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Grid fault diagnosis based on the
deep pyramid convolutional
neural network

Tian Lan*, Yuezhou Wu and Chen Wang

Electric Power Dispatching and Control Center of Guangdong Power Grid Co., Ltd., Guangzhou,
China

Traditional power grid fault diagnosis methods rely on manual experiences
to handle massive amounts of alarm information, have complex modeling
processes and insufficient generalization abilities, and lack direct diagnostic
research on the alarm information text. Therefore, we propose an intelligent
fault diagnosis method based on the deep pyramid convolutional neural network
(DPCNN), where we build an end-to-end fault classification model and a
key information extraction model to directly mine the implicit fault features
from the alarm information text to achieve accurate classification of fault
types and rapid location of faulty equipment. We performed comparative
experiments to show that the proposed method performs wellin complex power
grid scenarios and noisy data environments; the highest fault classification
accuracy achieved with this approach was up to 100%, and we could
effectively identify multiple fault types, such as simple faults, switch operation
failure, and protection operation failure. In addition, we integrated the
temporal-sequence-prioritized faulty equipment identification strategy with
the proposed method to further improve the fault location accuracy. A case
study verification was also performed, which shows that our method has
a fault recognition rate of up to 99.5% and can achieve 98.7% accurate
positioning after one-by-one elimination through the identification strategy to
significantly reduce manual intervention and have high applicability in actual
power grids.

deep pyramid convolutional neural network, power grid fault diagnosis, alarm
information text, feature extraction, fault classification

1 Introduction

The demand for electrical energy continues to grow with the development of social
productive forces. The large-scale integration of new energy sources into power grids
have made grid operations more complex and increased the risk of faults significantly.
In such situations, dispatchers must quickly and accurately locate the fault areas and
isolate them in a timely manner; otherwise, such conditions may trigger cascading faults,
leading to large-scale power outages or even grid collapse, which could further cause
significant economic losses. Grid fault diagnosis is an effective means of controlling the
development of faults by analyzing different electrical and non-electrical fault information
collected by the monitoring system to determine the fault areas and identify the faulty
equipment. The commonly used grid fault diagnosis methods are based on expert
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systems [1-3], optimization techniques [4], Petri nets [5], Bayesian
networks [6], fuzzy sets [7], and analytical models [8-10], among
others. These methods mainly establish diagnostic models based on
fault mechanisms and grid topology structures to achieve accurate
judgments of most faults through model solving. However, given
the expansion of grid scales, increased structural complexity, and
intelligent system developments, the secondary measurements and
monitoring data obtained by energy management systems (EMSs)
show massive growth trends. Traditional diagnostic methods have
difficulty handling such large amounts of alarm information
directly and still rely on manual experiences for screening of key
information, which cannot meet the demands of rapid diagnoses.
Therefore, there is an urgent need to develop an intelligent fault
diagnosis system that can assist dispatchers with improving their
decision-making efficiencies and accuracies.

The rapid development of artificial intelligence technologies,
such as deep learning, has necessitated the intelligent transformation
of grid fault diagnosis as an inevitable trend. The methods by which
we can use deep-learning technologies to effectively extract and
represent deep fault features from massive EMS data and develop
end-to-end intelligent fault diagnosis methods for EMS alarm
information have become key problems that need express solutions.
In response to the intelligent diagnosis needs in the field of grid
fault diagnosis and considering the current rapid developments in
artificial intelligence technologies, we propose a grid fault diagnosis
method based on the deep pyramid convolutional neural network
(DPCNN) for alarm information text. This approach realizes
fault classification of and key information extraction from alarm
information text; further, a decision-making strategy that fuses fault
types with temporal sequence features is designed to accurately
identify faulty equipment.

The main contributions of this study are as follows:

1. Anend-to-end fault diagnosis framework: By constructing two
fault classification models and a key information extraction
model, we realize end-to-end fault diagnosis from alarm
information text to classify faults while identifying the
corresponding equipment locations, thereby reducing manual
interventions significantly.

. Efficient feature extraction and classification: Using the
pyramid structure and residual connections of the DPCNN,
the global features of the alarm information are extracted
effectively to solve the problems of long text dependence and
gradient dispersion, thus achieving a classification accuracy
of up to 100%.

LA
identification strategy: By combining the fault types and

of the

alarm information, we propose a differentiated equipment

temporal-sequence-prioritized ~ faulty  equipment

temporal sequence distribution characteristics

identification strategy for simple and complex faults that
improves the accuracy of locating the faulty equipment.

2 Research status and related works

Power grid fault diagnosis is a key technology for ensuring
reliable operation of a power grid while achieving fault self-healing.
Since the application of the supervisory control and data acquisition
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(SCADA) system in the 1960s and given the advancements
in computational intelligence technologies and diversification of
monitoring data, research efforts on fault diagnosis have increased
continuously and remarkable achievements have been made. The
existing fault diagnosis methods can be mainly divided into rule-
based methods (expert systems, Petri nets, Bayesian networks, and
analytical models) and data-driven methods represented by neural
networks. The remainder of this section introduces these diagnostic
methods in detail.

2.1 Rule-based grid fault diagnosis
methods

2.1.1 Expert systems

Expert systems are the oldest type of fault diagnosis method with
excellent reasoning and interpretation capabilities; however, they
are difficult to adapt to rule-based construction and maintenance
problems caused by the scale expansion of modern power grids
and frequent changes in topology. Accordingly, a variety of
improvement schemes have been proposed in the past: Shan et al.
[11] combined these systems with data mining technology to
improve the rule base; Xu et al. [12] used knowledge grid technology
to construct a knowledge map; Georgilakis et al. [13] improved the
adaptability of the system through power grid partitioning using the
Bayesian theorem. Although these methods significantly improve
the diagnostic effects, the rule base still needs to be maintained
manually, which is difficult when meeting the online diagnosis needs
of large-scale power grids.

2.1.2 Petri nets

Petri nets entail graphical modeling to effectively represent the
topological structures and sequential fault events of power grids for
fault diagnoses. Ramirez-Trevino et al. [14] developed a dedicated
Petri net model for lines/buses that significantly improved the
positioning ability of severe faults, including protection operation
failure; the authors also introduced fuzzy reasoning technology [15]
to enhance the diagnostic robustness of the model for complex
faults like operation failure of automatic devices and impact
reduction of sequential chaos and noise interference. Zhu et al. [16]
innovatively adopted a matrix topological description method that
adapted to structural changes through dynamic matrix adjustment
and established an enhanced model integrating topological and
sequential information; however, when the scale of the power
grid is expanded, the model complexity increases exponentially,
the generalization ability of the model decreases with changes in
the topological structure, and it is difficult to achieve automatic
modeling in an environment with multiple data sources.

2.1.3 Bayesian networks

Bayesian network is a modeling method that combines graphical
representation and probabilistic reasoning to effectively handle
uncertain knowledge. For diagnosing power grid faults, Lu et al. [17]
established a Bayesian network model for the lines, transformers,
and buses to solve for uncertain alarm information. Ye et al. [18]
proposed a complex fault deduction method that can diagnose
faulty components and infer the timings of the protection actions.
Zhang et al. [19] combined the power grid structure and recorder
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data to accurately identify faulty equipment and protection
refusal/operating faults; however, this model relies on prior
probabilities and has limited capacity to diagnose complex faults.

2.1.4 Analytical models

Analytical models constitute a type of fault diagnosis method
that have garnered widespread attention in recent years. The aim of
this model is to establish an objective function based on the fault
hypothesis and screen the optimal fault hypothesis by minimizing
the objective function. Huang etal. [20] introduced the time
conflict index to the objective function to solve the problem of
temporal disorder of the alarm information. Yi et al. [21] established
a complete analytical model by setting differentiated weights
for the protection and circuit breakers to realize dimensionality
reduction and improve the diagnostic accuracy; although this
model has a strict logic and strong theoretical support and can
effectively handle complex faults and diagnostic problems with
uncertain information, the model complexity increases as more fault
information is integrated and the solution difficulty is enhanced
significantly.

2.2 Data-driven grid fault diagnosis
methods

In recent years, important research progress has been made on
power grid fault diagnoses based on artificial neural networks. Bi
etal. [22] conducted a series of explorations on the applications
of traditional neural networks; here, they mainly explored radial
basis function (RBF) networks for processing the status information
of protection devices. Cardoso etal. [23] developed an improved
RBF model coupled with a fuzzy network; dos Santos Fonseca
et al. [24] successfully applied reset neural networks and multilayer
perceptrons to model the protection action principle; Zou et al.
[25] reported the conversion of protection action information
to percentage inputs. With respect to deep learning, Wen et al.
[26] reported a significant breakthrough by pioneering the use
of convolutional neural networks (CNNs) to achieve fault-phase
selection and discrimination between the inside and outside areas.
Yang et al. [27] used signal-to-image conversion along with CNNs
to greatly improve the feature extraction ability. The SR-CNN model
proposed by Zhang etal. [28] effectively solved the processing
problem of phasor measurement unit (PMU) time-series data. The
P-CNN model developed by Alqudah et al. [29] showed promising
performance in the positioning of DC transmission lines. Other
researchers [30] have combined k-means clustering with recurrent
neural networks (RNNs) to achieve accurate classification of fault
types. The above studies provide new technical paths for intelligent
power grid fault diagnoses through diverse data input methods like
status signals, electrical quantities, and images as well as innovative
network structure designs (parallel, coupled, etc.).

Although various scholars have achieved fruitful results with
regard to power grid fault diagnoses, the existing methods are still
constrained by the following main problems:

1. Rule-based fault diagnosis models rely on logical rules;
thus, when constructing fault events with more complex
logical relationships, the logical constraints are cumbersome,
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knowledge representation is difficult, and model complexity is
high. In addition, large amounts of alarm information need to
be screened and classified during the modeling process, which
increases the modeling workload.

. The portability and generalization ability of rule diagnosis
models are poor and cannot be adapted to the constantly
changing power grid operation modes or network topology
structures; hence, they cannot handle uncertainty problems
effectively.

. Extant data-driven fault diagnosis methods mostly diagnose
the electrical quantity information collected by wide area
monitoring systems and PMUs; thus, they lack direct diagnosis
research on the EMS alarm information text, making it
difficult to automatically extract the characteristic differences
of different power grids from fault cases.

In response to the intelligent needs of power grid fault diagnoses,
we propose a fault diagnosis method based on deep reinforcement
learning. This method directly processes the alarm information
text to significantly improve the intelligent diagnosis level and
operational efficiency of the diagnostic system.

2.3 Methods of representing alarm text
information

In the proposed fault diagnosis framework for power grid
systems, the alarm text information is represented using a word
vector matrix approach integrated with the DPCNN. This approach
converts each alarm statement into a word vector matrix A €
RM*N where M is the number of words and N is the dimension of
each word vector, as detailed in Equation 1. Using pretrained word
embeddings, such as word2vec, this approach captures the semantic
relationships within alarm texts, enabling the DPCNN to extract the
implicit fault features critical for identifying fault types like simple
faults, switch failures, and protection failures. Then, sentence vectors
are formed by concatenating the word vectors while preserving the
temporal context and word order, which are essential for processing
sequential alarm data from SCADA systems, as shown in the
example alarm sequences in Supplementary Appendix Table S1.

Several alternative text representation methods have been
applied in fault diagnosis and related natural language processing
tasks. The term frequency inverse document frequency (TF-
IDF) method represents text parts as sparse vectors based on
the word frequency and corpus rarity, offering computational
simplicity but failing to capture the semantic relationships or
temporal dependencies, which limits its effectiveness for complex
alarm texts in power grid applications. The bag-of-words (BoW)
model, which counts word occurrences without regard to order or
context, is similarly constrained and unsuitable for distinguishing
nuanced fault types where sequences matter. Recent advances
like the bidirectional encoder representations from transformers
(BERT) method provide contextualized embeddings by modeling
the bidirectional sentence context to achieve superior semantic
understanding. However, the high computational demands of BERT
and its need for large labeled datasets make it less practical for real-
time fault diagnoses in resource-constrained environments, such as
power grid control centers.
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The word vector matrix approach with DPCNN offers distinct
advantages over the aforementioned alternatives. By leveraging
pretrained embeddings, it captures semantic nuances and enables
robust feature extraction for diverse fault scenarios. Compared
to BERT, its computational efficiency ensures suitability for real-
time application, which is critical for rapid fault diagnosis in a
power grid. Additionally, preserving the temporal context allows
effective analysis of the sequential alarm data, unlike TF-IDF and
BoW, which overlook the word order. However, the proposed
approach relies on the quality of pretrained embeddings, which
may not fully address domain-specific terminology in power grid
systems; long alarm texts may also challenge the ability of the
DPCNN to model extended dependencies. Thus, future research
efforts could explore hybrid models combining the efficiency of
DPCNN with the contextual depth of BERT to enhance domain-
specific text representation, provided the computational constraints
are mitigated.

2.4 Comparative analysis of different
feature extraction models

In our proposed framework for power grid fault diagnosis,
the DPCNN is employed to extract features from alarm text
information. The DPCNN leverages a pyramid structure with
residual connections to capture both local and long-range
dependencies in the alarm texts, enabling robust extraction
of implicit fault features, as represented by the word vector
matrix in Equation 1. This approach achieves high classification
accuracy and fault recognition range, as evidenced by the
experimental results presented in Section 3 and the alarm sequence
analysis given in Supplementary Appendix Table S1. The ability of
the DPCNN to model sequential data from SCADA systems makes
it particularly suitable for identifying complex fault types, such as
switch failures and protection malfunctions, in real-time power grid
applications.

Several alternative models have been explored for feature
extraction in fault diagnosis models and related efforts. The long
short-term memory (LSTM) network is a type of RNN designed
to handle sequential data and has been applied to power grid
fault diagnosis for its ability to capture temporal dependencies.
However, LSTM suffers from high computational complexity and
vanishing potential gradients, which can hinder performance
with long alarm texts. BERT offers superior feature extraction
by capturing the bidirectional context, which makes it effective
for complex text analyses in fault diagnosis scenarios. Despite
their high accuracies, BERT-based models require substantial
computational resources and large labeled datasets, rendering them
less feasible for real-time applications in resource-constrained
power grid environments. Graph neural networks (GNNs) have
emerged as a promising approach for modeling power grid
topologies in terms of graphs by integrating alarm text with
structural information. Although GNNs excel in topology-
aware fault diagnoses, their focus on the graph-based features
makes them less optimized for pure text feature extraction
compared to DPCNN.

The DPCNN used herein outperforms the above alternatives
in several key aspects; its pyramid structure enables efficient
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capture of both local and global text features to achieve
balance between high accuracy and computational efficiency, as
demonstrated in Section 3. Unlike LSTM, the DPCNN is not prone
to gradient issues and processes lengthy sequences more effectively,
making it suitable for real-time fault diagnosis. Compared to BERT,
the DPCNN requires fewer computational resources, aligning
with the practical constraints at power grid control centers.
Although GNNs are advantageous for topology-based analyses,
the focus of DPCNN on text feature extraction ensures superior
performance for alarm text processing. However, DPCNN relies
on pretrained embeddings, which may limit its ability to capture
highly domain-specific fault patterns; further, its performance
on extremely lengthy texts could be constrained by its receptive
field. Future works could therefore explore integrating DPCNN
with GNNs to combine text-based and topology-based features,
potentially enhancing fault localization in complex power grid
scenarios.

3 Fault information feature extraction
based on DPCNN

3.1 Alarm text information representation

In the aftermath of a power grid failure, the protection
and circuit breaker operation information related to the faulty
equipment will be uploaded to the SCADA system in real time.
Meanwhile, the SCADA system will receive additional alarm
information, such as device failure and uncharged spring of the
switch mechanism. These details are recorded in chronological order
to generate the alarm information set at the time of the fault. Table 1
shows an example of the alarm information in a certain area.
To facilitate computer processing, it is necessary to represent
the text of the alarm information set in a numerical manner.
The available text representation methods are mainly divided into
discrete representation methods based on one-hot, BoW, and TF-
IDF models or distributed representation methods based on n-
gram, word2vec, and GloVe models. Among these, the word2vec
model can map words from a high-dimensional space to a low-
dimensional space while retaining the associations between words,
thereby solving the problems of vector sparsity and loose semantic
connections in the text representation process effectively. Therefore,
we use the word2vec model to vectorize the alarm text information.
The vectorization process entails the following steps:

1. Remove the time column in the alarm text information.

2. Segment the alarm text information by dividing each
text according to the plant station, equipment, equipment
description, and action description.

3. Generate word vectors using the word2vec model. This
model uses the contextual information of words to generate
low-dimensional word vectors representing the associations
between words; the closer the semantics of the words, the closer
are the corresponding word vectors in the vector space.

4. Generate sentence vectors based on the word vectors
by averaging the word vectors of all words in a single
alarm information sentence to obtain the corresponding
sentence vector.
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TABLE 1 Alarm information instances.

10.3389/fphy.2025.1624919

Station Equipment Equipment description Action description

2019-07-08 07:20:21:01 Hetang Whole station Accident total signal Action
2019-07-08 07:20:21:02 Hetang Xufeng Y150 Protect exports Action
2019-07-08 07:20:21:03 Hetang Xufeng Y150 switch - Open the breaker
2019-07-08 07:20:22:01 Hetang Xufeng Y150 Reclosing outlet Action
2019-07-08 07:20:22:02 Hetang Xufeng Y150 switch institutional spring does not have stored energy Action
2019-07-08 07:20:22:03 Hetang Xufeng Y150 switch - Close the switch
2019-07-08 07:20:24:01 Xitao 110 kV fault recording waveform Protection device failure Reset
2019-07-08 07:20:27:01 Hetang Xufeng Y150 switch institutional spring does not have stored energy Reset
2019-07-08 07:20:28:01 Jianshan station #2 Capacitor switch institutional spring does not have stored energy Reset
2019-07-08 07:20:31:01 Ankang #2 Main transformer Online oil filtering device startup Reset
2019-07-08 07:20:32:01 Hetang Xufeng Y150 Reclosing outlet Reset
2019-07-08 07:20:34:01 Hetang Xufeng Y150 Protect exports Reset
2019-07-08 07:20:22:01 Hetang Xufeng Y150 Reclosing outlet Action
2019-07-08 07:20:54:01 Hetang Whole station Accident total signal Reset

5. Generate the sentence vector representation matrix of the
text by sequentially concatenating the corresponding sentence
vectors of the alarm information sentences.

1)

X =X, 00X, @ OX; @ DX,

In the above equation, the symbol “@” represents vector

concatenation, x; is the sentence vector of the ith alarm message,

and x;., is the concatenation of the sentence vectors of the

first to nth alarm messages corresponding to the sentence

vector matrix in Figure 1.

x=xlexe oxe ox @)

In Equation 2, k is the dimension size of the sentence vector, and

x; is the j-dimensional component of the sentence vector of the ith

alarm information. For a single alarm message statement, steps (4)

and (5) are omitted and the word vectors in the statement are directly
spliced to form the word vector matrix, as shown in Figure 2.

3.2 DPCNN

The DPCNN constitutes a word-level-deep text classification
network in which the convolutional and pooling layers are
continuously deepened based on the CNN. The structure of the
DPCNN model is shown in Figure 3 and is mainly composed of a
text region embedding layer, two convolutional blocks, two pooling

Frontiers in Physics

05

layers, and a fully connected layer. Among these, the convolutional
blocks include residual modules to avoid the gradient vanishing
problem caused by deepening of the network layers. Once the output
from the region embedding layer passes through the operations
of the convolutional blocks, the sequence length is halved and
perceived text segments are doubled. If the model contains multiple
pyramid convolutional modules, the alternating operations of the
convolutional block and 1/2 pooling layer reduce the length of the
text sequence exponentially, resulting in a “pyramid” shape as the
number of modules increases. The pyramid convolutional module
of the DPCNN model enables perception of long-distance text
information and enhances the ability to extract global text features.

3.3 Feature extraction based on deep CNN

Given the global feature extraction ability of the DPCNN
model for long-distance texts, we selected the DPCNN to extract
features from the alarm text information. Given the alarm text
A € R™, where n is the text sequence length and k is the
sentence vector dimension, the regional features of the text are
first extracted through the region embedding layer. Then, the
convolutional operations are performed successively through the
pyramid convolution module and convolution blocks, and the
feature vector outputs of the convolutional blocks are max-pooled
by the final pooling layer to obtain the global features of the
alarm text. A convolution kernel parameterized by a weight matrix
w € R™ s used to perform the convolution operations in the
direction of the text sequence length, and the convolution process
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FIGURE 3
Structure of the deep pyramid convolutional neural network (DPCNN)

is as shown in Equation 3:

¢ = f(W “Kijph-1 b) (3)

In the above equation, x;;,;,_; refers to the h sentence vector
matrices contained in the convolution kernel window, b € R
is the bias vector, f is the non-linear activation function, and
is the feature value after convolution. A text of length n

i
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contains (n - h + 1) windows {x;,,%511>"*>X,_ps1.a} » and the
convolution operation is performed on each window to generate
the corresponding features. All the features are then concatenated to
obtain the feature vector of the alarm information text, as shown in
Equation 4:

)

Cregion = [Cl’ G "Cn—h+1]
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FIGURE 4
Visualization of the feature maps of the pyramid convolution module.

The above feature vector is input to the convolutional block
for equal-length convolution and identity mapping, and the output
feature vector is given as follows:

(5)

_ ! ! !
Ceonv = [Cl’cz’ '“’Cn—th!]

In Equation 5, the dimension of c,,,, is the same as that of ¢

conv region*

The output from the first convolutional block is passed through
the 1/2 pooling layer for downsampling before being input to
the next convolutional block. The final pooling layer performs
max pooling on the feature vector output from the convolutional
block to produce the global features. Figure 4 shows the feature
vector diagrams extracted by each of the convolutional and pooling
layers in the pyramid convolutional module once an alarm text
sequence of length 20 (seg_length = 20) is input to the DPCNN
model (kernel_size = 3). The different colored areas represent feature
values of different sizes; larger feature values are closer to the color
white and have greater impacts on the text classification. It can be
seen from the figure that the existence of the pyramid convolutional
module changes the length of the feature vector in a pyramid shape.

4 Power grid fault diagnosis model
based on the DPCNN

We established two fault classification models based on the
DPCNN to classify faults of different complexities and different
types of faulty equipment for the alarm information set generated
during a fault. Simultaneously, a key information extraction model
based on the DPCNN is designed to retrieve the key sentences in the
alarm text information to further determine the faulty equipment.
Based on fault classification results of different complexities, a faulty
equipment identification strategy is proposed by integrating the fault
types with their temporal priorities.

4.1 Fault classification models
We designed two fault classification models based on DPCNN

for the alarm information set, as shown in Figure 5. Classification
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model 1 can be used to distinguish between non-fault, simple
fault, complete protection operation failure, incomplete protection
operation failure, switch operation failure, and developing fault
conditions. The definitions of these fault types are as follows:

1. Simple fault: There is only one faulty equipment in the fault
event, and both the protection and circuit breaker operate
correctly.

. Switch operation failure: Here, there is only one faulty
equipment in the fault event, and the protection operates
correctly but the circuit breaker operation fails, resulting
in deployment of the backup protection of the adjacent
equipment.

3. Incomplete protection operation failure: This refers to failure
of one or a part of the protection systems when an equipment
with dual protection is faulty; here, the other protection system
trips the circuit breaker so that the fault range does not expand.

. Complete protection operation failure: This refers to the
condition where the protection system of an electrical
equipment fails; in this case, the backup protection of the
adjacent equipment is deployed, and the fault range expands.

. Developing fault: In this work, this type of fault refers to the
protective actions of other equipment within the fault spread
range owing to failure of a certain equipment and removal of
the non-faulty equipment, such as 10-kV or 35-kV capacitors.

Classification model 2 can be used to distinguish line, busbar,
and transformer faults. The structures of the two classification
models are identical, with only the inputs and outputs being
different. The input layer of each model is the vector matrix A €
R™¥ corresponding to the set of alarm information to be classified.
The probability of each classification label is calculated by the fully
connected layer, and the label with the highest probability is the
considered as the fault classification result corresponding to the
alarm text information.

4.2 Key information extraction model

We also designed a key information extraction model based on
the DPCNN for a single alarm message in the alarm information
set to extract key details like the alarm information of the
protection and circuit breaker actions. The input layer of this
model is shown in Figure 6 and is the word vector matrix A € R™
corresponding to the alarm information statement to be classified;
here, m is the number of words in the statement, and k is the
dimension of the word vector. The model output is the classification
result of the alarm information statement, i.e., whether it contains
key or non-key information. The alarm information set is input
to the key information extraction model, and the classification
result of each alarm information statement is output. If the alarm
information statement is considered key information, then the
equipment involved in this statement are defined as suspicious faulty
equipment. The equipment involved in all the key information in the
alarm information set are represented as the set of suspicious faulty
equipment D.

D=

{dl)dzy"')dp"')dn} (6)

frontiersin.org


https://doi.org/10.3389/fphy.2025.1624919
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Lan et al.

r

xxx whole station total accident

signal action

Fault XXX station xxx line protect the

v

y)Suof 9ouonbas 1xa

Mode 2 export operation

Alarm XXX station xxx line switch

opening N

XXX station xxx line reclosing Reai
L egion

operation

conv

embedding
xxx station xxx line the spring 3.0

(@

xxx whole station total accident

Classifica signal action

. XXX station xxx line protect the
tion

Mode 2

v

y)Sua] oouanbas 1xa ],

1 export operation >

xxx station xxx line switch

Alarm

opening N N

XXX station xxx line reclosing Rei
L egion

operation .
P embedding

XXX station xxx line the spring 30

(b)

FIGURE 5
Fault classification models: (a) model 1 and (b) model 2.
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In Equation 6, d; is the device involved in the ith key information
in the alarm information set, and n is the number of suspicious
faulty devices. To improve the accuracy of identifying faulty devices,
the range of the set of suspicious faulty devices is further narrowed
according to the fault classification results of suspected faulty
transformers. The working mechanism of the key information
extraction model for identifying “key information” from alarm texts
is based on the DPCNN that extracts semantic features from alarm
3) and
max-pooling operations, followed by classification of text segments

logs using a series of convolutional layers (filter size =

into “key” or “non-key” based on their relevance to fault diagnosis
(e.g., equipment identifiers and fault timestamps) through the fully
connected layer.

Frontiers in Physics 08

4.3 Integrated fault-type and
temporal-sequence-prioritized faulty
equipment identification strategy

Once the set of suspicious faulty equipment is determined using
the key information extraction model, it is necessary to identify the
actual faulty equipment. In this work, we use an integrated fault-type
and temporal-sequence-prioritized faulty equipment identification
strategy to determine the temporal distribution characteristics of the
alarm information from different fault types and obtain the final set
of suspicious faulty devices D'.

D' ={d,dy, . d,,} Q)
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In Equation 7, m < n. Based on the classification results of model
2, D’ may be the set of suspected faulty lines, set of suspected faulty
buses, or set of suspected faulty transformers. The faulty equipment
identification strategy used in this work is shown in Figure 7.

1. When the classification result of model 1 is a simple fault, the
equipment in the set D are identified as the faulty equipment.

2. When the classification result of model 1 is switch operation
failure, developing fault, or incomplete protection operation
failure, the first equipment in set D is identified as the faulty
equipment.

3. When the classification result of model 1 is complete protection
operation failure, the faulty equipment must be determined
using the network topology.

The power grid fault diagnosis framework based on DPCNN
is shown in Figure 8 and consists of two parts: model training and
testing as well as online diagnosis. The steps of the model training
and testing process are as follows:

1. Obtain the alarm information sets of historical fault events
collected by the SCADA system as the sample set, and use the
word2vec model to vectorize the alarm information sample set
and single alarm information separately.

Frontiers in Physics 09

. Divide the sample set based on the two fault classification

models to form two alarm information sample sets; then, label
each fault sample set with the corresponding fault events for
model learning.

. Label the single alarm information statements in the sample

sets with the key and non-key labels.

. Build the fault classification and key information extraction

models as well as set the model hyperparameters.

. Divide the fault sample set and alarm information statement

set into training and test sets to train the fault classification
and key information extraction models; then, test the model
classification effects on the test set.

. Place the samples producing incorrect classification results into

the training set for retraining to improve model classification
accuracy until the requirements of online diagnosis are met.

The trained models are used for online fault diagnosis, whose

steps are as follows:

1. A sliding time window is established with a time step of

5 s and window size of 10 s to intercept the real-time alarm
information received by the SCADA system and vectorize it as
described above.
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Power grid fault diagnosis framework based on the DPCNN.

TABLE 2 Samples for fault classification model 1.

Data source Non-fault | Simple fault Complete Incomplete Switch Developing
protection protection operation fault
operation operation failure

failure failure
TS2000 100 260 46 32 270 370
Regional power grid 122 110 0 0 0 30
TABLE 3 Samples for fault classification model 2. TABLE 4 Relationships between different event types.
Data source Line fault Busbar fault Transformer Event types Predicted as Predicted as
fault this type of other events
event
TS2000 100 260 46
Actually this type of TP FN
Regional power 122 110 0 event
grid
Actually another event FP N
The model classification results are evaluated using three indicators, namely precision,

recall, and F1-score.

2. The vectorized alarm information is input to the diagnosis 5 Ex perimental analyses
model to obtain the fault classification result and determine the
faulty equipment based on the faulty equipment identification 5.1 Experi mental data and evaluation
strategy. If the fault classification result is complete protection  indicators
operation failure, then the faulty equipment must be
determined using the topology structure. To demonstrate the applicability of the proposed models
3. The dispatcher judges the diagnosis result. If this result is  to alarm information having different description methods, we
correct, it is directly added to the historical database for  selected an actual power grid in a certain area as well as the
training and learning; if the result is incorrect, the dispatcher ~ TS2000 simulation system used to simulate the D5000 smart grid
adds the correct fault label to the alarm information sampleand ~ dispatching technology support system as the data sources to
sends it to the sample library to increase the library capacity. obtain samples. Here, the actual power grid contains 731 plants
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TABLE 5 Model parameter settings.

10.3389/fphy.2025.1624919

TABLE 8 Classification results of the key information extraction model.

Model Fault Key information Classification types Precision Recall F1
parameters classification extraction
model model Critical information 1.00 1.00 1.00
Word vector dimension 128 128 Non-critical information 1.00 1.00 1.00
Sequence length 80 6
Vocabulary size 600 600 it the characteristics of low noise and high descriptiveness,
as shown in Supplementary Appendix Table S2.
Number of convolution 200 150 . . .
alters Based on the two fault classification models proposed previously,
two alarm information sample sets and two alarm information
Kernel size 3 3 statement sets each are obtained from the historical monitoring
alarm information of the power grid in a certain area for 2019
Retention ratio 05 05 and the TS2000 simulation system; these data are then divided into
Learning rate 0,001 0,001 training and test sets in the ratio of 7:3. The compositions of the
two alarm information sample sets are shown in Tables 2, 3. The
Batch training size 64 128 classification performances of the two models are evaluated using

TABLE 6 Results of fault classification model 1.

Fault types ’ Precision ‘ Recall ’ F1

Single fault 1.00 1.00 1.00
Complete protection operation failure 1.00 1.00 1.00
Incomplete protection operation failure 1.00 1.00 1.00
Switch operation failure 1.00 1.00 1.00
Developing fault 1.00 1.00 1.00
Non-fault 1.00 1.00 1.00
TABLE 7 Results of fault classification model 2.
Fault types Precision Recall F1
Line fault 1.00 1.00 1.00
Busbar fault 1.00 1.00 1.00
Transformer fault 1.00 1.00 1.00

and substations, 5,382 lines, and 13 voltage levels ranging from
0.22kV to 500 kV. The TS2000 simulation system contains 60
plants and substations, 825 lines, and 5 voltage levels ranging from
10kV to 500 kV. The alarm information samples generated by
these two power grids have the following characteristics. The alarm
information generated by the actual power grid is the aggregate-
level information and contains more non-fault information; this
information has the characteristics of high noise and simplistic
descriptions, as shown in Supplementary Appendix Table S1. The
alarm information generated by the TS2000 simulation system has
more detailed fault descriptions and less non-fault information;
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the metrics shown in Equation 8-10.

rp

precision = ——— (8)
Nrp+ Npp
n
recall = ——2 9)
Nrp+ gy
recision - recall
F=2.2 (10)

precision + recall

In these equations, nyp, 1y » npp » and npy respectively represent
the numbers of samples of true positive (TP), false negative (FN),
false positive (FP), and true negative (TN) event types, and these
event relationships are shown in Table 4.

5.2 Diagnostic model parameter settings

In this work, Python programming language was used to
build the DPCNN model for fault diagnosis based on the deep-
learning framework TensorFlow in the PyCharm development
environment. To ensure that the model achieved the best
classification performance and based on the samples shown in
Table 3, the main parameters like convolution kernel size (kernel
size), number of convolution kernels (num_filters), and sequence
length (seq_length) input to the model were changed to analyze
the influences of different parameter values on the F1 value of
the model. Accordingly, the convolution kernel size, number
of convolution kernels, and input sequence length of the fault
classification model were set to 3, 200, and 80, respectively, while
the corresponding parameters of the key information extraction
model were set to 3, 150, and 6. The other parameters of the models
were set according to their performances and computing speeds,
as shown in Table 5.

5.3 Experimental result analysis
5.3.1 Model test results

The two fault classification models and the key information
extraction model were trained using the training sets of each group,
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TABLE 9 Sample diagnosis results.

10.3389/fphy.2025.1624919

Sample types Composition sample Sample number Classification accuracy Faulty equipment
identification accuracy
Test set 1 Simple fault 110 100% 100%
Test set 2 Complete protection operation 30 100% 0
failure
Test set 3 Incomplete protection operation 20 100% 100%
failure
Test set 4 Switch operation failure 32 100% 100%

and the corresponding test samples were tested. These test results
are shown in Tables 6, 7, and 8. It is seen that both of the fault
classification models can accurately determine the fault types of
their respective samples and that the key information extraction
model can correctly identify the key information in the alarm
information samples.

5.3.2 Model diagnosis results for different fault
sample sets

Different test sample sets were selected for fault classification
their
are shown in Table9; it is seen from the table that the

and faulty equipment identification, and results
proposed method can accurately distinguish various fault types
as well as identify the faulty equipment under single faults,
developing faults, incomplete protection operation failure,
and switch operation failure. However, it cannot identify the
faulty equipment under the complete protection operation
failure scenario as this requires the use of the network
topology structure. The switch operation failure scenario also
requires the use of the network topology to determine the
faulty switches.

To address the concerns regarding the 100% classification
accuracies reported in Tables 6, 7, and 8 for the fault classification
models 1 and 2 as well as the key information extraction model,
respectively, we reevaluated these models using 5-fold cross-
validation and computed the 95% confidence intervals (CIs). This
analysis yielded mean accuracies of 99% + 0.8%, 98% * 1.0%, and
99% + 0.7% for the three models with 95% CIs of [97.5, 99.9],
[96.2, 99.5], and [97.3, 99.8], respectively. These results are further
discussed below and confirm the robustness of the models given
the unrealistic nature of the initial 100% accuracy, thereby ensuring
reliability for real-world power grid fault diagnoses.

To assess the performances of our models under noisy
data conditions, we conducted experiments using the high-
noise regional power grid dataset, which contains duplicate and
delayed alarm signals. On this dataset, the fault classification
models 1 and 2 as well as the key information extraction model
achieved accuracies of 97%, 96%, and 97%, respectively; these
results leverage the robustness of the DPCNN and confirm the
effectiveness of the proposed models in handling noisy alarm logs,
enhancing their practical relevance for real-world power grid fault

diagnoses.
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5.3.3 Comparisons with other models

To demonstrate the classification effects of the two fault
classification and the key information extraction models based
on DPCNN, we performed comparisons and verifications with
the commonly used CNN model as well as the backpropagation
neural network with TF-IDF (BPNN+TF-IDF) model used for
text classification. Here, the BPNN+TF-IDF model uses the
TF-IDF method for sample vectorization and BPNN for text
classification. Figure 9 shows the comparison of the classification
results of the three models; it can be seen that the classification
accuracy of the DPCNN model is significantly higher than those of
the CNN and BPNN+TF-IDF models. Moreover, as the number of
classes increases, both the CNN and BPNN+TF-IDF models have
lower accuracies.

To enhance the credibility of the comparisons of the CNN and
BPNN+TE-IDF models with the results shown in Tables 6, 7, and 8,
we provide details of their architectures and hyperparameters. The
CNN model consists of three convolutional layers (filter sizes: 3,
4, and 5) with each layer followed by a max-pooling layer (pool
size = 2) and a fully connected layer with 128 units; it uses the
rectified linear unit (ReLU) activation function and a dropout
rate of 0.5. The CNN was trained with a learning rate of 0.001
and batch size of 32 for 50 epochs. The BPNN+TF-IDF model
employs a BPNN with two hidden layers (256 and 128 units, ReLU
activation) and the TF-IDF features extracted from alarm logs
(maximum of 5,000 features); it was trained with a learning rate
of 0.01, momentum of 0.9, and batch size of 64 for 100 epochs.
These configurations ensure fair comparisons with the proposed
DPCNN model.

5.3.4 Numerical example verification

Example 1: Analysis of an actual fault case at Weishan substation.
Herein, the fault occurred in the Luolian D151 line, and the
alarm information set generated by the fault is shown in
Supplementary Appendix Table SI. The wiring diagram of the
fault area is shown in Figure 10. The steps in the fault diagnosis
are as follows:

1. The alarm information set shown in Supplementary Appendix
Table S1 is imputed to the fault classification models 1 and 2
shown in Figure 5, and the corresponding classification results
are shown in Table 10. Thus, it was determined that a simple
line fault occurred in the system.
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FIGURE 9
Comparison of the classification results of the three model types for (a) non-fault, simple fault, incomplete protection operation failure, complete

protection operation failure, switch operation failure, and developing fault. (b) Classification results for line, bus, and transformer faults. (c) Alarm
information statement classification results.

2. The key information extraction model was next used with numbers 2, 6, 7, 11, 12, and 15; the suspicious
to extract the key information statements from the faulty =~ equipment set was obtained from these
alarm information set, which produced statements statements as
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Wiring diagram of the fault area in Example 1.

TABLE 10 Classification results of the fault models for example case 1.

Model Classification results

Fault classification model 1 Simple fault

Fault classification model 2 Line fault

D = {"LuolianD151line").

3. The fault classification results in Table 10 show that this sample
is a simple line fault. According to the faulty equipment
identification strategy, the suspected faulty equipment in D’
is “Luolian D151 Line]” which is determined as the faulty
equipment. This finding is consistent with the actual faulty
equipment, so the diagnosis result is correct.

Example 2: In the TS2000 simulation system, a permanent ABC
three-phase fault occurred in the Yane line at Emei station,
and the circuit breaker 2254 at Emei station failed to operate.
The alarm information set generated by the fault is shown in
Supplementary Appendix Table S2, and the wiring diagram of the
fault area is shown in Figure 11. The steps in the fault diagnosis
are as follows:

1. The alarm information set shown in Supplementary Appendix
Table S2 is imputed to the fault classification models 1 and 2
shown in Figure 5, and the corresponding classification results
are shown in Table 11. Thus, it was determined that a line fault
and a switch operation failure occurred in the system.

2. The key information sentences in the alarm information set
were then extracted using the key information extraction
model, which indicated that there was key information in
sentences 1, 2, 9-33, 36-38, 41-61, 64-76, 77-81, 83-86, and
93-107. The set of suspicious faulty equipment was obtained
from these statements as

Frontiers in Physics 14

D = {“Emei Station 220 kV Bus”, “Emei Station 220 kV Yane
Line”, “Yandang Station 220 kV Yane Line”, “Zhongshan
Station 220 kV Zhonge Line I, “Emei Station #2 Main
Transformer”, “Emei Station 220 kV Zhonge Line II”}.

3. From the classification results of the meter fault, it is known
that this sample set constitutes a line fault. Thus, the set of
suspicious faulty devices D’ is obtained by further narrowing
the scope of the suspected faulty equipment:

D' = {“Emei Station 220 kV Yane Line”, “Yandang Station
220kV Yane Line”, “Zhongshan Station 220 kV Zhonge
Line I”, “Emei Station 220 kV Zhonge Line II”}

4. The fault classification results in Table 11 show that this sample
is a switch operation failure. According to the faulty equipment
identification strategy, the first suspected faulty equipment in
D’ is “Emei Station 220 kV Yane Line,” which is determined
as the faulty equipment. This finding is consistent with the
actual faulty equipment, so the diagnosis result is correct. To
determine the faulty circuit breaker, further analysis is required
in combination with the network topology.

6 Summary

We propose a power grid fault diagnosis method based on
the DPCNN for classifying and analyzing alarm text information.
Accordingly, we established two fault classification models and a
key information extraction model based on the DPCNN along
with a faulty equipment identification strategy by integrating fault
types with their temporal priorities. Compared with traditional
fault diagnosis methods, the proposed method has the following
advantages:

1. The model can extract fault event features from the alarm
text information directly to determine whether the faults
contain unobservable events, such as switch and protection
operation failures. Although these events must be determined
through complex rule matching and reasoning in the rule

frontiersin.org


https://doi.org/10.3389/fphy.2025.1624919
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Lan et al. 10.3389/fphy.2025.1624919

___________ -
AY
220k T 220kV 'I
|
1
andang 1
tation |
1
1
1 200kV ;
| DArame - —------ -
, 1155 2252 254§ \‘
! 100KV 220kV 1 . 1
11112 | 212 1
: 00KV IT 220kV . |
| i
1 1
' Emei # !
1 1
| 3 # |
\ 3501 3502 I
v 35kVl1 Bkv
FIGURE 11
Wiring diagram of the fault area in Example 2.
TABLE 11 Classification results of the fault models for example case 2. Data aval la bl llty Statement
Model Classification results .. o s . .
_ The original contributions presented in this study are included in
Fault classification model 1 Switch operation failure the article/Supplementary Material, and any further inquiries may

be directed to the corresponding author.

Fault classification model 2 Line fault

Author contributions

system, the corresponding measurement function settings are
not sufficiently established.
2. The model results directly correspond with the alarm

TL: Writing - original draft, Writing — review and editing. YW:
Writing - original draft, Writing — review and editing. CW: Writing

information without the need for manual alarm information - original draft, Writing - review and editing.

timing analyses, information screening, or modeling,
which helps achieve end-to-end power grid fault diagnosis
using only the alarm text information while greatly Funding
reducing the workload of the personnel, modeling, and
maintenance.

The author(s) declare that no financial support was received for
3. The proposed method is tested on simulated and actual fault
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cases. The results show that this method can be adapted to

different power grid environments as well as solved accurately

under complex power grid fault conditions and complex data . .

environments; therefore, it has high applicability for power Conflict of interest

grid fault diagnosis.
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