Caputo fractional temporal derivative
in the Burgers model (Equation 2) makes it suitable for describing
the cumulative effect of wall friction through the boundary layer,
along with the unidirectional propagation of weakly nonlinear
acoustic waves [19, 48]. Due to the added complexity of handling
the fractional derivative and nonlinear convection term, exact
analytic solutions of the fractional Burgers equation are not easy
to obtain. Consequently, the development of efficient, accurate, and
stable numerical schemes for solving such equations is of utmost
importance. In the next section, we propose the LCNDM and the
LMFEGM for solving the model problem (Equation 2).

3 Formulation of the linearized
schemes

3.1 Linearized Crank–Nicolson difference
scheme

In order to establish a discrete form of the fractional
Burgers model (Equation 2), its appearing integer and fractional
derivatives can be replacedwith their corresponding finite difference
approximations. We introduce some notations to facilitate our
formulation. We assume that Δx = Lx/Mx, Δy = Ly/My, and Δt =
T/N are some spatial and temporal increments, whereMx, My, and
N are the given positive integers. A spatial mesh is defined as xi =
iΔx, where 0 ≤ i ≤Mx, and yj = jΔy, where 0 ≤ j ≤My, and a temporal
mesh is given by tn = nΔt, where 0 ≤ n ≤ N.

The grid functions are defined as follows:

wn
i,j = w (xi,yj, tn), fni,j = f (xi,yj, tn), 0 ≤ i ≤Mx,

0 ≤ j ≤My, 0 ≤ n ≤ N.
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We assume that w = {wn
i,j|0 ≤ i ≤Mx, 0 ≤ j ≤My, 0 ≤ n ≤ N} is a

grid function. The following notations are introduced:

∂2w
∂x2
|
n+1/2

i,j
= 1
2
[

[

wn+1
i+1,j − 2w

n+1
i,j +w

n+1
i−1,j

(Δx)2
+
wn
i+1,j − 2w

n
i,j +w

n
i−1,j

(Δx)2
]

]
+O((Δt)2 + (Δx)2 + (Δy)2) , (3)

∂2w
∂y2
|
n+1/2

i,j
= 1
2
[

[

wn+1
i,j+1 − 2w

n+1
i,j +w

n+1
i,j−1

(Δy)2
+
wn
i,j+1 − 2w

n
i,j +w

n
i,j−1

(Δy)2
]

]
+O((Δt)2 + (Δx)2) + (Δy)2) . (4)

We adopt the technique for linearizing nonlinear convection
terms from [49], where the following identities are used:

wn+1wn+1
x = wn+1wn

x +wnwn+1
x −wnwn

x ,

wn+1wn+1
y = wn+1wn

y +wnwn+1
y −wnwn

y .

Accordingly, the nonlinear terms wwx and wwy can be
discretized as follows:

w∂w
∂x
|
n+1/2

i,j
= 1
4Δx
⁢ [wn

i,j ⁢ (w
n+1
i+1,j −w

n+1
i−1,j)

+wn+1
i,j ⁢ (w

n
i+1,j −w

n
i−1,j)

+O ((Δt)2 + (Δx)2)] , (5)

w∂w
∂y
|
n+1/2

i,j
= 1
4Δy
⁢ [wn

i,j ⁢ (w
n+1
i,j+1 −w

n+1
i,j−1)

+wn+1
i,j ⁢ (w

n
i,j+1 −w

n
i,j−1)

+O ((Δt)2 + (Δy)2)] . (6)

To approximate the fractional temporal derivative in the Caputo
sense, we use the L1 discretization scheme [50] as follows:

∂αw
∂tα
|
n+1/2

i,j
= σ[[

[

η1w
n
i,j +

n−1

∑
s=1
(ηn−s+1 − ηn−s)w

s
i,j − ηnw

0
i,j +
(wn+1

i,j −w
n
i,j)

21−α
]]

]
+ rn+1/2i,j ,

(7)

where

σ = 1
Γ (2− α) (Δt)α

, ηn = ((n+ 1/2)
1−α − (n− 1/2)1−α) ,

and the truncation error rn+1/2i,j satisfies the following inequality:

|rn+1/2i,j | ≤ C(Δt)
2−α.

Given the definition of the Caputo fractional derivative,
weak regularity may exist in the exact solution of the time-
fractional model (Equation 2) at the initial time. Nevertheless, we
assume that the considered problem has a unique and sufficiently
smooth exact solution without loss of this constraint.

Substituting Equations 3–7 into Equation 2 yields the following:

σ[

[
η1w

n
i,j +

n−1

∑
s=1
(ηn−s+1 − ηn−s)w

s
i,j − ηnw

0
i,j +
(wn+1

i,j −w
n
i,j)

21−α
]

]

− ν
2
[

[

wn+1
i+1,j − 2w

n+1
i,j +w

n+1
i−1,j

(Δx)2
+
wn
i+1,j − 2w

n
i,j +w

n
i−1,j

(Δx)2
]

]

− ν
2
[

[

wn+1
i,j+1 − 2w

n+1
i,j +w

n+1
i,j−1

(Δy)2
+
wn
i,j+1 − 2w

n
i,j +w

n
i,j−1

(Δy)2
]

]
+ 1
4Δx
[wn

i,j (w
n+1
i+1,j −w

n+1
i−1,j) +w

n+1
i,j (w

n
i+1,j −w

n
i−1,j)]

+ 1
4Δy
[wn

i,j (w
n+1
i,j+1 −w

n+1
i,j−1) +w

n+1
i,j (w

n
i,j+1 −w

n
i,j−1)]

= fn+1/2i,j +O((Δt)
2−α + (Δx)2 + (Δy)2) .

(8)

By dropping higher-order small error terms and replacing wn

with its numerical approximationWn, we obtain the LCNDM:

(1+ νm
(Δx)2
+ νm
(Δy)2
+ m
4Δx
⁢ (Wn

i+1,j −W
n
i−1,j) +

m
4Δy
⁢ (Wn

i,j+1 −W
n
i,j−1)) ⁢W

n+1
i,j

= ( νm
2(Δx)2
− m
4Δx
⁢Wn

i,j) ⁢W
n+1
i+1,j +(

νm
2(Δx)2
+ m
4Δx
⁢Wn

i,j) ⁢W
n+1
i−1,j

+( νm
2(Δy)2
− m
4Δy
⁢Wn

i,j) ⁢W
n+1
i,j+1 +(

νm
2(Δy)2
+ m
4Δy
⁢Wn

i,j) ⁢W
n+1
i,j−1

+ νm
2(Δx)2
⁢ (Wn

i+1,j +W
n
i−1,j) +

νm
2(Δy)2
⁢ (Wn

i,j+1 +W
n
i,j−1)

+(1− 21−α ⁢η1 −
νm
(Δx)2
− νm
(Δy)2
) ⁢Wn

i,j + 2
1−α

n−1

∑
s=1
(ηn−s − ηn−s+1) ⁢W

s
i,j

+ 21−α ⁢ηn ⁢W
0
i,j +mfn+1/2i,j , 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1,

(9)

wherem = 21−αΓ(2− α)(Δt)α.

3.2 Linearized grouping scheme

In this section, we introduce the linearized modified fractional
explicit group method (LMFEGM) for the Burgers model
(Equation 2). The idea of this method is to branch the spatial
mesh points at each time level into small, fixed-size groups of
points. After that, the numerical solution is computed at each
group using an iterative process that involves only a quarter
of the entire mesh, which efficiently reduces the computational
complexity. For the construction of the LMFEGM, we consider a
coarse mesh with spatial spacing Δx = 2hx and Δy = 2hy. On this
coarse mesh, the finite difference operators (Equations 3–6) can be
redefined as follows:

∂2w
∂x2
|
n+1/2

i,j
= 1
2
[

[

wn+1
i+2,j − 2w

n+1
i,j +w

n+1
i−2,j

4h2x
+
wn
i+2,j − 2w

n
i,j +w

n
i−2,j

4h2x
]

]
+O((Δt)2 + (Δx)2 + (Δy)2) , (10)

∂2w
∂y2
|
n+1/2

i,j
= 1
2
[

[

wn+1
i,j+2 − 2w

n+1
i,j +w

n+1
i,j−2

4h2y
+
wn
i,j+2 − 2w

n
i,j +w

n
i,j−2

4h2y
]

]
+O((Δt)2 + (Δx)2) + (Δy)2) . (11)
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w∂w
∂x
|
n+1/2

i,j
= 1
8hx
⁢ [wn

i,j ⁢ (w
n+1
i+2,j −w

n+1
i−2,j)

+wn+1
i,j ⁢ (w

n
i+2,j −w

n
i−2,j)

+O ((Δt)2 + (Δx)2)] , (12)

w∂w
∂y
|
n+1/2

i,j
= 1
8hy
⁢ [wn

i,j ⁢ (w
n+1
i,j+2 −w

n+1
i,j−2)

+wn+1
i,j ⁢ (w

n
i,j+2 −w

n
i,j−2)

+O ((Δt)2 + (Δy)2)] . (13)

By combining Equations 10–13 and Equation 7 into Equation 2,
we derive the following:

σ[

[
η1w

n
i,j +

n−1

∑
s=1
(ηn−s+1 − ηn−s)w

s
i,j − ηnw

0
i,j +
(wn+1

i,j −w
n
i,j)

21−α
]

]

− ν
2
[

[

wn+1
i+2,j − 2w

n+1
i,j +w

n+1
i−2,j

4h2x
+
wn
i+2,j − 2w

n
i,j +w

n
i−2,j

4h2x
]

]

− ν
2
[

[

wn+1
i,j+2 − 2w

n+1
i,j +w

n+1
i,j−2

4h2y
+
wn
i,j+2 − 2w

n
i,j +w

n
i,j−2

4h2y
]

]
+ 1
8hx
[wn

i,j (w
n+1
i+2,j −w

n+1
i−2,j) +w

n+1
i,j (w

n
i+2,j −w

n
i−2,j)]

+ 1
8hy
[wn

i,j (w
n+1
i,j+2 −w

n+1
i,j−2) +w

n+1
i,j (w

n
i,j+2 −w

n
i,j−2)]

= fn+1/2i,j +O((Δt)
2−α + (Δx)2 + (Δy)2) .

Neglecting the higher-order small error terms and replacingwn with
its numerical approximationWn lead to the fully discrete scheme:

(1+ νm
4h2x
+ νm
4h2y
+ m
8hx
(Wn

i+2,j −W
n
i−2,j) +

m
8hy
(Wn

i,j+2 −W
n
i,j−2))W

n+1
i,j

= ( νm
8h2x
− m
8hx

Wn
i,j)W

n+1
i+2,j +(

νm
8h2x
+ m
8hx

Wn
i,j)W

n+1
i−2,j

+( νm
8h2y
− m
8hy

Wn
i,j)W

n+1
i,j+2 +(

νm
8h2y
+ m
8hy

Wn
i,j)W

n+1
i,j−2

+ νm
8h2x
(Wn

i+2,j +W
n
i−2,j) +

νm
8h2y
(Wn

i,j+2 +W
n
i,j−2)

+(1− 21−αη1 −
νm
4h2x
− νm
4h2y
)Wn

i,j + 2
1−α

n−1

∑
s=1
(ηn−s − ηn−s+1)W

s
i,j

+ 21−αηnW
0
i,j +mfn+1/2i,j , 2 ≤ i ≤Mx − 2, 2 ≤ j ≤My − 2, 0 ≤ n ≤ N− 1.

(14)

Now, at each time level, groups of four mesh points are
considered ⧫ (as shown in Figure 1) with spatial locations (i, j),
(i+ 2, j), (i+ 2, j+ 2), and (i, j+ 2). Applying Equation 14 to any of
these groups will result in the following linear system of equations:

(

(

Di,j
1 −Di,j

2 0 −Di,j
4

−Di+2,j
3 Di+2,j

1 −Di+2,j
4 0

0 −Di+2,j+2
5 Di+2,j+2

1 −Di+2,j+2
3

−Di,j+2
5 0 −Di,j+2

2 Di,j+2
1

)

)

⁢(

(

Wn+1
i,j

Wn+1
i+2,j

Wn+1
i+2,j+2

Wn+1
i,j+2

)

)

=(

(

rhsi,j
rhsi+2,j
rhsi+2,j+2
rhsi,j+2

)

)

. (15)

Here, D1, D2, D3, D4, and D5 are grid functions, which are
defined as follows:

Di,j
1 = 1+

νm
4h2x
+ νm
4h2y
+ m
8hx
(Wn

i+2,j −W
n
i−2,j) +

m
8hy
(Wn

i,j+2 −W
n
i,j−2) ,

Di,j
2 =

νm
8h2x
− m
8hx

Wn
i,j, Di,j

3 =
νm
8h2x
+ m
8hx

Wn
i,j,

Di,j
4 =

νm
8h2y
− m
8hy

Wn
i,j, Di,j

5 =
νm
8h2y
+ m
8hy

Wn
i,j.

By inverting the coefficient matrix in Equation 15, the linear
system can be rewritten as follows:

(

(

Wn+1
i,j

Wn+1
i+2,j

Wn+1
i+2,j+2

Wn+1
i,j+2

)

)

= 1
S
(

(

S1 S2 S3 S4
S5 S6 S7 S8
S9 S10 S11 S12
S13 S14 S15 S16

)

)

(

(

rhsi,j
rhsi+2,j
rhsi+2,j+2
rhsi,j+2

)

)

,

(16)

where

S = Di,j
1 D

i+2,j
1 Di+2,j+2

1 Di,j+2
1 −D

i,j
1 D

i+2,j
1 Di+2,j+2

3 Di,j+2
2

−Di,j
1 D

i+2,j
4 Di+2,j+2

5 Di,j+2
1 −D

i,j
2 D

i+2,j
3 Di+2,j+2

1 Di,j+2
1

+Di,j
2 D

i+2,j
3 Di+2,j+2

3 Di,j+2
2 −D

i,j
2 D

i+2,j
4 Di+2,j+2

3 Di,j+2
5

−Di,j
4 D

i+2,j
1 Di+2,j+2

1 Di,j+2
5 −D

i,j
4 D

i+2,j
3 Di+2,j+2

5 Di,j+2
2

+Di,j
4 D

i+2,j
4 Di+2,j+2

5 Di,j+2
5 ,

S1 = D
i+2,j
1 Di+2,j+2

1 Di,j+2
1 −D

i+2,j
1 Di+2,j+2

3 Di,j+2
2 −D

i+2,j
4 Di+2,j+2

5 Di,j+2
1 ,

S2 = D
i,j
2 D

i+2,j+2
1 Di,j+2

1 −D
i,j
2 D

i+2,j+2
3 Di,j+2

2 +D
i,j
4 D

i+2,j+2
5 Di,j+2

2 ,

S3 = D
i,j
2 D

i+2,j
4 Di,j+2

1 +D
i,j
4 D

i+2,j
1 Di,j+2

2 ,

S4 = D
i,j
2 D

i+2,j
4 Di+2,j+2

3 +Di,j
4 D

i+2,j
1 Di+2,j+2

1 −Di,j
4 D

i+2,j
4 Di+2,j+2

5 ,

S5 = D
i+2,j
3 Di+2,j+2

1 Di,j+2
1 −D

i+2,j
3 Di+2,j+2

3 Di,j+2
2 +D

i+2,j
4 Di+2,j+2

3 Di,j+2
5 ,

S6 = D
i,j
1 D

i+2,j+2
1 Di,j+2

1 −D
i,j
1 D

i+2,j+2
3 Di,j+2

2 −D
i,j
4 D

i+2,j+2
1 Di,j+2

5 ,

S7 = D
i,j
1 D

i+2,j
4 Di,j+2

1 +D
i,j
4 D

i+2,j
3 Di,j+2

2 −D
i,j
4 D

i+2,j
4 Di,j+2

5 ,

S8 = D
i,j
1 D

i+2,j
4 Di+2,j+2

3 +Di,j
4 D

i+2,j
3 Di+2,j+2

1 ,

S9 = D
i+2,j
1 Di+2,j+2

3 Di,j+2
5 +D

i+2,j
3 Di+2,j+2

5 Di,j+2
1 ,

S10 = D
i,j
1 D

i+2,j+2
5 Di,j+2

1 +D
i,j
2 D

i+2,j+2
3 Di,j+2

5 −D
i,j
4 D

i+2,j+2
5 Di,j+2

5 ,

S11 = D
i,j
1 D

i+2,j
1 Di,j+2

1 −D
i,j
2 D

i+2,j
3 Di,j+2

1 −D
i,j
4 D

i+2,j
1 Di,j+2

5 ,

S12 = D
i,j
1 D

i+2,j
1 Di+2,j+2

3 −Di,j
2 D

i+2,j
3 Di+2,j+2

3 +Di,j
4 D

i+2,j
3 Di+2,j+2

5 ,

S13 = D
i+2,j
1 Di+2,j+2

1 Di,j+2
5 +D

i+2,j
3 Di+2,j+2

5 Di,j+2
2 −D

i+2,j
4 Di+2,j+2

5 Di,j+2
5 ,

S14 = D
i,j
1 D

i+2,j+2
5 Di,j+2

2 +D
i,j
2 D

i+2,j+2
1 Di,j+2

5 ,

S15 = D
i,j
1 D

i+2,j
1 Di,j+2

2 −D
i,j
2 D

i+2,j
3 Di,j+2

2 +D
i,j
2 D

i+2,j
4 Di,j+2

5 ,

S16 = D
i,j
1 D

i+2,j
1 Di+2,j+2

1 −Di,j
1 D

i+2,j
4 Di+2,j+2

5 −Di,j
2 D

i+2,j
3 Di+2,j+2

1 ,

and
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FIGURE 1
Distribution of mesh points of the LMFEGM with Mx =My = 10.

rhsi,j = ( νm
8h2x
+ m
8hx
⁢Wn

i,j) ⁢W
n+1
i−2,j +(

νm
8h2y
+ m
8hy
⁢Wn

i,j) ⁢W
n+1
i,j−2

+ νm
8h2x
⁢ (Wn

i+2,j +W
n
i−2,j) +

νm
8h2y
⁢ (Wn

i,j+2 +W
n
i,j−2)

+(1− 21−α ⁢η1 −
νm
8h2x
− νm
8h2y
) ⁢Wn

i,j + 2
1−α

n−1
∑
s=1
(ηn−s − ηn−s+1) ⁢W

s
i,j

+21−α ⁢ηn ⁢W
0
i,j +mfn+1/2i,j ,

rhsi+2,j = (
νm
8h2x
− m
8hx
⁢Wn

i+2,j) ⁢W
n+1
i+4,j +(

νm
8h2y
+ m
8hy
⁢Wn

i+2,j) ⁢W
n+1
i+2,j−2

+ νm
8h2x
⁢ (Wn

i+4,j +W
n
i,j) +

νm
8h2y
⁢ (Wn

i+2,j+2 +W
n
i+2,j−2)

+(1− 21−α ⁢η1 −
νm
8h2x
− νm
8h2y
) ⁢Wn

i+2,j + 2
1−α

n−1
∑
s=1
(ηn−s − ηn−s+1) ⁢W

s
i+2,j

+21−α ⁢ηn ⁢W
0
i+2,j +mfn+1/2i+2,j ,

rhsi+2,j+2 = (
νm
8h2x
− m
8hx
⁢Wn

i+2,j+2) ⁢W
n+1
i+4,j+2 +(

νm
8h2y
− m
8hy
⁢Wn

i+2,j+2) ⁢W
n+1
i+2,j+4

+ νm
8h2x
⁢ (Wn

i+4,j+2 +W
n
i,j+2) +

νm
8h2y
⁢ (Wn

i+2,j+4 +W
n
i+2,j)

+(1− 21−α ⁢η1 −
νm
8h2x
− νm
8h2y
) ⁢Wn

i+2,j+2 + 2
1−α

n−1
∑
s=1
(ηn−s − ηn−s+1) ⁢W

s
i+2,j+2

+21−α ⁢ηn ⁢W
0
i+2,j+2 +mfn+1/2i+2,j+2,

rhsi,j+2 = (
νm
8h2x
+ m
8hx
⁢Wn

i,j+2) ⁢W
n+1
i−2,j+2 +(

νm
8h2y
− m
8hy
⁢Wn

i,j+2) ⁢W
n+1
i,j+4

+ νm
8h2x
⁢ (Wn

i+2,j+2 +W
n
i−2,j+2) +

νm
8h2y
⁢ (Wn

i,j+4 +W
n
i,j)

+(1− 21−α ⁢η1 −
νm
8h2x
− νm
8h2y
) ⁢Wn

i,j+2 + 2
1−α

n−1
∑
s=1
(ηn−s − ηn−s+1) ⁢W

s
i,j+2

+21−α ⁢ηn ⁢W
0
i,j+2 +mfn+1/2i,j+2 .

For the sake of the numerical implementation of the
LMFEGM, we derive a new linearized difference scheme

for the considered problem (Equation 2). To this end, we
consider a skewed mesh designed by rotating the standard
mesh 45° clockwise. Applying Taylor series expansion on the
skewed mesh for spatial derivatives and utilizing Equation 7
for the fractional temporal derivative, we obtain the
following:

σ[

[
η1w

n
i,j +

n−1

∑
s=1
(ηn−s+1 − ηn−s)w

s
i,j − ηnw

0
i,j +
(wn+1

i,j −w
n
i,j)

21−α
]

]

− ν
2
[

[

wn+1
i+1,j−1 − 2w

n+1
i,j +w

n+1
i−1,j+1

2h2x
+
wn
i+1,j−1 − 2w

n
i,j +w

n
i−1,j+1

2h2x
]

]

− ν
2
[

[

wn+1
i+1,j+1 − 2w

n+1
i,j +w

n+1
i−1,j−1

2h2y
+
wn
i+1,j+1 − 2w

n
i,j +w

n
i−1,j−1

2h2y
]

]
+ 1
8hx
[wn

i,j (w
n+1
i+1,j+1 −w

n+1
i−1,j−1 +w

n+1
i+1,j−1 −w

n+1
i−1,j+1) +w

n+1
i,j (w

n
i+1,j+1

−wn
i−1,j−1 +w

n
i+1,j−1 −w

n
i−1,j+1)] +

1
8hy
[wn

i,j (w
n+1
i+1,j+1 −w

n+1
i−1,j−1

+wn+1
i−1,j+1 −w

n+1
i+1,j−1) +w

n+1
i,j (w

n
i+1,j+1 −w

n
i−1,j−1 +w

n
i−1,j+1 −w

n
i+1,j−1)]

= fn+1/2i,j +O((Δt)
2−α + (Δx)2 + (Δy)2) .

After rearrangement and omission of the higher-order small
error terms, the following linearized skewed difference method
(LSDM) is obtained:
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(1+ νm
2h2x
+ νm
2h2y
+ m
8hx
⁢ (Wn

i+1,j+1 −W
n
i−1,j−1 +W

n
i+1,j−1 −W

n
i−1,j+1)

+ m
8hy
⁢ (Wn

i+1,j+1 −W
n
i−1,j−1 +W

n
i−1,j+1 −W

n
i+1,j−1)) ⁢W

n+1
i,j

= ( νm
4h2x
− m
8hx
⁢Wn

i,j +
m
8hy
⁢Wn

i,j) ⁢W
n+1
i+1,j−1 +(

νm
4h2x
+ m
8hx
⁢Wn

i,j −
m
8hy
⁢Wn

i,j) ⁢W
n+1
i−1,j+1

+( νm
4h2y
− m
8hx
⁢Wn

i,j −
m
8hy
⁢Wn

i,j) ⁢W
n+1
i+1,j+1 +(

νm
4h2y
+ m
8hx
⁢Wn

i,j +
m
8hy
⁢Wn

i,j) ⁢W
n+1
i−1,j−1

+ νm
4h2x
⁢ (Wn

i+1,j−1 +W
n
i−1,j+1) +

νm
4h2y
⁢ (Wn

i+1,j+1 +W
n
i−1,j−1)

+(1− 21−α ⁢η1 −
νm
2h2x
− νm
2h2y
) ⁢Wn

i,j + 2
1−α

n−1

∑
s=1
(ηn−s − ηn−s+1) ⁢W

s
i,j

+ 21−α ⁢ηn ⁢W
0
i,j +mfn+1/2i,j , 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1.

Figure 1 shows the distribution of the mesh points for the
LMFEGM. It can be observed that the mesh points are divided into
three types, denoted by ⧫, □, and ○. The implementation of the
LMFEGM comprises the computation of the solution values at ⧫
points iteratively using Equation 16. After convergence is achieved,
the solution values at the remaining □ and ○ points are computed
directly using the LSDM (Equation 17) and LCNDM (Equation 11),
respectively. The evaluated solution values are then used as the
initial guess for the next time level, and the described solution
process continues until the targeted time level is reached. Numerical
implementation and comprehensive comparison between the
LCNDM and LMFEGM is provided in Section 7. Prior to that, the
subsequent two sections are focus on the stability and convergence
of the proposed methods.

4 Stability analysis

The stability of a numerical scheme guarantees that round-off
errors do not amplify and remain bounded as the computation
process progresses from one time level to the next. In this section,
we analyze the stability of the proposed methods using the Fourier
method. In this regard, it is advantageous to recall that the nonlinear
convection term w(wx +wy) has been linearized by replacing w with
a local constant w̄. As a result, the model problem (Equation 2) now
takes the following form:

C
0D

α
t w (x, t) − νΔw (x, t) + w̄ (x, t) (∇w (x, t) ⋅ 1) = f (x, t) .

For stability analysis, we linearize the nonlinear term w(xx +wy)
by regarding w as a locally constant function w̄. This simplification
allows us to apply Fourier techniques but assumes that w̄ is
invariant in space and time during the analysis. We emphasize
that this is a theoretical construct for proving stability; numerical
experiments in Section 6 confirm that the methods remain robust
under the actual variable system. For strongly nonlinear regimes,
other techniques can be used.

For later uses, the following lemma is introduced:

Lemma 1: For the coefficients ηs, (s = 0,1,… ) in Equation 7,
it holds that

1. ηn−s > ηn−s+1, s = 0,1,2,…,n− 1, and
2. ∑n−1s=1 (ηn−s − ηn−s+1) = η1 − ηn.

4.1 Stability of the h-spaced linearized
difference scheme

To prove the stability of the h-spaced linearized difference
scheme (Equation 9), we need some notations. Let W̃ =
{W̃n

i,j|1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1} be the
approximate solution of the discrete scheme (Equation 9). The
round-off error is defined as

ζni,j =W
n
i,j − W̃

n
i,j, 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1.

(17)

Substituting Equation 17 into Equation 9 leads to the following
round-off error equation:

(1+ νm
(Δx)2
+ νm
(Δy)2
)ζn+1i,j −(

νm
2(Δx)2
− m
4Δx

w̄)ζn+1i+1,j

−( νm
2(Δx)2
+ m
4Δx

w̄)ζn+1i−1,j −(
νm

2(Δy)2
− m
4Δy

w̄)ζn+1i,j+1

−( νm
2(Δy)2
+ m
4Δy

w̄)ζn+1i,j−1 = (
νm

2(Δx)2
− m
4Δx

w̄)ζni+1,j

+( νm
2(Δx)2
+ m
4Δx

w̄)ζni−1,j +(
νm

2(Δy)2
− m
4Δy

w̄)ζni,j+1

+( νm
2(Δy)2
+ m
4Δy

w̄)ζni,j−1 +(1− 2
1−αη1 −

νm
(Δx)2
− νm
(Δy)2
)ζni,j

+ 21−α
n−1

∑
s=1
(ηn−s − ηn−s+1)ζ

s
i,j + 2

1−αηnζ
0
i,j.

(18)

Without loss of generality, we assume that Lx = Ly = L; then, the
grid function ζn(x) is given by

ζn (x) =

{{{{{{{
{{{{{{{
{

ζni,j, xi −
Δx
2
< x ≤ xi +

Δx
2
,yj −

Δy
2
< y ≤ yj +

Δy
2
,

0, 0 ≤ x ≤ Δx
2

orL− Δx
2
< x ≤ L,

0, 0 ≤ y ≤
Δy
2

orL−
Δy
2
< y ≤ L,

and its Fourier expansion is in the form:

ζn (x) =
∞

∑
q1=−∞

∞

∑
q2=−∞

Φn (q1,q2)e
2π√−1(q1x/L+q2y/L),

where

Φn (q1,q2) =
1
L
∫
L

0
∫
L

0
ζn (x,y)e−2π√−1(q1x/L+q2y/L)dxdy.

From the l2 norm definition,

‖ζn‖2 = (
My−1

∑
j=1

Mx−1

∑
i=1

ΔyΔx|ζni,j|
2)

1/2

= (∫
L

0
∫
L

0
|ζni,j|

2dxdy)
1/2
.

Applying Parseval’s equality,

∫
L

0
∫
L

0
|ζni,j|

2dxdy =
∞

∑
q2=−∞

∞

∑
q1=−∞
|Φn (q1,q2) |

2,

we obtain

‖ζn‖2 = (
∞

∑
q2=−∞

∞

∑
q1=−∞
|Φn (q1,q2) |

2)
1/2

. (19)
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We can assume that the solution of (24) is expressed as follows:

ζni,j =Φ
ne√−1(θ1iΔx+θ2jΔy), (20)

where θ1 = 2πq1/L and θ2 = 2πq2/L. Now, we prove the
next result.

Lemma 2: For 0 ≤ n ≤ N− 1, if 31−α ≤ 2, then it holds that |Φn+1| ≤
|Φ0|.

Proof: Substituting Equation 20 into Equation 18 and carrying
out simplifications lead to

Φn+1 =
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
Φn

+ 21−α

1+ μ+ 2√−1w̄ ̄μ
[
n−1

∑
s=1
(ηn−s − ηn−s+1)Φ

s + ηnΦ
0],

(21)

where

μ = 2νm
(Δx)2

sin2(θ1Δx2 )+
2νm
(Δy)2

sin2(θ2Δ22 ),

̄μ = m
4Δx sin (θ1Δx) +

m
4Δy sin (θ2Δy) .

By substituting n = 0 in Equation 21 and since μ ≥ 0, we obtain

|Φ1| = |
1− μ− 2√−1w̄ ̄μ

1+ μ+ 2√−1w̄ ̄μ
| |Φ0| = √

(1− μ)2 + (2w̄ ̄μ)2

(1+ μ)2 + (2w̄ ̄μ)2
|Φ0| ≤ |Φ0|.

Now, we assume that

|Φk+1| ≤ |Φ0|, 0 ≤ k ≤ n− 1. (22)

From Equation 21, Equation 22, and lemma 1, we obtain

|Φn+1| ≤ |
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
| |Φn|

+| 21−α

1+ μ+ 2√−1w̄ ̄μ
|[

n−1
∑
s=1
|(ηn−s − ηn−s+1)| |Φ

s| + |ηn| |Φ
0|] ,

≤ |
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
| |Φ0|

+| 21−α

1+ μ+ 2√−1w̄ ̄μ
|[

n−1
∑
s=1
(ηn−s − ηn−s+1) |Φ

0| + ηn|Φ
0|] ,

= |
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
| |Φ0|

+| 21−α

1+ μ+ 2√−1w̄ ̄μ
|[(η1 − ηn) |Φ

0| + ηn|Φ
0|] ,

=
|1− μ− 2√−1w̄ ̄μ− 21−αη1| + 2

1−αη1
1+ μ+ 2√−1w̄ ̄μ

|Φ0|.

As n increases, Δt, μ, and ̄μ approach 0, which yields

|Φn+1| ≤ (|1− 21−αη1| + 2
1−αη1) |Φ

0|.

If 1− 21−αη1 > 0, then

|Φn+1| ≤ |Φ0|.

If 1− 21−αη1 ≤ 0, then

|Φn+1| ≤ (−1+ 22−αη1) |Φ
0|.

In such a case,

|Φn+1| ≤ |Φ0|

⇔ −1+ 22−αη1 ≤ 1,

⇔ 31−α ≤ 2.

Theorem 1: If 31−α ≤ 2, then the difference scheme (Equation 9)
is stable.

Proof: By considering lemma 2 and applying Parseval’s
equality, we obtain

‖ζn‖2 =
My−1

∑
j=1

Mx−1
∑
i=1

ΔyΔx|ζni,j|
2 = ΔyΔx

My−1

∑
j=1

Mx−1
∑
i=1
|ΦneI(θ1iΔx+θ2jΔy)|2

= ΔyΔx
My−1

∑
j=1

Mx−1
∑
i=1
|Φn|2 ≤ ΔyΔx

My−1

∑
j=1

Mx−1
∑
i=1
|Φ0|2

= ΔyΔx
My−1

∑
j=1

Mx−1
∑
i=1
|Φ0eI(θ1iΔx+θ2jΔy)|2 = ‖ζ0‖2.

4.2 Stability of the 2h-spaced linearized
difference scheme

In this section, we examine the stability of the
2h-spaced linearized difference scheme (Equation 14)
and introduce some necessary notations. Let W =
{Wn

i,j|1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1} be the
approximate solution of the discrete scheme (Equation 14). The
round-off error is expressed as follows:

ρni,j =W
n
i,j −W

n
i,j, 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1.

(23)

By substituting Equation 23 into Equation 14, we obtain the
following round-off error equation:

(1+ νm
4h2x
+ νm
4h2y
)ρn+1i,j −(

νm
8h2x
− m
8hx

w̄)ρn+1i+2,j

−( νm
8h2x
+ m
8hx

w̄)ρn+1i−2,j −(
νm
8h2y
− m
8hy

w̄)ρn+1i,j+2

−( νm
8h2y
+ m
8hy

w̄)ρn+1i,j−2 = (
νm
8h2x
− m
8hx

w̄)ρni+2,j

+( νm
8h2x
+ m
8hx

w̄)ρni−2,j +(
νm
8h2y
− m
8hy

w̄)ρni,j+2

+( νm
8h2y
+ m
8hy

w̄)ρni,j−2 +(1− 2
1−αη1 −

νm
4h2x
− νm
4h2y
)ρni,j

+ 21−α
n−1

∑
s=1
(ηn−s − ηn−s+1)ρ

s
i,j + 2

1−αηnρ
0
i,j.

(24)

The grid function ρn(x) can be defined as in the previous
subsection, while its Fourier expansion is given by

ρn (x) =
∞

∑
q1=−∞

∞

∑
q2=−∞

Ψn (q1,q2)e
2π√−1(q1x/L+q2y/L),
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where

Ψn (q1,q2) =
1
L
∫
L

0
∫
L

0
ρn (x)e−2π√−1(q1x/L+q2y/L)dxdy.

The l2 norm definition provides

‖ρn‖2 = (
My−1

∑
j=1

Mx−1

∑
i=1

ΔyΔx|ρni,j|
2)

1/2

= (∫
L

0
∫
L

0
|ρni,j|

2dxdy)
1/2
.

Applying Parseval’s equality,

∫
L

0
∫
L

0
|ρni,j|

2dxdy =
∞

∑
q2=−∞

∞

∑
q1=−∞
|Ψn (q1,q2) |

2,

we obtain

‖ρn‖2 = (
∞

∑
q2=−∞

∞

∑
q1=−∞
|Ψn (q1,q2) |

2)
1/2

.

Again, we can assume that the solution of Equation 29 is
expressed as follows:

ρni,j = Ψ
ne√−1(θ1iΔx+θ2jΔy), (25)

which leads us to the next result.

Lemma 3: For 0 ≤ n ≤ N− 1, if 31−α ≤ 2, it holds that |Ψn+1| ≤ |Ψ0|.
Proof: Substituting Equation 25 into Equation 24 and

performing some rearrangements lead to

Ψn+1 =
1− λ− 2√−1w̄λ̄− 21−αη1

1+ λ+ 2√−1w̄λ̄
Ψn

+ 21−α

1+ λ+ 2√−1w̄λ̄
[
n−1

∑
s=1
(ηn−s − ηn−s+1)Ψ

s + ηnΨ
0],

(26)

where

λ = νm
2h2x

sin2 (θ1Δx) +
νm
2h2y

sin2 (θ2Δy) ,

λ̄ = m
8hx

sin (2θ1Δx) +
m
8Δy sin (2θ2Δy) .

Substituting n = 0 in Equation 26 and since λ ≥ 0, we obtain

|Ψ1| = |1− λ− 2
√−1w̄λ̄

1+ λ+ 2√−1w̄λ̄
| |Ψ0| = √

(1− λ)2 + (2w̄λ̄)2

(1+ λ)2 + (2w̄λ̄)2
|Ψ0| ≤ |Ψ0|.

Now, we assume that

|Ψk+1| ≤ |Ψ0|, 0 ≤ k ≤ n− 1. (27)

From Equations 26, 27 and lemma 1, we obtain

|Ψn+1| ≤ |
1− λ− 2√−1w̄λ̄− 21−αη1

1+ λ+ 2√−1w̄λ̄
| |Ψn|

+| 21−α

1+ λ+ 2√−1w̄λ̄
|[

n−1
∑
s=1
|(ηn−s − ηn−s+1)| |Ψ

s| + |ηn| |Ψ
0|] ,

≤ |
1− λ− 2√−1w̄λ̄− 21−αη1

1+ λ+ 2√−1w̄λ̄
| |Ψ0|

+| 21−α

1+ λ+ 2√−1w̄λ̄
|[

n−1
∑
s=1
(ηn−s − ηn−s+1) |Ψ

0| + ηn|Ψ
0|] ,

= |
1− λ− 2√−1w̄λ̄− 21−αη1

1+ λ+ 2√−1w̄λ̄
| |Ψ0|

+| 21−α

1+ λ+ 2√−1w̄λ̄
|[(η1 − ηn) |Ψ

0| + ηn|Ψ
0|] ,

=
|1− λ− 2√−1w̄λ̄− 21−αη1| + 2

1−αη1
1+ λ+ 2√−1w̄λ̄

|Ψ0|.

As n increases, Δt, λ, and λ̄ approach 0, which yields

|Ψn+1| ≤ (|1− 21−αη1| + 2
1−αη1) |Ψ

0|.

From lemma 2, it immediately follows that

|Ψn+1| ≤ |Ψ0|

⇔ −1+ 22−αη1 ≤ 1,

⇔ 31−α ≤ 2.

Theorem 2: If 31−α ≤ 2, then the difference scheme (Equation 15)
is stable.

Proof: By considering lemma 3 and applying Parseval’s
equality, we obtain

‖ρn‖2 =
My−1

∑
j=1

Mx−1
∑
i=1

ΔyΔx|ρni,j|
2 = ΔyΔx

My−1

∑
j=1

Mx−1
∑
i=1
|ΨneI(θ1iΔx+θ2jΔy)|2

= ΔyΔx
My−1

∑
j=1

Mx−1
∑
i=1
|Ψn|2 ≤ ΔyΔx

My−1

∑
j=1

Mx−1
∑
i=1
|Ψ0|2

= ΔyΔx
My−1

∑
j=1

Mx−1
∑
i=1
|Ψ0eI(θ1iΔx+θ2jΔy)|2 = ‖ρ0‖2.

5 Convergence analysis

In this section, we analyze the convergence of the
difference scheme (Equation 9). Some preliminaries are
introduced first to prove our final result. We start by
subtracting Equation 9 from Equation 8, which results
in the following error equation:

(1+ νm
(Δx)2
+ νm
(Δy)2
)En+1i,j −(

νm
2(Δx)2
− m
4Δx

w̄)En+1i+1,j

−( νm
2(Δx)2
+ m
4Δx

w̄)En+1i−1,j −(
νm

2(Δy)2
− m
4Δy

w̄)En+1i,j+1

−( νm
2(Δy)2
+ m
4Δy

w̄)En+1i,j−1 = (
νm

2(Δx)2
− m
4Δx

w̄)Eni+1,j

+( νm
2(Δx)2
+ m
4Δx

w̄)Eni−1,j +(
νm

2(Δy)2
− m
4Δy

w̄)Eni,j+1

+( νm
2(Δy)2
+ m
4Δy

w̄)Eni,j−1 +(1− 2
1−αη1 −

νm
(Δx)2
− νm
(Δy)2
)Eni,j

+ 21−α
n−1

∑
s=1
(ηn−s − ηn−s+1)E

s
i,j + 2

1−αηnE
0
i,j +mRn+1/2

i,j ,

(28)

where Rn+1/2
i,j denotes the local truncation error, and

Eni,j = w(xi,yj, tn) −W
n
i,j, 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 1 ≤ n ≤ N.

Hereafter,Cwill denote a generic positive constant thatmay vary
from one location to another. For 0 ≤ n ≤ N, the grid functions En(x)
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and Rn(x) can be defined as follows:

En (x) =

{{{{{{{
{{{{{{{
{

Eni,j, xi −
Δx
2
< x ≤ xi +

Δx
2
,yj −

Δy
2
< y ≤ yj +

Δy
2
,

0, 0 ≤ x ≤ Δx
2

orL− Δx
2
< x ≤ L,

0, 0 ≤ y ≤
Δy
2

orL−
Δy
2
< y ≤ L,

and

Rn (x) =

{{{{{{{
{{{{{{{
{

Rn
i,j, xi −

Δx
2
< x ≤ xi +

Δx
2
,yj −

Δy
2
< y ≤ yj +

Δy
2
,

0, 0 ≤ x ≤ Δx
2

orL− Δx
2
< x ≤ L,

0, 0 ≤ y ≤
Δy
2

orL−
Δy
2
< y ≤ L.

The Fourier expansions of En(x) and Rn(x) can be
written as follows:

En (x) =
∞

∑
q2=−∞

∞

∑
q1=−∞

ϒn (q1,q2)e
2π√−1(q1x/L+q2y/L),

Rn (x) =
∞

∑
q2=−∞

∞

∑
q1=−∞

Θn (q1,q2)e
2π√−1(q1x/L+q2y/L),

where ϒ and Θ are the Fourier coefficients, and the following norms
are introduced:

‖En‖22 =
Mx−1

∑
i=1

My−1

∑
j=1

ΔxΔy|Eni,j|
2 =
∞

∑
q1=−∞

∞

∑
q2=−∞
|ϒn (q1,q2) |

2, 0 ≤ n ≤ N,

(29)

‖Rn‖22 =
Mx−1

∑
i=1

My−1

∑
j=1

ΔxΔy|Rn
i,j|

2 =
∞

∑
q1=−∞

∞

∑
q2=−∞
|Θn (q1,q2) |

2, 0 ≤ n ≤ N.

(30)

It should be noted that from Equation 8, there exists a positive
constant Csuch that

|Rn+1/2
i,j | ≤ C ((Δt)

2−α + (Δx)2 + (Δy)2),

1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 0 ≤ n ≤ N− 1.

In addition, from the convergence of the right-
hand side of Equation 30, we can obtain a positive constant
C such that
|Θn+1/2| ≡ |Θn+1/2 (q1,q2) ≤ C|Θ

1/2 (q1,q2) ≡ C|Θ
1/2|. (31)

Prior to the next result, we now suppose that
Eni,j = ϒ

neI(θ1iΔx+θ2jΔy), Rn
i,j = Θ

ne√−1(θ1iΔx+θ2jΔy). (32)

Lemma 4: For 0 ≤ n ≤ N− 1, if 31−α ≤ 2, it holds that |ϒn+1| ≤
C|Θ1/2|.

Proof: Substituting Equation 31 into Equation 28 and
simplifying yield

ϒn+1 =
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
⁢ϒn

+ 1
1+ μ+ 2√−1w̄ ̄μ

⁢ [21−α
n−1

∑
s=1
(ηn−s − ηn−s+1) ⁢ϒ

s + 21−α ⁢ηn ⁢ϒ
0 +mΘn+1/2],

(33)

where μ and ̄μ are as defined before. For n = 0 in Equation 33 and
noting that ϒ0 ≡ ϒ0(q1,q2) = 0, we obtain

|ϒ1| = |
(Δt)α

1+ μ+ 2√−1w̄ ̄μ
|21−αΓ (2− α) |Θ1/2| ≤ C|Θ1/2|.

Now, we assume that
|ϒk| ≤ C|Θ1/2|, 1 ≤ k ≤ n. (34)

From Equations 31, 33, 34 and lemma 1, we obtain

|ϒn+1| ≤ |
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
| ⁢ |ϒn|

+| 1
1+ μ3+ 2√−1w̄ ̄μ

| ⁢ [21−α
n−1
∑
s=1
|(ηn−s − ηn−s+1)| ⁢ |ϒ

s| + 21−α ⁢ |ηn| ⁢ |ϒ
0| +m |Θn+1/2|] ,

≤ |
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
| ⁢C|Θ1/2|

+| 1
1+ μ+ 2√−1w̄ ̄μ

| ⁢ [21−α
n−1
∑
s=1
(ηn−s − ηn−s+1) ⁢C|Θ

1/2| + 21−α ⁢ηn ⁢C|Θ
1/2| +mC|Θ1/2|] ,

= |
1− μ− 2√−1w̄ ̄μ− 21−αη1

1+ μ+ 2√−1w̄ ̄μ
| ⁢C|Θ1/2|

+| 1
1+ μ+ 2√−1w̄ ̄μ

| ⁢ [21−α ⁢ (η1 − ηn) ⁢C|Θ
1/2| + 21−α ⁢ηn ⁢C|Θ

1/2| +mC|Θ1/2|] ,

=
|1− μ− 2√−1w̄ ̄μ− 21−αη1| + 2

1−αη1 +m
|1+ μ+ 2√−1w̄ ̄μ|

⁢C|Θ1/2|.

As n increases, Δt, μ, ̄μ, andm approach 0, which yields
|ϒn+1| ≤ (|1− 21−αη1| + 2

1−αη1)C|Θ
1/2|.

From lemma 2, we obtain
|ϒn+1| ≤ C|Θ1/2|

⇔ (|1− 21−αη1| + 2
1−αη1) ≤ 1,

⇔ 31−α ≤ 2,

which completes the proof.

Theorem 3: The difference scheme (Equation 9) is l2-convergent
with a convergence order of O((Δt)2−α + (Δx)2 + (Δy)2).

Proof: Using Equations 29, 30 and lemma 4, we obtain

‖En‖22 =
My−1

∑
j=1

Mx−1
∑
i=1

ΔyΔx|Eni,j|
2 = ΔyΔx

My−1

∑
j=1

Mx−1
∑
i=1
|ϒne√−1(θ1iΔx+θ2jΔy)|

2

= ΔyΔx
My−1

∑
j=1

Mx−1
∑
i=1
|ϒn|2 ≤ C2

2ΔyΔx
My−1

∑
j=1

Mx−1
∑
i=1
|Θ1/2|2

= C2
2ΔyΔx

My−1

∑
j=1

Mx−1
∑
i=1
|Θ1/2e√−1(θ1iΔx+θ2jΔy)|

2
= C2

2‖R
1/2‖22,

which completes the proof.

Theorem 4: The difference scheme (Equation 14) is l2-convergent
with a convergence order of O((Δt)2−α + (Δx)2 + (Δy)2).

Proof: The proof can be established in a similar fashion to the
proof of theorem 3.

It is worth pointing out that the discussions in Sections 4, 5
describe asymptotic stability and convergence analyses. A non-
asymptotic analysis can be considered in future extensions
of this work.

6 Numerical simulations and
discussion of results

In this section, five numerical simulations corresponding
to five test problems are carried out. The discussions are
mainly based on the comparison of the numerical results
for the LCNDM and LMFEGM in solving the time-
fractional Burgers model. The maximum absolute error
MAE and CPU time (in seconds) of the aforementioned
methods are selected to validate the accuracy and
computational efficiency, respectively. We assume that
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TABLE 1 Maximum error, iteration count, and CPU time obtained for Example 1 when RE = 10.

α Δt = 0.1 Δt = 0.02

LCNDM LMFEGM LCNDM LMFEGM

CPU time MAELCNDM CPU time MAELMFEGM CPU time MAELCNDM CPU time MAELMFEGM

0.1 6.26 6.6960E-03 1.14 6.3845E-03 46.90 1.2191E-03 3.78 8.2737E-04

0.2 5.42 6.8316E-03 0.95 6.5300E-03 38.17 1.2652E-03 4.41 8.0608E-04

0.3 5.85 7.1042E-03 1.12 6.7689E-03 30.36 1.3010E-03 3.93 7.9778E-04

0.4 4.35 7.4706E-03 0.98 7.0856E-03 24.47 1.3490E-03 3.74 8.1432E-04

0.5 2.55 7.9086E-03 0.90 7.4526E-03 13.74 1.4068E-03 3.55 8.4262E-04

0.6 3.13 8.3185E-03 0.89 7.7985E-03 14.78 1.4647E-03 2.90 8.9557E-04

0.7 2.39 8.5077E-03 0.73 7.9388E-03 11.93 1.5353E-03 3.40 9.5032E-04

0.8 2.30 8.2061E-03 0.90 7.5727E-03 10.12 1.5513E-03 2.64 9.6686E-04

0.9 1.92 6.8906E-03 0.84 6.2303E-03 6.97 1.4082E-03 3.30 8.2508E-04

FIGURE 2
Graph of numerical and exact solutions for Example 1 with T = 1, h = 1/70, N = 50, α = 0.2, and RE = 10.

w(x, t) refers to the exact solution of the time-fractional
Burgers model, whereasLCNDMW andLMFEGMW indicate
the numerical solutions of the LCNDM and LMFEGM,
respectively. The corresponding maximum absolute errors are
computed using the following formulas:

MAELCNDM = max
1≤i≤Mx−1,1≤j≤My−1

|wN
i,j−LCNDMW

N
i,j|,

MAELMFEGM = max
1≤i≤Mx−1,1≤j≤My−1

|wN
i,j−LMFEGMW

N
i,j|.

Based on the structure of the proposed methods, a new
linearized system of equations needs to be solved at each
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TABLE 2 Maximum error, iteration count, and CPU time obtained for Example 2 when RE = 30.

α Δt = 0.1 Δt = 0.02

LCNDM LMFEGM LCNDM LMFEGM

CPU time MAELCNDM CPU time MAELMFEGM CPU time MAELCNDM CPU time MAELMFEGM

0.1 3.87 8.6786E-03 0.60 8.7828E-03 23.43 5.2165E-04 2.12 4.8456E-04

0.2 3.20 9.6751E-03 0.56 9.6622E-03 17.94 6.4543E-04 1.66 5.3179E-04

0.3 3.22 1.0888E-02 0.45 1.0797E-02 13.11 8.3767E-04 1.43 6.3357E-04

0.4 3.02 1.2369E-02 0.48 1.2183E-02 9.23 1.1114E-03 1.39 7.8019E-04

0.5 1.27 1.3918E-02 0.31 1.3607E-02 5.25 1.4514E-03 1.12 9.8853E-04

0.6 1.56 1.5175E-02 0.44 1.4732E-02 4.91 1.8027E-03 1.16 1.2423E-03

0.7 1.27 1.5643E-02 0.32 1.5097E-02 3.64 2.0984E-03 1.06 1.4828E-03

0.8 1.13 1.4653E-02 0.37 1.4038E-02 2.88 2.1825E-03 0.98 1.6039E-03

0.9 1.00 1.1251E-02 0.28 1.0604E-02 2.31 1.8907E-03 1.00 1.3272E-03

FIGURE 3
Graph of numerical and exact solutions for Example 1 with T = 1, h = 1/70, N = 50, α = 0.5, and RE = 30.

time level. In this study, the proposed numerical schemes are
combined with the Gauss–Seidel iterative solver to account
for numerical results. In practice, the initial approximations
are given by LCNDMW

n,k
i,j = LCNDMW

n,k−1
i,j and LMFEGMW

n,k−1
i,j

= LMFEGMW
n,k−1
i,j , where k denotes the iteration’s number. In

addition, the stopping criteria are set as ‖wn,k−LCNDMWn‖∞ ≤
10−5 and ‖wn,k−LMFEGMW

n‖∞ ≤ 10
−5. Unless stated otherwise,

the numerical results are obtained by considering T = 1, Ω =
[0,1] × [0,1], and hx = hy = h = 1/50. All numerical simulations
are performed using MATLAB R2018B on a Windows
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TABLE 3 Maximum error and CPU time obtained for Example 3 when RE = 70.

α Δt = 0.1 Δt = 0.02

LCNDM LMFEGM LCNDM LMFEGM

CPU time MAELCNDM CPU time MAELMFEGM CPU time MAELCNDM CPU time MAELMFEGM

0.1 2.73 2.71E-03 0.53 2.64E-03 15.04 2.17E-04 1.67 1.09E-04

0.2 2.3 3.04E-03 0.47 2.96E-03 14.02 2.95E-04 1.71 1.40E-04

0.3 2.01 3.56E-03 0.43 3.44E-03 7.22 4.03E-04 1.43 1.82E-04

0.4 1.83 4.21E-03 0.39 4.03E-03 5.24 5.20E-04 1.29 2.43E-04

0.5 1.28 4.89E-03 0.35 4.64E-03 3.24 6.38E-04 1.23 3.24E-04

0.6 1.48 5.45E-03 0.35 5.15E-03 3.08 7.55E-04 1.1 4.23E-04

0.7 1.35 5.66E-03 0.41 5.35E-03 2.52 8.46E-04 1.01 5.24E-04

0.8 1.22 5.29E-03 0.35 4.97E-03 2.23 8.65E-04 1.11 5.75E-04

0.9 1.14 3.93E-03 0.39 3.64E-03 1.79 7.53E-04 0.96 4.82E-04

FIGURE 4
Graph of numerical and exact solutions for Example 1 with T = 1, h = 1/70, N = 50, α = 0.8, and RE = 70.

64-bit system with an Intel(R) Core(TM) i7-8550 CPU and
8 GB of RAM.

Example 1: We consider the time-fractional Burgers model
(Equations 2) with the following exact solution:

w (x, t) = t3(1− x2)2(1− y2)2.

The initial and boundary conditions, in addition to the forcing
term, can be extracted from the exact solution. The maximum
error and CPU time of the LCNDM and LMFEGM, when the
Reynolds number (RE = 1/ν = 10), in solving Example 1, are listed
in Table 1. For different values of α, it can be observed that both
numerical methods converge well to the exact solution of the model
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TABLE 4 Maximum error and CPU time obtained for Example 4 when RE = 5.

α Δt = 0.1 Δt = 0.02

LCNDM LMFEGM LCNDM LMFEGM

CPU time MAELCNDM CPU time MAELMFEGM CPU time MAELCNDM CPU time MAELMFEGM

0.1 6.23 1.1752E-03 1.56 1.1237E-03 49.44 6.7750E-04 8.71 4.6742E-04

0.2 5.83 9.9615E-04 1.76 1.0512E-03 47.26 6.9165E-04 8.14 4.5949E-04

0.3 5.38 1.0012E-03 1.50 1.0201E-03 45.02 6.9416E-04 7.84 4.5884E-04

0.4 5.27 1.0028E-03 1.50 1.0276E-03 38.36 6.9912E-04 5.92 4.5896E-04

0.5 3.25 9.7666E-04 1.40 1.0666E-03 26.16 6.9704E-04 6.17 4.6009E-04

0.6 4.53 9.4223E-04 1.66 1.1075E-03 26.66 7.0252E-04 6.02 4.6356E-04

0.7 4.12 9.0576E-04 1.41 1.1296E-03 23.85 7.1451E-04 5.87 4.6741E-04

0.8 3.87 8.9979E-04 1.57 1.1216E-03 19.39 7.3459E-04 6.12 4.7323E-04

0.9 3.49 9.2733E-04 1.30 1.0590E-03 13.67 7.7279E-04 4.95 4.6739E-04

FIGURE 5
Comparison of CPU times of the LCNDM and LMFEGM for Example 4 with T = 1, N = 100, α = 0.5, and RE = 5.

problem. This is also apparent from Figure 2, which depicts the
plots of the numerical and exact solutions when h = 1/70, N = 50,
α = 0.2, and RE = 10. On the other hand, it is also evident that the
LMFEGM takes much less CPU time than the LCNDM in solving
the considered problem. For instance, when α = 0.1 and Δt = 0.02,
46.90 s are required by the LCNDM, while only 3.78 s are needed by
the LMFEGM for computing the numerical solutions.

Example 2: We consider the time-fractional Burgers model
(Equation 2) with the following exact solution:

w (x, t) = t3 cos (x)cos (y) .

We solve this model problem subject to the initial and boundary
conditions that can be drawn from the exact solution.The numerical
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FIGURE 6
Three-dimensional error profile of Example 5 when T = 2, h = 1/98, N = 50, α = 0.5, and RE = 100. (a) LCNDM. (b) LMFEGM.

results of the LCNDM and LMFEGM for the solution of Example 2,
when RE = 30, are recorded in Table 2, through which we can
observe that decreasing values of Δt lead to better convergent
solutions. The graph of the numerical and exact solutions for
Example 2 when T = 1, h = 1/70, N = 50, α = 0.5, and RE = 30 is
highlighted in Figure 3. Based on the data in these representations,
there is no significant difference between the proposed methods
in terms of accuracy; however, the LMFEGM converges much
faster than the LCNDM, making it more efficient in solving the
considered problem.

Example 3: Here, we consider the time-fractional Burgers model
(Equation 2), which has the following exact solution:

w (x, t) = t2 (x− x2 + y− y2) .

Table 3 shows the numerical results in terms of maximum error
and CPU time for Example 3 when RE = 70. Figure 4 shows the
sketch of the exact and numerical solutions for Example 3 when
T = 1, h = 1/70, N = 50, α = 0.8, and RE = 70. Again, it can be
observed that the numerical solutions of the proposed methods
are compatible with the exact solution. In addition, the LMFEGM
results in economic simulations since it requires less computational
effort than the LCNDM. This illustrates that the LMFEGM is more
efficient than the LCNDM when dealing with the time-fractional
Burgers model.

Example 4: We consider the time-fractional Burgers model
(Equation 2) whose exact solution is in the following form:

w (x, t) = sin (t) (sin (πx+ πy)) .

Table 4 presents the computational outcomes for Example 4
at Re = 5 with various values of fractional-order α. From this
table, one can note the similarity between the exact solution and
numerical solutions obtained by the LCNDM and LMFEGM, where
the maximum errors decrease as the time increments decrease. By

fixing all other parameters, we plot the CPU time of the proposed
methods against different values ofmesh size h−1 = 10,26,42,58, and
74 in Figure 5. Based on this figure, it is not surprising that the
LMFEGM is computationally superior to the LCNDM, where the
former reduces the computing time significantly compared to that
of the latter.The reason for this is that the LMFEGM comprises only
a quarter of the mesh points in the iterative process, which reduces
the computational cost effectively, as discussed in Section 3. Hence,
the results are in good agreement with our stated considerations.

Example 5: We consider the time-fractional Burgers model
(Equation 2) whose exact solution is given by

w (x, t) = te−(x−0.5)
2−(y−0.5)2 .

For this example, we apply the proposed methods to solve the
time-fractional Burgers equation using h = 1/98, RE = 100, and the
three final times T = 1.0, T = 1.5, and T = 2.0. The corresponding
results are tabulated in Table 5, from which we observe that the
numerical solutions of the methods are close to the exact solution
for different values ofT.The computational times of the LCNDMare
greater than those of the LMFEGM, which indicates the efficiency
of the latter. Figure 6 displays the three-dimensional error profile
when T = 2, h = 1/98, N = 50, α = 0.5, and RE = 100, which shows
the accuracy of the proposed methods. All numerical simulations
demonstrate the viability of the proposed methods and stress the
computational superiority of the LMFEGM over the LCNDM in
solving the time-fractional Burgers model.

7 Conclusion

In this article, the LMFEGM is proposed for solving the
two-dimensional time-fractional Burgers equation. The method
employs the L1 discretization formula for the fractional temporal

Frontiers in Physics 16 frontiersin.org

https://doi.org/10.3389/fphy.2025.1631259
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Salama 10.3389/fphy.2025.1631259

derivative and a linearized difference scheme on a coarse mesh
for the spatial derivatives. The LCNDM is also developed for
comparison purposes. The stability and convergence of both
methods are rigorously studied and proven via Fourier analysis. Five
numerical simulations are carried out, and the obtained data are
represented in Tables 1–5 along with Figures 2–6. Numerical results
demonstrate that the LMFEGM is accurate and a good CPU time
reducer; hence, it is computationally superior to the LCNDM in
dealing with the time-fractional Burgers model. This is particularly
useful when simulating complex physical problems governed by
multi-dimensional, nonlinear, and nonlocal fractional models. In
this regard, the LMFEGM can be extended for handling other high-
dimensional fractional Burgers-type models [51] in the future. The
combination of the LMFEGM with two-gird methods [52, 53, 53]
is also a potential subject of further research. Finally, the extension
of the proposed method to deal with fractional models that exhibit
weak singularity at the initial time is another interesting avenue for
future research.
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