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In the rapid development of vehicular networks, the exchange of information
between vehicles and between vehicles and the infrastructure is becoming
increasingly frequent. Vehicle location data have become one of the core
types of information. However, location data contain a large amount of user
privacy, and once leaked, they can severely threaten user safety and freedom.
Therefore, there is an urgent need for a method that can balance privacy
protection, data availability, and processing efficiency. In this paper, we propose
a localized differential privacy location protection method based on the hidden
Markov model (HMM) in vehicular networks, which addresses the problem of
vehicle location privacy protection. The method consists of an HMM-based
continuous location privacy protection algorithm and a localized differential
privacy perturbation algorithm. The algorithm introduces the HMM into the
field and utilizes its ability to accurately predict the continuous changes in
vehicle location, thereby providing a scientific basis for privacy protection. At
the same time, it combines the spatial correlation of location distribution to
construct a privacy-preserving security area, which effectively restricts the range
of the localized differential privacy perturbation, reduces the error, and improves
data availability while safeguarding privacy. Second, this method incorporates
a two-stage localized differential privacy perturbation algorithm to achieve
dynamic differential privacy protection of vehicle location, adapting to real-
time changes in vehicle location data through collaboration between the client
and server. Based on the experiments and analysis using an actual trajectory
dataset, the results show that the method provides strong privacy protection,
high data availability, and efficient processing, thereby verifying its feasibility and
effectiveness.

hidden Markov models, vehicles, localized differential privacy, privacy preservation,
location security
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Highlights

The main highlights of this paper are as follows:

1. This paper proposes a localized differential privacy location
protection method based on the hidden Markov model in
vehicular networks.

. The method is thoroughly verified to demonstrate strong
privacy protection, high data availability, and high processing
efficiency through experiments and analyses on an actual
trajectory dataset.

1 Introduction

In the current digital era, vehicular network technology is
advancing at an unprecedented pace. The scope of its application
continues to expand, which has a profound impact on society and
people’s lives. Vehicular networks represent a specific application
of IoT technology in the field of transportation, enabling the
intelligence and informatization of the transportation system. This
is achieved through the exchange of information between vehicles
and vehicles, vehicles and infrastructure, vehicles and people,
and vehicles and networks [1]. Location information in vehicular
networks serves as a fundamental basis for the realization of many
applications. In terms of intelligent traffic management, the traffic
department relies on the real-time uploaded location data of vehicles
to accurately monitor the real-time distribution of traffic flow.
Traffic-congested road sections are found in real time, and signal
timing is optimized by an intelligent traffic signal control system,
thus effectively easing traffic congestion and improving road traffic
efficiency [2-4]. For example, during the morning and evening
rush hours, the system can dynamically adjust the length of signal
lights according to changes in traffic flow. This ensures that vehicles
can pass through intersections in a fast and orderly manner. For
travelers, location-based navigation services use vehicle location
information, combined with real-time road conditions, to plan the
optimal travel route for users. It avoids congested roads and saves
travel time. In addition, location information in vehicular networks
also plays an important role in logistics and distribution, shared
mobility, and other fields, facilitating efficient resource scheduling
and accurate service provision [5, 6].

However, with the extensive collection and use of location
information in vehicular networks, the risk of vehicle location
privacy leakage has become increasingly prominent. Vehicle
location information contains a large amount of sensitive data
closely related to the vehicle owner’s personal details, such as daily
travel patterns, home address, and workplace. Once this information
is obtained by lawless elements, it may trigger a series of severe
consequences. Malicious attackers can track the location of the
vehicle to accurately locate the vehicle owner and commit crimes
such as theft and robbery, which directly threaten the personal and
property safety of the vehicle owner [7, 8]. For example, by analyzing
the location of a vehicle that remains stationary for extended periods
at night, an attacker may infer the owner’s home address and
subsequently determine n opportune time to commit a burglary.
At the same time, the leakage of location information may also
lead to unwarranted intrusion into the personal life of the vehicle
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owner, such as receiving a large number of targeted harassment
advertisements and sales calls. The quality of life of the vehicle
owner can be severely affected. In some extreme cases, the leakage
of location information may even be exploited for more complex
criminal activities, such as kidnapping and extortion, thus posing
a serious threat to public security [9].

Numerous privacy protection techniques have been developed
to address the problem of location privacy leakage in vehicular
networks. Among these, localized differential privacy technology
has attracted significant attention in the field of vehicular network
privacy protection due to its unique advantages. The core feature of
the localized differential privacy technique is its ability to protect
location data at the point of generation, i.e., locally within the
vehicle, without the need to rely on a trusted third party [10].
This characteristic makes localized differential privacy techniques
well-suited to the distributed, open, and frequently changing node
dynamics of a network environment such as the vehicle network. In
vehicular networks, the large number of vehicles and the constantly
changing driving status make it difficult to guarantee the existence
of a completely trusted third party that can centrally process and
protect the location data of all the vehicles. Localized differential
privacy techniques protect vehicle location privacy to a certain
extent by adding well-designed random noise, which makes it
impossible for an attacker to infer the true location information of a
vehicle accurately. Even if the data are accessed during transmission
or by an untrustworthy data collector, the vehicle’s location privacy
can be protected to a certain extent [11].

Although localized differential privacy techniques have
significant advantages in location privacy protection in vehicular
networks. The dynamic nature of vehicle location change in
vehicular networks raises new challenges. When a vehicle is in
motion, its location is influenced by a variety of factors, such as road
conditions, traffic regulations, and travel purposes, resulting in a
complex and dynamically changing pattern. Traditional localized
differential privacy methods often use fixed privacy-protection
strategies, which cannot be flexibly adjusted according to the actual
situation of vehicle location changes. For example, when the vehicle
is in a busy urban traffic section, the surrounding vehicles are
dense, and the location information is more likely to be correlated
with analysis and inference. In such cases, fixed-strength privacy
protection may be insufficient to address the increased risk of
privacy leakage. When a vehicle is traveling on an empty highway,
the risk of privacy leakage is relatively low, and if high-strength
privacy protection measures are still used, the location data will be
excessively perturbed. This will lead to a significant reduction in data
usability and affect the normal operation of various applications that
rely on location information in vehicular networks [12].

When a vehicle is in motion, spatial and temporal data
need to be shared with the location-based application servers to
maintain access to the services they provide. Users participating
in tasks on the mobile crowdsourcing platform must also share
location data to complete the collective intelligence-sensing tasks.
In scenarios involving location information sharing, servers or
service platforms maintain extensive records of users historical
movement trajectories. Once an attacker obtains these records and
analyzes the spatial and temporal correlation of the user’s mobile
trajectory through modeling, it is possible to infer the user’s next
mobile behavior, which may lead to the leakage of the user’s
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real location and related personal privacy. Therefore, the spatio-
temporal correlation in the process of dynamic location change
should be further considered when protecting vehicle location
privacy. It is necessary not only to protect the real location
information of the vehicle in real-time but also to ensure that the
service provider can obtain aggregated analysis results with strong
usability. Some of the existing dynamic location privacy protection
methods have paid attention to the spatio-temporal correlation
of vehicle location changes. However, there are still problems,
such as high algorithmic complexity and poor usability of location
data after privacy processing. To address the above problems, this
study proposes a localized differential privacy location protection
method based on the hidden Markov model (HMM). The main
contributions of this paper are as follows.

1. This paper proposes alocalization differential privacy location-
protection method based on the HMM in vehicle networks.
This method introduces the HMM into the domain of
vehicle location privacy-protection, leveraging its ability to
accurately predict the continuous changes in vehicle locations.
This model can construct a continuous privacy-protection
algorithm for location data, effectively addressing the temporal
continuity characteristics of vehicle location data. It provides a
more scientific and reasonable basis for subsequent privacy-
protection operations. Additionally, when combined with
the designed two-stage local differential privacy-perturbation
algorithm, this model can achieve more precise and dynamic
local differential privacy protection for vehicle locations.
This enhances the security and privacy of location data in
vehicle networks.

2. This method combines the spatial correlation of location
distribution to construct the privacy-protection security area,
which effectively restricts the scope of localized differential
privacy perturbation. It significantly reduces the error caused
by the privacy-protection operation. The method guarantees
privacy while preserving data usability to the greatest extent.
The method in this paper designs a two-stage localized
differential privacy-perturbation algorithm, which achieves
dynamic localized differential privacy protection of vehicle
location through the collaborative work between the client
and server. It meets the needs of real-time changes in vehicle
location data in practical applications.

3. The method in this paper is thoroughly verified to demonstrate
strong privacy-protection strength, high data availability, and
high processing efficiency through experiments and analyses
on the actual trajectory dataset. Therefore, the method
proposed in this paper demonstrates both feasibility and
effectiveness.

The remainder of this paper is organized as follows: Section 2
presents the related work. Section 3 contains the related definitions.
Section 4 presents the system architecture. Section 5 presents the
design process of the method proposed in this paper. Section 6
contains the theoretical analysis of the algorithm. Section 7 contains
the experimental analysis. Section 8 provides the summary of
this study.
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2 Related works

Vehicle location information constitutes the basis for the normal
operation of vehicular networks. The vehicle track is essentially a
spatial and temporal sequence formed by the location over a period
of time, which can effectively reflect the behavioral patterns and
driving preferences of vehicle users. In the process of providing users
with high-quality location services, location service providers may
cause users sensitive information to be leaked. Therefore, at the
present stage, many experts, at home and abroad, have carried out
extensive research on the privacy protection of vehicle trajectory.

Li etal. [13] proposed an energy-efficient location privacy-
protection strategy. This strategy integrates closely related users
into an intimate fog group. Users send their location-based service
requests to this fog group, thereby avoiding direct interaction
between users and service providers and, thus, successfully masking
the users’” precise location information. Ying etal. [14] proposed
an improved E-SLP scheme that simultaneously protects the user’s
behavioral information and ensures the quality of the service they
receive. However, this approach overly relies on trusted friends,
which leads to some limitations in its application scope. Qian
etal. [15] proposed a method that reduces the frequency of user
requests to the server using caching technology when the user
initiates a service request. This method reduces the possibility of
privacy information leakage, but the time complexity of this method
is high. Hakeem et al. [16] proposed a certificate-signing scheme
using pairing technology. The scheme requires authentication of
message certificates and signatures during vehicle interactions to
ensure message integrity and user identity authenticity, but its space
complexity is high. Azad and others [17] proposed a scheme that
uses a crowdsourcing server to assign user requests to multiple
“workers,” who carry out the message forwarding operation on
behalf of the user, and designed a cooperative crowdsourcing system
to protect the privacy of vehicle location. The system ensures the
reliability of the “workers” to collect the messages, but the time
efficiency is low. Ren et al. [18] designed a vehicle location privacy-
preserving framework called EGeolndis. The framework guarantees
the indistinguishability of geolocation information by abstracting
maps into bitmaps. Moreover, it applies a linear programming
approach to minimize quality loss, and at the same time, it
guarantees the indistinguishability of geolocation information. Yang
etal. [19] used a differential privacy-based group sensing technique
to optimize the process of distributing data from the vehicle
network. They used the distribution density of in-vehicle units as a
measure to add noise to the user’s true location, thereby generating
an interfering location and achieving the goal of protecting vehicle
location privacy. Takagi etal. [20] proposed a graph exponential
mechanism that ensures the indistinguishability of geographic
locations. They evaluated the effectiveness of privacy preservation
and the loss of data utility of the location-based services. Compared
to the traditional planar Laplace mechanism, the mechanism
demonstrates superior data utility while maintaining the same level
of privacy protection. Mehta etal. [21] studied the improved L-
diversity trajectory data publishing mechanism. They designed a
trajectory privacy protection scheme based on L-diversity, but this
scheme is less efficient in computation time and lacks usability.
Qiu etal. [22] focused on the trajectory-generating model. The
method of generating and publishing false trajectories based on
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the original trajectory is used to protect trajectory data privacy,
but this scheme overlooks sensitive semantic locations, which can
easily lead to the leakage of sensitive location information. Arif et al.
[23] studied the privacy protection problem in vehicle trajectory
data publishing mechanisms, using differential privacy to mitigate
vulnerabilities of connected vehicle data to denial-of-service attacks,
central system failures, and privacy leakage. Shang etal. [24]
proposed a blockchain-based data-sharing scheme for privacy-
preserving authentication in connected vehicles. This scheme
performs authenticated communication between vehicle nodes and
roadside units, which is performed using authentication and access
control schemes. Cheng et al. [25] proposed a personalized optimal
trajectory data distribution algorithm based on differential privacy
theory, which allocates the privacy budget according to the user’s
actual privacy needs, but this scheme has a high communication
overhead. Li et al. [26] ensure that any sub-trajectory of length W in
the published trajectory meets the differential privacy requirements
by generating false trajectories. This, in turn, avoids the leakage
of sensitive information of individual users due to the publication
of vehicle trajectory data. Al-Hussaeni etal. [27] proposed a
SafePath trajectory data publishing algorithm for transportation
system scenarios by constructing a prefix tree to achieve privacy
protection of personalized trajectory data. However, the prefix tree
construction of this scheme is more complicated, and the algorithm
takes a longer time. Ding et al. [28] proposed a streaming trajectory
data-publishing mechanism. They also provided three different
counting query functions that satisfy differential privacy with a wide
range of applicability.

3 Relevant definitions

3.1 Localized differential privacy

Definition 1: (g, local differential privacy; ¢, LDP) [29]

A randomization algorithm F satisfies e-local differential
privacy, if and only if, for any input x,x’, and any possible output
Y, it satisfies Equation 1.

Pr{F(x) = y]

From Definition 1, it can be observed that localized differential
privacy places a constraint on the similarity of the outputs of any two
different input values. This restriction makes it very difficult for an
attacker with arbitrary background knowledge to infer the original
data from the outputs. As a result, the user’s privacy is highly secured.
Here, ¢ is the privacy budget, and this value specifically indicates
the strength of privacy protection. The smaller the value of ¢, the
stronger the privacy protection. The larger the value of ¢, the weaker
the privacy protection.

Definition 2: Serial combinatoriality [30]. Suppose that there exist
b different randomized algorithms F F,,-- F, all acting on the
same dataset D, i.e., F;(D). For any of these randomized algorithms,
F, satisfies ¢, — LDP; then, the serial combination of {F, F,, -, F}}
satisfies )" &;— LDP. The privacy budget e=¢;-b. So, when a
certain stochastic algorithm acts on the same dataset several times,
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the privacy budget increases exponentially. The corresponding level
of privacy protection decreases exponentially.

Definition 3: Parallel combinatoriality [31]. Suppose that there
exist b different randomized algorithms F, F,,- -, F,. There exists
a dataset D, and it is divided into d disjoint sets D;,D,,...,D,.
Each randomized algorithm acts on one dataset, i.e., F,(D;), and
satisfies &; — LDP. Then, the parallel combination of {F, F,, -, F,}
satisfies max(e;) — LDP. When F, =F, = ...F;, e=¢; i.e, when a
randomized algorithm acts on independent non-intersecting sets of
data, the level of privacy protection remains constant.

3.2 Perturbation mechanism

Definition 4: Generalized random response [32]. A randomized
response is applied to a candidate set D of a variable, such that the
variable retains its true value with probability P and is perturbed
with probability g to another value within the candidate set. The
result of this perturbation is R under the perturbation process.

&

S ify=x
¢4 |D|-1 -

PR =y =1 €T @
Frp-1 rEx

3.3 Hidden Markov model

Definition 5: An HMM [33], as a type of Markov chain, is a
dynamic Bayesian net with the simplest structure and a classical
directed graph model. The variables in an HMM are divided into
two groups. One group of variables is the set of state variables
{J1:]55 -]}, where J; € ] represents the state of the system at the
ith moment. It is assumed that the state variables are hidden
and not directly observable, so the state variables are also called
hidden variables. The second set of variables is the set of observed
variables {Q;,Q,,...,Q,}, where Q; € Q denotes the value observed
at the ith moment. The observed variables can be either discrete
or continuous. In an HMM, the system tends to transfer between
multiple states, indicating that the range of values of the state
variables is a discrete set containing multiple possible values. The
basic model is shown in Figure 1.

The arrows plotted in Figure 1 are used to represent the
dependencies between the variables. At any given moment T, the
values of the observed variables depend only on the state variables;
i.e., the value of the observed variable O is determined by the state
variable Sy. It has no correlation with the other state variables or
with the values of the observed variables. Moreover, the state Sy at
moment T depends only on the state S;_; at moment T -1, and it
is not correlated with any of the earlier T—2 and more historical
states. In summary, the state of the system at the next moment
is determined only by the state at the current moment. It has no
dependency on any of the past states.

The three parameters defined by the HMM are as follows:

Definition 6: State transfer probability. The probability that the
model transitions between states is usually represented by the state
transfer matrix H = [hij]NxN‘ Here, hj; = P(Sr,, = WISt = Z) denotes
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FIGURE 1
Hidden Markov model.

the probability that at moment T, if the model state is Z, then the
model’s state is W at the next moment.

Definition 7: Output observation probabilities. The probability
that the model obtains each observation based on the current
state is usually expressed as a matrix U= [uij]NxN' Here, u;
P(Oy = alSy = b) denotes the probability that observation a will be
obtained if the model state is b at the moment T.

Definition 8: Initial state probability. The probability of occurrence
of each state of the model at the initial moment is denoted as Py =

PPy PN)-

3.4 Privacy-protecting security area

Definition 9: For a given time T, the set of location points is defined
as those whose cumulative prior probabilities exceed the threshold
0. These location points constitute the privacy-protection safe zone
at the current time T. This safe zone is denoted as S.

S = min {L(mlz R 6}.

Here, L r denotes the location point at time T, and P;T
represents the prior probability. The threshold 6 is determined based
on the characteristics of the prior probability distribution. By setting
0 [34], the location points with higher probability at the current
moment can be filtered out. These points form the secure region.
When 6 is small, the sum of the prior probabilities of a larger
number of location points must exceed this threshold to constitute
a secure region, resulting in a relatively larger secure region.
An excessively large safe region expands the scope of differential
privacy perturbations in localization, introducing more errors and
reducing data usability. Conversely, a larger 0 value shrinks the safe
region, limiting the scope of differential privacy perturbations and
improving data usability. However, this may weaken the privacy-
protection strength as the vehicle’s actual location becomes relatively
easier to infer. Therefore, the setting of 8 serves as a critical parameter
in balancing the privacy-protection strength and data usability. By
reasonably configuring 6 based on the actual number of vehicles and
vehicle trajectories, it is possible to maximize data usability while
ensuring a certain level of privacy protection.
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4 System architecture

The system architecture of the methodology in this paper mainly
consists of two types of entities, client side and server side, and the
function of each entity is described as follows.

4.1 Client

The client mainly contains vehicles. In the HMM-based
location privacy protection algorithm, the client is primarily
responsible for location information setting and a priori probability
calculation, secure region determination, localized differential
privacy perturbation, and a posteriori probability updating.
Specifically, it includes setting the vehicle location information and
state transfer matrix, calculating the a priori probability distribution
at the current moment, determining the privacy-protecting security
area, and judging whether the vehicle location is within the security
area. The client receives the server-side random projection matrix
for the first perturbation, returns the perturbation result, and
calculates the updated a posteriori probability based on the user’s
perturbation location and grid division.

4.2 Server

The server side mainly includes the location service provider.
On the server side, the primary tasks in the HMM-based location
privacy protection algorithm include area division and parameter
setting, parameter calculation and random projection matrix
generation, initialization and perturbation result aggregation, and
receiving data and performing a second perturbation. Specifically, it
includes dividing and numbering the vehicle distribution area into
grids, setting relevant parameters, calculating and generating the
random projection matrix, and initializing the perturbation result
statistics vector. The server receives the first perturbation result from
the client and performs the second perturbation to obtain the final
perturbation position. At the same time, it adds the result to the
statistics vector and also indirectly supports the computation and
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Client
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HMM modeling of
dynamic location

LDP-based randomized
response

Localized differential
privacy protection

FIGURE 2
System architecture

updating of the a posteriori probability by receiving information
from the client.

The system architecture of the method proposed in this
paper is shown in Figure 2, and the specific processes are as
follows.

1. First, the real-time generated position data of the vehicle are
modeled and analyzed using the HMM.

2. Subsequently, the vehicle makes use of the random response
mechanism based on the localized differential privacy (LDP)
model to perturb its real-time location data. Thus, the goal of
localized differential privacy protection of the vehicle’s location
data is achieved.

3. Finally, the perturbed real-time location data are transmitted
from the vehicle to the location service provider, and the
vehicle sends a query request at the same time. The location
service provider further optimizes the location-based service
quality based on the results of the query.

5 Methodological design

The method in this paper consists of two main parts,
which are mainly divided into two parts: the location privacy-
preserving algorithm based on HMM and the localized differential
privacy perturbation algorithm. The method design flow
is shown in Figure 3.

Frontiers in Physics

Server Side

—— Disturbed location data

5.1 HMM-based location
privacy-preserving algorithm

Algorithm 1 takes into account the temporal correlation of the
client’s vehicle position over time. It then constructs a time series
of position information based on the HMM. The actual location
information of the client’s vehicle is only held by the client, which
is in a hidden state that cannot be directly observed by the outside
world. The time-series formed by the real location of the vehicle in
the process of continuous change constitutes the Markov model in
this hidden state. The algorithm process is as follows.

1. First, the server-side grid is uniformly divided in the vehicle
distribution area. After the division, the area grid is numbered
(1,2,...,¢). The server-side parameters are set, where c is the
number of regional grid G, divisions, a is the number of
vehicles, the confidence parameter # takes the value of 0.3, and
the privacy budget is <.

log ZTIC

(£)a

parameter d of the random projection matrix is calculated

_ log(c+1)log%

2

2. The server-side calculates the parameter y= The

as . Finally, the random projection matrix Q €

{_—1 L}dxc is generated.

Va’ Vi & ed o .

3. At moment T, the client-side sets the location information
Ly of vehicle i, and the state transfer matrix is set to W;.

The posterior probability distribution P;,._, of the vehicle at
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6, W;,P i;‘—l

&€
Zl

‘ Calculation parameters

v

Initialize the perturbation
result statistics vector £

|

ICompute the prior probability

distribution P;7 = P, W;

I

} Construct security area ‘

‘Whether the location of the
yehicle is in the security area

Add vehicle location
to security area

Algorithm 2 is called
for perturbation

|

Add the perturbation
results to E*

|

Update the posterior
probability

Output: vector
of perturbation
result statistics

End

FIGURE 3
Methodology design process.

the previous moment T — 1 is used. The server-side initializes
the disturbance result statistics vector E for the current
moment.

. The client-side first calculates the prior probability distribution
P = P!, W, for vehicle i at the current moment T.

. The client calculates the security area S. For a given moment
T, a threshold 6 is set. The set of location points that
satisfy the sum of the prior probabilities of the locations,
which exceeds the set threshold, constitutes the privacy-
protecting security area at the current moment T. The client
calculates the privacy-protecting security area. The formula is
§=min {Lp|¥,, Prr=1-6}.

. The client further determines whether the vehicle
location L4y is in the security area. If not, it needs
to be added to the security area.
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Input: Number of area grid divisions G,, a the
number of vehicles (a), the confidence parameter n
= 0.3, client i's location Ly at time T, privacy
budget 2, threshold 6, state transfer matrix W;,

and the posterior probability P} at time T-1

1,7-1

Output: Random projection matrix Q
2c 2

logT d= log(c+1)logE

e’ v

1 7 )dxc . .
Qe ik «— Generate the random projection
matrix Q

for each location update moment T do

Lymn e The client side sets the location
information of vehicle 1

W; — The state transfer matrix

Pira
the vehicle at the previous moment T-1

«— The posterior probability distribution of

The server-side initializes the disturbance
outcome statistics vector E at the current moment.
S:/nin{LujﬂZLunP;T2’1—9} — Calculation of the

security area
if Ly ¢S then
Add L5 to the security area
end if
end for

Algorithm 1. HMM-based location privacy preservation algorithm.

5.2 Localized differential privacy
perturbation algorithm

Algorithm 2 implements a localized differential privacy
perturbation of the vehicle’s true position for each moment in time
through the designed two random response processes. The client
sends the perturbed location to the server side.

1. The client receives the randomized projection matrix Q, which
is sent by the server side, and performs the first perturbation
to the vehicle location L; 1.

2. The client obeys the Bernoulli distribution and returns the
true location of the vehicle L;" according to the probabilistic

perturbation of — eIZS\ o According to the probabilistic
ed+|S|-
perturbation of %, the client returns the other locations
e +|S§|-]
in the security area S, except the vehicle’s true location L;'.

3. Finally, the client returns the vehicle perturbation location. It
adds the perturbation result to the statistic vector. The client
finally sends the perturbation result E’ to the server.

4. After receiving the first perturbation result E’ at the server
side, the second perturbation is carried out. The perturbation

d-Q. < -L;, where

£
4 e2+1

location of the vehicle is L;*, L;" =r

re = f;l Finally, the perturbation result is added to E*, and
4 e2+1
the client sends the perturbation result E* to the server side.
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Input: Client's real location L;, privacy budget
%, and privacy-protected security area S
Output: Client perturbation location result

The client receives the random projection matrix

Q sent by the server

Client b~Bern(e§:§F1)

if b=1

Ele—L,=L,
else
b~Bern(—

e 4S-1
return the location of the vehicle other than

the true location of the vehicle L’
end if

return £’ — Server side
c

7-
r e?-1

INE
o

ez +1 .
Li*=re-d-Q. -2
4 ezZ+1

Return E* «L;"

Send the perturbation result E* to the

.Ll’

server side
Update the posterior probability

" _ _ o\ _ Pr(ErlLyn=6,)p7le]
Piidel= Pr(Lan=6clLs")= 3:Pr(ErlLs.n=Gc)psLi]
end

Algorithm 2. Localized differential privacy perturbation algorithm.

5. Knowing the vehicle perturbation location L;* and the
vehicle location L; 1, the updated posterior probability p;,.
is computed according to the partitioned grid G.. P} [c]=

B o Pr(ElLn=G)pilel
Pr (L(i’T) - Gc | Li ) - ZiPT(ET\L(.',n:Gc)P}[i] ’

6 Theoretical analysis of algorithms
6.1 Privacy and security

The method proposed in this paper is based on the HMM and
the localized differential privacy technique. It provides dynamic
localized differential privacy protection for vehicle locations by
constructing privacy-protecting security areas and designing a two-
stage localized differential privacy perturbation algorithm. The
setting of the security area restricts the area of localized differential
privacy perturbation. It only processes the set of location points
that satisfy the sum of location a priori probabilities exceeding
a set threshold, which reduces the risk of privacy leakage. The
client performs the first perturbation according to a Bernoulli
distribution, and the server-side performs the second perturbation.
The two perturbations cooperate so that the perturbed location
information has a high degree of randomness and unpredictability,
which effectively protects the vehicle’s location privacy.

Second, it is assumed that L; and L; are any two locations
within the privacy-preserving security area S at moment T,
(l,-, eS= {LI,LZ,...,L,,}). The location-randomized response
algorithm proposed in this study achieves a randomized

response with a privacy budget of i using Algorithm 1.
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Therefore, the final perturbed output Mgpg is satisfied:
ed

wgﬁzefgee. So, it can be deduced that

Pr{Mgg(L;)=E] —

Pr[Mgpe(Lit)=E]

Pr{Mge(Lje)=E]

this paper can provide e-localized differential privacy for

<max{l,e¢’}. Thus, the algorithm proposed in

vehicle location.

6.2 Data availability

The method proposed in this paper establishes a privacy-
preserving security area, which preserves the spatial characteristics
of the location information as much as possible. Although limiting
the perturbed area, the method proposed in this paper establishes
a privacy-preserving security area by incorporating the spatial
correlation of the location distribution. The set of location points
in the security area has a high prior probability. This allows
the perturbed location information to reflect the underlying
distribution of vehicle locations a certain extent, thereby ensuring
data usability. In Algorithm 2, the updated a posteriori probability
is calculated based on the vehicle’s perturbed location and the
divided grid. This process enables the server-side to infer the
vehicle’s location to a certain extent based on the perturbed location
information, which provides valuable data support for subsequent
applications such as location service providers and improves data
availability.

6.3 Time complexity

The proposed localized differential privacy location protection
method in vehicular networks based on the HMM is jointly
implemented using Algorithm 1 and Algorithm 2. In this paper, as
shown in Algorithm 1, the computation of the prior probability
for the client vehicle’s location requires O(|7]) time. It takes
O(n|tllog(S)) time to compute the privacy-preserving security
region of the vehicle. Therefore, the time complexity of Algorithm 1
is O(|7]) + O(n|7|log(S)). In Algorithm 2, the first stage of localized
differential privacy perturbation takes O(1) time. The second
stage of localized differential privacy perturbation takes O(n|7|)
time. In addition, computing the posterior probability of the
vehicle location distribution takes O(|7]) time. Therefore, the time
complexity of Algorithm 2 is O(1) + O(n|7]) + O(|7]). Therefore, the
overall time complexity of the method proposed in this paper is
O(ll + |71 10og (S) + 1 + n|7| +|7]) = O(|7]log (S) + nl|7l).

6.4 Practicality

The method proposed in this paper is applicable to various
scenarios requiring vehicle location privacy protection, such
as intelligent transportation systems and location-based service
applications. In these scenarios, vehicle location information often
has important commercial value and social significance, but it also
faces the risk of privacy leakage. The method proposed in this
study can provide location data with a certain level of usability for
related applications, demonstrating high practicaity while ensuring
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the privacy of vehicle locations. On the other hand, the method
proposed in this paper is based on the HMM and localized
differential privacy techniques, both of which have good scalability.
The HMM can be easily extended to more complex location change
scenarios, and the localized differential privacy technique can be
adapted to different privacy requirements.

7 Experimental analysis
7.1 Experimental setup

The GeolLife dataset [35] is selected for the experimental data
in this paper. This dataset collects trajectory data generated by 182
users over a period of 3 years. A large number of tuples containing
timestamps and latitude/longitude information of the user’s location
are used to represent the user’s mobile trajectory. The experimental
environment is based on the Windows 10 Professional operating
system, developed using PyCharm and Jupyter Notebook based
on Python 3.8. The hardware environment includes an Intel(R)
Core (TM) i5-10500 CPU, NVIDIA GeForce RTX 2060 GPU,
and 16 GB RAM.

The default value of the privacy budget is set to 0.3, and
the number of track entries is 18,320. The number of area grid
36,2105
and the confidence parameter 1 takes the value of 0.3. The

G, divisions is 26,810; the number of vehicles is a =
experimental parameters are shown in Table 1. The algorithms
in [36] and [37] were selected for experimental comparison,
with evaluation primarily based on three aspects: privacy-protection
strength, data availability, and processing efficiency, to verify the
effectiveness of the method proposed in this paper.

7.2 Measurement indicators

7.2.1 Privacy disclosure risk

Privacy protection intensity is usually measured using the
privacy disclosure risk (PDR) [38]. It indicates the probability of
location privacy disclosure under certain circumstances. We assume
that the attacker can obtain all information except the actual query
vehicle. G; indicates whether an attacker can infer the vehicle’s actual
location. If the attacker can infer the real vehicle location, then G; =
true; otherwise, G; = false. The statistic of the query result is denoted
as K;, and the number of sample groups is N. The number of the
actual query vehicles in each group of samples is n. PDR is calculated
using the following Equation 3.

ZN Z;‘:I R;

i=1Nn >Ki:{

0, G; = false
1, G; = trun

PDR = 3)

The privacy disclosure risk is related to the degree of background
knowledge possessed by the privacy protection algorithm and the
attacker. The smaller the value of the privacy disclosure risk, the
lower the probability of privacy leakage and the higher the privacy-
protection strength. The higher the value of the privacy disclosure
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TABLE 1 Experimental parameters.

Parameter Initial value
€ 0.3
Number of tracks 18,320
G, 26,810
a 36,210
n 0.3

risk, the higher the probability of privacy leakage and the weaker
the privacy-protection strength.

7.2.2 Average maximum absolute error
In this section, the average maximum absolute error [39] is used
to evaluate the deviation of the dynamic location data perturbation
results of the client vehicles, which is defined as shown in the
following Equation 4. The smaller average maximum absolute error
indicates the difference between the statistical values of the vehicles
located in the grid area and the real statistical values of the vehicles
in the grid area after perturbation. The smaller the difference, the
better the utility of the perturbation method and the higher the data
availability.
MMAE = % 2 max X7y =Xyl (4)
Here, ¢ denotes the whole two-dimensional region. X;- |, denotes
the statistical value of the vehicle whose real location is at the grid
region V at time T. X7, denotes the statistical value of the vehicle,
which is located in the grid region V after the perturbation at time T.

7.2.3 Algorithm runtime

This section measures the processing efficiency of an algorithm
by its running time, which is also an important criterion for assessing
the algorithm’s performance.

7.3 Analysis of the experimental results

7.3.1 Privacy-protection strength

In this experiment, the Bayesian mechanism with a typical
background knowledge attack model [40] is chosen, the privacy
disclosure of the three algorithms is compared under this attack
model, and the comparison results are shown in Figure 4.

From the experimental results, it can be observed that the
cumulative length of the client increases. On the whole, the privacy
disclosure risk of the algorithm used in this paper is the smallest,
which is approximately 24.22% on average. So, the probability
of privacy disclosure of the algorithm used in this paper is the
smallest, the privacy-protection strength is the largest, and the
security is the highest. Through experimental comparison, it can
be observed that when the cumulative length of the client is within

frontiersin.org


https://doi.org/10.3389/fphy.2025.1624955
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Li and Zhang 10.3389/fphy.2025.1624955
50 S 400 -
g H 36m 370 our @ 350 - T
o 40 5 —w—37
4 'S 300
@ Q our
2 30FT 2250 |
o =]
3 £ 200 |
o r 5 150
2 L
g 3
Z 10} & 100
o o
2 50
0 12 24 36 48 60
! 12 2 % 48 &0 Cumulative hours/h
Cumulative hours/h
FIGURE 5
FIGURE4 Maximum absolute error.
Privacy disclosure.
48 h, the privacy disclosure of this paper’s algorithm and that of the 80 -
algorithm in [36] are similar. Therefore, the probability of privacy ”
. e ) W 36 W37 " our
disclosure is similar for both methods, and both demonstrate strong £ 65|
. - . . =
privacy protection. However, after 48 h, because the algorithm in o
. . . . . € 50 f
[36] ignores the processing of spatio-temporal correlation, as time =
progresses, the more background knowledge the attacker obtains, = 3 |
F=
the greater the probability of privacy disclosure of the algorithm 5
i<}
in [36]. The increase in the risk of disclosure is larger, and the < 20t
privacy strength is weakened. For the algorithm in [37], the privacy
protection effect is poorer because it ignores the consideration of the ° 01 02 03 04 05 06
security area. Thus, as the cumulative length increases, the growth Privacy budget
trend of privacy disclosure risk becomes more pronounced, with the
. . . . N, o FIGURE 6
maximum disclosure risk reaching 46.8%, indicating a significant Running time.
increase in the likelihood of privacy leakage.

7.3.2 Data availability

Figure 5 presents the maximum absolute error values of the
algorithms at each position update moment. It can be observed
that the maximum absolute error value of the proposed method in
this study is lower than that of the algorithms in [36, 37] in the
overall trend after perturbing the client vehicle location. In addition,
the fluctuation of the maximum absolute error determined in this
study is small. At the same time, the average maximum absolute
error of this paper’s method is less affected by the cumulative
duration. The method proposed in this paper can better maintain
the statistical accuracy of the perturbed position. Comparing with
the algorithms in [36, 37], as the cumulative length decreases, their
average maximum absolute errors keep increasing, and the statistical
accuracy of the perturbed position decreases sharply. Therefore, the
deviation of the perturbation results of the method proposed in this
paper is smaller than that of the algorithms in [36, 37]. The statistical
accuracy of the location after perturbation is higher, and the data
availability is higher.

7.3.3 Processing efficiency

As observed from the experimental results in Figure 6, the
running time of all three algorithms increases with an increase
in the privacy budget. However, the overall running time of this
paper’s algorithm is relatively shorter, with an average running time
of approximately 39.17 s, which has a higher processing efficiency.
The average running time of the algorithm in [36] is approximately
50 s, and the processing efficiency of the algorithm used in this
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paper is approximately 27.6% higher. The average running time of
the algorithm in [37] is approximately 55.8 s, and the processing
efficiency of the algorithm used in this paper is approximately
42.46%, so the processing efficiency of the method proposed in this
paper is higher.

8 Conclusion

In this paper, a localized differential privacy location protection
method based on the HMM in vehicular networks is proposed
to achieve vehicle location privacy protection. The method
first uses the HMM to predict continuous changes in vehicle
location and then combines the spatial correlation of location
distribution to construct a privacy-protecting security area, which
restricts the range of localized differential privacy perturbation
and reduces errors. Meanwhile, a two-stage localized differential
privacy perturbation algorithm is designed to reach dynamic local
differential privacy protection of vehicle locations. Finally, the
feasibility and effectiveness of the method are verified through
experiments and analysis of actual trajectory datasets. Future
research can be further promoted from various aspects. At the
algorithmic level, the algorithm can be optimized to improve
efficiency, such as by exploring methods to reduce the complexity
of steps, such as random projection matrix generation, and
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considering parallelization of the algorithm to cope with large-
scale data scenarios. In terms of balancing privacy protection
and data availability, research can focus on a dynamic privacy
budget allocation strategy, flexible adjustment based on factors
such as location sensitivity, exploration of multi-granularity privacy
protection, and differentiated protection for location information of
different importance.
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