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Grid fault diagnosis based on the 
deep pyramid convolutional 
neural network

Tian Lan*, Yuezhou Wu and Chen Wang

Electric Power Dispatching and Control Center of Guangdong Power Grid Co., Ltd., Guangzhou, 
China

Traditional power grid fault diagnosis methods rely on manual experiences 
to handle massive amounts of alarm information, have complex modeling 
processes and insufficient generalization abilities, and lack direct diagnostic 
research on the alarm information text. Therefore, we propose an intelligent 
fault diagnosis method based on the deep pyramid convolutional neural network 
(DPCNN), where we build an end-to-end fault classification model and a 
key information extraction model to directly mine the implicit fault features 
from the alarm information text to achieve accurate classification of fault 
types and rapid location of faulty equipment. We performed comparative 
experiments to show that the proposed method performs well in complex power 
grid scenarios and noisy data environments; the highest fault classification 
accuracy achieved with this approach was up to 100%, and we could 
effectively identify multiple fault types, such as simple faults, switch operation 
failure, and protection operation failure. In addition, we integrated the 
temporal-sequence-prioritized faulty equipment identification strategy with 
the proposed method to further improve the fault location accuracy. A case 
study verification was also performed, which shows that our method has 
a fault recognition rate of up to 99.5% and can achieve 98.7% accurate 
positioning after one-by-one elimination through the identification strategy to 
significantly reduce manual intervention and have high applicability in actual
power grids.
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 1 Introduction

The demand for electrical energy continues to grow with the development of social 
productive forces. The large-scale integration of new energy sources into power grids 
have made grid operations more complex and increased the risk of faults significantly. 
In such situations, dispatchers must quickly and accurately locate the fault areas and 
isolate them in a timely manner; otherwise, such conditions may trigger cascading faults, 
leading to large-scale power outages or even grid collapse, which could further cause 
significant economic losses. Grid fault diagnosis is an effective means of controlling the 
development of faults by analyzing different electrical and non-electrical fault information 
collected by the monitoring system to determine the fault areas and identify the faulty 
equipment. The commonly used grid fault diagnosis methods are based on expert
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systems [1–3], optimization techniques [4], Petri nets [5], Bayesian 
networks [6], fuzzy sets [7], and analytical models [8–10], among 
others. These methods mainly establish diagnostic models based on 
fault mechanisms and grid topology structures to achieve accurate 
judgments of most faults through model solving. However, given 
the expansion of grid scales, increased structural complexity, and 
intelligent system developments, the secondary measurements and 
monitoring data obtained by energy management systems (EMSs) 
show massive growth trends. Traditional diagnostic methods have 
difficulty handling such large amounts of alarm information 
directly and still rely on manual experiences for screening of key 
information, which cannot meet the demands of rapid diagnoses. 
Therefore, there is an urgent need to develop an intelligent fault 
diagnosis system that can assist dispatchers with improving their 
decision-making efficiencies and accuracies.

The rapid development of artificial intelligence technologies, 
such as deep learning, has necessitated the intelligent transformation 
of grid fault diagnosis as an inevitable trend. The methods by which 
we can use deep-learning technologies to effectively extract and 
represent deep fault features from massive EMS data and develop 
end-to-end intelligent fault diagnosis methods for EMS alarm 
information have become key problems that need express solutions. 
In response to the intelligent diagnosis needs in the field of grid 
fault diagnosis and considering the current rapid developments in 
artificial intelligence technologies, we propose a grid fault diagnosis 
method based on the deep pyramid convolutional neural network 
(DPCNN) for alarm information text. This approach realizes 
fault classification of and key information extraction from alarm 
information text; further, a decision-making strategy that fuses fault 
types with temporal sequence features is designed to accurately 
identify faulty equipment.

The main contributions of this study are as follows: 

1. An end-to-end fault diagnosis framework: By constructing two 
fault classification models and a key information extraction 
model, we realize end-to-end fault diagnosis from alarm 
information text to classify faults while identifying the 
corresponding equipment locations, thereby reducing manual 
interventions significantly.

2. Efficient feature extraction and classification: Using the 
pyramid structure and residual connections of the DPCNN, 
the global features of the alarm information are extracted 
effectively to solve the problems of long text dependence and 
gradient dispersion, thus achieving a classification accuracy 
of up to 100%.

3. A temporal-sequence-prioritized faulty equipment 
identification strategy: By combining the fault types and 
temporal sequence distribution characteristics of the 
alarm information, we propose a differentiated equipment 
identification strategy for simple and complex faults that 
improves the accuracy of locating the faulty equipment.

2 Research status and related works

Power grid fault diagnosis is a key technology for ensuring 
reliable operation of a power grid while achieving fault self-healing. 
Since the application of the supervisory control and data acquisition 

(SCADA) system in the 1960s and given the advancements 
in computational intelligence technologies and diversification of 
monitoring data, research efforts on fault diagnosis have increased 
continuously and remarkable achievements have been made. The 
existing fault diagnosis methods can be mainly divided into rule-
based methods (expert systems, Petri nets, Bayesian networks, and 
analytical models) and data-driven methods represented by neural 
networks. The remainder of this section introduces these diagnostic 
methods in detail. 

2.1 Rule-based grid fault diagnosis 
methods

2.1.1 Expert systems
Expert systems are the oldest type of fault diagnosis method with 

excellent reasoning and interpretation capabilities; however, they 
are difficult to adapt to rule-based construction and maintenance 
problems caused by the scale expansion of modern power grids 
and frequent changes in topology. Accordingly, a variety of 
improvement schemes have been proposed in the past: Shan et al. 
[11] combined these systems with data mining technology to 
improve the rule base; Xu et al. [12] used knowledge grid technology 
to construct a knowledge map; Georgilakis et al. [13] improved the 
adaptability of the system through power grid partitioning using the 
Bayesian theorem. Although these methods significantly improve 
the diagnostic effects, the rule base still needs to be maintained 
manually, which is difficult when meeting the online diagnosis needs 
of large-scale power grids. 

2.1.2 Petri nets
Petri nets entail graphical modeling to effectively represent the 

topological structures and sequential fault events of power grids for 
fault diagnoses. Ramirez-Trevino et al. [14] developed a dedicated 
Petri net model for lines/buses that significantly improved the 
positioning ability of severe faults, including protection operation 
failure; the authors also introduced fuzzy reasoning technology [15] 
to enhance the diagnostic robustness of the model for complex 
faults like operation failure of automatic devices and impact 
reduction of sequential chaos and noise interference. Zhu et al. [16] 
innovatively adopted a matrix topological description method that 
adapted to structural changes through dynamic matrix adjustment 
and established an enhanced model integrating topological and 
sequential information; however, when the scale of the power 
grid is expanded, the model complexity increases exponentially, 
the generalization ability of the model decreases with changes in 
the topological structure, and it is difficult to achieve automatic 
modeling in an environment with multiple data sources. 

2.1.3 Bayesian networks
Bayesian network is a modeling method that combines graphical 

representation and probabilistic reasoning to effectively handle 
uncertain knowledge. For diagnosing power grid faults, Lu et al. [17] 
established a Bayesian network model for the lines, transformers, 
and buses to solve for uncertain alarm information. Ye et al. [18] 
proposed a complex fault deduction method that can diagnose 
faulty components and infer the timings of the protection actions. 
Zhang et al. [19] combined the power grid structure and recorder 
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data to accurately identify faulty equipment and protection 
refusal/operating faults; however, this model relies on prior 
probabilities and has limited capacity to diagnose complex faults. 

2.1.4 Analytical models
Analytical models constitute a type of fault diagnosis method 

that have garnered widespread attention in recent years. The aim of 
this model is to establish an objective function based on the fault 
hypothesis and screen the optimal fault hypothesis by minimizing 
the objective function. Huang et al. [20] introduced the time 
conflict index to the objective function to solve the problem of 
temporal disorder of the alarm information. Yi et al. [21] established 
a complete analytical model by setting differentiated weights 
for the protection and circuit breakers to realize dimensionality 
reduction and improve the diagnostic accuracy; although this 
model has a strict logic and strong theoretical support and can 
effectively handle complex faults and diagnostic problems with 
uncertain information, the model complexity increases as more fault 
information is integrated and the solution difficulty is enhanced
significantly. 

2.2 Data-driven grid fault diagnosis 
methods

In recent years, important research progress has been made on 
power grid fault diagnoses based on artificial neural networks. Bi 
et al. [22] conducted a series of explorations on the applications 
of traditional neural networks; here, they mainly explored radial 
basis function (RBF) networks for processing the status information 
of protection devices. Cardoso et al. [23] developed an improved 
RBF model coupled with a fuzzy network; dos Santos Fonseca 
et al. [24] successfully applied reset neural networks and multilayer 
perceptrons to model the protection action principle; Zou et al. 
[25] reported the conversion of protection action information 
to percentage inputs. With respect to deep learning, Wen et al. 
[26] reported a significant breakthrough by pioneering the use 
of convolutional neural networks (CNNs) to achieve fault-phase 
selection and discrimination between the inside and outside areas. 
Yang et al. [27] used signal-to-image conversion along with CNNs 
to greatly improve the feature extraction ability. The SR-CNN model 
proposed by Zhang et al. [28] effectively solved the processing 
problem of phasor measurement unit (PMU) time-series data. The 
P-CNN model developed by Alqudah et al. [29] showed promising 
performance in the positioning of DC transmission lines. Other 
researchers [30] have combined k-means clustering with recurrent 
neural networks (RNNs) to achieve accurate classification of fault 
types. The above studies provide new technical paths for intelligent 
power grid fault diagnoses through diverse data input methods like 
status signals, electrical quantities, and images as well as innovative 
network structure designs (parallel, coupled, etc.).

Although various scholars have achieved fruitful results with 
regard to power grid fault diagnoses, the existing methods are still 
constrained by the following main problems: 

1. Rule-based fault diagnosis models rely on logical rules; 
thus, when constructing fault events with more complex 
logical relationships, the logical constraints are cumbersome, 

knowledge representation is difficult, and model complexity is 
high. In addition, large amounts of alarm information need to 
be screened and classified during the modeling process, which 
increases the modeling workload.

2. The portability and generalization ability of rule diagnosis 
models are poor and cannot be adapted to the constantly 
changing power grid operation modes or network topology 
structures; hence, they cannot handle uncertainty problems 
effectively.

3. Extant data-driven fault diagnosis methods mostly diagnose 
the electrical quantity information collected by wide area 
monitoring systems and PMUs; thus, they lack direct diagnosis 
research on the EMS alarm information text, making it 
difficult to automatically extract the characteristic differences 
of different power grids from fault cases.

In response to the intelligent needs of power grid fault diagnoses, 
we propose a fault diagnosis method based on deep reinforcement 
learning. This method directly processes the alarm information 
text to significantly improve the intelligent diagnosis level and 
operational efficiency of the diagnostic system. 

2.3 Methods of representing alarm text 
information

In the proposed fault diagnosis framework for power grid 
systems, the alarm text information is represented using a word 
vector matrix approach integrated with the DPCNN. This approach 
converts each alarm statement into a word vector matrix A ∈ 
ℝM × N, where M is the number of words and N is the dimension of 
each word vector, as detailed in Equation 1. Using pretrained word 
embeddings, such as word2vec, this approach captures the semantic 
relationships within alarm texts, enabling the DPCNN to extract the 
implicit fault features critical for identifying fault types like simple 
faults, switch failures, and protection failures. Then, sentence vectors 
are formed by concatenating the word vectors while preserving the 
temporal context and word order, which are essential for processing 
sequential alarm data from SCADA systems, as shown in the 
example alarm sequences in Supplementary Appendix Table S1.

Several alternative text representation methods have been 
applied in fault diagnosis and related natural language processing 
tasks. The term frequency inverse document frequency (TF-
IDF) method represents text parts as sparse vectors based on 
the word frequency and corpus rarity, offering computational 
simplicity but failing to capture the semantic relationships or 
temporal dependencies, which limits its effectiveness for complex 
alarm texts in power grid applications. The bag-of-words (BoW) 
model, which counts word occurrences without regard to order or 
context, is similarly constrained and unsuitable for distinguishing 
nuanced fault types where sequences matter. Recent advances 
like the bidirectional encoder representations from transformers 
(BERT) method provide contextualized embeddings by modeling 
the bidirectional sentence context to achieve superior semantic 
understanding. However, the high computational demands of BERT 
and its need for large labeled datasets make it less practical for real-
time fault diagnoses in resource-constrained environments, such as 
power grid control centers.
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The word vector matrix approach with DPCNN offers distinct 
advantages over the aforementioned alternatives. By leveraging 
pretrained embeddings, it captures semantic nuances and enables 
robust feature extraction for diverse fault scenarios. Compared 
to BERT, its computational efficiency ensures suitability for real-
time application, which is critical for rapid fault diagnosis in a 
power grid. Additionally, preserving the temporal context allows 
effective analysis of the sequential alarm data, unlike TF-IDF and 
BoW, which overlook the word order. However, the proposed 
approach relies on the quality of pretrained embeddings, which 
may not fully address domain-specific terminology in power grid 
systems; long alarm texts may also challenge the ability of the 
DPCNN to model extended dependencies. Thus, future research 
efforts could explore hybrid models combining the efficiency of 
DPCNN with the contextual depth of BERT to enhance domain-
specific text representation, provided the computational constraints
are mitigated. 

2.4 Comparative analysis of different 
feature extraction models

In our proposed framework for power grid fault diagnosis, 
the DPCNN is employed to extract features from alarm text 
information. The DPCNN leverages a pyramid structure with 
residual connections to capture both local and long-range 
dependencies in the alarm texts, enabling robust extraction 
of implicit fault features, as represented by the word vector 
matrix in Equation 1. This approach achieves high classification 
accuracy and fault recognition range, as evidenced by the 
experimental results presented in Section 3 and the alarm sequence 
analysis given in Supplementary Appendix Table S1. The ability of 
the DPCNN to model sequential data from SCADA systems makes 
it particularly suitable for identifying complex fault types, such as 
switch failures and protection malfunctions, in real-time power grid 
applications.

Several alternative models have been explored for feature 
extraction in fault diagnosis models and related efforts. The long 
short-term memory (LSTM) network is a type of RNN designed 
to handle sequential data and has been applied to power grid 
fault diagnosis for its ability to capture temporal dependencies. 
However, LSTM suffers from high computational complexity and 
vanishing potential gradients, which can hinder performance 
with long alarm texts. BERT offers superior feature extraction 
by capturing the bidirectional context, which makes it effective 
for complex text analyses in fault diagnosis scenarios. Despite 
their high accuracies, BERT-based models require substantial 
computational resources and large labeled datasets, rendering them 
less feasible for real-time applications in resource-constrained 
power grid environments. Graph neural networks (GNNs) have 
emerged as a promising approach for modeling power grid 
topologies in terms of graphs by integrating alarm text with 
structural information. Although GNNs excel in topology-
aware fault diagnoses, their focus on the graph-based features 
makes them less optimized for pure text feature extraction 
compared to DPCNN.

The DPCNN used herein outperforms the above alternatives 
in several key aspects; its pyramid structure enables efficient 

capture of both local and global text features to achieve 
balance between high accuracy and computational efficiency, as 
demonstrated in Section 3. Unlike LSTM, the DPCNN is not prone 
to gradient issues and processes lengthy sequences more effectively, 
making it suitable for real-time fault diagnosis. Compared to BERT, 
the DPCNN requires fewer computational resources, aligning 
with the practical constraints at power grid control centers. 
Although GNNs are advantageous for topology-based analyses, 
the focus of DPCNN on text feature extraction ensures superior 
performance for alarm text processing. However, DPCNN relies 
on pretrained embeddings, which may limit its ability to capture 
highly domain-specific fault patterns; further, its performance 
on extremely lengthy texts could be constrained by its receptive 
field. Future works could therefore explore integrating DPCNN 
with GNNs to combine text-based and topology-based features, 
potentially enhancing fault localization in complex power grid 
scenarios. 

3 Fault information feature extraction 
based on DPCNN

3.1 Alarm text information representation

In the aftermath of a power grid failure, the protection 
and circuit breaker operation information related to the faulty 
equipment will be uploaded to the SCADA system in real time. 
Meanwhile, the SCADA system will receive additional alarm 
information, such as device failure and uncharged spring of the 
switch mechanism. These details are recorded in chronological order 
to generate the alarm information set at the time of the fault. Table 1 
shows an example of the alarm information in a certain area. 
To facilitate computer processing, it is necessary to represent 
the text of the alarm information set in a numerical manner. 
The available text representation methods are mainly divided into 
discrete representation methods based on one-hot, BoW, and TF-
IDF models or distributed representation methods based on n-
gram, word2vec, and GloVe models. Among these, the word2vec 
model can map words from a high-dimensional space to a low-
dimensional space while retaining the associations between words, 
thereby solving the problems of vector sparsity and loose semantic 
connections in the text representation process effectively. Therefore, 
we use the word2vec model to vectorize the alarm text information. 
The vectorization process entails the following steps: 

1. Remove the time column in the alarm text information.
2. Segment the alarm text information by dividing each 

text according to the plant station, equipment, equipment 
description, and action description.

3. Generate word vectors using the word2vec model. This 
model uses the contextual information of words to generate 
low-dimensional word vectors representing the associations 
between words; the closer the semantics of the words, the closer 
are the corresponding word vectors in the vector space.

4. Generate sentence vectors based on the word vectors 
by averaging the word vectors of all words in a single 
alarm information sentence to obtain the corresponding 
sentence vector.
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TABLE 1  Alarm information instances.

Time Station Equipment Equipment description Action description

2019-07-08 07:20:21:01 Hetang Whole station Accident total signal Action

2019-07-08 07:20:21:02 Hetang Xufeng Y150 Protect exports Action

2019-07-08 07:20:21:03 Hetang Xufeng Y150 switch - Open the breaker

2019-07-08 07:20:22:01 Hetang Xufeng Y150 Reclosing outlet Action

2019-07-08 07:20:22:02 Hetang Xufeng Y150 switch institutional spring does not have stored energy Action

2019-07-08 07:20:22:03 Hetang Xufeng Y150 switch - Close the switch

2019-07-08 07:20:24:01 Xitao 110 kV fault recording waveform Protection device failure Reset

2019-07-08 07:20:27:01 Hetang Xufeng Y150 switch institutional spring does not have stored energy Reset

2019-07-08 07:20:28:01 Jianshan station #2 Capacitor switch institutional spring does not have stored energy Reset

2019-07-08 07:20:31:01 Ankang #2 Main transformer Online oil filtering device startup Reset

2019-07-08 07:20:32:01 Hetang Xufeng Y150 Reclosing outlet Reset

2019-07-08 07:20:34:01 Hetang Xufeng Y150 Protect exports Reset

2019-07-08 07:20:22:01 Hetang Xufeng Y150 Reclosing outlet Action

2019-07-08 07:20:54:01 Hetang Whole station Accident total signal Reset

5. Generate the sentence vector representation matrix of the 
text by sequentially concatenating the corresponding sentence 
vectors of the alarm information sentences.

x1:n = x1 ⊕ x2 ⊕⋯⊕ xi ⊕⋯⊕ xn (1)

In the above equation, the symbol “⊕” represents vector 
concatenation, xi is the sentence vector of the ith alarm message, 
and x1:n is the concatenation of the sentence vectors of the 
first to nth alarm messages corresponding to the sentence 
vector matrix in Figure 1.

xi = x1
i ⊕ x2

i ⊕⋯⊕ xj
i ⊕⋯⊕ xk

i (2)

In Equation 2, k is the dimension size of the sentence vector, and 
xi

j is the j-dimensional component of the sentence vector of the ith 
alarm information. For a single alarm message statement, steps (4) 
and (5) are omitted and the word vectors in the statement are directly 
spliced to form the word vector matrix, as shown in Figure 2.

3.2 DPCNN

The DPCNN constitutes a word-level-deep text classification 
network in which the convolutional and pooling layers are 
continuously deepened based on the CNN. The structure of the 
DPCNN model is shown in Figure 3 and is mainly composed of a 
text region embedding layer, two convolutional blocks, two pooling 

layers, and a fully connected layer. Among these, the convolutional 
blocks include residual modules to avoid the gradient vanishing 
problem caused by deepening of the network layers. Once the output 
from the region embedding layer passes through the operations 
of the convolutional blocks, the sequence length is halved and 
perceived text segments are doubled. If the model contains multiple 
pyramid convolutional modules, the alternating operations of the 
convolutional block and 1/2 pooling layer reduce the length of the 
text sequence exponentially, resulting in a “pyramid” shape as the 
number of modules increases. The pyramid convolutional module 
of the DPCNN model enables perception of long-distance text 
information and enhances the ability to extract global text features.

3.3 Feature extraction based on deep CNN

Given the global feature extraction ability of the DPCNN 
model for long-distance texts, we selected the DPCNN to extract 
features from the alarm text information. Given the alarm text 
A ∈ Rn×k, where n is the text sequence length and k is the 
sentence vector dimension, the regional features of the text are 
first extracted through the region embedding layer. Then, the 
convolutional operations are performed successively through the 
pyramid convolution module and convolution blocks, and the 
feature vector outputs of the convolutional blocks are max-pooled 
by the final pooling layer to obtain the global features of the 
alarm text. A convolution kernel parameterized by a weight matrix 
w ∈ Rh×k is used to perform the convolution operations in the 
direction of the text sequence length, and the convolution process 
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FIGURE 1
Sentence vector representation of the alarm text information.

FIGURE 2
Word vector representation of the alarm text information.

FIGURE 3
Structure of the deep pyramid convolutional neural network (DPCNN).

is as shown in Equation 3:

ci = f(w · xi:j+h−1 + b) (3)

In the above equation, xi:j+h−1 refers to the h sentence vector 
matrices contained in the convolution kernel window, b ∈ R 
is the bias vector, f is the non-linear activation function, and 
ci is the feature value after convolution. A text of length n 

contains (n - h + 1) windows {x1:h,x2:h+1,⋯,xn−h+1:n} , and the 
convolution operation is performed on each window to generate 
the corresponding features. All the features are then concatenated to 
obtain the feature vector of the alarm information text, as shown in
Equation 4:

cregion = [c1,c2,⋯,cn−h+1] (4)
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FIGURE 4
Visualization of the feature maps of the pyramid convolution module.

The above feature vector is input to the convolutional block 
for equal-length convolution and identity mapping, and the output 
feature vector is given as follows:

cconv = [c
′
1,c
′
2,⋯,c

′
n−h+!] (5)

In Equation 5, the dimension of cconv is the same as that of cregion.
The output from the first convolutional block is passed through 

the 1/2 pooling layer for downsampling before being input to 
the next convolutional block. The final pooling layer performs 
max pooling on the feature vector output from the convolutional 
block to produce the global features. Figure 4 shows the feature 
vector diagrams extracted by each of the convolutional and pooling 
layers in the pyramid convolutional module once an alarm text 
sequence of length 20 (seg_length = 20) is input to the DPCNN 
model (kernel_size = 3). The different colored areas represent feature 
values of different sizes; larger feature values are closer to the color 
white and have greater impacts on the text classification. It can be 
seen from the figure that the existence of the pyramid convolutional 
module changes the length of the feature vector in a pyramid shape. 

4 Power grid fault diagnosis model 
based on the DPCNN

We established two fault classification models based on the 
DPCNN to classify faults of different complexities and different 
types of faulty equipment for the alarm information set generated 
during a fault. Simultaneously, a key information extraction model 
based on the DPCNN is designed to retrieve the key sentences in the 
alarm text information to further determine the faulty equipment. 
Based on fault classification results of different complexities, a faulty 
equipment identification strategy is proposed by integrating the fault 
types with their temporal priorities. 

4.1 Fault classification models

We designed two fault classification models based on DPCNN 
for the alarm information set, as shown in Figure 5. Classification 

model 1 can be used to distinguish between non-fault, simple 
fault, complete protection operation failure, incomplete protection 
operation failure, switch operation failure, and developing fault 
conditions. The definitions of these fault types are as follows: 

1. Simple fault: There is only one faulty equipment in the fault 
event, and both the protection and circuit breaker operate 
correctly.

2. Switch operation failure: Here, there is only one faulty 
equipment in the fault event, and the protection operates 
correctly but the circuit breaker operation fails, resulting 
in deployment of the backup protection of the adjacent 
equipment.

3. Incomplete protection operation failure: This refers to failure 
of one or a part of the protection systems when an equipment 
with dual protection is faulty; here, the other protection system 
trips the circuit breaker so that the fault range does not expand.

4. Complete protection operation failure: This refers to the 
condition where the protection system of an electrical 
equipment fails; in this case, the backup protection of the 
adjacent equipment is deployed, and the fault range expands.

5. Developing fault: In this work, this type of fault refers to the 
protective actions of other equipment within the fault spread 
range owing to failure of a certain equipment and removal of 
the non-faulty equipment, such as 10-kV or 35-kV capacitors.

Classification model 2 can be used to distinguish line, busbar, 
and transformer faults. The structures of the two classification 
models are identical, with only the inputs and outputs being 
different. The input layer of each model is the vector matrix A ∈
Rn×k corresponding to the set of alarm information to be classified. 
The probability of each classification label is calculated by the fully 
connected layer, and the label with the highest probability is the 
considered as the fault classification result corresponding to the 
alarm text information. 

4.2 Key information extraction model

We also designed a key information extraction model based on 
the DPCNN for a single alarm message in the alarm information 
set to extract key details like the alarm information of the 
protection and circuit breaker actions. The input layer of this 
model is shown in Figure 6 and is the word vector matrix A ∈ Rn×k

corresponding to the alarm information statement to be classified; 
here, m is the number of words in the statement, and k is the 
dimension of the word vector. The model output is the classification 
result of the alarm information statement, i.e., whether it contains 
key or non-key information. The alarm information set is input 
to the key information extraction model, and the classification 
result of each alarm information statement is output. If the alarm 
information statement is considered key information, then the 
equipment involved in this statement are defined as suspicious faulty 
equipment. The equipment involved in all the key information in the 
alarm information set are represented as the set of suspicious faulty 
equipment D.

D = {d1,d2,⋯,di,⋯,dn} (6)
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FIGURE 5
Fault classification models: (a) model 1 and (b) model 2.

FIGURE 6
Key information extraction model.

In Equation 6, di is the device involved in the ith key information 
in the alarm information set, and n is the number of suspicious 
faulty devices. To improve the accuracy of identifying faulty devices, 
the range of the set of suspicious faulty devices is further narrowed 
according to the fault classification results of suspected faulty 
transformers. The working mechanism of the key information 
extraction model for identifying “key information” from alarm texts 
is based on the DPCNN that extracts semantic features from alarm 
logs using a series of convolutional layers (filter size = 3) and 
max-pooling operations, followed by classification of text segments 
into “key” or “non-key” based on their relevance to fault diagnosis 
(e.g., equipment identifiers and fault timestamps) through the fully 
connected layer.

4.3 Integrated fault-type and 
temporal-sequence-prioritized faulty 
equipment identification strategy

Once the set of suspicious faulty equipment is determined using 
the key information extraction model, it is necessary to identify the 
actual faulty equipment. In this work, we use an integrated fault-type 
and temporal-sequence-prioritized faulty equipment identification 
strategy to determine the temporal distribution characteristics of the 
alarm information from different fault types and obtain the final set 
of suspicious faulty devices D′.

D′ = {d1,d2,⋯,dm} (7)
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FIGURE 7
Framework of the faulty equipment identification strategy.

In Equation 7, m ≤ n. Based on the classification results of model 
2, D′ may be the set of suspected faulty lines, set of suspected faulty 
buses, or set of suspected faulty transformers. The faulty equipment 
identification strategy used in this work is shown in Figure 7. 

1. When the classification result of model 1 is a simple fault, the 
equipment in the set D are identified as the faulty equipment.

2. When the classification result of model 1 is switch operation 
failure, developing fault, or incomplete protection operation 
failure, the first equipment in set D is identified as the faulty 
equipment.

3. When the classification result of model 1 is complete protection 
operation failure, the faulty equipment must be determined 
using the network topology.

The power grid fault diagnosis framework based on DPCNN 
is shown in Figure 8 and consists of two parts: model training and 
testing as well as online diagnosis. The steps of the model training 
and testing process are as follows: 

1. Obtain the alarm information sets of historical fault events 
collected by the SCADA system as the sample set, and use the 
word2vec model to vectorize the alarm information sample set 
and single alarm information separately.

2. Divide the sample set based on the two fault classification 
models to form two alarm information sample sets; then, label 
each fault sample set with the corresponding fault events for 
model learning.

3. Label the single alarm information statements in the sample 
sets with the key and non-key labels.

4. Build the fault classification and key information extraction 
models as well as set the model hyperparameters.

5. Divide the fault sample set and alarm information statement 
set into training and test sets to train the fault classification 
and key information extraction models; then, test the model 
classification effects on the test set.

6. Place the samples producing incorrect classification results into 
the training set for retraining to improve model classification 
accuracy until the requirements of online diagnosis are met.

The trained models are used for online fault diagnosis, whose 
steps are as follows: 

1. A sliding time window is established with a time step of 
5 s and window size of 10 s to intercept the real-time alarm 
information received by the SCADA system and vectorize it as 
described above.
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FIGURE 8
Power grid fault diagnosis framework based on the DPCNN.

TABLE 2  Samples for fault classification model 1.

Data source Non-fault Simple fault Complete 
protection 
operation 

failure

Incomplete 
protection 
operation 

failure

Switch 
operation 
failure 

Developing 
fault

TS2000 100 260 46 32 270 370

Regional power grid 122 110 0 0 0 30

TABLE 3  Samples for fault classification model 2.

Data source Line fault Busbar fault Transformer 
fault

TS2000 100 260 46

Regional power 
grid

122 110 0

The model classification results are evaluated using three indicators, namely precision, 
recall, and F1-score.

2. The vectorized alarm information is input to the diagnosis 
model to obtain the fault classification result and determine the 
faulty equipment based on the faulty equipment identification 
strategy. If the fault classification result is complete protection 
operation failure, then the faulty equipment must be 
determined using the topology structure.

3. The dispatcher judges the diagnosis result. If this result is 
correct, it is directly added to the historical database for 
training and learning; if the result is incorrect, the dispatcher 
adds the correct fault label to the alarm information sample and 
sends it to the sample library to increase the library capacity.

TABLE 4  Relationships between different event types.

Event types Predicted as 
this type of 

event

Predicted as 
other events

Actually this type of 
event

TP FN

Actually another event FP TN

5 Experimental analyses

5.1 Experimental data and evaluation 
indicators

To demonstrate the applicability of the proposed models 
to alarm information having different description methods, we 
selected an actual power grid in a certain area as well as the 
TS2000 simulation system used to simulate the D5000 smart grid 
dispatching technology support system as the data sources to 
obtain samples. Here, the actual power grid contains 731 plants 
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TABLE 5  Model parameter settings.

Model 
parameters

Fault 
classification 

model

Key information 
extraction 

model

Word vector dimension 128 128

Sequence length 80 6

Vocabulary size 600 600

Number of convolution 
filters

200 150

Kernel size 3 3

Retention ratio 0.5 0.5

Learning rate 0.001 0.001

Batch training size 64 128

TABLE 6  Results of fault classification model 1.

Fault types Precision Recall F1

Single fault 1.00 1.00 1.00

Complete protection operation failure 1.00 1.00 1.00

Incomplete protection operation failure 1.00 1.00 1.00

Switch operation failure 1.00 1.00 1.00

Developing fault 1.00 1.00 1.00

Non-fault 1.00 1.00 1.00

TABLE 7  Results of fault classification model 2.

Fault types Precision Recall F1

Line fault 1.00 1.00 1.00

Busbar fault 1.00 1.00 1.00

Transformer fault 1.00 1.00 1.00

and substations, 5,382 lines, and 13 voltage levels ranging from 
0.22 kV to 500 kV. The TS2000 simulation system contains 60 
plants and substations, 825 lines, and 5 voltage levels ranging from 
10 kV to 500 kV. The alarm information samples generated by 
these two power grids have the following characteristics. The alarm 
information generated by the actual power grid is the aggregate-
level information and contains more non-fault information; this 
information has the characteristics of high noise and simplistic 
descriptions, as shown in Supplementary Appendix Table S1. The 
alarm information generated by the TS2000 simulation system has 
more detailed fault descriptions and less non-fault information; 

TABLE 8  Classification results of the key information extraction model.

Classification types Precision Recall F1

Critical information 1.00 1.00 1.00

Non-critical information 1.00 1.00 1.00

it the characteristics of low noise and high descriptiveness, 
as shown in Supplementary Appendix Table S2.

Based on the two fault classification models proposed previously, 
two alarm information sample sets and two alarm information 
statement sets each are obtained from the historical monitoring 
alarm information of the power grid in a certain area for 2019 
and the TS2000 simulation system; these data are then divided into 
training and test sets in the ratio of 7:3. The compositions of the 
two alarm information sample sets are shown in Tables 2, 3. The 
classification performances of the two models are evaluated using 
the metrics shown in Equation 8–10.

precision =
nTP

nTP + nFP
(8)

recall =
nTP

nTP + nFN
(9)

F1 = 2 ·
precision · recall
precision+ recall

(10)

In these equations, nTP, nFN , nFP , and nTN respectively represent 
the numbers of samples of true positive (TP), false negative (FN), 
false positive (FP), and true negative (TN) event types, and these 
event relationships are shown in Table 4. 

5.2 Diagnostic model parameter settings

In this work, Python programming language was used to 
build the DPCNN model for fault diagnosis based on the deep-
learning framework TensorFlow in the PyCharm development 
environment. To ensure that the model achieved the best 
classification performance and based on the samples shown in 
Table 3, the main parameters like convolution kernel size (kernel_
size), number of convolution kernels (num_filters), and sequence 
length (seq_length) input to the model were changed to analyze 
the influences of different parameter values on the F1 value of 
the model. Accordingly, the convolution kernel size, number 
of convolution kernels, and input sequence length of the fault 
classification model were set to 3, 200, and 80, respectively, while 
the corresponding parameters of the key information extraction 
model were set to 3, 150, and 6. The other parameters of the models 
were set according to their performances and computing speeds, 
as shown in Table 5. 

5.3 Experimental result analysis

5.3.1 Model test results
The two fault classification models and the key information 

extraction model were trained using the training sets of each group, 
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TABLE 9  Sample diagnosis results.

Sample types Composition sample Sample number Classification accuracy Faulty equipment 
identification accuracy

Test set 1 Simple fault 110 100% 100%

Test set 2 Complete protection operation 
failure

30 100% 0

Test set 3 Incomplete protection operation 
failure

20 100% 100%

Test set 4 Switch operation failure 32 100% 100%

and the corresponding test samples were tested. These test results 
are shown in Tables 6, 7, and 8. It is seen that both of the fault 
classification models can accurately determine the fault types of 
their respective samples and that the key information extraction 
model can correctly identify the key information in the alarm 
information samples. 

5.3.2 Model diagnosis results for different fault 
sample sets

Different test sample sets were selected for fault classification 
and faulty equipment identification, and their results 
are shown in Table 9; it is seen from the table that the 
proposed method can accurately distinguish various fault types 
as well as identify the faulty equipment under single faults, 
developing faults, incomplete protection operation failure, 
and switch operation failure. However, it cannot identify the 
faulty equipment under the complete protection operation 
failure scenario as this requires the use of the network 
topology structure. The switch operation failure scenario also 
requires the use of the network topology to determine the
faulty switches.

To address the concerns regarding the 100% classification 
accuracies reported in Tables 6, 7, and 8 for the fault classification 
models 1 and 2 as well as the key information extraction model, 
respectively, we reevaluated these models using 5-fold cross-
validation and computed the 95% confidence intervals (CIs). This 
analysis yielded mean accuracies of 99% ± 0.8%, 98% ± 1.0%, and 
99% ± 0.7% for the three models with 95% CIs of [97.5, 99.9], 
[96.2, 99.5], and [97.3, 99.8], respectively. These results are further 
discussed below and confirm the robustness of the models given 
the unrealistic nature of the initial 100% accuracy, thereby ensuring 
reliability for real-world power grid fault diagnoses.

To assess the performances of our models under noisy 
data conditions, we conducted experiments using the high-
noise regional power grid dataset, which contains duplicate and 
delayed alarm signals. On this dataset, the fault classification 
models 1 and 2 as well as the key information extraction model 
achieved accuracies of 97%, 96%, and 97%, respectively; these 
results leverage the robustness of the DPCNN and confirm the 
effectiveness of the proposed models in handling noisy alarm logs, 
enhancing their practical relevance for real-world power grid fault
diagnoses. 

5.3.3 Comparisons with other models
To demonstrate the classification effects of the two fault 

classification and the key information extraction models based 
on DPCNN, we performed comparisons and verifications with 
the commonly used CNN model as well as the backpropagation 
neural network with TF-IDF (BPNN+TF-IDF) model used for 
text classification. Here, the BPNN+TF-IDF model uses the 
TF-IDF method for sample vectorization and BPNN for text 
classification. Figure 9 shows the comparison of the classification 
results of the three models; it can be seen that the classification 
accuracy of the DPCNN model is significantly higher than those of 
the CNN and BPNN+TF-IDF models. Moreover, as the number of 
classes increases, both the CNN and BPNN+TF-IDF models have 
lower accuracies.

To enhance the credibility of the comparisons of the CNN and 
BPNN+TF-IDF models with the results shown in Tables 6, 7, and 8, 
we provide details of their architectures and hyperparameters. The 
CNN model consists of three convolutional layers (filter sizes: 3, 
4, and 5) with each layer followed by a max-pooling layer (pool 
size = 2) and a fully connected layer with 128 units; it uses the 
rectified linear unit (ReLU) activation function and a dropout 
rate of 0.5. The CNN was trained with a learning rate of 0.001 
and batch size of 32 for 50 epochs. The BPNN+TF-IDF model 
employs a BPNN with two hidden layers (256 and 128 units, ReLU 
activation) and the TF-IDF features extracted from alarm logs 
(maximum of 5,000 features); it was trained with a learning rate 
of 0.01, momentum of 0.9, and batch size of 64 for 100 epochs. 
These configurations ensure fair comparisons with the proposed
DPCNN model. 

5.3.4 Numerical example verification

Example 1: Analysis of an actual fault case at Weishan substation. 
Herein, the fault occurred in the Luolian D151 line, and the 
alarm information set generated by the fault is shown in 
Supplementary Appendix Table S1. The wiring diagram of the 
fault area is shown in Figure 10. The steps in the fault diagnosis 
are as follows: 

1. The alarm information set shown in Supplementary Appendix 
Table S1 is imputed to the fault classification models 1 and 2 
shown in Figure 5, and the corresponding classification results 
are shown in Table 10. Thus, it was determined that a simple 
line fault occurred in the system.
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FIGURE 9
Comparison of the classification results of the three model types for (a) non-fault, simple fault, incomplete protection operation failure, complete 
protection operation failure, switch operation failure, and developing fault. (b) Classification results for line, bus, and transformer faults. (c) Alarm 
information statement classification results.

2. The key information extraction model was next used 
to extract the key information statements from the 
alarm information set, which produced statements 

with numbers 2, 6, 7, 11, 12, and 15; the suspicious 
faulty equipment set was obtained from these
statements as
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FIGURE 10
Wiring diagram of the fault area in Example 1.

TABLE 10  Classification results of the fault models for example case 1.

Model Classification results

Fault classification model 1 Simple fault

Fault classification model 2 Line fault

D = {"LuolianD151line").

3. The fault classification results in Table 10 show that this sample 
is a simple line fault. According to the faulty equipment 
identification strategy, the suspected faulty equipment in D’ 
is “Luolian D151 Line,” which is determined as the faulty 
equipment. This finding is consistent with the actual faulty 
equipment, so the diagnosis result is correct.

Example 2: In the TS2000 simulation system, a permanent ABC 
three-phase fault occurred in the Yane line at Emei station, 
and the circuit breaker 2254 at Emei station failed to operate. 
The alarm information set generated by the fault is shown in 
Supplementary Appendix Table S2, and the wiring diagram of the 
fault area is shown in Figure 11. The steps in the fault diagnosis 
are as follows: 

1. The alarm information set shown in Supplementary Appendix
Table S2 is imputed to the fault classification models 1 and 2 
shown in Figure 5, and the corresponding classification results 
are shown in Table 11. Thus, it was determined that a line fault 
and a switch operation failure occurred in the system.

2. The key information sentences in the alarm information set 
were then extracted using the key information extraction 
model, which indicated that there was key information in 
sentences 1, 2, 9–33, 36–38, 41–61, 64–76, 77–81, 83–86, and 
93–107. The set of suspicious faulty equipment was obtained 
from these statements as 

D = {“Emei Station 220 kV Bus”, “Emei Station 220 kV Yane 
Line”, “Yandang Station 220 kV Yane Line”, “Zhongshan 
Station 220 kV Zhonge Line I”, “Emei Station #2 Main 
Transformer”, “Emei Station 220 kV Zhonge Line II”}.

3. From the classification results of the meter fault, it is known 
that this sample set constitutes a line fault. Thus, the set of 
suspicious faulty devices D’ is obtained by further narrowing 
the scope of the suspected faulty equipment: 

D' = {“Emei Station 220 kV Yane Line”, “Yandang Station 
220 kV Yane Line”, “Zhongshan Station 220 kV Zhonge 
Line I”, “Emei Station 220 kV Zhonge Line II”}

4. The fault classification results in Table 11 show that this sample 
is a switch operation failure. According to the faulty equipment 
identification strategy, the first suspected faulty equipment in 
D’ is “Emei Station 220 kV Yane Line,” which is determined 
as the faulty equipment. This finding is consistent with the 
actual faulty equipment, so the diagnosis result is correct. To 
determine the faulty circuit breaker, further analysis is required 
in combination with the network topology.

6 Summary

We propose a power grid fault diagnosis method based on 
the DPCNN for classifying and analyzing alarm text information. 
Accordingly, we established two fault classification models and a 
key information extraction model based on the DPCNN along 
with a faulty equipment identification strategy by integrating fault 
types with their temporal priorities. Compared with traditional 
fault diagnosis methods, the proposed method has the following 
advantages: 

1. The model can extract fault event features from the alarm 
text information directly to determine whether the faults 
contain unobservable events, such as switch and protection 
operation failures. Although these events must be determined 
through complex rule matching and reasoning in the rule 
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FIGURE 11
Wiring diagram of the fault area in Example 2.

TABLE 11  Classification results of the fault models for example case 2.

Model Classification results

Fault classification model 1 Switch operation failure

Fault classification model 2 Line fault

system, the corresponding measurement function settings are 
not sufficiently established.

2. The model results directly correspond with the alarm 
information without the need for manual alarm information 
timing analyses, information screening, or modeling, 
which helps achieve end-to-end power grid fault diagnosis 
using only the alarm text information while greatly 
reducing the workload of the personnel, modeling, and
maintenance.

3. The proposed method is tested on simulated and actual fault 
cases. The results show that this method can be adapted to 
different power grid environments as well as solved accurately 
under complex power grid fault conditions and complex data 
environments; therefore, it has high applicability for power 
grid fault diagnosis.

Aside from the demonstrated benefits of the proposed models 
based on the DPCNN, there exist certain limitations. When 
diagnosing complete protection and switch operation failures, there 
is still a need to rely on topological analysis to determine the possible 
fault ranges of these failures. However, the approach presented 
herein has high accuracy for identifying faulty equipment under 
complex conditions despite the aforementioned limitation and 
therefore has high application value.
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