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In the rapid development of vehicular networks, the exchange of information 
between vehicles and between vehicles and the infrastructure is becoming 
increasingly frequent. Vehicle location data have become one of the core 
types of information. However, location data contain a large amount of user 
privacy, and once leaked, they can severely threaten user safety and freedom. 
Therefore, there is an urgent need for a method that can balance privacy 
protection, data availability, and processing efficiency. In this paper, we propose 
a localized differential privacy location protection method based on the hidden 
Markov model (HMM) in vehicular networks, which addresses the problem of 
vehicle location privacy protection. The method consists of an HMM-based 
continuous location privacy protection algorithm and a localized differential 
privacy perturbation algorithm. The algorithm introduces the HMM into the 
field and utilizes its ability to accurately predict the continuous changes in 
vehicle location, thereby providing a scientific basis for privacy protection. At 
the same time, it combines the spatial correlation of location distribution to 
construct a privacy-preserving security area, which effectively restricts the range 
of the localized differential privacy perturbation, reduces the error, and improves 
data availability while safeguarding privacy. Second, this method incorporates 
a two-stage localized differential privacy perturbation algorithm to achieve 
dynamic differential privacy protection of vehicle location, adapting to real-
time changes in vehicle location data through collaboration between the client 
and server. Based on the experiments and analysis using an actual trajectory 
dataset, the results show that the method provides strong privacy protection, 
high data availability, and efficient processing, thereby verifying its feasibility and 
effectiveness.
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Highlights

The main highlights of this paper are as follows: 

1. This paper proposes a localized differential privacy location 
protection method based on the hidden Markov model in 
vehicular networks.

2. The method is thoroughly verified to demonstrate strong 
privacy protection, high data availability, and high processing 
efficiency through experiments and analyses on an actual 
trajectory dataset.

1 Introduction

In the current digital era, vehicular network technology is 
advancing at an unprecedented pace. The scope of its application 
continues to expand, which has a profound impact on society and 
people’s lives. Vehicular networks represent a specific application 
of IoT technology in the field of transportation, enabling the 
intelligence and informatization of the transportation system. This 
is achieved through the exchange of information between vehicles 
and vehicles, vehicles and infrastructure, vehicles and people, 
and vehicles and networks [1]. Location information in vehicular 
networks serves as a fundamental basis for the realization of many 
applications. In terms of intelligent traffic management, the traffic 
department relies on the real-time uploaded location data of vehicles 
to accurately monitor the real-time distribution of traffic flow. 
Traffic-congested road sections are found in real time, and signal 
timing is optimized by an intelligent traffic signal control system, 
thus effectively easing traffic congestion and improving road traffic 
efficiency [2–4]. For example, during the morning and evening 
rush hours, the system can dynamically adjust the length of signal 
lights according to changes in traffic flow. This ensures that vehicles 
can pass through intersections in a fast and orderly manner. For 
travelers, location-based navigation services use vehicle location 
information, combined with real-time road conditions, to plan the 
optimal travel route for users. It avoids congested roads and saves 
travel time. In addition, location information in vehicular networks 
also plays an important role in logistics and distribution, shared 
mobility, and other fields, facilitating efficient resource scheduling 
and accurate service provision [5, 6].

However, with the extensive collection and use of location 
information in vehicular networks, the risk of vehicle location 
privacy leakage has become increasingly prominent. Vehicle 
location information contains a large amount of sensitive data 
closely related to the vehicle owner’s personal details, such as daily 
travel patterns, home address, and workplace. Once this information 
is obtained by lawless elements, it may trigger a series of severe 
consequences. Malicious attackers can track the location of the 
vehicle to accurately locate the vehicle owner and commit crimes 
such as theft and robbery, which directly threaten the personal and 
property safety of the vehicle owner [7, 8]. For example, by analyzing 
the location of a vehicle that remains stationary for extended periods 
at night, an attacker may infer the owner’s home address and 
subsequently determine n opportune time to commit a burglary. 
At the same time, the leakage of location information may also 
lead to unwarranted intrusion into the personal life of the vehicle 

owner, such as receiving a large number of targeted harassment 
advertisements and sales calls. The quality of life of the vehicle 
owner can be severely affected. In some extreme cases, the leakage 
of location information may even be exploited for more complex 
criminal activities, such as kidnapping and extortion, thus posing 
a serious threat to public security [9].

Numerous privacy protection techniques have been developed 
to address the problem of location privacy leakage in vehicular 
networks. Among these, localized differential privacy technology 
has attracted significant attention in the field of vehicular network 
privacy protection due to its unique advantages. The core feature of 
the localized differential privacy technique is its ability to protect 
location data at the point of generation, i.e., locally within the 
vehicle, without the need to rely on a trusted third party [10]. 
This characteristic makes localized differential privacy techniques 
well-suited to the distributed, open, and frequently changing node 
dynamics of a network environment such as the vehicle network. In 
vehicular networks, the large number of vehicles and the constantly 
changing driving status make it difficult to guarantee the existence 
of a completely trusted third party that can centrally process and 
protect the location data of all the vehicles. Localized differential 
privacy techniques protect vehicle location privacy to a certain 
extent by adding well-designed random noise, which makes it 
impossible for an attacker to infer the true location information of a 
vehicle accurately. Even if the data are accessed during transmission 
or by an untrustworthy data collector, the vehicle’s location privacy 
can be protected to a certain extent [11].

Although localized differential privacy techniques have 
significant advantages in location privacy protection in vehicular 
networks. The dynamic nature of vehicle location change in 
vehicular networks raises new challenges. When a vehicle is in 
motion, its location is influenced by a variety of factors, such as road 
conditions, traffic regulations, and travel purposes, resulting in a 
complex and dynamically changing pattern. Traditional localized 
differential privacy methods often use fixed privacy-protection 
strategies, which cannot be flexibly adjusted according to the actual 
situation of vehicle location changes. For example, when the vehicle 
is in a busy urban traffic section, the surrounding vehicles are 
dense, and the location information is more likely to be correlated 
with analysis and inference. In such cases, fixed-strength privacy 
protection may be insufficient to address the increased risk of 
privacy leakage. When a vehicle is traveling on an empty highway, 
the risk of privacy leakage is relatively low, and if high-strength 
privacy protection measures are still used, the location data will be 
excessively perturbed. This will lead to a significant reduction in data 
usability and affect the normal operation of various applications that 
rely on location information in vehicular networks [12].

When a vehicle is in motion, spatial and temporal data 
need to be shared with the location-based application servers to 
maintain access to the services they provide. Users participating 
in tasks on the mobile crowdsourcing platform must also share 
location data to complete the collective intelligence-sensing tasks. 
In scenarios involving location information sharing, servers or 
service platforms maintain extensive records of users’ historical 
movement trajectories. Once an attacker obtains these records and 
analyzes the spatial and temporal correlation of the user’s mobile 
trajectory through modeling, it is possible to infer the user’s next 
mobile behavior, which may lead to the leakage of the user’s 
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real location and related personal privacy. Therefore, the spatio-
temporal correlation in the process of dynamic location change 
should be further considered when protecting vehicle location 
privacy. It is necessary not only to protect the real location 
information of the vehicle in real-time but also to ensure that the 
service provider can obtain aggregated analysis results with strong 
usability. Some of the existing dynamic location privacy protection 
methods have paid attention to the spatio-temporal correlation 
of vehicle location changes. However, there are still problems, 
such as high algorithmic complexity and poor usability of location 
data after privacy processing. To address the above problems, this 
study proposes a localized differential privacy location protection 
method based on the hidden Markov model (HMM). The main 
contributions of this paper are as follows. 

1. This paper proposes a localization differential privacy location-
protection method based on the HMM in vehicle networks. 
This method introduces the HMM into the domain of 
vehicle location privacy-protection, leveraging its ability to 
accurately predict the continuous changes in vehicle locations. 
This model can construct a continuous privacy-protection 
algorithm for location data, effectively addressing the temporal 
continuity characteristics of vehicle location data. It provides a 
more scientific and reasonable basis for subsequent privacy-
protection operations. Additionally, when combined with 
the designed two-stage local differential privacy-perturbation 
algorithm, this model can achieve more precise and dynamic 
local differential privacy protection for vehicle locations. 
This enhances the security and privacy of location data in 
vehicle networks.

2. This method combines the spatial correlation of location 
distribution to construct the privacy-protection security area, 
which effectively restricts the scope of localized differential 
privacy perturbation. It significantly reduces the error caused 
by the privacy-protection operation. The method guarantees 
privacy while preserving data usability to the greatest extent. 
The method in this paper designs a two-stage localized 
differential privacy-perturbation algorithm, which achieves 
dynamic localized differential privacy protection of vehicle 
location through the collaborative work between the client 
and server. It meets the needs of real-time changes in vehicle 
location data in practical applications.

3. The method in this paper is thoroughly verified to demonstrate 
strong privacy-protection strength, high data availability, and 
high processing efficiency through experiments and analyses 
on the actual trajectory dataset. Therefore, the method 
proposed in this paper demonstrates both feasibility and 
effectiveness.

The remainder of this paper is organized as follows: Section 2 
presents the related work. Section 3 contains the related definitions. 
Section 4 presents the system architecture. Section 5 presents the 
design process of the method proposed in this paper. Section 6 
contains the theoretical analysis of the algorithm. Section 7 contains 
the experimental analysis. Section 8 provides the summary of 
this study. 

2 Related works

Vehicle location information constitutes the basis for the normal 
operation of vehicular networks. The vehicle track is essentially a 
spatial and temporal sequence formed by the location over a period 
of time, which can effectively reflect the behavioral patterns and 
driving preferences of vehicle users. In the process of providing users 
with high-quality location services, location service providers may 
cause users’ sensitive information to be leaked. Therefore, at the 
present stage, many experts, at home and abroad, have carried out 
extensive research on the privacy protection of vehicle trajectory.

Li et al. [13] proposed an energy-efficient location privacy-
protection strategy. This strategy integrates closely related users 
into an intimate fog group. Users send their location-based service 
requests to this fog group, thereby avoiding direct interaction 
between users and service providers and, thus, successfully masking 
the users’ precise location information. Ying et al. [14] proposed 
an improved E⁃SLP scheme that simultaneously protects the user’s 
behavioral information and ensures the quality of the service they 
receive. However, this approach overly relies on trusted friends, 
which leads to some limitations in its application scope. Qian 
et al. [15] proposed a method that reduces the frequency of user 
requests to the server using caching technology when the user 
initiates a service request. This method reduces the possibility of 
privacy information leakage, but the time complexity of this method 
is high. Hakeem et al. [16] proposed a certificate-signing scheme 
using pairing technology. The scheme requires authentication of 
message certificates and signatures during vehicle interactions to 
ensure message integrity and user identity authenticity, but its space 
complexity is high. Azad and others [17] proposed a scheme that 
uses a crowdsourcing server to assign user requests to multiple 
“workers,” who carry out the message forwarding operation on 
behalf of the user, and designed a cooperative crowdsourcing system 
to protect the privacy of vehicle location. The system ensures the 
reliability of the “workers” to collect the messages, but the time 
efficiency is low. Ren et al. [18] designed a vehicle location privacy-
preserving framework called EGeoIndis. The framework guarantees 
the indistinguishability of geolocation information by abstracting 
maps into bitmaps. Moreover, it applies a linear programming 
approach to minimize quality loss, and at the same time, it 
guarantees the indistinguishability of geolocation information. Yang 
et al. [19] used a differential privacy-based group sensing technique 
to optimize the process of distributing data from the vehicle 
network. They used the distribution density of in-vehicle units as a 
measure to add noise to the user’s true location, thereby generating 
an interfering location and achieving the goal of protecting vehicle 
location privacy. Takagi et al. [20] proposed a graph exponential 
mechanism that ensures the indistinguishability of geographic 
locations. They evaluated the effectiveness of privacy preservation 
and the loss of data utility of the location-based services. Compared 
to the traditional planar Laplace mechanism, the mechanism 
demonstrates superior data utility while maintaining the same level 
of privacy protection. Mehta et al. [21] studied the improved L-
diversity trajectory data publishing mechanism. They designed a 
trajectory privacy protection scheme based on L-diversity, but this 
scheme is less efficient in computation time and lacks usability. 
Qiu et al. [22] focused on the trajectory-generating model. The 
method of generating and publishing false trajectories based on 
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the original trajectory is used to protect trajectory data privacy, 
but this scheme overlooks sensitive semantic locations, which can 
easily lead to the leakage of sensitive location information. Arif et al. 
[23] studied the privacy protection problem in vehicle trajectory 
data publishing mechanisms, using differential privacy to mitigate 
vulnerabilities of connected vehicle data to denial-of-service attacks, 
central system failures, and privacy leakage. Shang et al. [24] 
proposed a blockchain-based data-sharing scheme for privacy-
preserving authentication in connected vehicles. This scheme 
performs authenticated communication between vehicle nodes and 
roadside units, which is performed using authentication and access 
control schemes. Cheng et al. [25] proposed a personalized optimal 
trajectory data distribution algorithm based on differential privacy 
theory, which allocates the privacy budget according to the user’s 
actual privacy needs, but this scheme has a high communication 
overhead. Li et al. [26] ensure that any sub-trajectory of length W in 
the published trajectory meets the differential privacy requirements 
by generating false trajectories. This, in turn, avoids the leakage 
of sensitive information of individual users due to the publication 
of vehicle trajectory data. Al-Hussaeni et al. [27] proposed a 
SafePath trajectory data publishing algorithm for transportation 
system scenarios by constructing a prefix tree to achieve privacy 
protection of personalized trajectory data. However, the prefix tree 
construction of this scheme is more complicated, and the algorithm 
takes a longer time. Ding et al. [28] proposed a streaming trajectory 
data-publishing mechanism. They also provided three different 
counting query functions that satisfy differential privacy with a wide 
range of applicability. 

3 Relevant definitions

3.1 Localized differential privacy

Definition 1: (ε, local differential privacy; ϵ, LDP) [29]
A randomization algorithm F satisfies ε-local differential 

privacy, if and only if, for any input x,x′, and any possible output 
y, it satisfies Equation 1.

Pr[F(x) = y]
Pr[F(x′) = y]

≤ eε. (1)

From Definition 1, it can be observed that localized differential 
privacy places a constraint on the similarity of the outputs of any two 
different input values. This restriction makes it very difficult for an 
attacker with arbitrary background knowledge to infer the original 
data from the outputs. As a result, the user’s privacy is highly secured. 
Here, ε is the privacy budget, and this value specifically indicates 
the strength of privacy protection. The smaller the value of ε, the 
stronger the privacy protection. The larger the value of ε, the weaker 
the privacy protection. 

Definition 2: Serial combinatoriality [30]. Suppose that there exist 
b different randomized algorithms F1,F2, · · ·,Fb, all acting on the 
same dataset D, i.e., Fi(D). For any of these randomized algorithms, 
Fi satisfies εi − LDP; then, the serial combination of {F1,F2, · · ·,Fb}
satisfies ∑m

i=1εi − LDP. The privacy budget ε = εi · b. So, when a 
certain stochastic algorithm acts on the same dataset several times, 

the privacy budget increases exponentially. The corresponding level 
of privacy protection decreases exponentially. 

Definition 3: Parallel combinatoriality [31]. Suppose that there 
exist b different randomized algorithms F1,F2, · · ·,Fb. There exists 
a dataset D, and it is divided into d disjoint sets D1,D2, ...,Dd. 
Each randomized algorithm acts on one dataset, i.e., Fi(Di), and 
satisfies εi − LDP. Then, the parallel combination of {F1,F2, · · ·,Fb}
satisfies max(εi ) − LDP. When F1 = F2 = …Fd, ε = εi; i.e., when a 
randomized algorithm acts on independent non-intersecting sets of 
data, the level of privacy protection remains constant. 

3.2 Perturbation mechanism

Definition 4: Generalized random response [32]. A randomized 
response is applied to a candidate set D of a variable, such that the 
variable retains its true value with probability P and is perturbed 
with probability q to another value within the candidate set. The 
result of this perturbation is R under the perturbation process.

Pr[R(x) = y] =
{{{
{{{
{

eε

eε + |D| − 1
i f y = x

1
eε + |D| − 1

i f y ≠ x
. (2)

3.3 Hidden Markov model

Definition 5: An HMM [33], as a type of Markov chain, is a 
dynamic Bayesian net with the simplest structure and a classical 
directed graph model. The variables in an HMM are divided into 
two groups. One group of variables is the set of state variables 
{J1, J2, ..., Jn}, where Ji ∈ J represents the state of the system at the 
ith moment. It is assumed that the state variables are hidden 
and not directly observable, so the state variables are also called 
hidden variables. The second set of variables is the set of observed 
variables {Q1,Q2, ...,Qn}, where Qi ∈ Q denotes the value observed 
at the ith moment. The observed variables can be either discrete 
or continuous. In an HMM, the system tends to transfer between 
multiple states, indicating that the range of values of the state 
variables is a discrete set containing multiple possible values. The 
basic model is shown in Figure 1.

The arrows plotted in Figure 1 are used to represent the 
dependencies between the variables. At any given moment T, the 
values of the observed variables depend only on the state variables; 
i.e., the value of the observed variable OT is determined by the state 
variable ST. It has no correlation with the other state variables or 
with the values of the observed variables. Moreover, the state ST at 
moment T depends only on the state ST−1 at moment T− 1, and it 
is not correlated with any of the earlier T− 2 and more historical 
states. In summary, the state of the system at the next moment 
is determined only by the state at the current moment. It has no 
dependency on any of the past states.

The three parameters defined by the HMM are as follows: 

Definition 6: State transfer probability. The probability that the 
model transitions between states is usually represented by the state 
transfer matrix H = [hij]N×N. Here, hij = P(ST+1 =W|ST = Z) denotes 

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2025.1624955
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Li and Zhang 10.3389/fphy.2025.1624955

FIGURE 1
Hidden Markov model.

the probability that at moment T, if the model state is Z, then the 
model’s state is W at the next moment. 

Definition 7: Output observation probabilities. The probability 
that the model obtains each observation based on the current 
state is usually expressed as a matrix U = [uij]N×N. Here, uij =
P(OT = a|ST = b) denotes the probability that observation a will be 
obtained if the model state is b at the moment T. 

Definition 8: Initial state probability. The probability of occurrence 
of each state of the model at the initial moment is denoted as PT =
(p1,p2, ...,pN). 

3.4 Privacy-protecting security area

Definition 9: For a given time T, the set of location points is defined 
as those whose cumulative prior probabilities exceed the threshold 
θ. These location points constitute the privacy-protection safe zone 
at the current time T. This safe zone is denoted as S.

S =min{L(i,T)|∑L(i,T)
P−i,T ≥ 1− θ}.

Here, L(i,T) denotes the location point at time T, and P−i,T
represents the prior probability. The threshold θ is determined based 
on the characteristics of the prior probability distribution. By setting 
θ [34], the location points with higher probability at the current 
moment can be filtered out. These points form the secure region. 
When θ is small, the sum of the prior probabilities of a larger 
number of location points must exceed this threshold to constitute 
a secure region, resulting in a relatively larger secure region. 
An excessively large safe region expands the scope of differential 
privacy perturbations in localization, introducing more errors and 
reducing data usability. Conversely, a larger θ value shrinks the safe 
region, limiting the scope of differential privacy perturbations and 
improving data usability. However, this may weaken the privacy-
protection strength as the vehicle’s actual location becomes relatively 
easier to infer. Therefore, the setting of θ serves as a critical parameter 
in balancing the privacy-protection strength and data usability. By 
reasonably configuring θ based on the actual number of vehicles and 
vehicle trajectories, it is possible to maximize data usability while 
ensuring a certain level of privacy protection. 

4 System architecture

The system architecture of the methodology in this paper mainly 
consists of two types of entities, client side and server side, and the 
function of each entity is described as follows. 

4.1 Client

The client mainly contains vehicles. In the HMM-based 
location privacy protection algorithm, the client is primarily 
responsible for location information setting and a priori probability 
calculation, secure region determination, localized differential 
privacy perturbation, and a posteriori probability updating. 
Specifically, it includes setting the vehicle location information and 
state transfer matrix, calculating the a priori probability distribution 
at the current moment, determining the privacy-protecting security 
area, and judging whether the vehicle location is within the security 
area. The client receives the server-side random projection matrix 
for the first perturbation, returns the perturbation result, and 
calculates the updated a posteriori probability based on the user’s 
perturbation location and grid division. 

4.2 Server

The server side mainly includes the location service provider. 
On the server side, the primary tasks in the HMM-based location 
privacy protection algorithm include area division and parameter 
setting, parameter calculation and random projection matrix 
generation, initialization and perturbation result aggregation, and 
receiving data and performing a second perturbation. Specifically, it 
includes dividing and numbering the vehicle distribution area into 
grids, setting relevant parameters, calculating and generating the 
random projection matrix, and initializing the perturbation result 
statistics vector. The server receives the first perturbation result from 
the client and performs the second perturbation to obtain the final 
perturbation position. At the same time, it adds the result to the 
statistics vector and also indirectly supports the computation and 
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FIGURE 2
System architecture.

updating of the a posteriori probability by receiving information 
from the client.

The system architecture of the method proposed in this 
paper is shown in Figure 2, and the specific processes are as
follows. 

1. First, the real-time generated position data of the vehicle are 
modeled and analyzed using the HMM.

2. Subsequently, the vehicle makes use of the random response 
mechanism based on the localized differential privacy (LDP) 
model to perturb its real-time location data. Thus, the goal of 
localized differential privacy protection of the vehicle’s location 
data is achieved.

3. Finally, the perturbed real-time location data are transmitted 
from the vehicle to the location service provider, and the 
vehicle sends a query request at the same time. The location 
service provider further optimizes the location-based service 
quality based on the results of the query.

5 Methodological design

The method in this paper consists of two main parts, 
which are mainly divided into two parts: the location privacy-
preserving algorithm based on HMM and the localized differential 
privacy perturbation algorithm. The method design flow 
is shown in Figure 3.

5.1 HMM-based location 
privacy-preserving algorithm

Algorithm 1 takes into account the temporal correlation of the 
client’s vehicle position over time. It then constructs a time series 
of position information based on the HMM. The actual location 
information of the client’s vehicle is only held by the client, which 
is in a hidden state that cannot be directly observed by the outside 
world. The time-series formed by the real location of the vehicle in 
the process of continuous change constitutes the Markov model in 
this hidden state. The algorithm process is as follows.

1. First, the server-side grid is uniformly divided in the vehicle 
distribution area. After the division, the area grid is numbered 
(1,2,…,c). The server-side parameters are set, where c is the 
number of regional grid Gc divisions, a is the number of 
vehicles, the confidence parameter η takes the value of 0.3, and 
the privacy budget is ε

4
.

2. The server-side calculates the parameter γ = √
log 2c

η

( ε
4
)2a

. The 

parameter d of the random projection matrix is calculated 

as =
log (c+1) log 2

β

γ2  . Finally, the random projection matrix Ω ∈

{ −1√d
, 1
√d
}

d×c
 is generated.

3. At moment T, the client-side sets the location information 
L(i,T) of vehicle i, and the state transfer matrix is set to Wi. 
The posterior probability distribution P+i,T−1 of the vehicle at 
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FIGURE 3
Methodology design process.

the previous moment T− 1 is used. The server-side initializes 
the disturbance result statistics vector E for the current
moment.

4. The client-side first calculates the prior probability distribution 
P−i,T = P+i,T−1Wi for vehicle i at the current moment T.

5. The client calculates the security area S. For a given moment 
T, a threshold θ is set. The set of location points that 
satisfy the sum of the prior probabilities of the locations, 
which exceeds the set threshold, constitutes the privacy-
protecting security area at the current moment T. The client 
calculates the privacy-protecting security area. The formula is 
S = min {L(i,T)|∑L(i,T)P

−
i,T ≥ 1− θ}.

6. The client further determines whether the vehicle 
location L(i,T) is in the security area. If not, it needs 
to be added to the security area.

Input: Number of area grid divisions Gc, a the 

number of vehicles (a), the confidence parameter η

= 0.3, client i's location L(i,T) at time T, privacy 

budget ε

4
, threshold θ, state transfer matrix Wi, 

and the posterior probability P+
i,T−1 at time T−1

Output: Random projection matrix Ω

γ = √
log 2c

η

( ε
4
)2a

, d =
log (c+1)log 2

β

γ2

Ω ∈ { −1√d ,
1

√d
}
d×c
← Generate the random projection 

matrix Ω

for each location update moment T do
  L(i,T)← The client side sets the location 

information of vehicle i

  Wi← The state transfer matrix
  P+

i,T−1← The posterior probability distribution of 

the vehicle at the previous moment T−1

  The server-side initializes the disturbance 

outcome statistics vector E at the current moment.
  S = min {L(i,T)|∑L(i,T)P

−
i,T ≥ 1−θ} ← Calculation of the 

security area
  if L(i,T) ∉ S then
    Add L(i,T) to the security area
  end if

end for 

Algorithm 1. HMM-based location privacy preservation algorithm.

5.2 Localized differential privacy 
perturbation algorithm

Algorithm 2 implements a localized differential privacy 
perturbation of the vehicle’s true position for each moment in time 
through the designed two random response processes. The client 
sends the perturbed location to the server side. 

1. The client receives the randomized projection matrix Ω, which 
is sent by the server side, and performs the first perturbation 
to the vehicle location L(i,T).

2. The client obeys the Bernoulli distribution and returns the 
true location of the vehicle Li

′ according to the probabilistic 
perturbation of e

ε
4

e
ε
4 +|S |−l

. According to the probabilistic 

perturbation of 1
e

ε
4 +|S|−l

, the client returns the other locations 
in the security area S, except the vehicle’s true location Li

′.
3. Finally, the client returns the vehicle perturbation location. It 

adds the perturbation result to the statistic vector. The client 
finally sends the perturbation result E′ to the server.

4. After receiving the first perturbation result E′ at the server 
side, the second perturbation is carried out. The perturbation 
location of the vehicle is Li

∗, Li
∗ = r ε

4
· d ·Ω · e

ε
2

e
ε
2 +1
· Li
′, where 

r ε
4
= e

ε
2 −1

e
ε
2 +1

. Finally, the perturbation result is added to E∗, and 
the client sends the perturbation result E∗ to the server side.
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Input: Client’s real location Li, privacy budget 
ε

4
, and privacy-protected security area S

Output: Client perturbation location result
 The client receives the random projection matrix

  Ω sent by the server
 Client b∼Bern( e

ε
4

e
ε
4 +|S |−l

)

 if b = 1

    E′← Li = Li′

 else

   b∼Bern( 1

e
ε
4 +|S|−l

)

   return the location of the vehicle other than

   the true location of the vehicle Li
′

 end if

 return E′→ Server side
 r ε

4
= e

ε
2 −1

e
ε
2 +1

  Li∗ = r ε

4
·d ·Ω · e

ε
2

e
ε
2 +1
·Li′

 Return E∗← Li
∗

 Send the perturbation result E∗ to the

  server side
 Update the posterior probability

  P+
i,T[c] = Pr(L(i,T) = Gc ∣ Li

∗) =
Pr(ET∣L(i,T)=Gc)p

−
T
[c]

∑iPr(ET∣L(i,T)=Gc)p
−
T
[i]

 end 

Algorithm 2. Localized differential privacy perturbation algorithm.

5. Knowing the vehicle perturbation location Li
∗ and the 

vehicle location L(i,T), the updated posterior probability p+i,T
is computed according to the partitioned grid Gc. P+i,T[c] =

Pr(L(i,T) = Gc ∣ Li
∗) =

Pr(ET∣L(i,T)=Gc)p
−
T[c]

∑iPr(ET∣L(i,T)=Gc)p−T[i]
.

6 Theoretical analysis of algorithms

6.1 Privacy and security

The method proposed in this paper is based on the HMM and 
the localized differential privacy technique. It provides dynamic 
localized differential privacy protection for vehicle locations by 
constructing privacy-protecting security areas and designing a two-
stage localized differential privacy perturbation algorithm. The 
setting of the security area restricts the area of localized differential 
privacy perturbation. It only processes the set of location points 
that satisfy the sum of location a priori probabilities exceeding 
a set threshold, which reduces the risk of privacy leakage. The 
client performs the first perturbation according to a Bernoulli 
distribution, and the server-side performs the second perturbation. 
The two perturbations cooperate so that the perturbed location 
information has a high degree of randomness and unpredictability, 
which effectively protects the vehicle’s location privacy.

Second, it is assumed that Li and Lj are any two locations 
within the privacy-preserving security area S at moment T, 
(li, lj ∈ S = {L1,L2, ...,Ln}). The location-randomized response 
algorithm proposed in this study achieves a randomized 
response with a privacy budget of ε

4
 using Algorithm 1. 

Therefore, the final perturbed output MGRR is satisfied:

Pr[MGRR(Li)=E]
Pr[MGRR(Lj)=E]

≤
e

ε
4

e
ε
4 +|S|−l

1

e
ε
4 +|S|−l

= e
ε
4 ≤ eε. So, it can be deduced that 

Pr[MGRR(Li,ε)=E]
Pr[MGRR(Lj,ε)=E]

≤max{1,eε}. Thus, the algorithm proposed in 
this paper can provide ε-localized differential privacy for 
vehicle location. 

6.2 Data availability

The method proposed in this paper establishes a privacy-
preserving security area, which preserves the spatial characteristics 
of the location information as much as possible. Although limiting 
the perturbed area, the method proposed in this paper establishes 
a privacy-preserving security area by incorporating the spatial 
correlation of the location distribution. The set of location points 
in the security area has a high prior probability. This allows 
the perturbed location information to reflect the underlying 
distribution of vehicle locations a certain extent, thereby ensuring 
data usability. In Algorithm 2, the updated a posteriori probability 
is calculated based on the vehicle’s perturbed location and the 
divided grid. This process enables the server-side to infer the 
vehicle’s location to a certain extent based on the perturbed location 
information, which provides valuable data support for subsequent 
applications such as location service providers and improves data 
availability. 

6.3 Time complexity

The proposed localized differential privacy location protection 
method in vehicular networks based on the HMM is jointly 
implemented using Algorithm 1 and Algorithm 2. In this paper, as 
shown in Algorithm 1, the computation of the prior probability 
for the client vehicle’s location requires O(|τ|) time. It takes 
O(n|τ| log (S)) time to compute the privacy-preserving security 
region of the vehicle. Therefore, the time complexity of Algorithm 1 
is O(|τ|) +O(n|τ| log (S)). In Algorithm 2, the first stage of localized 
differential privacy perturbation takes O(1) time. The second 
stage of localized differential privacy perturbation takes O(n|τ|)
time. In addition, computing the posterior probability of the 
vehicle location distribution takes O(|τ|) time. Therefore, the time 
complexity of Algorithm 2 is O(1) +O(n|τ|) +O(|τ|). Therefore, the 
overall time complexity of the method proposed in this paper is 
O(|τ| + |τ| log (S) + 1+ n|τ| + |τ|) = O(|τ| log (S) + n|τ|). 

6.4 Practicality

The method proposed in this paper is applicable to various 
scenarios requiring vehicle location privacy protection, such 
as intelligent transportation systems and location-based service 
applications. In these scenarios, vehicle location information often 
has important commercial value and social significance, but it also 
faces the risk of privacy leakage. The method proposed in this 
study can provide location data with a certain level of usability for 
related applications, demonstrating high practicaity while ensuring 
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the privacy of vehicle locations. On the other hand, the method 
proposed in this paper is based on the HMM and localized 
differential privacy techniques, both of which have good scalability. 
The HMM can be easily extended to more complex location change 
scenarios, and the localized differential privacy technique can be 
adapted to different privacy requirements. 

7 Experimental analysis

7.1 Experimental setup

The GeoLife dataset [35] is selected for the experimental data 
in this paper. This dataset collects trajectory data generated by 182 
users over a period of 3 years. A large number of tuples containing 
timestamps and latitude/longitude information of the user’s location 
are used to represent the user’s mobile trajectory. The experimental 
environment is based on the Windows 10 Professional operating 
system, developed using PyCharm and Jupyter Notebook based 
on Python 3.8. The hardware environment includes an Intel(R) 
Core (TM) i5-10500 CPU, NVIDIA GeForce RTX 2060 GPU, 
and 16 GB RAM.

The default value of the privacy budget is set to 0.3, and 
the number of track entries is 18,320. The number of area grid 
Gc divisions is 26,810; the number of vehicles is a = 36,210; 
and the confidence parameter η takes the value of 0.3. The 
experimental parameters are shown in Table 1. The algorithms 
in [36]  and [37] were selected for experimental comparison,
with evaluation primarily based on three aspects: privacy-protection 
strength, data availability, and processing efficiency, to verify the 
effectiveness of the method proposed in this paper. 

7.2 Measurement indicators

7.2.1 Privacy disclosure risk
Privacy protection intensity is usually measured using the 

privacy disclosure risk (PDR) [38]. It indicates the probability of 
location privacy disclosure under certain circumstances. We assume 
that the attacker can obtain all information except the actual query 
vehicle. Gi indicates whether an attacker can infer the vehicle’s actual 
location. If the attacker can infer the real vehicle location, then Gi = 
true; otherwise, Gi = false. The statistic of the query result is denoted 
as Ki, and the number of sample groups is N. The number of the 
actual query vehicles in each group of samples is n. PDR is calculated 
using the following Equation 3.

PDR =
∑N

i=1

∑n
j=1Ri

n

N
,  Ki = {

0, Gi = false
1, Gi = trun (3)

The privacy disclosure risk is related to the degree of background 
knowledge possessed by the privacy protection algorithm and the 
attacker. The smaller the value of the privacy disclosure risk, the 
lower the probability of privacy leakage and the higher the privacy-
protection strength. The higher the value of the privacy disclosure 

TABLE 1  Experimental parameters.

Parameter Initial value

ε 0.3

Number of tracks 18,320

Gc 26,810

a 36,210

η 0.3

risk, the higher the probability of privacy leakage and the weaker 
the privacy-protection strength. 

7.2.2 Average maximum absolute error
In this section, the average maximum absolute error [39] is used 

to evaluate the deviation of the dynamic location data perturbation 
results of the client vehicles, which is defined as shown in the 
following Equation 4. The smaller average maximum absolute error 
indicates the difference between the statistical values of the vehicles 
located in the grid area and the real statistical values of the vehicles 
in the grid area after perturbation. The smaller the difference, the 
better the utility of the perturbation method and the higher the data 
availability.

MMAE = 1
T
∑

t
max

φ
|X̂T,V −XT,V|. (4)

Here, φ denotes the whole two-dimensional region. XT,V denotes 
the statistical value of the vehicle whose real location is at the grid 
region V at time T. X̂T,V denotes the statistical value of the vehicle, 
which is located in the grid region V after the perturbation at time T.

7.2.3 Algorithm runtime
This section measures the processing efficiency of an algorithm 

by its running time, which is also an important criterion for assessing 
the algorithm’s performance. 

7.3 Analysis of the experimental results

7.3.1 Privacy-protection strength
In this experiment, the Bayesian mechanism with a typical 

background knowledge attack model [40] is chosen, the privacy 
disclosure of the three algorithms is compared under this attack 
model, and the comparison results are shown in Figure 4.

From the experimental results, it can be observed that the 
cumulative length of the client increases. On the whole, the privacy 
disclosure risk of the algorithm used in this paper is the smallest, 
which is approximately 24.22% on average. So, the probability 
of privacy disclosure of the algorithm used in this paper is the 
smallest, the privacy-protection strength is the largest, and the 
security is the highest. Through experimental comparison, it can 
be observed that when the cumulative length of the client is within 
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FIGURE 4
Privacy disclosure.

48 h, the privacy disclosure of this paper’s algorithm and that of the 
algorithm in [36] are similar. Therefore, the probability of privacy 
disclosure is similar for both methods, and both demonstrate strong 
privacy protection. However, after 48 h, because the algorithm in 
[36] ignores the processing of spatio-temporal correlation, as time 
progresses, the more background knowledge the attacker obtains, 
the greater the probability of privacy disclosure of the algorithm 
in [36]. The increase in the risk of disclosure is larger, and the 
privacy strength is weakened. For the algorithm in [37], the privacy 
protection effect is poorer because it ignores the consideration of the 
security area. Thus, as the cumulative length increases, the growth 
trend of privacy disclosure risk becomes more pronounced, with the 
maximum disclosure risk reaching 46.8%, indicating a significant 
increase in the likelihood of privacy leakage. 

7.3.2 Data availability
Figure 5 presents the maximum absolute error values of the 

algorithms at each position update moment. It can be observed 
that the maximum absolute error value of the proposed method in 
this study is lower than that of the algorithms in [36, 37] in the 
overall trend after perturbing the client vehicle location. In addition, 
the fluctuation of the maximum absolute error determined in this 
study is small. At the same time, the average maximum absolute 
error of this paper’s method is less affected by the cumulative 
duration. The method proposed in this paper can better maintain 
the statistical accuracy of the perturbed position. Comparing with 
the algorithms in [36, 37], as the cumulative length decreases, their 
average maximum absolute errors keep increasing, and the statistical 
accuracy of the perturbed position decreases sharply. Therefore, the 
deviation of the perturbation results of the method proposed in this 
paper is smaller than that of the algorithms in [36, 37]. The statistical 
accuracy of the location after perturbation is higher, and the data 
availability is higher.

7.3.3 Processing efficiency
As observed from the experimental results in Figure 6, the 

running time of all three algorithms increases with an increase 
in the privacy budget. However, the overall running time of this 
paper’s algorithm is relatively shorter, with an average running time 
of approximately 39.17 s, which has a higher processing efficiency. 
The average running time of the algorithm in [36] is approximately 
50 s, and the processing efficiency of the algorithm used in this 

FIGURE 5
Maximum absolute error.

FIGURE 6
Running time.

paper is approximately 27.6% higher. The average running time of 
the algorithm in [37] is approximately 55.8 s, and the processing 
efficiency of the algorithm used in this paper is approximately 
42.46%, so the processing efficiency of the method proposed in this 
paper is higher.

8 Conclusion

In this paper, a localized differential privacy location protection 
method based on the HMM in vehicular networks is proposed 
to achieve vehicle location privacy protection. The method 
first uses the HMM to predict continuous changes in vehicle 
location and then combines the spatial correlation of location 
distribution to construct a privacy-protecting security area, which 
restricts the range of localized differential privacy perturbation 
and reduces errors. Meanwhile, a two-stage localized differential 
privacy perturbation algorithm is designed to reach dynamic local 
differential privacy protection of vehicle locations. Finally, the 
feasibility and effectiveness of the method are verified through 
experiments and analysis of actual trajectory datasets. Future 
research can be further promoted from various aspects. At the 
algorithmic level, the algorithm can be optimized to improve 
efficiency, such as by exploring methods to reduce the complexity 
of steps, such as random projection matrix generation, and
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considering parallelization of the algorithm to cope with large-
scale data scenarios. In terms of balancing privacy protection 
and data availability, research can focus on a dynamic privacy 
budget allocation strategy, flexible adjustment based on factors 
such as location sensitivity, exploration of multi-granularity privacy 
protection, and differentiated protection for location information of 
different importance.
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