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The aerodynamic properties of fluids flowing around a wing or an airfoil 
are typically predicted through wind tunnel testing (experimental) or through 
computational fluid dynamics (CFD) by solving the Reynolds-averaged Navier-
Stokes equations numerically. Although the numerical solutions are considered 
a low-cost alternative to the experimental efforts with a slight compromise 
on forecast accuracy, they consume a significant amount of time and 
computational resources, especially during the initial iterative design phases. 
The current boom of machine learning in engineering applications, data-driven 
surrogates such as support vector machines, offers promising potential in 
aerodynamic modeling. This work investigates the efficacy of support vector 
machines in forecasting the lift coefficient and the drag coefficient of four 
different NACA airfoils under varying flow conditions. Six different variants of 
SVM, including linear, quadratic, cubic, fine Gaussian, medium Gaussian, and 
coarse Gaussian SVMs, were used to forecast the aerodynamic coefficients of 
drag and lift. Almost all the models evaluated performed well in predicting the 
aerodynamic coefficients; however, Cubic SVM outperformed other models, 
achieving the lowest RMSE of 5.364 × 10-3 for drag coefficient and 40.702 × 10-3

for lift coefficient, and correlation coefficient values exceeding 0.995, indicating 
excellent correlation between the tested and predicted data. Contrarily, the 
linear and quadratic SVMs were the least effective for drag coefficient and lift 
coefficient predictions, with the highest RMSE of 14.156 × 10-3 and 93.703 × 10-3,

respectively, with correlation coefficient values above 0.9650. These findings 
indicate the efficacy of machine learning in aerodynamic prediction and pave the 
way for faster airfoil design, particularly in applications requiring rapid iteration 
and low computational cost.
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 1 Introduction

Forecasting aerodynamic coefficients of lift and drag is a crucial aspect of airfoil 
design and optimization in aerospace engineering. Among numerous desirable design 
features of the wing and/or airfoil, the most significant features are the high Cl, max 
(maximum lift coefficient) during the landing and takeoff phases of flight and low
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Cd,min (minimum drag coefficient) while in the cruising phase 
[1]. The most common methods for predicting these aerodynamic 
coefficients are numerical simulations using computational fluid 
dynamics (CFD) methods or experimental studies in wind tunnels. 
However, the downsides of these approaches are their strenuous, 
time-consuming, and computationally costly nature. They also 
require persistent operator involvement for design space searches, 
which further makes the design course inefficient [2]. Liu [3], Juvinel 
et al. [4], and Gupta et al. [5] have provided thorough appraisals of 
diverse approaches for airfoil performance analyses.

With the advancements in computational methods and 
the introduction of software that can solve tedious numerical 
equations with an acceptable level of accuracy, computational 
fluid dynamics (CFD) has substantially supported the traditional 
methods of relying on wind tunnel experiments for predicting these 
coefficients. However, for many practical applications, the wind 
tunnel experiments and numerical simulations are still considered 
laborious, time-consuming, and computationally expensive [2].

Recent revival in the use of artificial intelligence (AI) and 
machine learning (ML) has offered new avenues for enhancing 
prediction accuracy and efficiency for aerospace design processes. 
Many researchers and academicians are extensively working on 
applied machine learning methods to tweak airfoil and wing design. 
Consequently, different techniques like Back-Propagation Neural 
Networks (BPNN), Convolutional Neural Networks (CNN), and 
Classification and Regression Trees (CART) have been utilized 
for forecasting aerodynamic coefficients and flow fields around 
airfoils and wings. Support Vector Machines (SVMs) are becoming 
increasingly popular among machine learning approaches because 
of their simple architecture, robustness, and optimal performance 
in all conditions [6]. Taking lead from the existing pool of literature, 
in this paper we have explored the efficacy of Support Vector 
Machines to forecast airfoils aerodynamic coefficients, including the 
lift coefficient and the drag coefficient.

Studies on the examination of machine learning techniques 
for application in various domains are ongoing and wide-ranging. 
Duraisamy et al. [7] provided an in-depth examination of recent 
advancements in turbulence problem solutions using data-
driven techniques. They emphasized the importance of machine 
learning for fluid dynamics problems while delving further into 
a variety of machine learning approaches. Similarly, Li et al. [8] 
comprehensively use machine learning for aerodynamic shape 
optimization problems. They have also recapped the ongoing 
research in the field and discussed its usefulness in detail. Le 
Clainche et al. [9] have methodically covered the advantages and 
challenges associated with new techniques under development that 
are especially employed for enhancing aerial vehicle performances. 
Kaya [10] applied the Support Vector Regression (SVR) in his 
analysis of several CFD data as a substitute model. He was 
able to successfully train SVR to create an effective connection 
between the span-wise twist and generated torque by using CFD 
data. Zeng and Qiao [11] introduced an SVM-based model for 
instantaneous solar power estimation in a different study. The model 
takes numerous meteorological factors as inputs. They compared 
the SVM’s performance with the radial basis function (RBF) as well 
as the autoregressive (AR) model and discovered that the SVM 
performed better in their application.

Primadusi et al. [12] conducted a study comparing RBFNN and 
BPNN in assessing the charging level of a special battery type and 
discovered that while BPNN took extra time to get trained, but was 
more precise. In another instance, Herulambang et al. [13] explored 
the usage of BPNN as well as SVM in classifying histograms of 
colored and unaltered instants, finding that SVM was faster and 
more accurate in recognizing batik patterns. Mohd Rizal et al. [14] 
conducted a study wherein they assessed SVMs, various regression 
models, and artificial neural networks (ANNs) for the purpose of 
predicting the quality of river water. The study found that while all 
models were suitable, ANNs demonstrated the highest correlation 
coefficient values, and the lowest mean squared error (MSE). Kostas 
and Manousaridou [15] studied the solutions of inverse and forward 
problems in early airfoil and hydrofoil design with supervised 
machine learning techniques. The authors argue that their results are 
analogous to the traditional foil optimization methods with a huge 
reduction in computational time cost. To estimate aerodynamic lift 
coefficient and drag coefficient, Andrés-Pérez et al. [16] investigated 
the use of Support Vector Regression, Decision Trees, and Linear 
Regression techniques. In another research, Ahmed et al. [17] 
evaluated the performance of the BPNN, Regression Trees, and 
SVMs in predicting aerodynamic coefficients for airfoils, where 
BPNN performed well in predicting lift coefficients, and regression 
trees were effective in predicting drag coefficients. In another 
study by Yan et al. [18] aerodynamically analyzed a modified 
NACA0012 airfoil using classical as well as machine learning 
approaches. They used multivariate nonlinear regression (MNR) 
and artificial neural networks (ANN) at different stages of the 
research and concluded that ANN provides better results compared 
to MNR. Ozgoren et al. [19] studied the prediction of aerodynamic 
coefficients of a wind turbine airfoil under various conditions. 
They evaluated different techniques like Decision Trees Ensembled, 
Random Forest and Multi-layer Perceptions and concluded that the 
coefficients can be forecasted with reasonable accuracy.

Building upon our prior study using BPNN [20], in this work 
we have provided a structured comparison of six distinct kernel-
based Support Vector Machine models by training them on the 
same dataset to allow for a fair evaluation across models. The 
dataset contains the diverse flow settings as inputs and outputs 
(the targets) as the corresponding drag and/or lift coefficients. The 
relative effectiveness of the SVM models have been investigated 
in forecasting crucial aerodynamic properties, specifically the drag 
coefficient (Cd) as well as the lift coefficient (Cl). The performance 
evaluation metrics for analysis have been chosen as the root mean 
square error (RMSE), mean absolute error (MAE), and the Pearson’s 
correlation coefficient R. The prime objective of this study is not 
to propose a new model but to provide insight into how kernel 
selection affects prediction performance for lift and drag coefficients. 
The novelty of this work lies in the systematic evaluation of six 
distinct SVM variants for predicting lift and drag coefficients across 
four NACA airfoils using a uniform CFD dataset and preprocessing 
protocol, accompanied by a detailed statistical and kernel-based 
performance analysis to identify the most effective variant within 
this framework. By doing so, this work potentially extends the 
body of knowledge on previous machine learning applications 
by establishing a fair, reproducible, and interpretable baseline for 
surrogate modeling of airfoil aerodynamics using SVMs. 

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1621236
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ahmed et al. 10.3389/fphy.2025.1621236

FIGURE 1
NACA Airfoils used in the current study.

2 Methodology

2.1 Numerical simulations for aerodynamic 
data generation

The aerodynamic dataset to train the Support Vector Machine 
models studied in this study was generated through numerical 
simulations on different NACA series airfoils at different flow 
conditions. Two airfoils from the NACA 4-digit family (NACA 0012 
and NACA 2415) and two airfoils from the NACA 5-digit family 
(NACA 23024 and NACA 24112) were selected for simulations to 
ensure diversity of the dataset and to capture a range of camber 
and thickness variations within a controlled parametric family. 
This choice allows for a consistent CFD generation protocol and 
mesh topology across all cases, ensuring that model performance 
differences can be attributed to the learning algorithm rather than to 
large variations in geometry complexity or flow regime. NACA 0012 
is a symmetrical airfoil and is widely used for research purposes due 
to its characteristics [21]. The remaining airfoils are unsymmetrical 
and also have a wide range of applications in aerospace, wind 
turbines, and engineering applications [22]. The airfoil’s profile 
geometry is shown in Figure 1.

The Ansys Fluent software package (commercially available) 
was employed for the numerical simulations using the Spalart-
Allmaras (SA) equation, which is a single-equation RANS-based 
turbulence model [23]. Spalart-Allmaras model is best suited to 
the wall-bounded external flows in aerospace applications. The 
model has established itself as one of the most used RANS-
based models for analysis of flow over airfoils and wings, as it 
can produce correct estimates when boundary layer flows are 
exposed to unfavorable pressure gradients [24]. The Fluent user’s 
handbook contains detailed mathematical information about the 
Spalart-Allmaras mathematical expressions as they are applied in the 
software algorithm [25].

Ansys Design Modeler was utilized to make the airfoil’s 
geometry, and Ansys Meshing was utilized to create the mesh around 

the airfoil to do numerical simulations. For creating the geometry, 
airfoil coordinates were obtained from the “aerotoolbox” available 
at this website [26]. For simulations, the most popular C-type flow 
domain was selected, with a distance between the airfoil’s edges and 
the domain boundaries equal to fifteen chord lengths on all sides. 
Moreover, the flow domain was prolonged by as many as fifteen 
chords towards the trailing edge as well to achieve even post-airfoil 
and to eliminate opposite flow at the outlet.

Before choosing the final meshing, a mesh independence study 
was carried out on the NACA 0012 airfoil at 0.5 Mach, Reynold 
number of 3 × 106 and 10° angle of attack to ensure the accuracy 
and reliability of the numerical simulations. Unstructured grids with 
three different levels of densities, including coarse, medium and fine 
were used to resolve the flow domain. Inflation layers with extremely 
fine mesh quality was added around the airfoil in all three cases to 
maintain a y+ value maintained below 1. This is necessary to capture 
the flow features within the laminar sub-layer of the boundary layer 
region. To select the most optimum mesh settings for the further 
numerical simulations, the coefficients of lift and drag obtained with 
the mesh settings were compared as presented in Table 1. It can be 
seen that the variation between the medium and fine meshes was 
less than 1% for both the aerodynamic coefficients of lift and drag. 
Hence, the medium mesh setting was selected for all subsequent 
simulations.

The no-slip “wall” boundary condition was chosen for the 
airfoil, while the “velocity-inlet” was chosen for the inlet, and the 
“pressure-outlet” condition was chosen for the exit. Figure 2 shows 
the meshing constructed around the airfoils, with very fine meshing 
with inflation layers at the airfoil surface.

An aerodynamic dataset of 440 cases was obtained by numerical 
simulations on the airfoils at various flow conditions. The Mach 
number of the flow was kept constant in all cases, whereas a 
combination of ten different Reynolds numbers and eleven different 
angles of attack were simulated on all four airfoils to generate the 
dataset. Reynolds numbers (Re) were chosen from 0.5 to five million 
with an increment of 0.5 million in between, and angles of attack 
were chosen from 0° to 20° with an increment of 2° in between. 
Reynolds numbers in this range indicate the commencement of 
turbulence and transition to the completely turbulent boundary 
layer above the surface of the airfoil. The range is located in 
the mid-domain on the scale, indicating low-to-high Reynolds 
number [27]. Thus 110 cases were simulated on each airfoil, making 
a total 440 cases on all four airfoils combined. Note that the 
same aerodynamic dataset has also been used in our previous 
study on airfoil analysis using back-propagation neural networks 
[20]. However, this study extends the scope by building upon the 
prior dataset in a technically rigorous manner for implementing 
multiple SVM models under identical conditions, accentuating its 
applicability as a low-cost surrogate. New or additional simulations 
were considered needless at this point, as the existing dataset’s range 
sufficiently captures nonlinear aerodynamic regimes. Details of the 
numerically simulated flow conditions are tabulated in Table 2.

For better visualization, the scatter plot of the numerically 
simulated flow conditions is also illustrated in Figure 3. It can 
be observed that similar flow conditions have been numerically 
simulated for all four NACA airfoils chosen for this paper to generate 
the required aerodynamic dataset. It should be noted that while 
the data splitting for training was done at random, there may not 
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TABLE 1  Variation in predicted coefficients with different mesh setting.

Grid setting No. of cells Cl % Var in Cl Cd % Var in Cd Remarks

Coarse 45,232 0.6012 — 0.0511 —

Medium 61,802 0.6175 2.71% 0.0539 5.47% Selected

Fine 73,531 0.6207 0.52% 0.0543 0.74%

FIGURE 2
Unstructured mesh around the airfoils.

TABLE 2  Details of flow conditions simulated.

Airfoil Noun Re No. (×106) AoA (angles of attack) in degrees

NACA 0012
NACA 2415

NACA 23024
NACA 24112

0.5 0 2 4 6 8 10 12 14 16 18 20

1.0 0 2 4 6 8 10 12 14 16 18 20

1.5 0 2 4 6 8 10 12 14 16 18 20

2.0 0 2 4 6 8 10 12 14 16 18 20

2.5 0 2 4 6 8 10 12 14 16 18 20

3.0 0 2 4 6 8 10 12 14 16 18 20

3.5 0 2 4 6 8 10 12 14 16 18 20

4.0 0 2 4 6 8 10 12 14 16 18 20

4.5 0 2 4 6 8 10 12 14 16 18 20

5.0 0 2 4 6 8 10 12 14 16 18 20

have been an equal amount of data points from each airfoil for 
the training.

2.2 Support vector machines (SVMs)

This algorithm falls under the category of supervised machine 
learning techniques which help classify data into two groups [28]. 

This method involves identifying an optimal line, also known as 
a hyperplane, which splits data points to divide them into two 
groups, leaving the highest possible gap between them. It tries to 
find the line or plane that distinguishes the data points into the 
best possible groups or types. The points also called the vectors that 
are closest to it—referred to as the “maximum-margin hyperplane” 
— known as the “support vectors” [29]. SVMs convert the data 
into an upper-dimensional space using various methods (referred 
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FIGURE 3
Scatter plot of numerically simulated flow conditions.

to as kernel functions), which simplifies the separation of the data 
points. This helps SVMs model complex associations between input 
and output variables. Due to the kernel functions, which enable 
them to handle both linear and nonlinear connections, SVMs are 
resilient against outliers, efficient for high-dimensional data, and 
adaptable. The linear kernel, quadratic kernel and cubic kernel, 
which are collectively known as polynomial kernels, and Gaussian 
kernels, also known as radial-basis functions (RBF) are among the 
frequently used kernels [30]. The efficacy of SVM largely hangs 
on the selection of kernel, the kernel’s parameters, and the soft 
margin parameter. The technique is chosen based on the data and 
expected relationship between them. Although SVMs are better at 
classification tasks, they can equally be used for regression tasks. The 
variant of SVM that predicts continuous values is called the Support 
Vector Regression (SVR) [31]. Its design is similar to SVM, as seen
in Figure 4.

The four primary phases in the SVM’s overall framework are 
as follows. 

a. Pre-processing of data, whereby the input variables are 
suitably standardized to guarantee a well-adjusted input to 
the SVM model.

b. Selection of Kernel, where a suitable kernel function is selected 
according to the properties of the data.

c. Training the system to identify the best hyperplane for the 
given scenario.

d. Applying suitable assessment measures to assess the model’s 
performance.

The pseudo algorithm as per the above general framework for 
Support Vector Regression (SVR) as implemented in this work is 
described below in seven broad steps. It is to be noted that the 
algorithm’s convergence criteria can be customized by adjusting 
the weight updates and iteration count, which serve as a stopping 
condition. 

a. Data Preparation: Define the input vector set xi and 
corresponding output labels yi.

b. Kernel Selection: Choose a suitable kernel, K(x,xi) for 
converting inputs into upper-dimensional space.

c. Initialization: Set initial parameters: regularization factor C, 
kernel K, and tolerance margin ε.

d. Model Optimization: Minimize the objective function using
(Equation 1) with the training data (xi,yi) to determine 
optimal SVR model parameters.

min 1
2
‖ω‖2 +C 1

n

n

∑
i=1
{yi − (ω · xi + b) − ε} (1)

e. Prediction: Use optimized SVR model parameters to predict 
output values for new input vectors.

f. Output Calculation: For a new input vector x, calculate the 
predicted output ̂y using (Equation 2).

̂y = ω · x+ b (2)

g. Regression Function Approximation: Approximate the 
regression function using (Equation 3).

f(x) =
n

∑
i=1
{ωi ·K(x,xi)+b} (3)
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FIGURE 4
Generalized design of a SVMs.

Here, f(x) → it denotes the set of output vectors,
K→ it denotes the kernel function,
ωi→ it denotes the weight vector,
b→ it denotes the bias term

h. Kernel Functions: Use (Equation 4) for linear, (Equation 5), for 
polynomial or (Equation 6) for RBF kernel to get the SVM 
parameters.

K(x,xi) = x.xi (4)

K(x,xi) = (γ.x.xi + c)d (5)

Here, γ→ scaling factor,
c→ offset constant,
d→ degree of polynomial.

K(x,xi) = exp {γ ‖x− xi‖
2},γ > 0 (6)

Here, γ→ scaling factor,

‖x− xi‖
2→ Euclideandistanceb/wx&xi

 

2.3 Predictive model

The rudimentary model to predict aerodynamic coefficients 
with SVM as used in this present paper is shown in Figure 5. 
The SVM model can be taken as a black box that takes certain 
inputs and produces certain outputs. In the case of current work, 
the inputs are the four input features, i.e., airfoil nomenclature 
(noun), Mach (Ma) and Reynolds numbers (Re), and airfoil’s angle 
of attack (AoA), and the outputs are the drag coefficient (Cd) and lift
coefficient (Cl).

2.4 Data processing, model training and 
implementation

Figure 6 depicts the fundamental flowchart for the suggested 
methodology. Initially, the required aerodynamic dataset was 
created through numerical simulations on four airfoils at various 
flow conditions in Ansys Fluent.

Prior to model training, data preprocessing was conducted 
on the dataset to ensure its integrity. The dataset was initially 
examined manually for any missing values and outliers to ensure 
data integrity. It is important to note that because of the small 
dataset (440 data points only), no missing values or outliers were 
found; therefore, automated outlier detection or data imputation 
was not needed. Moreover, considering the controlled nature of the 
numerical simulations and the small dataset size, no extra filtering 
or smoothing was performed on the data. Normalization was also 
considered unnecessary because the aerodynamic coefficients varied 
consistently.

Feature selection is another important element of data 
preprocessing. In order to estimate the aerodynamic coefficients, 
four important parameters, including the angle of attack (AoA), 
Mach (Ma), Reynolds number (Re) and the airfoil name were 
selected as the input features. The airfoil name, being a categorical 
feature, was encoded numerically using a label encoding scheme. 
Each of the four airfoils was assigned to a unique integer such 
as NACA 0012 as 1, NACA 2415 as 2, NACA 23024 as 3 and 
NACA 24112 as 4. This allowed the airfoil identifier to be used 
as an input feature without disrupting numerical processing. 
The outputs or the targets were the drag coefficient (Cd) and lift
coefficient (Cl).

The dataset was then split into three subsets: training, validation, 
and testing. The dataset was randomly split into 70% for training, 
i.e., around 308 data points were chosen randomly for training, 
and 15% each, i.e., 66 data points each were chosen for testing and 
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FIGURE 5
Svm predictive model.

FIGURE 6
Flowchart for SVM implementation.

validation purposes, respectively. After which the kernel functions 
were selected, and the model was initialized with random values. 
Subsequently, the training dataset was provided to the SVM model 
to start the training. The training terminated on attaining the 
predetermined stopping conditions. When the validation error 
was reduced to its smallest value, i.e., on attaining the best 
validation performance was the stopping criterion intended to be 
reached. The trained model was then assessed with the testing
data subset.

The SVM models were trained by utilizing the “Regression-
Learner” application available in MATLAB R2023b for forecasting 
the aerodynamic coefficients of airfoils. The regression learner 
can train various regression models to predict data utilizing 
supervised approaches of machine learning [32]. To predict the 
aerodynamic coefficient in the current work, six different forms 
of SVMs including linear, quadratic, cubic, fine, medium, and 
coarse models have been used. The kernel functions and kernel 
scaling that were employed for training distinguish the models
from one another.

The default settings of hyperparameters were kept for the 
support vector machines used in this work to simplify the model, 
ensure consistency and avoid model-specific bias during evaluation. 

This approach enables rapid deployment of the existing model 
without extensive manual tuning. The selected default settings 
include automatic kernel scaling, regularization parameters, and 
epsilon-insensitive loss parameters. The standard by which to select 
the box constraints was also set to automatic. This allowed a 
fair comparison of kernel efficacy. It is to be noted here that 
no grid or random search tuning was employed during this 
study. Hyperparameter optimization using different techniques 
like Bayesian optimization etc. May be potentially used in future 
studies which can enhance the model’s performance. The selected 
hyperparameters as per the default settings of the MATLAB’s 
Regression-Learner App are summarized in Table 3.

2.5 Performance assessment criterions

The performance of the SVM models after training has been 
evaluated using the most widely used statistical performance gauges. 
These are, namely, the root mean squared error denoted as RMSE, 
the Mean Absolute Error denoted as MAE, and the Pearsons 
Correlation Coefficients denoted as R which are defined as below. 
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TABLE 3  Hyper parameters of SVM models.

Model Linear SVM Quadratic SVM Cubic SVM Fine
Gaussian SVM

Medium
Gaussian SVM

Coarse
Gaussian SVM

Hyper-
parameter

Kernel Function Linear Quadratic Cubic Gaussian Gaussian Gaussian

Kernel Scale Automatic 0.5 2 8

Box Constraint Automatic

Epsilon Automatic

2.5.1 Root mean squared error (RMSE)
RMSE is defined by the rooted difference between the forecasted 

and the actual goal. Square root ensures that it is of the same order 
as the predicted values. The accuracy of the model is inversely 
proportional to the RMSE; that is, a lesser value of the RMSE 
represents better accuracy of the model. Ideally, it should approach 
zero. Mathematically, it is defined by (Equation 7).

RMSE = √ 1
n

n

∑
i=1
|Pi −Mi|

2 (7)

Here, Pi→ forecasted value
Mi→ actual goal 

2.5.2 Mean absolute error (MAE)
MAE is used to evaluate the accuracy of regression models 

for which the error direction is not critical. It is determined by 
calculating the mean absolute variance between the forecasted and 
the actual goal. The lower value of the MAE represents better model 
performance. It is important to compare the MAE to the scale of the 
target variable. Ideally, it should also be zero. Mathematically, it is 
defined by (Equation 8).

MAE =
∑n

i=1
|Pi −Mi|

n
(8)

Here, Pi→ forecasted value
Mi→ actual goal 

2.5.3 Pearson’s correlation coefficient (R)
“R” is an important statistical metric that shows the association 

between the forecasted and the actual goal. It always falls between 
−1 and +1. The performance of a model is ideal if the absolute value 
of R is equivalent to or remarkably close to +1. Mathematically, it is 
defined by (Equation 9).

R = √1−
∑(Mi − Pi)

2

∑(Mi −Ml)
2 (9)

Here, n→ total no. of data points
Pi→ forecasted value
Mi→ actual goal
Ml→ mean of all measured values 

3 Results and discussions

In this work, our primary focus is to conduct a detailed 
evaluation of six SVM variants for predicting lift and drag 
coefficients of four NACA airfoils using a consistent CFD dataset 
and protocol. While other machine-learning architectures such 
as BPNNs, CNNs, and LSTMs have been reported in the 
literature, they typically differ in input representation, target 
variables, preprocessing steps, and evaluation metrics, making direct 
numerical comparison to the present results inappropriate without 
retraining under identical conditions. To maintain methodological 
consistency and avoid misleading conclusions, this study limits its 
scope to SVM-based methods evaluated in a uniform framework. 
Each model studied in this work was trained independently for 
predicting the aerodynamic drag coefficient and lift coefficient on 
a numerically generated dataset of 440 cases. Table 4 summarizes 
the vital performance evaluation metrics of RMSE, MAE, and R 
acquired during validation for each SVM model in forecasting drag 
and lift coefficients.

From Table 4, it can be noted that the cubic SVM model has 
yielded the best outcomes in terms of the performance evaluation 
metrics by achieving the best values for RMSE, MAE, and R for 
estimating both the aerodynamic coefficients. The RMSE value 
achieved by cubic SVM for estimating the drag coefficient was 
5.364 ×  10−3 and the lift coefficient was 40.702 ×  10−3, along 
with correlation coefficients of 0.9954 and 0.9935, respectively. 
These values depict a strong correlation between the forecasted 
and actual responses, indicating the effectiveness of the cubic 
kernel in modeling the nonlinear correlations between aerodynamic 
variables.

The effectiveness of the cubic SVM is attributed to its ability 
to distinguish complex flow phenomena like flow separation and 
abrupt lift changes at medium to high angles of attack. The superior 
performance can be explained by considering both the physics of the 
aerodynamic prediction task and the mathematical properties of the 
kernel. The relation between flow characteristics (Reynolds number, 
Mach number, angle of attack) and aerodynamic coefficients is 
naturally smooth but may exhibit nonlinearities due to complex 
flow phenomena like flow separation, pressure distribution changes, 
and viscous effects. A cubic polynomial kernel effectively captures 
nonlinearities due to its ability to integrate interactions up to the 
third order, without the limited flexibility of linear/quadratic kernels 
or the excessive locality of narrow Gaussian kernels. The CFD dataset 
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TABLE 4  Results summary for different SVM models.

SVM model For Cd predictions For Cl predictions

RMSE (×10−3) MAE (×10−3) R RMSE (×10−3) MAE (×10−3) R

Linear SVM 14.156 11.48 0.9677 91.344 72.08 0.9668

Quadratic SVM 6.976 5.71 0.9923 93.703 72.40 0.9650

Cubic SVM 5.364 4.71 0.9954 40.702 25.88 0.9935

Fine Gaussian SVM 12.312 9.43 0.9757 81.643 59.38 0.9736

Medium Gaussian SVM 5.488 4.74 0.9952 52.116 39.09 0.9893

Coarse Gaussian SVM 10.029 7.96 0.9839 90.539 73.40 0.9674

used in this study is continuous and free from measurement noise, 
allowing the global basis functions of the cubic kernel to exploit the 
smoothness of the aerodynamic response surface. These combined 
factors explain the cubic kernel’s ability to achieve a favorable trade-
off between model complexity and generalization accuracy.

The medium Gaussian SVM model has also produced results 
remarkably close to the cubic SVM model in predicting both the 
aerodynamic coefficients with RMSE values of 5.488 × 10−3 and 
52.116 × 10−3 for drag and lift coefficients, respectively. It can be 
said that due to the inherent smoothness of the radial basis function 
kernel of the medium Gaussian SVM, it was able to learn the 
localized patterns in variation without the risk of overfitting.

On the other hand, the linear and quadratic SVM had the worst 
performance for drag coefficient and lift coefficient with RMSE 
values of 14.156 × 10−3 and 93.703 × 10−3, respectively, while 
correlation coefficient values remained above 0.9650. The drop in 
performance by the linear and quadratic kernels can be attributed to 
their limitations in modeling the complex flow behaviors like flow 
separation and abrupt lift changes, which are nonlinear in nature.

On deeper analysis of the results, another important aspect 
can be observed here: all SVM models studied predicted both the 
aerodynamic coefficients with good accuracy, but their performance 
is almost 7 to 8 times better in predicting the coefficient of drag as 
compared to the coefficient of lift. In all cases, the RMSE and MAE 
values remained lower for prediction of drag coefficient as compared 
to lift coefficient.

A possible explanation for this phenomenon is the difference 
in flow characteristics when producing drag and lift. Drag varies 
smoothly with respect to changes in Reynolds number, flow speed 
and/or angle of attack due to its inherent dependence on pressure 
and skin friction drag along the airfoil surface, making it easier 
for the machine learning model to remember and generalize 
it. Whereas the lift is dependent upon the pressure difference 
between the upper and lower surfaces of the airfoil, which is highly 
sensitive to Reynolds number, flow speed and/or angle of attack. 
As the angle of attack approaches the stall region, the adverse 
pressure gradient intensifies, causing the laminar boundary layer to 
transition earlier to turbulence and, in some cases, to separate from 
the surface entirely. This separation drastically alters the surface 
pressure distribution, leading to sharp drops in lift and significant 
variability even with small perturbations in operating conditions. 

Additionally, vortex shedding and unsteady wake interactions near 
stall introduce temporal fluctuations absent in the relatively steady 
drag trends. Resultantly, while the mapping from inputs to Cd is 
relatively smooth and single-regime, the mapping for Cl frequently 
spans multiple aerodynamic regimes (attached flow, transitional 
flow, separated flow), introducing nonlinearities and increasing 
functional complexity, making approximation more difficult for a 
single machine learning model.

The RMSE values obtained for each SVM model for 
predicting the coefficient of drag and coefficient of lift are shown 
separately in Figure 7. Notably, the cubic SVM consistently 
outperformed other models in both cases with RMSE values of 
5.364 ×  10−3 and 40.702 ×  10−3 for prediction of coefficients of 
drag and lift, respectively.

Table 4 further indicates that the MAE values follow a trend 
consistent with RSME for all the SVM models, reinforcing the 
superiority of cubic SVM across all metrics. This has been 
depicted in Figure 8, where the plot of MAE values for each 
SVM model has been provided separately for predictions of drag 
coefficient as well as lift coefficient. The best MAE value achieved 
by Cubic SVM for estimating the drag coefficient was 4.71 ×  10−3 
and the lift coefficient was 25.88 ×  10−3, respectively.

Table 4 also shows that the value of “R” was extremely near 
to +1 in all the scenarios, representing the accuracy of the 
estimated aerodynamic coefficients. Best values, however, were again 
achieved by the cubic SVM model for both aerodynamic coefficient 
predictions.

The performance of all the SVM models to estimate the drag 
coefficient and lift coefficient are depicted through the regression 
charts given in Figures 9, 10, respectively. These regression plots 
further validate the conclusions. Each subplot shows a comparison 
between the predicted and true responses, with the corresponding 
R values representing the model’s ability to fit. The graph illustrates 
a strong association between the estimated and actual goal; 
furthermore, most of the data points are on or very close to the 
regression (ideal) line.

Figure 9 represents the regression plots of predicted versus 
actual drag coefficients for all six SVM models. The performance of 
each model can be measured based on the data clustering around 
the regression (ideal) line and the related R values. It can be 
clearly seen that the cubic SVM and medium Gaussian SVM are 
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FIGURE 7
RMSE plots for SVM models for Predicting Cd and Cl.

FIGURE 8
MAE plots for SVM models for Predicting Cd and Cl.

closely clustered around the ideal fit line with nominal scattering, 
with R-values exceeding 0.99. This depicts excellent correlation 
between the predicted and actual values, reflecting the model’s 
ability to capture complex aerodynamic relationships with minimal 
variance. The quadratic and fine Gaussian SVM models also 
provided reasonably good performance, though with slightly more 
spread in the residual values around the regression line, indicating
lesser performance.

In contrast, the linear SVM and coarse Gaussian SVM models 
have shown broader scatter, especially at the lower and higher 
ranges of drag coefficients, where it underfitted the ideal line. This 
particular behavior is attributed to their limited capacity to model 
nonlinear variations due to skin-friction and pressure drag across 
varying Reynolds numbers and angles of attack. This supports the 
earlier conclusion that nonlinear kernels, particularly cubic and 
medium Gaussian, are better suited for modeling drag behavior. It 

is to be noted that even the weaker models like linear SVM have 
achieved R-values above 0.96, indicating reasonable accuracy while 
predicting drag coefficients within a constrained domain. However, 
their reduced accuracy especially at low and high ranges indicates 
limitations in capturing detailed drag behavior near flow transition 
or flow separation conditions.

Figure 10 illustrates the regression plots of predicted versus 
actual lift coefficients for all six SVM models. Here the performance 
differences between the SVM models are more pronounced as 
compared to the drag coefficients prediction. For lift coefficients 
prediction as well, the cubic SVM has outperformed other 
models, with a near ideal scattering of data points around 
the regression (ideal) line, indicating its capability of modeling 
nonlinear aerodynamic lift behavior. The medium Gaussian SVM 
has also performed well, although with a slightly more scattering 
of datapoints especially at higher values of lift coefficients. This 

Frontiers in Physics 10 frontiersin.org

https://doi.org/10.3389/fphy.2025.1621236
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ahmed et al. 10.3389/fphy.2025.1621236

FIGURE 9
Regression Charts for all SVM model for Predicting Coefficient of Drag Cd.

shows a slight decrease in performance at higher angles of 
attack where flow separation and stall effects come in to play. 
The fine Gaussian SVM has produced a larger variance and a 
noticeable underestimation in certain regions, possible due to 

overfitting on localized features without capturing global patterns
effectively.

The linear and quadratic SVMs have shown the weakest 
performance for prediction of lift coefficients. These have produced 
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FIGURE 10
Regression Charts for all SVM model for Predicting Coefficient of Lift Cl.

the largest spread of datapoints further from the ideal fit line 
at both low and high lift regions. This behavior depicts their 
inadequacy in handling the complexity of relationship between the 

input parameters owing to nonlinearities inherent in lift generation, 
especially at transitional stages. Overall, the Figure 10 depicts that 
lift coefficients prediction is inherently more challenging than drag 
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coefficients prediction due to its dependency on more complex fluid 
dynamics phenomena.

The regression plots of drag coefficients and lift coefficients 
prediction have validated the data presented in Table 4. They 
have also shown the superiority of nonlinear kernels including 
the cubic and medium Gaussian SVMs in capturing aerodynamic 
complexities more efficiently.

The performance ranking of different variants of SVMs is 
supported by multiple performance measuring metrics (RMSE, 
MAE, and Pearson’s R) and by consistent patterns observed in 
residual plots. As these indicators agree and the effect sizes 
are clear, formal hypothesis testing was considered unnecessary. 
Additionally, classical statistical tests assume that prediction errors 
are independent and have a uniform spread across all operating 
conditions, which is not strictly satisfied in the aerodynamic dataset 
used in this work due to its structured nature, and could therefore 
yield misleading p-values. The combination of several metrics 
and regression plots is considered sufficient to demonstrate the 
robustness of the conclusions. 

4 Limitations and considerations

Despite the fact that the cubic and medium Gaussian SVM 
models have fairly predicted the aerodynamic coefficients, it is 
to be noted that there are some limitations associated with the 
current study. First of all, the performance of the SVM models are 
purely dependent upon the quality and quantity of the training 
dataset. Machine learning techniques require large amount of 
datasets for proper training, however, SVM models have been 
trained only on a dataset of 440 simulation cases in this study, 
which may be a potential limitation for the model’s performance. 
Moreover, the investigated SVM model’s performance have been 
assessed on a limited subset of airfoil (only NACA 4- and 5- 
digit series) configurations under a limited flow condition to 
maintain a controlled geometric parameter space and ensure 
consistent CFD meshing and boundary conditions across all 
cases. While this restriction enables fair benchmarking of SVM 
kernels, it does not capture the full geometric diversity of airfoils. 
Therefore, their performance may not be directly generalize to 
other situations and datasets with the same level of accuracy
without retraining.

Secondly, in comparison to the traditional CFD techniques, 
the SVM model operates as black-box model offering limited 
physical interpretability of what’s happening inside the model. 
Lastly, to simplify the model implementation, default values of 
the hyperparameters have been used during training, which may 
become a limitation in reaching optimal performance of the models. 
In order to address these limitations, training the models on a 
large and more diversified dataset obtained from further CFD 
simulations of different types of airfoils under numerous settings, 
hyperparameter optimization using various techniques like Bayesian 
optimization etc., and integration with physics-based constraints 
may help to increase the reliability of the results. A valuable 
extension of this research would be to retrain representative deep 
learning and ensemble models on the same dataset and evaluation 
protocol used here. Such an experiment would allow a direct, fair, 

and quantitative comparison between SVMs and other state-of-the-
art techniques, providing further insight into the trade-offs between 
accuracy, computational efficiency, and model interpretability. 

5 Conclusion

In this study, we assessed the performance of six distinct Support 
Vector Machine models in predicting the aerodynamic coefficients 
of drag and lift under a wide range of flow conditions for four 
different NACA airfoils. In this regard, a dataset of 440 cases 
generated through numerical simulations was used to train and 
evaluate the models. The cubic SVM exhibited the best predictive 
performance among all the tested models, demonstrating the lowest 
RMSE of 5.364 × 10-3 for drag coefficient and 40.702 × 10-3 for lift 
coefficient. Correlation coefficient values higher than 0.995 were also 
achieved in each case, indicating a very high correlation between 
tested and predicted data. The performance of the medium Gaussian 
SVM was also comparable to the cubic SVM model, signifying 
its capability to model the complex and nonlinear aerodynamic 
behavior. On the other hand, the linear SVM and quadratic SVM 
had the worst performance for drag coefficient and lift coefficient 
with RMSE values of 14.156 × 10-3 and 93.703 × 10-3, respectively, 
while correlation coefficient values remained above 0.9650.

Overall, the SVM models proved effective in aerodynamic 
modeling of airfoil aerodynamics under varying angles of attack 
and Reynolds numbers. The results indicate that adequately tuned 
machine learning models, especially the nonlinear SVM models, can 
act as surrogates for costly numerical schemes without a substantial 
compromise in accuracy. However, it is important to highlight that 
the results are based on the specific dataset used in this study and 
may not be applicable globally in the present form. Additionally, 
the models were trained using default MATLAB hyperparameters to 
maintain fairness and simplicity across comparisons. The findings 
of this study can be further expanded by including additional 
airfoils and more flow regimes to get larger datasets. Moreover, 
hyperparameters tuning to get potentially better performance of 
the SVM models may be done through optimization schemes and 
integration with other machine learning algorithms in future studies 
to further enhance the predictive capabilities and generalization of 
these techniques for broader aerodynamic applications.
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