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Fractional Burgers-type equations are essential mathematical models for describing the cumulative effect of wall friction through the boundary layer, along with the unidirectional propagation of weakly nonlinear acoustic waves. It is a major challenge to develop efficient, stable, and accurate numerical schemes that simulate the corresponding complex physical phenomena due to the nonlinearity and nonlocality properties in these equations. The objective of this article is to design a linearized modified fractional explicit group method for solving the two-dimensional time-fractional Burgers equation with suitable initial and boundary conditions. For the construction of the proposed method, the L1 discretization formula is used to handle the fractional temporal derivative, whereas a linearized difference scheme on a coarse mesh is employed to approximate the spatial derivatives. Meanwhile, a linearized Crank–Nicolson difference method (LCNDM) is formulated for checking the efficiency of the proposed method. The stability and convergence of the presented methods are rigorously studied and proven. Numerical simulations are performed, and the results are reported in terms of error norm and CPU time, demonstrating that the linearized grouping method reduces computation time by 70%–90% while maintaining comparable accuracy to the linearized Crank–Nicolson method in solving the time-fractional Burgers model.
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1 INTRODUCTION
In recent years, the interest in the fractional calculus (FC), dealing with differential and integral operators of arbitrary orders, has witnessed a remarkable mutation. In contrast to the classical differential operator, the fractional differential operator considers not only the immediate past of the relevant function but also its historical values. The memory and history dependence properties of fractional differential operators are considered the golden features of FC, which make it favorable for describing numerous real-life complex phenomena. Fractional differential equations are the basic tools of FC for handling the anomalous phenomena in diverse complex systems. For extra information on the definitions and properties of FC, the reader can refer to [1–3]. Fractional differential equations can be divided into fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs). In the past few years, many researchers and scholars from different scientific backgrounds have utilized fractional differential equations (FODEs and FPDEs) as efficient mathematical models for dealing with numerous real-world complex problems. For instance, among recent applications, fractional differential equations have been used for describing several phenomena, including COVID-19 transmission [4], regulation of atmospheric carbon dioxide levels, and battery temperature estimation [5]. Other interesting works highlighting the importance and applications of FC can be found in [6–9].
In line with the wide-ranging applications of FC and to better understand complex real-life systems, solving fractional differential equations has become indispensable. This study is concerned with the solution of an important type of FPDEs, namely, the time-fractional Burgers equation. An overview of the general form and significance of the aforementioned mathematical model is provided in the next section. Due to the unusual properties of fractional differential operators, such as the violation of the chain rule, Leibniz rule, and semigroup property, explicit analytic solutions of FPDEs cannot be easily obtained [10]. As a result, approximate analytical and numerical methods for solving FPDEs have received significant attention. The homotopy analysis method [11], variational iterative method [12, 13], perturbation analysis method [14], and differential transform method [14] are examples of approximate analytical methods that have been applied for solving the fractional Burgers equation. One drawback of the aforementioned analytical methods is that most of them consider only the initial condition and neglect the spatial boundary conditions of the fractional Burgers model. However, boundary conditions are of great importance for characterizing and modeling real-world processes. To surmount this issue, numerical methods capable of solving the fractional Burgers model with suitable initial and boundary conditions can be developed, which is the first motivation of this work.
In the literature, several research articles are devoted to solving the time-fractional Burgers equation numerically. In this study, we recall some of them. [15] introduced an implicit spectral collocation method for solving the one-dimensional time-fractional Burgers equation. The unconditional stability and convergence are proved theoretically and affirmed through numerical experiments. [16] established a second-order linearized difference scheme to solve the one-dimensional time-fractional Burgers equation. The theoretical analysis shows that the scheme is unconditionally stable and convergent. [17] combined the finite integration method with the shifted Chebyshev polynomials to solve the one- and two-dimensional time-fractional Burgers equations. [18] scrutinized an implicit difference scheme for the solution of the one-dimensional time-fractional Burgers equation. [19] utilized the L1 scheme on a temporal graded mesh and the Legendre–Galerkin spectral approach in space to account for the solution of the one-dimensional time-fractional Burgers equation. [20] derived a Crank–Nicolson difference scheme to deal with the one-dimensional time-fractional Burgers equation. The stability and convergence of the proposed scheme are not discussed. A computational scheme based on a finite difference in time and a cubic trigonometric B-spline in space for the one-dimensional time-fractional Burgers equation was suggested by [21]. [22] constructed a non-standard finite difference method for the one-dimensional complex-order Burgers equation. [23] suggested a finite difference scheme for the one-dimensional fractional Burgers equation involving the Atangana–Baleanu temporal derivative. [24] used the finite difference technique in time and the extended cubic B-spline approach in space for the solution of the one-dimensional time-fractional Burgers equation. [25] developed a space–time spectral collocation method to solve the one-dimensional time-fractional Burgers equation. [26] introduced a linear implicit difference scheme for the one-dimensional fractional Burgers equation, including the generalized temporal Atangana–Baleanu derivative. An explicit decoupled group method for the two-dimensional time-fractional Burgers equation was introduced by [27]. [28] designed a finite difference scheme for the one-dimensional time-fractional Burgers model subject to artificial boundary conditions on unbounded domains. [29] proposed a differential quadrature method based on a modified hybrid B-spline basis function for the one-dimensional time-fractional Burgers equation. [30] developed a local projection stabilization virtual element method for the solution of the two-dimensional time-fractional Burgers equation. Other recent numerical treatments of the time-fractional Burgers equation can be found in [31–33]. We note that the mentioned research work is almost limited to one-dimensional problems, while the numerical treatment of two-dimensional Burgers models is limited in the literature. This is our second motivation for finding the numerical solution of the two-dimensional time-fractional Burger model presented in the next section.
The definition of the time-fractional derivative has an integral form, which leads to the non-locality of the fractional differential operator. This means that the storage of the solution values at all previous time levels is crucial for computing the solution at the current time level. Such a phenomenon causes several difficulties and challenges related to the computational complexity and theoretical analysis of time FPDEs. For instance, a two-dimensional time-fractional model with mesh size N in the temporal direction and mesh points M in the spatial direction requires a computational cost of O(N2) and a storage requirement of O(NM). The implementation process of a long-time or large-domain simulation is still very difficult, even with high-performance computers. Consequently, the development of unconditionally stable, accurate, and computationally efficient numerical schemes for solving multi-dimensional time FPDEs is considered one of the open problems in this field [34]. This is the third motivation for our work.
In the last few years, explicit group methods have gained popularity in the numerical research field. These methods can be established based on finite difference approximations, where the solution is computed iteratively on a group of spatial mesh points rather than on a single point in the point-wise iterative schemes. Fractional diffusion equations [35–38], fractional cable equations [39–41], fractional mobile/immobile equations [42, 43], and fractional telegraph equations [44, 45] are solved successfully using these methods. Explicit group iterative methods can effectively refine the spectral properties of the iteration matrix and accelerate the rate of convergence of numerical algorithms. In addition, they can be implemented on parallel computers, making them a favored choice for simulation purposes. Moreover, since they rely on the finite difference method, explicit group methods inherit simplicity and universal applicability to a wide range of fractional problems. The primary goal of this paper is to propose an explicit group approach, namely, the linearized modified fractional explicit group method (LMFEGM), for the numerical solution of the two-dimensional time-fractional Burgers model. For the construction of the LMFEGM, we deal with the time-fractional derivative using the L1 discretization formula, while a linearized difference scheme based on double mesh spacing is used for the partial space derivatives. To evaluate the computational efficiency of the proposed method for solving the fractional Burgers equation, a linearized Crank–Nicolson difference method (LCNDM) is established as a reference method. The stability and convergence of the presented methods are analyzed in detail using the Fourier method. Furthermore, several numerical experiments are carried out to verify our considerations. The corresponding numerical results show the efficiency of the LMFEGM in terms of accuracy and reduction of computing effort compared to the LCNDM. To our knowledge, the current work, driven by the stated motivations, is novel as no attempt to solve the fractional Burgers equation using the LMFEGM has been reported in the literature.
In summary, the contributions of this work are listed as follows:
	• the development of the LMFEGM for efficiently solving the two-dimensional time fractional Burgers equation;
	• the derivation of the LCNDM as a reference method for verifying accuracy and computational efficiency;
	• the analysis of the stability and convergence properties of the proposed scheme; and
	• the execution and discussion of several numerical simulations.

The remainder of this article is arranged as follows. Section 2 provides an overview of the considered time-fractional Burgers model. Section 3 is devoted to the formulation of the proposed linearized numerical schemes. The stability and convergence properties of the presented methods are discussed in complete detail in Sections 4, 5, respectively. In Section 6, we implement several numerical experiments to test the performance and validate the theoretical statements. Finally, a brief conclusion is provided in Section 7.
2 TIME-FRACTIONAL BURGERS MODEL
The Burgers equation, named after J. M. Burgers (1895–1981), is one of the basic partial differential equations (PDEs) with numerous applications in science and engineering. In the literature, the solution and analysis of PDEs are one of the major topics in applied mathematics, due to their significant role in describing numerous phenomena in physics, chemistry, finance, biology, viscoelasticity, fluid mechanics, etc. In particular, the Burgers mathematical model has been applied in various disciplines such as gas dynamics, turbulent flows, shock wave theory, longitudinal elastic waves in isotropic solids, nonlinear wave propagation, growth of molecular interfaces, sedimentation of polydispersive suspensions and colloids, cosmology, and traffic flow. Furthermore, Burgers-type equations can be utilized as a reference for solving the Navier–Stokes equations as they share a similar structure but lack a pressure gradient. For details on applications of the Burgers equation, readers can refer to [46]. The general form of the one-dimensional Burgers equation is as follows:
wtx,t−νwxxx,t+wx,twxx,t=fx,t.(1)
The abovementioned integer-order Burgers equation is a mathematical model involving nonlinear propagation effects along with diffusion effects. Due to the fact that integer-order derivatives cannot describe the memory and hereditary properties of complex systems compared to fractional-order derivatives, many researchers have extended Equation 1 to its fractional-order counterpart. This can be achieved by replacing the integer-order derivatives in Equation 1 with time and/or space fractional derivatives to capture the true behavior of physical phenomena. In this work, we consider the following two-dimensional time-fractional Burgers model:
Dtα0Cw(x,t)−νΔw(x,t)+w(x,t)(∇w(x,t)⋅1)=f(x,t),(x,t)∈Ω×0,T,w(x,0)=g0(x),x∈Ω∪∂Ω,w(x,t)=g1(x,t),(x,t)∈∂Ω×0,T,(2)
where x=(x,y), 1=(1,1), Δw(x,t)=wxx(x,t)+wyy(x,t) is the Laplacian operator, and w(x,t)(∇w(x,t)⋅1)=w(x,t)(wx(x,t)+wy(x,t)). In this equation, Ω=[0,Lx]×[0,Ly] is a rectangular bounded domain included in R2, and ∂Ω is its boundary. ν=1/RE, where RE is the Reynolds number used to describe the transport properties of a fluid or a particle moving in a fluid [47], and g0(x), g1(x,t), and f(x,t) are known smooth functions. Dtα0C w(x,t) is the Caputo-type fractional temporal derivative, which is defined as follows:
Dtα0Cwx,t=1Γ1−α∫0tt−ξ−α∂wx,ξ∂ξdξ,0<α<1,∂wx,t∂t,α=1.
The involvement of the Caputo fractional temporal derivative in the Burgers model (Equation 2) makes it suitable for describing the cumulative effect of wall friction through the boundary layer, along with the unidirectional propagation of weakly nonlinear acoustic waves [19, 48]. Due to the added complexity of handling the fractional derivative and nonlinear convection term, exact analytic solutions of the fractional Burgers equation are not easy to obtain. Consequently, the development of efficient, accurate, and stable numerical schemes for solving such equations is of utmost importance. In the next section, we propose the LCNDM and the LMFEGM for solving the model problem (Equation 2).
3 FORMULATION OF THE LINEARIZED SCHEMES
3.1 Linearized Crank–Nicolson difference scheme
In order to establish a discrete form of the fractional Burgers model (Equation 2), its appearing integer and fractional derivatives can be replaced with their corresponding finite difference approximations. We introduce some notations to facilitate our formulation. We assume that Δx=Lx/Mx, Δy=Ly/My, and Δt=T/N are some spatial and temporal increments, where Mx, My, and N are the given positive integers. A spatial mesh is defined as xi=iΔx, where 0≤i≤Mx, and yj=jΔy, where 0≤j≤My, and a temporal mesh is given by tn=nΔt, where 0≤n≤N.
The grid functions are defined as follows:
wi,jn=w⁡xi,yj,tn,fi,jn=f⁡xi,yj,tn,0≤i≤Mx,0≤j≤My,0≤n≤N.
We assume that w={wi,jn|0≤i≤Mx,0≤j≤My,0≤n≤N} is a grid function. The following notations are introduced:
∂2w∂x2i,jn+1/2=12wi+1,jn+1−2wi,jn+1+wi−1,jn+1Δx2+wi+1,jn−2wi,jn+wi−1,jnΔx2+OΔt2+Δx2+Δy2,(3)
∂2w∂y2i,jn+1/2=12wi,j+1n+1−2wi,jn+1+wi,j−1n+1Δy2+wi,j+1n−2wi,jn+wi,j−1nΔy2+OΔt2+Δx2+Δy2.(4)
We adopt the technique for linearizing nonlinear convection terms from [49], where the following identities are used:
wn+1wxn+1=wn+1wxn+wnwxn+1−wnwxn,wn+1wyn+1=wn+1wyn+wnwyn+1−wnwyn.
Accordingly, the nonlinear terms wwx and wwy can be discretized as follows:
w∂w∂xi,jn+1/2=14Δx⁢wi,jn⁢wi+1,jn+1−wi−1,jn+1+wi,jn+1⁢wi+1,jn−wi−1,jn+O⁡Δt2+Δx2,(5)
w∂w∂yi,jn+1/2=14Δy⁢wi,jn⁢wi,j+1n+1−wi,j−1n+1+wi,jn+1⁢wi,j+1n−wi,j−1n+O⁡Δt2+Δy2.(6)
To approximate the fractional temporal derivative in the Caputo sense, we use the L1 discretization scheme [50] as follows:
∂αw∂tαi,jn+1/2=ση1wi,jn+∑s=1n−1ηn−s+1−ηn−swi,js−ηnwi,j0+wi,jn+1−wi,jn21−α+ri,jn+1/2,(7)
where
σ=1Γ2−αΔtα,ηn=n+1/21−α−n−1/21−α,
and the truncation error ri,jn+1/2 satisfies the following inequality:
|ri,jn+1/2|≤CΔt2−α.
Given the definition of the Caputo fractional derivative, weak regularity may exist in the exact solution of the time-fractional model (Equation 2) at the initial time. Nevertheless, we assume that the considered problem has a unique and sufficiently smooth exact solution without loss of this constraint.
Substituting Equations 3–7 into Equation 2 yields the following:
ση1wi,jn+∑s=1n−1ηn−s+1−ηn−swi,js−ηnwi,j0+wi,jn+1−wi,jn21−α−ν2wi+1,jn+1−2wi,jn+1+wi−1,jn+1Δx2+wi+1,jn−2wi,jn+wi−1,jnΔx2−ν2wi,j+1n+1−2wi,jn+1+wi,j−1n+1Δy2+wi,j+1n−2wi,jn+wi,j−1nΔy2+14Δxwi,jnwi+1,jn+1−wi−1,jn+1+wi,jn+1wi+1,jn−wi−1,jn+14Δywi,jnwi,j+1n+1−wi,j−1n+1+wi,jn+1wi,j+1n−wi,j−1n=fi,jn+1/2+OΔt2−α+Δx2+Δy2.(8)
By dropping higher-order small error terms and replacing wn with its numerical approximation Wn, we obtain the LCNDM:
1+νmΔx2+νmΔy2+m4Δx⁢Wi+1,jn−Wi−1,jn+m4Δy⁢Wi,j+1n−Wi,j−1n⁢Wi,jn+1=νm2Δx2−m4Δx⁢Wi,jn⁢Wi+1,jn+1+νm2Δx2+m4Δx⁢Wi,jn⁢Wi−1,jn+1+νm2Δy2−m4Δy⁢Wi,jn⁢Wi,j+1n+1+νm2Δy2+m4Δy⁢Wi,jn⁢Wi,j−1n+1+νm2Δx2⁢Wi+1,jn+Wi−1,jn+νm2Δy2⁢Wi,j+1n+Wi,j−1n+1−21−α⁢η1−νmΔx2−νmΔy2⁢Wi,jn+21−α∑s=1n−1ηn−s−ηn−s+1⁢Wi,js+21−α⁢ηn⁢Wi,j0+mfi,jn+1/2,1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1,(9)
where m=21−αΓ(2−α)(Δt)α.
3.2 Linearized grouping scheme
In this section, we introduce the linearized modified fractional explicit group method (LMFEGM) for the Burgers model (Equation 2). The idea of this method is to branch the spatial mesh points at each time level into small, fixed-size groups of points. After that, the numerical solution is computed at each group using an iterative process that involves only a quarter of the entire mesh, which efficiently reduces the computational complexity. For the construction of the LMFEGM, we consider a coarse mesh with spatial spacing Δx=2hx and Δy=2hy. On this coarse mesh, the finite difference operators (Equations 3–6) can be redefined as follows:
∂2w∂x2i,jn+1/2=12wi+2,jn+1−2wi,jn+1+wi−2,jn+14hx2+wi+2,jn−2wi,jn+wi−2,jn4hx2+OΔt2+Δx2+Δy2,(10)
∂2w∂y2i,jn+1/2=12wi,j+2n+1−2wi,jn+1+wi,j−2n+14hy2+wi,j+2n−2wi,jn+wi,j−2n4hy2+OΔt2+Δx2+Δy2.(11)
w∂w∂xi,jn+1/2=18hx⁢wi,jn⁢wi+2,jn+1−wi−2,jn+1+wi,jn+1⁢wi+2,jn−wi−2,jn+O⁡Δt2+Δx2,(12)
w∂w∂yi,jn+1/2=18hy⁢wi,jn⁢wi,j+2n+1−wi,j−2n+1+wi,jn+1⁢wi,j+2n−wi,j−2n+O⁡Δt2+Δy2.(13)
By combining Equations 10–13 and Equation 7 into Equation 2, we derive the following:
ση1wi,jn+∑s=1n−1ηn−s+1−ηn−swi,js−ηnwi,j0+wi,jn+1−wi,jn21−α−ν2wi+2,jn+1−2wi,jn+1+wi−2,jn+14hx2+wi+2,jn−2wi,jn+wi−2,jn4hx2−ν2wi,j+2n+1−2wi,jn+1+wi,j−2n+14hy2+wi,j+2n−2wi,jn+wi,j−2n4hy2+18hxwi,jnwi+2,jn+1−wi−2,jn+1+wi,jn+1wi+2,jn−wi−2,jn+18hywi,jnwi,j+2n+1−wi,j−2n+1+wi,jn+1wi,j+2n−wi,j−2n=fi,jn+1/2+OΔt2−α+Δx2+Δy2.
Neglecting the higher-order small error terms and replacing wn with its numerical approximation Wn lead to the fully discrete scheme:
1+νm4hx2+νm4hy2+m8hxWi+2,jn−Wi−2,jn+m8hyWi,j+2n−Wi,j−2nWi,jn+1=νm8hx2−m8hxWi,jnWi+2,jn+1+νm8hx2+m8hxWi,jnWi−2,jn+1+νm8hy2−m8hyWi,jnWi,j+2n+1+νm8hy2+m8hyWi,jnWi,j−2n+1+νm8hx2Wi+2,jn+Wi−2,jn+νm8hy2Wi,j+2n+Wi,j−2n+1−21−αη1−νm4hx2−νm4hy2Wi,jn+21−α∑s=1n−1ηn−s−ηn−s+1Wi,js+21−αηnWi,j0+mfi,jn+1/2,2≤i≤Mx−2,2≤j≤My−2,0≤n≤N−1.(14)
Now, at each time level, groups of four mesh points are considered ⧫ (as shown in Figure 1) with spatial locations (i,j), (i+2,j), (i+2,j+2), and (i,j+2). Applying Equation 14 to any of these groups will result in the following linear system of equations:
D1i,j−D2i,j0−D4i,j−D3i+2,jD1i+2,j−D4i+2,j00−D5i+2,j+2D1i+2,j+2−D3i+2,j+2−D5i,j+20−D2i,j+2D1i,j+2⁢Wi,jn+1Wi+2,jn+1Wi+2,j+2n+1Wi,j+2n+1=rhsi,jrhsi+2,jrhsi+2,j+2rhsi,j+2.(15)
[image: A grid with a ten by ten layout showing a pattern of circles, squares, and diamonds. Circles and squares alternate in rows, while black diamonds appear periodically. Dotted lines form square paths connecting shapes. X and Y axes are labeled to the right.]FIGURE 1 | Distribution of mesh points of the LMFEGM with Mx=My=10.Here, D1, D2, D3, D4, and D5 are grid functions, which are defined as follows:
D1i,j=1+νm4hx2+νm4hy2+m8hxWi+2,jn−Wi−2,jn+m8hyWi,j+2n−Wi,j−2n,D2i,j=νm8hx2−m8hxWi,jn,D3i,j=νm8hx2+m8hxWi,jn,D4i,j=νm8hy2−m8hyWi,jn,D5i,j=νm8hy2+m8hyWi,jn.
By inverting the coefficient matrix in Equation 15, the linear system can be rewritten as follows:
Wi,jn+1Wi+2,jn+1Wi+2,j+2n+1Wi,j+2n+1=1SS1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16rhsi,jrhsi+2,jrhsi+2,j+2rhsi,j+2,(16)
where
S=D1i,jD1i+2,jD1i+2,j+2D1i,j+2−D1i,jD1i+2,jD3i+2,j+2D2i,j+2−D1i,jD4i+2,jD5i+2,j+2D1i,j+2−D2i,jD3i+2,jD1i+2,j+2D1i,j+2+D2i,jD3i+2,jD3i+2,j+2D2i,j+2−D2i,jD4i+2,jD3i+2,j+2D5i,j+2−D4i,jD1i+2,jD1i+2,j+2D5i,j+2−D4i,jD3i+2,jD5i+2,j+2D2i,j+2+D4i,jD4i+2,jD5i+2,j+2D5i,j+2,S1=D1i+2,jD1i+2,j+2D1i,j+2−D1i+2,jD3i+2,j+2D2i,j+2−D4i+2,jD5i+2,j+2D1i,j+2,S2=D2i,jD1i+2,j+2D1i,j+2−D2i,jD3i+2,j+2D2i,j+2+D4i,jD5i+2,j+2D2i,j+2,S3=D2i,jD4i+2,jD1i,j+2+D4i,jD1i+2,jD2i,j+2,S4=D2i,jD4i+2,jD3i+2,j+2+D4i,jD1i+2,jD1i+2,j+2−D4i,jD4i+2,jD5i+2,j+2,S5=D3i+2,jD1i+2,j+2D1i,j+2−D3i+2,jD3i+2,j+2D2i,j+2+D4i+2,jD3i+2,j+2D5i,j+2,S6=D1i,jD1i+2,j+2D1i,j+2−D1i,jD3i+2,j+2D2i,j+2−D4i,jD1i+2,j+2D5i,j+2,S7=D1i,jD4i+2,jD1i,j+2+D4i,jD3i+2,jD2i,j+2−D4i,jD4i+2,jD5i,j+2,S8=D1i,jD4i+2,jD3i+2,j+2+D4i,jD3i+2,jD1i+2,j+2,S9=D1i+2,jD3i+2,j+2D5i,j+2+D3i+2,jD5i+2,j+2D1i,j+2,S10=D1i,jD5i+2,j+2D1i,j+2+D2i,jD3i+2,j+2D5i,j+2−D4i,jD5i+2,j+2D5i,j+2,S11=D1i,jD1i+2,jD1i,j+2−D2i,jD3i+2,jD1i,j+2−D4i,jD1i+2,jD5i,j+2,S12=D1i,jD1i+2,jD3i+2,j+2−D2i,jD3i+2,jD3i+2,j+2+D4i,jD3i+2,jD5i+2,j+2,S13=D1i+2,jD1i+2,j+2D5i,j+2+D3i+2,jD5i+2,j+2D2i,j+2−D4i+2,jD5i+2,j+2D5i,j+2,S14=D1i,jD5i+2,j+2D2i,j+2+D2i,jD1i+2,j+2D5i,j+2,S15=D1i,jD1i+2,jD2i,j+2−D2i,jD3i+2,jD2i,j+2+D2i,jD4i+2,jD5i,j+2,S16=D1i,jD1i+2,jD1i+2,j+2−D1i,jD4i+2,jD5i+2,j+2−D2i,jD3i+2,jD1i+2,j+2,
and
rhsi,j=νm8hx2+m8hx⁢Wi,jn⁢Wi−2,jn+1+νm8hy2+m8hy⁢Wi,jn⁢Wi,j−2n+1+νm8hx2⁢Wi+2,jn+Wi−2,jn+νm8hy2⁢Wi,j+2n+Wi,j−2n+1−21−α⁢η1−νm8hx2−νm8hy2⁢Wi,jn+21−α∑s=1n−1ηn−s−ηn−s+1⁢Wi,js+21−α⁢ηn⁢Wi,j0+mfi,jn+1/2,rhsi+2,j=νm8hx2−m8hx⁢Wi+2,jn⁢Wi+4,jn+1+νm8hy2+m8hy⁢Wi+2,jn⁢Wi+2,j−2n+1+νm8hx2⁢Wi+4,jn+Wi,jn+νm8hy2⁢Wi+2,j+2n+Wi+2,j−2n+1−21−α⁢η1−νm8hx2−νm8hy2⁢Wi+2,jn+21−α∑s=1n−1ηn−s−ηn−s+1⁢Wi+2,js+21−α⁢ηn⁢Wi+2,j0+mfi+2,jn+1/2,rhsi+2,j+2=νm8hx2−m8hx⁢Wi+2,j+2n⁢Wi+4,j+2n+1+νm8hy2−m8hy⁢Wi+2,j+2n⁢Wi+2,j+4n+1+νm8hx2⁢Wi+4,j+2n+Wi,j+2n+νm8hy2⁢Wi+2,j+4n+Wi+2,jn+1−21−α⁢η1−νm8hx2−νm8hy2⁢Wi+2,j+2n+21−α∑s=1n−1ηn−s−ηn−s+1⁢Wi+2,j+2s+21−α⁢ηn⁢Wi+2,j+20+mfi+2,j+2n+1/2,rhsi,j+2=νm8hx2+m8hx⁢Wi,j+2n⁢Wi−2,j+2n+1+νm8hy2−m8hy⁢Wi,j+2n⁢Wi,j+4n+1+νm8hx2⁢Wi+2,j+2n+Wi−2,j+2n+νm8hy2⁢Wi,j+4n+Wi,jn+1−21−α⁢η1−νm8hx2−νm8hy2⁢Wi,j+2n+21−α∑s=1n−1ηn−s−ηn−s+1⁢Wi,j+2s+21−α⁢ηn⁢Wi,j+20+mfi,j+2n+1/2.
For the sake of the numerical implementation of the LMFEGM, we derive a new linearized difference scheme for the considered problem (Equation 2). To this end, we consider a skewed mesh designed by rotating the standard mesh 45° clockwise. Applying Taylor series expansion on the skewed mesh for spatial derivatives and utilizing Equation 7 for the fractional temporal derivative, we obtain the following:
ση1wi,jn+∑s=1n−1ηn−s+1−ηn−swi,js−ηnwi,j0+wi,jn+1−wi,jn21−α−ν2wi+1,j−1n+1−2wi,jn+1+wi−1,j+1n+12hx2+wi+1,j−1n−2wi,jn+wi−1,j+1n2hx2−ν2wi+1,j+1n+1−2wi,jn+1+wi−1,j−1n+12hy2+wi+1,j+1n−2wi,jn+wi−1,j−1n2hy2+18hxwi,jnwi+1,j+1n+1−wi−1,j−1n+1+wi+1,j−1n+1−wi−1,j+1n+1+wi,jn+1wi+1,j+1n−wi−1,j−1n+wi+1,j−1n−wi−1,j+1n+18hywi,jnwi+1,j+1n+1−wi−1,j−1n+1+wi−1,j+1n+1−wi+1,j−1n+1+wi,jn+1wi+1,j+1n−wi−1,j−1n+wi−1,j+1n−wi+1,j−1n=fi,jn+1/2+OΔt2−α+Δx2+Δy2.
After rearrangement and omission of the higher-order small error terms, the following linearized skewed difference method (LSDM) is obtained:
1+νm2hx2+νm2hy2+m8hx⁢Wi+1,j+1n−Wi−1,j−1n+Wi+1,j−1n−Wi−1,j+1n+m8hy⁢Wi+1,j+1n−Wi−1,j−1n+Wi−1,j+1n−Wi+1,j−1n⁢Wi,jn+1=νm4hx2−m8hx⁢Wi,jn+m8hy⁢Wi,jn⁢Wi+1,j−1n+1+νm4hx2+m8hx⁢Wi,jn−m8hy⁢Wi,jn⁢Wi−1,j+1n+1+νm4hy2−m8hx⁢Wi,jn−m8hy⁢Wi,jn⁢Wi+1,j+1n+1+νm4hy2+m8hx⁢Wi,jn+m8hy⁢Wi,jn⁢Wi−1,j−1n+1+νm4hx2⁢Wi+1,j−1n+Wi−1,j+1n+νm4hy2⁢Wi+1,j+1n+Wi−1,j−1n+1−21−α⁢η1−νm2hx2−νm2hy2⁢Wi,jn+21−α∑s=1n−1ηn−s−ηn−s+1⁢Wi,js+21−α⁢ηn⁢Wi,j0+mfi,jn+1/2,1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1.
Figure 1 shows the distribution of the mesh points for the LMFEGM. It can be observed that the mesh points are divided into three types, denoted by ⧫, □, and ○. The implementation of the LMFEGM comprises the computation of the solution values at ⧫ points iteratively using Equation 16. After convergence is achieved, the solution values at the remaining □ and ○ points are computed directly using the LSDM (Equation 17) and LCNDM (Equation 11), respectively. The evaluated solution values are then used as the initial guess for the next time level, and the described solution process continues until the targeted time level is reached. Numerical implementation and comprehensive comparison between the LCNDM and LMFEGM is provided in Section 7. Prior to that, the subsequent two sections are focus on the stability and convergence of the proposed methods.
4 STABILITY ANALYSIS
The stability of a numerical scheme guarantees that round-off errors do not amplify and remain bounded as the computation process progresses from one time level to the next. In this section, we analyze the stability of the proposed methods using the Fourier method. In this regard, it is advantageous to recall that the nonlinear convection term w(wx+wy) has been linearized by replacing w with a local constant w̄. As a result, the model problem (Equation 2) now takes the following form:
Dtα0Cwx,t−νΔwx,t+w̄x,t∇wx,t⋅1=fx,t.
For stability analysis, we linearize the nonlinear term w(xx+wy) by regarding w as a locally constant function w̄. This simplification allows us to apply Fourier techniques but assumes that w̄ is invariant in space and time during the analysis. We emphasize that this is a theoretical construct for proving stability; numerical experiments in Section 6 confirm that the methods remain robust under the actual variable system. For strongly nonlinear regimes, other techniques can be used.
For later uses, the following lemma is introduced:
Lemma 1. For the coefficients ηs,(s=0,1,… ) in Equation 7, it holds that
	1. ηn−s>ηn−s+1,s=0,1,2,…,n−1, and
	2. ∑s=1n−1ηn−s−ηn−s+1=η1−ηn.

4.1 Stability of the h-spaced linearized difference scheme
To prove the stability of the h-spaced linearized difference scheme (Equation 9), we need some notations. Let W̃={W̃i,jn|1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1} be the approximate solution of the discrete scheme (Equation 9). The round-off error is defined as
ζi,jn=Wi,jn−W̃i,jn,1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1.(17)
Substituting Equation 17 into Equation 9 leads to the following round-off error equation:
1+νmΔx2+νmΔy2ζi,jn+1−νm2Δx2−m4Δxw̄ζi+1,jn+1−νm2Δx2+m4Δxw̄ζi−1,jn+1−νm2Δy2−m4Δyw̄ζi,j+1n+1−νm2Δy2+m4Δyw̄ζi,j−1n+1=νm2Δx2−m4Δxw̄ζi+1,jn+νm2Δx2+m4Δxw̄ζi−1,jn+νm2Δy2−m4Δyw̄ζi,j+1n+νm2Δy2+m4Δyw̄ζi,j−1n+1−21−αη1−νmΔx2−νmΔy2ζi,jn+21−α∑s=1n−1ηn−s−ηn−s+1ζi,js+21−αηnζi,j0.(18)
Without loss of generality, we assume that Lx=Ly=L; then, the grid function ζn(x) is given by
ζnx=ζi,jn,xi−Δx2<x≤xi+Δx2,yj−Δy2<y≤yj+Δy2,0, 0≤x≤Δx2 or L−Δx2<x≤L,0, 0≤y≤Δy2 or L−Δy2<y≤L,
and its Fourier expansion is in the form:
ζnx=∑q1=−∞∞∑q2=−∞∞Φnq1,q2e2π−1q1x/L+q2y/L,
where
Φnq1,q2=1L∫0L∫0Lζnx,ye−2π−1q1x/L+q2y/Ldxdy.
From the l2 norm definition,
‖ζn‖2=∑j=1My−1∑i=1Mx−1ΔyΔx|ζi,jn|21/2=∫0L∫0L|ζi,jn|2dxdy1/2.
Applying Parseval’s equality,
∫0L∫0L|ζi,jn|2dxdy=∑q2=−∞∞∑q1=−∞∞|Φnq1,q2|2,
we obtain
‖ζn‖2=∑q2=−∞∞∑q1=−∞∞|Φnq1,q2|21/2.(19)
We can assume that the solution of (24) is expressed as follows:
ζi,jn=Φne−1θ1iΔx+θ2jΔy,(20)
where θ1=2πq1/L and θ2=2πq2/L. Now, we prove the next result.
Lemma 2. For 0≤n≤N−1, if 31−α≤2, then it holds that |Φn+1|≤|Φ0|.
Proof: Substituting Equation 20 into Equation 18 and carrying out simplifications lead to
Φn+1=1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄Φn+21−α1+μ+2−1w̄μ̄∑s=1n−1ηn−s−ηn−s+1Φs+ηnΦ0,
where
μ=2νmΔx2sin2θ1Δx2+2νmΔy2sin2θ2Δ22,μ̄=m4Δxsinθ1Δx+m4Δysinθ2Δy.
By substituting n=0 in Equation 21 and since μ≥0, we obtain
|Φ1|=1−μ−2−1w̄μ̄1+μ+2−1w̄μ̄Φ0=1−μ2+2w̄μ̄21+μ2+2w̄μ̄2|Φ0|≤|Φ0|.
Now, we assume that
|Φk+1|≤|Φ0|,0≤k≤n−1.
From Equation 21, Equation 22, and lemma 1, we obtain
|Φn+1|≤1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄Φn+21−α1+μ+2−1w̄μ̄∑s=1n−1ηn−s−ηn−s+1Φs+ηnΦ0,≤1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄Φ0+21−α1+μ+2−1w̄μ̄∑s=1n−1ηn−s−ηn−s+1|Φ0|+ηn|Φ0|,=1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄Φ0+21−α1+μ+2−1w̄μ̄η1−ηn|Φ0|+ηn|Φ0|,=|1−μ−2−1w̄μ̄−21−αη1|+21−αη11+μ+2−1w̄μ̄|Φ0|.
As n increases, Δt, μ, and μ̄ approach 0, which yields
|Φn+1|≤1−21−αη1+21−αη1|Φ0|.
If 1−21−αη1>0, then
|Φn+1|≤|Φ0|.
If 1−21−αη1≤0, then
|Φn+1|≤−1+22−αη1|Φ0|.
In such a case,
|Φn+1|≤|Φ0|⇔−1+22−αη1≤1,⇔31−α≤2.
Theorem 1. If 31−α≤2, then the difference scheme (Equation 9) is stable.
Proof: By considering lemma 2 and applying Parseval’s equality, we obtain
‖ζn‖2=∑j=1My−1∑i=1Mx−1ΔyΔx|ζi,jn|2=ΔyΔx∑j=1My−1∑i=1Mx−1ΦneIθ1iΔx+θ2jΔy2=ΔyΔx∑j=1My−1∑i=1Mx−1|Φn|2≤ΔyΔx∑j=1My−1∑i=1Mx−1|Φ0|2=ΔyΔx∑j=1My−1∑i=1Mx−1Φ0eIθ1iΔx+θ2jΔy2=‖ζ0‖2.
4.2 Stability of the 2h-spaced linearized difference scheme
In this section, we examine the stability of the 2h-spaced linearized difference scheme (Equation 14) and introduce some necessary notations. Let W̄={W̄i,jn|1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1} be the approximate solution of the discrete scheme (Equation 14). The round-off error is expressed as follows:
ρi,jn=Wi,jn−W̄i,jn,1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1.(23)
By substituting Equation 23 into Equation 14, we obtain the following round-off error equation:
1+νm4hx2+νm4hy2ρi,jn+1−νm8hx2−m8hxw̄ρi+2,jn+1−νm8hx2+m8hxw̄ρi−2,jn+1−νm8hy2−m8hyw̄ρi,j+2n+1−νm8hy2+m8hyw̄ρi,j−2n+1=νm8hx2−m8hxw̄ρi+2,jn+νm8hx2+m8hxw̄ρi−2,jn+νm8hy2−m8hyw̄ρi,j+2n+νm8hy2+m8hyw̄ρi,j−2n+1−21−αη1−νm4hx2−νm4hy2ρi,jn+21−α∑s=1n−1ηn−s−ηn−s+1ρi,js+21−αηnρi,j0.(24)
The grid function ρn(x) can be defined as in the previous subsection, while its Fourier expansion is given by
ρnx=∑q1=−∞∞∑q2=−∞∞Ψnq1,q2e2π−1q1x/L+q2y/L,
where
Ψnq1,q2=1L∫0L∫0Lρnxe−2π−1q1x/L+q2y/L⁡dxdy.
The l2 norm definition provides
‖ρn‖2=∑j=1My−1∑i=1Mx−1ΔyΔx|ρi,jn|21/2=∫0L∫0L|ρi,jn|2dxdy1/2.
Applying Parseval’s equality,
∫0L∫0L|ρi,jn|2dxdy=∑q2=−∞∞∑q1=−∞∞|Ψnq1,q2|2,
we obtain
‖ρn‖2=∑q2=−∞∞∑q1=−∞∞|Ψnq1,q2|21/2.
Again, we can assume that the solution of Equation 29 is expressed as follows:
ρi,jn=Ψne−1θ1iΔx+θ2jΔy,(25)
which leads us to the next result.
Lemma 3. For 0≤n≤N−1, if 31−α≤2, it holds that |Ψn+1|≤|Ψ0|.
Proof: Substituting Equation 25 into Equation 24 and performing some rearrangements lead to
Ψn+1=1−λ−2−1w̄λ̄−21−αη11+λ+2−1w̄λ̄Ψn+21−α1+λ+2−1w̄λ̄∑s=1n−1ηn−s−ηn−s+1Ψs+ηnΨ0,
where
λ=νm2hx2sin2θ1Δx+νm2hy2sin2θ2Δy,λ̄=m8hxsin2θ1Δx+m8Δysin2θ2Δy.
Substituting n=0 in Equation 26 and since λ≥0, we obtain
|Ψ1|=1−λ−2−1w̄λ̄1+λ+2−1w̄λ̄Ψ0=1−λ2+2w̄λ̄21+λ2+2w̄λ̄2|Ψ0|≤|Ψ0|.
Now, we assume that
|Ψk+1|≤|Ψ0|,0≤k≤n−1.
From Equations 26, 27 and lemma 1, we obtain
|Ψn+1|≤1−λ−2−1w̄λ̄−21−αη11+λ+2−1w̄λ̄Ψn+21−α1+λ+2−1w̄λ̄∑s=1n−1ηn−s−ηn−s+1Ψs+ηnΨ0,≤1−λ−2−1w̄λ̄−21−αη11+λ+2−1w̄λ̄Ψ0+21−α1+λ+2−1w̄λ̄∑s=1n−1ηn−s−ηn−s+1|Ψ0|+ηn|Ψ0|,=1−λ−2−1w̄λ̄−21−αη11+λ+2−1w̄λ̄Ψ0+21−α1+λ+2−1w̄λ̄η1−ηn|Ψ0|+ηn|Ψ0|,=|1−λ−2−1w̄λ̄−21−αη1|+21−αη11+λ+2−1w̄λ̄|Ψ0|.
As n increases, Δt, λ, and λ̄ approach 0, which yields
|Ψn+1|≤|1−21−αη1|+21−αη1|Ψ0|.
From lemma 2, it immediately follows that
|Ψn+1|≤|Ψ0|⇔−1+22−αη1≤1,⇔31−α≤2.
Theorem 2. If 31−α≤2, then the difference scheme (Equation 15) is stable.
Proof: By considering lemma 3 and applying Parseval’s equality, we obtain
‖ρn‖2=∑j=1My−1∑i=1Mx−1ΔyΔx|ρi,jn|2=ΔyΔx∑j=1My−1∑i=1Mx−1|ΨneIθ1iΔx+θ2jΔy|2=ΔyΔx∑j=1My−1∑i=1Mx−1|Ψn|2≤ΔyΔx∑j=1My−1∑i=1Mx−1|Ψ0|2=ΔyΔx∑j=1My−1∑i=1Mx−1|Ψ0eIθ1iΔx+θ2jΔy|2=‖ρ0‖2.
5 CONVERGENCE ANALYSIS
In this section, we analyze the convergence of the difference scheme (Equation 9). Some preliminaries are introduced first to prove our final result. We start by subtracting Equation 9 from Equation 8, which results in the following error equation:
1+νmΔx2+νmΔy2Ei,jn+1−νm2Δx2−m4Δxw̄Ei+1,jn+1−νm2Δx2+m4Δxw̄Ei−1,jn+1−νm2Δy2−m4Δyw̄Ei,j+1n+1−νm2Δy2+m4Δyw̄Ei,j−1n+1=νm2Δx2−m4Δxw̄Ei+1,jn+νm2Δx2+m4Δxw̄Ei−1,jn+νm2Δy2−m4Δyw̄Ei,j+1n+νm2Δy2+m4Δyw̄Ei,j−1n+1−21−αη1−νmΔx2−νmΔy2Ei,jn+21−α∑s=1n−1ηn−s−ηn−s+1Ei,js+21−αηnEi,j0+mRi,jn+1/2,(28)
where Ri,jn+1/2 denotes the local truncation error, and
Ei,jn=wxi,yj,tn−Wi,jn,1≤i≤Mx−1,1≤j≤My−1,1≤n≤N.
Hereafter, C will denote a generic positive constant that may vary from one location to another. For 0≤n≤N, the grid functions En(x) and Rn(x) can be defined as follows:
Enx=Ei,jn,xi−Δx2<x≤xi+Δx2,yj−Δy2<y≤yj+Δy2,0, 0≤x≤Δx2 or L−Δx2<x≤L,0, 0≤y≤Δy2 or L−Δy2<y≤L,
and
Rnx=Ri,jn,xi−Δx2<x≤xi+Δx2,yj−Δy2<y≤yj+Δy2,0, 0≤x≤Δx2 or L−Δx2<x≤L,0, 0≤y≤Δy2 or L−Δy2<y≤L.
The Fourier expansions of En(x) and Rn(x) can be written as follows:
Enx=∑q2=−∞∞∑q1=−∞∞ϒnq1,q2e2π−1q1x/L+q2y/L,
Rnx=∑q2=−∞∞∑q1=−∞∞Θnq1,q2e2π−1q1x/L+q2y/L,
where ϒ and Θ are the Fourier coefficients, and the following norms are introduced:
‖En‖22=∑i=1Mx−1∑j=1My−1ΔxΔy|Ei,jn|2=∑q1=−∞∞∑q2=−∞∞|ϒnq1,q2|2,0≤n≤N,(29)
‖Rn‖22=∑i=1Mx−1∑j=1My−1ΔxΔy|Ri,jn|2=∑q1=−∞∞∑q2=−∞∞|Θnq1,q2|2,0≤n≤N.(30)
It should be noted that from Equation 8, there exists a positive constant Csuch that
|Ri,jn+1/2|≤C⁡Δt2−α+Δx2+Δy2,1≤i≤Mx−1,1≤j≤My−1,0≤n≤N−1.
In addition, from the convergence of the right-hand side of Equation 30, we can obtain a positive constant C such that
|Θn+1/2|≡|Θn+1/2q1,q2≤C|Θ1/2q1,q2≡C|Θ1/2|.(31)
Prior to the next result, we now suppose that
Ei,jn=ϒneIθ1iΔx+θ2jΔy,Ri,jn=Θne−1θ1iΔx+θ2jΔy.(32)
Lemma 4. For 0≤n≤N−1, if 31−α≤2, it holds that |ϒn+1|≤C|Θ1/2|.
Proof: Substituting Equation 31 into Equation 28 and simplifying yield
ϒn+1=1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄⁢ϒn+11+μ+2−1w̄μ̄⁢21−α∑s=1n−1ηn−s−ηn−s+1⁢ϒs+21−α⁢ηn⁢ϒ0+mΘn+1/2,
where μ and μ̄ are as defined before. For n=0 in Equation 33 and noting that ϒ0≡ϒ0(q1,q2)=0, we obtain
|ϒ1|=|Δtα1+μ+2−1w̄μ̄|21−αΓ2−α|Θ1/2|≤C|Θ1/2|.
Now, we assume that
|ϒk|≤C|Θ1/2|,1≤k≤n.
From Equations 31, 33, 34 and lemma 1, we obtain
|ϒn+1|≤1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄⁢ϒn+11+μ3+2−1w̄μ̄⁢21−α∑s=1n−1ηn−s−ηn−s+1⁢ϒs+21−α⁢ηn⁢ϒ0+m⁡Θn+1/2,≤1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄⁢C|Θ1/2|+11+μ+2−1w̄μ̄⁢21−α∑s=1n−1ηn−s−ηn−s+1⁢C|Θ1/2|+21−α⁢ηn⁢C|Θ1/2|+mC|Θ1/2|,=1−μ−2−1w̄μ̄−21−αη11+μ+2−1w̄μ̄⁢C|Θ1/2|+11+μ+2−1w̄μ̄⁢21−α⁢η1−ηn⁢C|Θ1/2|+21−α⁢ηn⁢C|Θ1/2|+mC|Θ1/2|,=|1−μ−2−1w̄μ̄−21−αη1|+21−αη1+m|1+μ+2−1w̄μ̄|⁢C|Θ1/2|.
As n increases, Δt, μ, μ̄, and m approach 0, which yields
|ϒn+1|≤|1−21−αη1|+21−αη1C|Θ1/2|.
From lemma 2, we obtain
|ϒn+1|≤C|Θ1/2|⇔|1−21−αη1|+21−αη1≤1,⇔31−α≤2,
which completes the proof.
Theorem 3. The difference scheme (Equation 9) is l2-convergent with a convergence order of O((Δt)2−α+(Δx)2+(Δy)2).
Proof: Using Equations 29, 30 and lemma 4, we obtain
‖En‖22=∑j=1My−1∑i=1Mx−1ΔyΔx|Ei,jn|2=ΔyΔx∑j=1My−1∑i=1Mx−1ϒne−1θ1iΔx+θ2jΔy2=ΔyΔx∑j=1My−1∑i=1Mx−1|ϒn|2≤C22ΔyΔx∑j=1My−1∑i=1Mx−1|Θ1/2|2=C22ΔyΔx∑j=1My−1∑i=1Mx−1Θ1/2e−1θ1iΔx+θ2jΔy2=C22‖R1/2‖22,
which completes the proof.
Theorem 4. The difference scheme (Equation 14) is l2-convergent with a convergence order of O((Δt)2−α+(Δx)2+(Δy)2).
Proof: The proof can be established in a similar fashion to the proof of theorem 3.
It is worth pointing out that the discussions in Sections 4, 5 describe asymptotic stability and convergence analyses. A non-asymptotic analysis can be considered in future extensions of this work.
6 NUMERICAL SIMULATIONS AND DISCUSSION OF RESULTS
In this section, five numerical simulations corresponding to five test problems are carried out. The discussions are mainly based on the comparison of the numerical results for the LCNDM and LMFEGM in solving the time-fractional Burgers model. The maximum absolute error MAE and CPU time (in seconds) of the aforementioned methods are selected to validate the accuracy and computational efficiency, respectively. We assume that w(x,t) refers to the exact solution of the time-fractional Burgers model, whereasLCNDMW andLMFEGMW indicate the numerical solutions of the LCNDM and LMFEGM, respectively. The corresponding maximum absolute errors are computed using the following formulas:
MAELCNDM=max1≤i≤Mx−1,1≤j≤My−1|wi,jN−LCNDMWi,jN|,MAELMFEGM=max1≤i≤Mx−1,1≤j≤My−1|wi,jN−LMFEGMWi,jN|.
Based on the structure of the proposed methods, a new linearized system of equations needs to be solved at each time level. In this study, the proposed numerical schemes are combined with the Gauss–Seidel iterative solver to account for numerical results. In practice, the initial approximations are given by Wi,jn,kLCNDM = Wi,jn,k−1LCNDM and Wi,jn,k−1LMFEGM = Wi,jn,k−1LMFEGM, where k denotes the iteration’s number. In addition, the stopping criteria are set as ‖wn,k−LCNDMWn‖∞≤10−5 and ‖wn,k−LMFEGMWn‖∞≤10−5. Unless stated otherwise, the numerical results are obtained by considering T=1, Ω=[0,1]×[0,1], and hx=hy=h=1/50. All numerical simulations are performed using MATLAB R2018B on a Windows 64-bit system with an Intel(R) Core(TM) i7-8550 CPU and 8 GB of RAM.
Example 1. We consider the time-fractional Burgers model (Equations 2) with the following exact solution:
wx,t=t31−x221−y22.
The initial and boundary conditions, in addition to the forcing term, can be extracted from the exact solution. The maximum error and CPU time of the LCNDM and LMFEGM, when the Reynolds number (RE=1/ν=10), in solving Example 1, are listed in Table 1. For different values of α, it can be observed that both numerical methods converge well to the exact solution of the model problem. This is also apparent from Figure 2, which depicts the plots of the numerical and exact solutions when h=1/70, N=50, α=0.2, and RE=10. On the other hand, it is also evident that the LMFEGM takes much less CPU time than the LCNDM in solving the considered problem. For instance, when α=0.1 and Δt=0.02, 46.90 s are required by the LCNDM, while only 3.78 s are needed by the LMFEGM for computing the numerical solutions.
TABLE 1 | Maximum error, iteration count, and CPU time obtained for Example 1 when RE=10.	α	Δt=0.1	Δt=0.02
	LCNDM	LMFEGM	LCNDM	LMFEGM
	CPU time	MAELCNDM	CPU time	MAELMFEGM	CPU time	MAELCNDM	CPU time	MAELMFEGM
	0.1	6.26	6.6960E-03	1.14	6.3845E-03	46.90	1.2191E-03	3.78	8.2737E-04
	0.2	5.42	6.8316E-03	0.95	6.5300E-03	38.17	1.2652E-03	4.41	8.0608E-04
	0.3	5.85	7.1042E-03	1.12	6.7689E-03	30.36	1.3010E-03	3.93	7.9778E-04
	0.4	4.35	7.4706E-03	0.98	7.0856E-03	24.47	1.3490E-03	3.74	8.1432E-04
	0.5	2.55	7.9086E-03	0.90	7.4526E-03	13.74	1.4068E-03	3.55	8.4262E-04
	0.6	3.13	8.3185E-03	0.89	7.7985E-03	14.78	1.4647E-03	2.90	8.9557E-04
	0.7	2.39	8.5077E-03	0.73	7.9388E-03	11.93	1.5353E-03	3.40	9.5032E-04
	0.8	2.30	8.2061E-03	0.90	7.5727E-03	10.12	1.5513E-03	2.64	9.6686E-04
	0.9	1.92	6.8906E-03	0.84	6.2303E-03	6.97	1.4082E-03	3.30	8.2508E-04


[image: Line graph showing multiple datasets with varying weights represented by different colors and symbols. The x-axis ranges from 0 to 1, and the y-axis ranges from 0 to 0.6. The legend explains the symbols and weights used for each dataset.]FIGURE 2 | Graph of numerical and exact solutions for Example 1 with T=1, h=1/70, N=50, α=0.2, and RE=10.Example 2. We consider the time-fractional Burgers model (Equation 2) with the following exact solution:
wx,t=t3⁡cosxcosy.
We solve this model problem subject to the initial and boundary conditions that can be drawn from the exact solution. The numerical results of the LCNDM and LMFEGM for the solution of Example 2, when RE=30, are recorded in Table 2, through which we can observe that decreasing values of Δt lead to better convergent solutions. The graph of the numerical and exact solutions for Example 2 when T=1, h=1/70, N=50, α=0.5, and RE=30 is highlighted in Figure 3. Based on the data in these representations, there is no significant difference between the proposed methods in terms of accuracy; however, the LMFEGM converges much faster than the LCNDM, making it more efficient in solving the considered problem.
TABLE 2 | Maximum error, iteration count, and CPU time obtained for Example 2 when RE=30.	α	Δt=0.1	Δt=0.02
	LCNDM	LMFEGM	LCNDM	LMFEGM
	CPU time	MAELCNDM	CPU time	MAELMFEGM	CPU time	MAELCNDM	CPU time	MAELMFEGM
	0.1	3.87	8.6786E-03	0.60	8.7828E-03	23.43	5.2165E-04	2.12	4.8456E-04
	0.2	3.20	9.6751E-03	0.56	9.6622E-03	17.94	6.4543E-04	1.66	5.3179E-04
	0.3	3.22	1.0888E-02	0.45	1.0797E-02	13.11	8.3767E-04	1.43	6.3357E-04
	0.4	3.02	1.2369E-02	0.48	1.2183E-02	9.23	1.1114E-03	1.39	7.8019E-04
	0.5	1.27	1.3918E-02	0.31	1.3607E-02	5.25	1.4514E-03	1.12	9.8853E-04
	0.6	1.56	1.5175E-02	0.44	1.4732E-02	4.91	1.8027E-03	1.16	1.2423E-03
	0.7	1.27	1.5643E-02	0.32	1.5097E-02	3.64	2.0984E-03	1.06	1.4828E-03
	0.8	1.13	1.4653E-02	0.37	1.4038E-02	2.88	2.1825E-03	0.98	1.6039E-03
	0.9	1.00	1.1251E-02	0.28	1.0604E-02	2.31	1.8907E-03	1.00	1.3272E-03


[image: Line graph showing six functions labeled in the legend: \(w(x, 0.5, 0.25)\), \(w(x, 0.5, 0.5)\), \(w(x, 0.5, 0.75)\), and \(w(x, 0.5, 1)\) with different markers for \(LCNDM\) and \(LMFEGM\). The \(x\)-axis ranges from 0 to 1, and the \(y\)-axis ranges from 0 to 0.9. Curves demonstrate different decreasing patterns.]FIGURE 3 | Graph of numerical and exact solutions for Example 1 with T=1, h=1/70, N=50, α=0.5, and RE=30.Example 3. Here, we consider the time-fractional Burgers model (Equation 2), which has the following exact solution:
wx,t=t2x−x2+y−y2.
Table 3 shows the numerical results in terms of maximum error and CPU time for Example 3 when RE=70. Figure 4 shows the sketch of the exact and numerical solutions for Example 3 when T=1, h=1/70, N=50, α=0.8, and RE=70. Again, it can be observed that the numerical solutions of the proposed methods are compatible with the exact solution. In addition, the LMFEGM results in economic simulations since it requires less computational effort than the LCNDM. This illustrates that the LMFEGM is more efficient than the LCNDM when dealing with the time-fractional Burgers model.
TABLE 3 | Maximum error and CPU time obtained for Example 3 when RE=70.	α	Δt=0.1	Δt=0.02
	LCNDM	LMFEGM	LCNDM	LMFEGM
	CPU time	MAELCNDM	CPU time	MAELMFEGM	CPU time	MAELCNDM	CPU time	MAELMFEGM
	0.1	2.73	2.71E-03	0.53	2.64E-03	15.04	2.17E-04	1.67	1.09E-04
	0.2	2.3	3.04E-03	0.47	2.96E-03	14.02	2.95E-04	1.71	1.40E-04
	0.3	2.01	3.56E-03	0.43	3.44E-03	7.22	4.03E-04	1.43	1.82E-04
	0.4	1.83	4.21E-03	0.39	4.03E-03	5.24	5.20E-04	1.29	2.43E-04
	0.5	1.28	4.89E-03	0.35	4.64E-03	3.24	6.38E-04	1.23	3.24E-04
	0.6	1.48	5.45E-03	0.35	5.15E-03	3.08	7.55E-04	1.1	4.23E-04
	0.7	1.35	5.66E-03	0.41	5.35E-03	2.52	8.46E-04	1.01	5.24E-04
	0.8	1.22	5.29E-03	0.35	4.97E-03	2.23	8.65E-04	1.11	5.75E-04
	0.9	1.14	3.93E-03	0.39	3.64E-03	1.79	7.53E-04	0.96	4.82E-04


[image: Graph showing functions \( w(x) \) at different parameter values over the interval \( 0 \leq x \leq 1 \). Three pairs of curves are plotted, each labeled in the legend: \( w(x, 0.5, 0.25) \), \( w(x, 0.5, 0.5) \), \( w(x, 0.5, 0.75) \), and \( w(x, 0.5, 1) \). Each function has two variations, \( \text{lcndm}W \) and \( \text{lmfegm}W \), indicated by plus symbols for \( \text{lcndm} \) and circles for \( \text{lmfegm} \). The curves form smooth arches, varying in height and width.]FIGURE 4 | Graph of numerical and exact solutions for Example 1 with T=1, h=1/70, N=50, α=0.8, and RE=70.Example 4. We consider the time-fractional Burgers model (Equation 2) whose exact solution is in the following form:
wx,t=sintsinπx+πy.
Table 4 presents the computational outcomes for Example 4 at Re=5 with various values of fractional-order α. From this table, one can note the similarity between the exact solution and numerical solutions obtained by the LCNDM and LMFEGM, where the maximum errors decrease as the time increments decrease. By fixing all other parameters, we plot the CPU time of the proposed methods against different values of mesh size h−1=10,26,42,58, and 74 in Figure 5. Based on this figure, it is not surprising that the LMFEGM is computationally superior to the LCNDM, where the former reduces the computing time significantly compared to that of the latter. The reason for this is that the LMFEGM comprises only a quarter of the mesh points in the iterative process, which reduces the computational cost effectively, as discussed in Section 3. Hence, the results are in good agreement with our stated considerations.
TABLE 4 | Maximum error and CPU time obtained for Example 4 when RE=5.	α	Δt=0.1	Δt=0.02
	LCNDM	LMFEGM	LCNDM	LMFEGM
	CPU time	MAELCNDM	CPU time	MAELMFEGM	CPU time	MAELCNDM	CPU time	MAELMFEGM
	0.1	6.23	1.1752E-03	1.56	1.1237E-03	49.44	6.7750E-04	8.71	4.6742E-04
	0.2	5.83	9.9615E-04	1.76	1.0512E-03	47.26	6.9165E-04	8.14	4.5949E-04
	0.3	5.38	1.0012E-03	1.50	1.0201E-03	45.02	6.9416E-04	7.84	4.5884E-04
	0.4	5.27	1.0028E-03	1.50	1.0276E-03	38.36	6.9912E-04	5.92	4.5896E-04
	0.5	3.25	9.7666E-04	1.40	1.0666E-03	26.16	6.9704E-04	6.17	4.6009E-04
	0.6	4.53	9.4223E-04	1.66	1.1075E-03	26.66	7.0252E-04	6.02	4.6356E-04
	0.7	4.12	9.0576E-04	1.41	1.1296E-03	23.85	7.1451E-04	5.87	4.6741E-04
	0.8	3.87	8.9979E-04	1.57	1.1216E-03	19.39	7.3459E-04	6.12	4.7323E-04
	0.9	3.49	9.2733E-04	1.30	1.0590E-03	13.67	7.7279E-04	4.95	4.6739E-04


[image: Line graph showing CPU time versus mesh size for LCNDM and LMFEGM methods. LCNDM, represented by a black line, shows a steep increase, while LMFEGM, shown in blue, increases moderately.]FIGURE 5 | Comparison of CPU times of the LCNDM and LMFEGM for Example 4 with T=1, N=100, α=0.5, and RE=5.Example 5. We consider the time-fractional Burgers model (Equation 2) whose exact solution is given by
wx,t=te−x−0.52−y−0.52.
For this example, we apply the proposed methods to solve the time-fractional Burgers equation using h=1/98, RE=100, and the three final times T=1.0, T=1.5, and T=2.0. The corresponding results are tabulated in Table 5, from which we observe that the numerical solutions of the methods are close to the exact solution for different values of T. The computational times of the LCNDM are greater than those of the LMFEGM, which indicates the efficiency of the latter. Figure 6 displays the three-dimensional error profile when T=2, h=1/98, N=50, α=0.5, and RE=100, which shows the accuracy of the proposed methods. All numerical simulations demonstrate the viability of the proposed methods and stress the computational superiority of the LMFEGM over the LCNDM in solving the time-fractional Burgers model.
TABLE 5 | Maximum error and CPU time obtained for Example 5 with RE=100 and h=1/98.	α	T=1.0	T=1.5	T=2.0
	LCNDM	LMFEGM	LCNDM	LMFEGM	LCNDM	LMFEGM
	CPU time	MAELCNDM	CPU time	MAELMFEGM	CPU time	MAELCNDM	CPU time	MAELMFEGM	CPU time	MAELCNDM	CPU time	MAELMFEGM
	0.1	117.99	1.1216E-04	4.92	9.9614E-05	93.86	1.3370E-04	4.88	1.5774E-04	69.63	3.2602E-04	5.40	3.2422E-04
	0.2	93.53	1.3835E-04	4.64	1.0258E-04	78.98	7.7544E-05	4.40	1.7416E-04	61.58	1.1466E-04	5.30	2.5541E-04
	0.3	68.49	1.9991E-04	4.09	1.0200E-04	64.36	9.4386E-05	3.92	1.7468E-04	53.30	1.0233E-04	4.92	2.4846E-04
	0.4	50.98	3.1131E-04	3.54	1.0475E-04	50.05	1.1453E-04	3.65	1.7564E-04	42.59	1.0221E-04	4.42	2.5012E-04
	0.5	26.30	4.1922E-04	2.94	1.1163E-04	29.92	1.5324E-04	3.03	1.7682E-04	24.46	1.0296E-04	3.77	2.5234E-04
	0.6	23.94	5.3962E-04	2.96	1.1893E-04	26.92	1.7852E-04	3.16	1.7831E-04	26.23	1.0335E-04	3.79	2.5467E-04
	0.7	17.21	6.5031E-04	3.07	1.2849E-04	19.84	2.1522E-04	3.18	1.8005E-04	20.43	1.0394E-04	3.64	2.5690E-04
	0.8	13.23	7.5954E-04	2.85	1.4142E-04	15.60	2.5077E-04	2.98	1.8202E-04	15.63	1.0421E-04	3.25	2.5912E-04
	0.9	8.70	8.2057E-04	2.60	1.5696E-04	12.02	2.8731E-04	2.68	1.8418E-04	12.59	1.0524E-04	3.05	2.6118E-04


[image: Two 3D surface plots labeled (a) and (b) showing absolute error on z-axis over x-y coordinates. Plot (a) has a peak error near 1.2 x 10^-4, while plot (b) peaks at about 2.5 x 10^-4. Both use a color gradient with yellow indicating higher values.]FIGURE 6 | Three-dimensional error profile of Example 5 when T=2, h=1/98, N=50, α=0.5, and RE=100. (a) LCNDM. (b) LMFEGM.7 CONCLUSION
In this article, the LMFEGM is proposed for solving the two-dimensional time-fractional Burgers equation. The method employs the L1 discretization formula for the fractional temporal derivative and a linearized difference scheme on a coarse mesh for the spatial derivatives. The LCNDM is also developed for comparison purposes. The stability and convergence of both methods are rigorously studied and proven via Fourier analysis. Five numerical simulations are carried out, and the obtained data are represented in Tables 1–5 along with Figures 2–6. Numerical results demonstrate that the LMFEGM is accurate and a good CPU time reducer; hence, it is computationally superior to the LCNDM in dealing with the time-fractional Burgers model. This is particularly useful when simulating complex physical problems governed by multi-dimensional, nonlinear, and nonlocal fractional models. In this regard, the LMFEGM can be extended for handling other high-dimensional fractional Burgers-type models [51] in the future. The combination of the LMFEGM with two-gird methods [52, 53, 53] is also a potential subject of further research. Finally, the extension of the proposed method to deal with fractional models that exhibit weak singularity at the initial time is another interesting avenue for future research.
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