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The aerodynamic properties of fluids flowing around a wing or an airfoil
are typically predicted through wind tunnel testing (experimental) or through
computational fluid dynamics (CFD) by solving the Reynolds-averaged Navier-
Stokes equations numerically. Although the numerical solutions are considered
a low-cost alternative to the experimental efforts with a slight compromise
on forecast accuracy, they consume a significant amount of time and
computational resources, especially during the initial iterative design phases.
The current boom of machine learning in engineering applications, data-driven
surrogates such as support vector machines, offers promising potential in
aerodynamic modeling. This work investigates the efficacy of support vector
machines in forecasting the lift coefficient and the drag coefficient of four
different NACA airfoils under varying flow conditions. Six different variants of
SVM, including linear, quadratic, cubic, fine Gaussian, medium Gaussian, and
coarse Gaussian SVMs, were used to forecast the aerodynamic coefficients of
drag and lift. Almost all the models evaluated performed well in predicting the
aerodynamic coefficients; however, Cubic SVM outperformed other models,
achieving the lowest RMSE of 5.364 x 1073 for drag coefficient and 40.702 x 1073
for lift coefficient, and correlation coefficient values exceeding 0.995, indicating
excellent correlation between the tested and predicted data. Contrarily, the
linear and quadratic SVMs were the least effective for drag coefficient and lift
coefficient predictions, with the highest RMSE of 14.156 x 10~% and 93.703 x 10>
respectively, with correlation coefficient values above 0.9650. These findings
indicate the efficacy of machine learning in aerodynamic prediction and pave the
way for faster airfoil design, particularly in applications requiring rapid iteration
and low computational cost.

KEYWORDS

aerodynamic coefficients, airfoil analyses, CFD, machine learning, numerical
simulations, SVM

1 Introduction

Forecasting aerodynamic coefficients of lift and drag is a crucial aspect of airfoil
design and optimization in aerospace engineering. Among numerous desirable design
features of the wing and/or airfoil, the most significant features are the high CI, max
(maximum lift coefficient) during the landing and takeoff phases of flight and low
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Cd,min (minimum drag coefficient) while in the cruising phase
[1]. The most common methods for predicting these aerodynamic
coefficients are numerical simulations using computational fluid
dynamics (CFD) methods or experimental studies in wind tunnels.
However, the downsides of these approaches are their strenuous,
time-consuming, and computationally costly nature. They also
require persistent operator involvement for design space searches,
which further makes the design course inefficient [2]. Liu [3], Juvinel
etal. [4], and Gupta et al. [5] have provided thorough appraisals of
diverse approaches for airfoil performance analyses.

With the advancements in computational methods and
the introduction of software that can solve tedious numerical
equations with an acceptable level of accuracy, computational
fluid dynamics (CFD) has substantially supported the traditional
methods of relying on wind tunnel experiments for predicting these
coeflicients. However, for many practical applications, the wind
tunnel experiments and numerical simulations are still considered
laborious, time-consuming, and computationally expensive [2].

Recent revival in the use of artificial intelligence (AI) and
machine learning (ML) has offered new avenues for enhancing
prediction accuracy and efficiency for aerospace design processes.
Many researchers and academicians are extensively working on
applied machine learning methods to tweak airfoil and wing design.
Consequently, different techniques like Back-Propagation Neural
Networks (BPNN), Convolutional Neural Networks (CNN), and
Classification and Regression Trees (CART) have been utilized
for forecasting aerodynamic coefficients and flow fields around
airfoils and wings. Support Vector Machines (SVMs) are becoming
increasingly popular among machine learning approaches because
of their simple architecture, robustness, and optimal performance
in all conditions [6]. Taking lead from the existing pool of literature,
in this paper we have explored the efficacy of Support Vector
Machines to forecast airfoils aerodynamic coeflicients, including the
lift coeflicient and the drag coefficient.

Studies on the examination of machine learning techniques
for application in various domains are ongoing and wide-ranging.
Duraisamy et al. [7] provided an in-depth examination of recent
advancements in turbulence problem solutions using data-
driven techniques. They emphasized the importance of machine
learning for fluid dynamics problems while delving further into
a variety of machine learning approaches. Similarly, Li etal. [8]
comprehensively use machine learning for aerodynamic shape
optimization problems. They have also recapped the ongoing
research in the field and discussed its usefulness in detail. Le
Clainche et al. [9] have methodically covered the advantages and
challenges associated with new techniques under development that
are especially employed for enhancing aerial vehicle performances.
Kaya [10] applied the Support Vector Regression (SVR) in his
analysis of several CFD data as a substitute model. He was
able to successfully train SVR to create an effective connection
between the span-wise twist and generated torque by using CFD
data. Zeng and Qiao [11] introduced an SVM-based model for
instantaneous solar power estimation in a different study. The model
takes numerous meteorological factors as inputs. They compared
the SVM’s performance with the radial basis function (RBF) as well
as the autoregressive (AR) model and discovered that the SVM
performed better in their application.
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Primadusi et al. [12] conducted a study comparing RBFNN and
BPNN in assessing the charging level of a special battery type and
discovered that while BPNN took extra time to get trained, but was
more precise. In another instance, Herulambang et al. [13] explored
the usage of BPNN as well as SVM in classifying histograms of
colored and unaltered instants, finding that SVM was faster and
more accurate in recognizing batik patterns. Mohd Rizal et al. [14]
conducted a study wherein they assessed SVMs, various regression
models, and artificial neural networks (ANNs) for the purpose of
predicting the quality of river water. The study found that while all
models were suitable, ANNs demonstrated the highest correlation
coefficient values, and the lowest mean squared error (MSE). Kostas
and Manousaridou [15] studied the solutions of inverse and forward
problems in early airfoil and hydrofoil design with supervised
machine learning techniques. The authors argue that their results are
analogous to the traditional foil optimization methods with a huge
reduction in computational time cost. To estimate aerodynamic lift
coeflicient and drag coefficient, Andrés-Pérez et al. [16] investigated
the use of Support Vector Regression, Decision Trees, and Linear
Regression techniques. In another research, Ahmed etal. [17]
evaluated the performance of the BPNN, Regression Trees, and
SVMs in predicting aerodynamic coefficients for airfoils, where
BPNN performed well in predicting lift coefficients, and regression
trees were effective in predicting drag coefficients. In another
study by Yan etal. [18] aerodynamically analyzed a modified
NACAO0012 airfoil using classical as well as machine learning
approaches. They used multivariate nonlinear regression (MNR)
and artificial neural networks (ANN) at different stages of the
research and concluded that ANN provides better results compared
to MNR. Ozgoren et al. [19] studied the prediction of aerodynamic
coefficients of a wind turbine airfoil under various conditions.
They evaluated different techniques like Decision Trees Ensembled,
Random Forest and Multi-layer Perceptions and concluded that the
coefficients can be forecasted with reasonable accuracy.

Building upon our prior study using BPNN [20], in this work
we have provided a structured comparison of six distinct kernel-
based Support Vector Machine models by training them on the
same dataset to allow for a fair evaluation across models. The
dataset contains the diverse flow settings as inputs and outputs
(the targets) as the corresponding drag and/or lift coefficients. The
relative effectiveness of the SVM models have been investigated
in forecasting crucial aerodynamic properties, specifically the drag
coeflicient (Cy) as well as the lift coeflicient (C;). The performance
evaluation metrics for analysis have been chosen as the root mean
square error (RMSE), mean absolute error (MAE), and the Pearson’s
correlation coefficient R. The prime objective of this study is not
to propose a new model but to provide insight into how kernel
selection affects prediction performance for lift and drag coefficients.
The novelty of this work lies in the systematic evaluation of six
distinct SVM variants for predicting lift and drag coefficients across
four NACA airfoils using a uniform CFD dataset and preprocessing
protocol, accompanied by a detailed statistical and kernel-based
performance analysis to identify the most effective variant within
this framework. By doing so, this work potentially extends the
body of knowledge on previous machine learning applications
by establishing a fair, reproducible, and interpretable baseline for
surrogate modeling of airfoil aerodynamics using SVMs.
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FIGURE 1
NACA Airfoils used in the current study.

2 Methodology

2.1 Numerical simulations for aerodynamic
data generation

The aerodynamic dataset to train the Support Vector Machine
models studied in this study was generated through numerical
simulations on different NACA series airfoils at different flow
conditions. Two airfoils from the NACA 4-digit family (NACA 0012
and NACA 2415) and two airfoils from the NACA 5-digit family
(NACA 23024 and NACA 24112) were selected for simulations to
ensure diversity of the dataset and to capture a range of camber
and thickness variations within a controlled parametric family.
This choice allows for a consistent CFD generation protocol and
mesh topology across all cases, ensuring that model performance
differences can be attributed to the learning algorithm rather than to
large variations in geometry complexity or flow regime. NACA 0012
is a symmetrical airfoil and is widely used for research purposes due
to its characteristics [21]. The remaining airfoils are unsymmetrical
and also have a wide range of applications in aerospace, wind
turbines, and engineering applications [22]. The airfoil’s profile
geometry is shown in Figure 1.

The Ansys Fluent software package (commercially available)
was employed for the numerical simulations using the Spalart-
Allmaras (SA) equation, which is a single-equation RANS-based
turbulence model [23]. Spalart-Allmaras model is best suited to
the wall-bounded external flows in aerospace applications. The
model has established itself as one of the most used RANS-
based models for analysis of flow over airfoils and wings, as it
can produce correct estimates when boundary layer flows are
exposed to unfavorable pressure gradients [24]. The Fluent user’s
handbook contains detailed mathematical information about the
Spalart-Allmaras mathematical expressions as they are applied in the
software algorithm [25].

Ansys Design Modeler was utilized to make the airfoil’s
geometry, and Ansys Meshing was utilized to create the mesh around
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the airfoil to do numerical simulations. For creating the geometry,
airfoil coordinates were obtained from the “aerotoolbox” available
at this website [26]. For simulations, the most popular C-type flow
domain was selected, with a distance between the airfoil’s edges and
the domain boundaries equal to fifteen chord lengths on all sides.
Moreover, the flow domain was prolonged by as many as fifteen
chords towards the trailing edge as well to achieve even post-airfoil
and to eliminate opposite flow at the outlet.

Before choosing the final meshing, a mesh independence study
was carried out on the NACA 0012 airfoil at 0.5 Mach, Reynold
number of 3 x 10% and 10° angle of attack to ensure the accuracy
and reliability of the numerical simulations. Unstructured grids with
three different levels of densities, including coarse, medium and fine
were used to resolve the flow domain. Inflation layers with extremely
fine mesh quality was added around the airfoil in all three cases to
maintain a y* value maintained below 1. This is necessary to capture
the flow features within the laminar sub-layer of the boundary layer
region. To select the most optimum mesh settings for the further
numerical simulations, the coefficients of lift and drag obtained with
the mesh settings were compared as presented in Table 1. It can be
seen that the variation between the medium and fine meshes was
less than 1% for both the aerodynamic coefficients of lift and drag.
Hence, the medium mesh setting was selected for all subsequent
simulations.

The no-slip “wall” boundary condition was chosen for the
airfoil, while the “velocity-inlet” was chosen for the inlet, and the
“pressure-outlet” condition was chosen for the exit. Figure 2 shows
the meshing constructed around the airfoils, with very fine meshing
with inflation layers at the airfoil surface.

An aerodynamic dataset of 440 cases was obtained by numerical
simulations on the airfoils at various flow conditions. The Mach
number of the flow was kept constant in all cases, whereas a
combination of ten different Reynolds numbers and eleven different
angles of attack were simulated on all four airfoils to generate the
dataset. Reynolds numbers (Re) were chosen from 0.5 to five million
with an increment of 0.5 million in between, and angles of attack
were chosen from 0° to 20° with an increment of 2° in between.
Reynolds numbers in this range indicate the commencement of
turbulence and transition to the completely turbulent boundary
layer above the surface of the airfoil. The range is located in
the mid-domain on the scale, indicating low-to-high Reynolds
number [27]. Thus 110 cases were simulated on each airfoil, making
a total 440 cases on all four airfoils combined. Note that the
same aerodynamic dataset has also been used in our previous
study on airfoil analysis using back-propagation neural networks
[20]. However, this study extends the scope by building upon the
prior dataset in a technically rigorous manner for implementing
multiple SVM models under identical conditions, accentuating its
applicability as a low-cost surrogate. New or additional simulations
were considered needless at this point, as the existing dataset’s range
sufficiently captures nonlinear aerodynamic regimes. Details of the
numerically simulated flow conditions are tabulated in Table 2.

For better visualization, the scatter plot of the numerically
simulated flow conditions is also illustrated in Figure 3. It can
be observed that similar flow conditions have been numerically
simulated for all four NACA airfoils chosen for this paper to generate
the required aerodynamic dataset. It should be noted that while
the data splitting for training was done at random, there may not
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TABLE 1 Variation in predicted coefficients with different mesh setting.

Grid setting No. of cells % Var in Cl Var in Cd Remarks

Coarse 45,232 0.6012 — 0.0511 —
Medium 61,802 0.6175 2.71% 0.0539 5.47% Selected
Fine 73,531 0.6207 0.52% 0.0543 0.74%

+

NACA 0012 NACA 2415 NACA 23024 | NACA 24112

FIGURE 2
Unstructured mesh around the airfoils.

TABLE 2 Details of flow conditions simulated.

Airfoil Noun Re No. (x10°) AoA (angles of attack) in degrees
0.5 0 2 4| 6 8 10 12 14 16 18 20
1.0 0 2 4| 6 8 10 12 14 16 18 20
15 0 2 4| 6 8 10 12 14 16 18 20
2.0 0 2 4| 6 8 10 12 14 16 18 20
NACA 0012 25 0 2 4 6 | 8 10 12 14 16 18 20
NACA 2415
NACA 23024 3.0 0 2 4| 6 8 10 12 14 16 18 20
NACA 24112 :
3.5 0 2 4 6 8 10 12 14 16 18 20
40 0 2 4| 6 8 10 12 14 16 18 20
45 0 2 4| 6 8 10 12 14 16 18 20
5.0 0 2 4| 6 8 10 12 14 16 18 20

have been an equal amount of data points from each airfoil for =~ This method involves identifying an optimal line, also known as
the training. a hyperplane, which splits data points to divide them into two
groups, leaving the highest possible gap between them. It tries to
find the line or plane that distinguishes the data points into the

2.2 Support vector machines (SVMs) best possible groups or types. The points also called the vectors that
are closest to it—referred to as the “maximum-margin hyperplane”
This algorithm falls under the category of supervised machine =~ — known as the “support vectors” [29]. SVMs convert the data

learning techniques which help classify data into two groups [28].  into an upper-dimensional space using various methods (referred
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Scatter Plot of Numerically Simulated Flow Conditions
NACA 24112
NACA 23024
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. —
3=
et
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$ 5
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Angles of Attack
FIGURE 3
Scatter plot of numerically simulated flow conditions.

to as kernel functions), which simplifies the separation of the data
points. This helps SVMs model complex associations between input
and output variables. Due to the kernel functions, which enable
them to handle both linear and nonlinear connections, SVMs are
resilient against outliers, efficient for high-dimensional data, and
adaptable. The linear kernel, quadratic kernel and cubic kernel,
which are collectively known as polynomial kernels, and Gaussian
kernels, also known as radial-basis functions (RBF) are among the
frequently used kernels [30]. The efficacy of SVM largely hangs
on the selection of kernel, the kernel's parameters, and the soft
margin parameter. The technique is chosen based on the data and
expected relationship between them. Although SVMs are better at
classification tasks, they can equally be used for regression tasks. The
variant of SVM that predicts continuous values is called the Support
Vector Regression (SVR) [31]. Its design is similar to SVM, as seen
in Figure 4.

The four primary phases in the SVM’s overall framework are
as follows.

a. Pre-processing of data, whereby the input variables are
suitably standardized to guarantee a well-adjusted input to
the SVM model.

. Selection of Kernel, where a suitable kernel function is selected
according to the properties of the data.

c. Training the system to identify the best hyperplane for the
given scenario.

. Applying suitable assessment measures to assess the model’s
performance.
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The pseudo algorithm as per the above general framework for
Support Vector Regression (SVR) as implemented in this work is
described below in seven broad steps. It is to be noted that the
algorithm’s convergence criteria can be customized by adjusting
the weight updates and iteration count, which serve as a stopping
condition.

a. Data Preparation: Define the input vector set x; and

corresponding output labels y,.

. Kernel Selection: Choose a suitable kernel, K(x,x,-) for
converting inputs into upper-dimensional space.

c. Initialization: Set initial parameters: regularization factor C,
kernel K, and tolerance margin e.

. Model Optimization: Minimize the objective function using
(Equation 1) with the training data (x;,y;) to determine

optimal SVR model parameters.

n
. 1 2 1
min Ellwll +C;;{yi—(w-xi+b)—s}

e. Prediction: Use optimized SVR model parameters to predict

1

output values for new input vectors.
f. Output Calculation: For a new input vector x, calculate the
predicted output y using (Equation 2).

()

Approximate the

y=w-x+b

. Regression Function Approximation:
regression function using (Equation 3).

n

f) =) {w; K(xx;) +b}

i=1

3)
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Weights
Support Mapping Kernel
Vectors Vectors Function
FIGURE 4

Generalized design of a SVMs.

Here, f(x) — it denotes the set of output vectors,
K — it denotes the kernel function,
w; — it denotes the weight vector,
b — it denotes the bias term

h. Kernel Functions: Use (Equation 4) for linear, (Equation 5), for
polynomial or (Equation 6) for RBF kernel to get the SVM
parameters.

K(x,x;) = x.x; (4)

K(x,x;) = (yx.x; + c)d (5)

Here, y — scaling factor,
¢ — offset constant,
d — degree of polynomial.

K(x,x;) =exp {y ||x—xi||2},y> 0 (6)
Here, y — scaling factor,

|l = x;||* = Euclidean distanceb/wx &x;

2.3 Predictive model

The rudimentary model to predict aerodynamic coefficients
with SVM as used in this present paper is shown in Figure 5.
The SVM model can be taken as a black box that takes certain
inputs and produces certain outputs. In the case of current work,
the inputs are the four input features, i.e., airfoil nomenclature
(noun), Mach (Ma) and Reynolds numbers (Re), and airfoil’s angle
of attack (AoA), and the outputs are the drag coeflicient (Cy) and lift
coeflicient (C)).

Frontiers in Physics

2.4 Data processing, model training and
implementation

Figure 6 depicts the fundamental flowchart for the suggested
methodology. Initially, the required aerodynamic dataset was
created through numerical simulations on four airfoils at various
flow conditions in Ansys Fluent.

Prior to model training, data preprocessing was conducted
on the dataset to ensure its integrity. The dataset was initially
examined manually for any missing values and outliers to ensure
data integrity. It is important to note that because of the small
dataset (440 data points only), no missing values or outliers were
found; therefore, automated outlier detection or data imputation
was not needed. Moreover, considering the controlled nature of the
numerical simulations and the small dataset size, no extra filtering
or smoothing was performed on the data. Normalization was also
considered unnecessary because the aerodynamic coefficients varied
consistently.

Feature selection is another important element of data
preprocessing. In order to estimate the aerodynamic coefficients,
four important parameters, including the angle of attack (AoA),
Mach (Ma), Reynolds number (Re) and the airfoil name were
selected as the input features. The airfoil name, being a categorical
feature, was encoded numerically using a label encoding scheme.
Each of the four airfoils was assigned to a unique integer such
as NACA 0012 as 1, NACA 2415 as 2, NACA 23024 as 3 and
NACA 24112 as 4. This allowed the airfoil identifier to be used
as an input feature without disrupting numerical processing.
The outputs or the targets were the drag coefficient (C4) and lift
coefficient (C)).

The dataset was then split into three subsets: training, validation,
and testing. The dataset was randomly split into 70% for training,
ie., around 308 data points were chosen randomly for training,
and 15% each, i.e., 66 data points each were chosen for testing and
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FIGURE 5
Svm predictive model.
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FIGURE 6

Flowchart for SVM implementation.

Result Output

\e—

N /

validation purposes, respectively. After which the kernel functions  This approach enables rapid deployment of the existing model
were selected, and the model was initialized with random values. ~ without extensive manual tuning. The selected default settings
Subsequently, the training dataset was provided to the SVM model  include automatic kernel scaling, regularization parameters, and
to start the training. The training terminated on attaining the  epsilon-insensitive loss parameters. The standard by which to select
predetermined stopping conditions. When the validation error  the box constraints was also set to automatic. This allowed a
was reduced to its smallest value, ie., on attaining the best  fair comparison of kernel efficacy. It is to be noted here that
validation performance was the stopping criterion intended to be  no grid or random search tuning was employed during this
reached. The trained model was then assessed with the testing  study. Hyperparameter optimization using different techniques
data subset. like Bayesian optimization etc. May be potentially used in future
The SVM models were trained by utilizing the “Regression-  studies which can enhance the model’s performance. The selected
Learner” application available in MATLAB R2023b for forecasting ~ hyperparameters as per the default settings of the MATLAB’s
the aerodynamic coeflicients of airfoils. The regression learner = Regression-Learner App are summarized in Table 3.
can train various regression models to predict data utilizing
supervised approaches of machine learning [32]. To predict the
aerodynamic coefficient in the current work, six different forms
of SVMs including linear, quadratic, cubic, fine, medium, and 2.5 Performance assessment criterions
coarse models have been used. The kernel functions and kernel
scaling that were employed for training distinguish the models The performance of the SVM models after training has been
from one another. evaluated using the most widely used statistical performance gauges.
The default settings of hyperparameters were kept for the  These are, namely, the root mean squared error denoted as RMSE,
support vector machines used in this work to simplify the model, =~ the Mean Absolute Error denoted as MAE, and the Pearsons
ensure consistency and avoid model-specific bias during evaluation. ~ Correlation Coefficients denoted as R which are defined as below.
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TABLE 3 Hyper parameters of SVM models.

10.3389/fphy.2025.1621236

Model Linear SVM | Quadratic SVYM  Cubic SVM Fine Medium Coarse
Gaussian SVM  Gaussian SVM Gaussian SVM

Hyper-

parameter

Kernel Function Linear Quadratic Cubic Gaussian Gaussian Gaussian

Kernel Scale Automatic 0.5 2 8

Box Constraint Automatic

Epsilon Automatic

2.5.1 Root mean squared error (RMSE)

RMSE is defined by the rooted difference between the forecasted
and the actual goal. Square root ensures that it is of the same order
as the predicted values. The accuracy of the model is inversely
proportional to the RMSE; that is, a lesser value of the RMSE
represents better accuracy of the model. Ideally, it should approach
zero. Mathematically, it is defined by (Equation 7).

RMSE = (7)

Here, P; — forecasted value
M; — actual goal

2.5.2 Mean absolute error (MAE)

MAE is used to evaluate the accuracy of regression models
for which the error direction is not critical. It is determined by
calculating the mean absolute variance between the forecasted and
the actual goal. The lower value of the MAE represents better model
performance. It is important to compare the MAE to the scale of the
target variable. Ideally, it should also be zero. Mathematically, it is
defined by (Equation 8).

Do |Pi- M
n

MAE =

Here, P; — forecasted value
M; — actual goal

2.5.3 Pearson'’s correlation coefficient (R)

“R” is an important statistical metric that shows the association
between the forecasted and the actual goal. It always falls between
—1and +1. The performance of a model is ideal if the absolute value
of R is equivalent to or remarkably close to +1. Mathematically, it is
defined by (Equation 9).

Here, n — total no. of data points
P; — forecasted value

M; — actual goal

M, — mean of all measured values

Frontiers in Physics 08

3 Results and discussions

In this work, our primary focus is to conduct a detailed
evaluation of six SVM variants for predicting lift and drag
coeflicients of four NACA airfoils using a consistent CFD dataset
and protocol. While other machine-learning architectures such
as BPNNs, CNNs, and LSTMs have been reported in the
literature, they typically differ in input representation, target
variables, preprocessing steps, and evaluation metrics, making direct
numerical comparison to the present results inappropriate without
retraining under identical conditions. To maintain methodological
consistency and avoid misleading conclusions, this study limits its
scope to SVM-based methods evaluated in a uniform framework.
Each model studied in this work was trained independently for
predicting the aerodynamic drag coefficient and lift coefficient on
a numerically generated dataset of 440 cases. Table 4 summarizes
the vital performance evaluation metrics of RMSE, MAE, and R
acquired during validation for each SVM model in forecasting drag
and lift coeflicients.

From Table 4, it can be noted that the cubic SVM model has
yielded the best outcomes in terms of the performance evaluation
metrics by achieving the best values for RMSE, MAE, and R for
estimating both the aerodynamic coefficients. The RMSE value
achieved by cubic SVM for estimating the drag coefficient was
5.364 x 107> and the lift coefficient was 40.702 x 1073, along
with correlation coefficients of 0.9954 and 0.9935, respectively.
These values depict a strong correlation between the forecasted
and actual responses, indicating the effectiveness of the cubic
kernel in modeling the nonlinear correlations between aerodynamic
variables.

The effectiveness of the cubic SVM is attributed to its ability
to distinguish complex flow phenomena like flow separation and
abrupt lift changes at medium to high angles of attack. The superior
performance can be explained by considering both the physics of the
aerodynamic prediction task and the mathematical properties of the
kernel. The relation between flow characteristics (Reynolds number,
Mach number, angle of attack) and aerodynamic coefficients is
naturally smooth but may exhibit nonlinearities due to complex
flow phenomena like flow separation, pressure distribution changes,
and viscous effects. A cubic polynomial kernel effectively captures
nonlinearities due to its ability to integrate interactions up to the
third order, without the limited flexibility of linear/quadratic kernels
or the excessive locality of narrow Gaussian kernels. The CFD dataset
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TABLE 4 Results summary for different SVM models.

10.3389/fphy.2025.1621236

SVM model For Cd predictions For Cl predictions
RMSE (x1073) MAE (x1073) RMSE (x1073) MAE (x1073)
Linear SVM 14.156 11.48 0.9677 91.344 72.08 0.9668
Quadratic SVM 6.976 571 0.9923 93.703 72.40 0.9650
Cubic SVM 5.364 471 0.9954 40.702 25.88 0.9935
Fine Gaussian SVM 12.312 9.43 0.9757 81.643 59.38 0.9736
Medium Gaussian SVM 5.488 474 0.9952 52.116 39.09 0.9893
Coarse Gaussian SVM 10.029 7.96 0.9839 90.539 73.40 0.9674

used in this study is continuous and free from measurement noise,
allowing the global basis functions of the cubic kernel to exploit the
smoothness of the aerodynamic response surface. These combined
factors explain the cubic kernel’s ability to achieve a favorable trade-
off between model complexity and generalization accuracy.

The medium Gaussian SVM model has also produced results
remarkably close to the cubic SVM model in predicting both the
aerodynamic coefficients with RMSE values of 5.488 x 107> and
52.116 x 107> for drag and lift coefficients, respectively. It can be
said that due to the inherent smoothness of the radial basis function
kernel of the medium Gaussian SVM, it was able to learn the
localized patterns in variation without the risk of overfitting.

On the other hand, the linear and quadratic SVM had the worst
performance for drag coefficient and lift coefficient with RMSE
values of 14.156 x 10> and 93.703 x 107°, respectively, while
correlation coefficient values remained above 0.9650. The drop in
performance by the linear and quadratic kernels can be attributed to
their limitations in modeling the complex flow behaviors like flow
separation and abrupt lift changes, which are nonlinear in nature.

On deeper analysis of the results, another important aspect
can be observed here: all SVM models studied predicted both the
aerodynamic coefficients with good accuracy, but their performance
is almost 7 to 8 times better in predicting the coefficient of drag as
compared to the coefficient of lift. In all cases, the RMSE and MAE
values remained lower for prediction of drag coefficient as compared
to lift coefficient.

A possible explanation for this phenomenon is the difference
in flow characteristics when producing drag and lift. Drag varies
smoothly with respect to changes in Reynolds number, flow speed
and/or angle of attack due to its inherent dependence on pressure
and skin friction drag along the airfoil surface, making it easier
for the machine learning model to remember and generalize
it. Whereas the lift is dependent upon the pressure difference
between the upper and lower surfaces of the airfoil, which is highly
sensitive to Reynolds number, flow speed and/or angle of attack.
As the angle of attack approaches the stall region, the adverse
pressure gradient intensifies, causing the laminar boundary layer to
transition earlier to turbulence and, in some cases, to separate from
the surface entirely. This separation drastically alters the surface
pressure distribution, leading to sharp drops in lift and significant
variability even with small perturbations in operating conditions.

Frontiers in Physics

Additionally, vortex shedding and unsteady wake interactions near
stall introduce temporal fluctuations absent in the relatively steady
drag trends. Resultantly, while the mapping from inputs to Cd is
relatively smooth and single-regime, the mapping for CI frequently
spans multiple aerodynamic regimes (attached flow, transitional
flow, separated flow), introducing nonlinearities and increasing
functional complexity, making approximation more difficult for a
single machine learning model.

The RMSE values obtained for each SVM model for
predicting the coefficient of drag and coefficient of lift are shown
separately in Figure 7. Notably, the cubic SVM consistently
outperformed other models in both cases with RMSE values of
5364 x 107° and 40.702 x 107> for prediction of coefficients of
drag and lift, respectively.

Table 4 further indicates that the MAE values follow a trend
consistent with RSME for all the SVM models, reinforcing the
superiority of cubic SVM across all metrics. This has been
depicted in Figure 8, where the plot of MAE values for each
SVM model has been provided separately for predictions of drag
coeflicient as well as lift coefficient. The best MAE value achieved
by Cubic SVM for estimating the drag coefficient was 4.71 x 1073
and the lift coefficient was 25.88 x 1072, respectively.

Table 4 also shows that the value of “R” was extremely near
to +1 in all the scenarios, representing the accuracy of the
estimated aerodynamic coefficients. Best values, however, were again
achieved by the cubic SVM model for both aerodynamic coefficient
predictions.

The performance of all the SVM models to estimate the drag
coeflicient and lift coefficient are depicted through the regression
charts given in Figures 9, 10, respectively. These regression plots
further validate the conclusions. Each subplot shows a comparison
between the predicted and true responses, with the corresponding
R values representing the model’s ability to fit. The graph illustrates
a strong association between the estimated and actual goal;
furthermore, most of the data points are on or very close to the
regression (ideal) line.

Figure 9 represents the regression plots of predicted versus
actual drag coeflicients for all six SVM models. The performance of
each model can be measured based on the data clustering around
the regression (ideal) line and the related R values. It can be
clearly seen that the cubic SVM and medium Gaussian SVM are
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FIGURE 8
MAE plots for SVM models for Predicting Cd and CL.

closely clustered around the ideal fit line with nominal scattering,
with R-values exceeding 0.99. This depicts excellent correlation
between the predicted and actual values, reflecting the model’s
ability to capture complex aerodynamic relationships with minimal
variance. The quadratic and fine Gaussian SVM models also
provided reasonably good performance, though with slightly more
spread in the residual values around the regression line, indicating
lesser performance.

In contrast, the linear SVM and coarse Gaussian SVM models
have shown broader scatter, especially at the lower and higher
ranges of drag coeflicients, where it underfitted the ideal line. This
particular behavior is attributed to their limited capacity to model
nonlinear variations due to skin-friction and pressure drag across
varying Reynolds numbers and angles of attack. This supports the
earlier conclusion that nonlinear kernels, particularly cubic and
medium Gaussian, are better suited for modeling drag behavior. It
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is to be noted that even the weaker models like linear SVM have
achieved R-values above 0.96, indicating reasonable accuracy while
predicting drag coefficients within a constrained domain. However,
their reduced accuracy especially at low and high ranges indicates
limitations in capturing detailed drag behavior near flow transition
or flow separation conditions.

Figure 10 illustrates the regression plots of predicted versus
actual lift coefficients for all six SVM models. Here the performance
differences between the SVM models are more pronounced as
compared to the drag coefficients prediction. For lift coeflicients
prediction as well, the cubic SVM has outperformed other
models, with a near ideal scattering of data points around
the regression (ideal) line, indicating its capability of modeling
nonlinear aerodynamic lift behavior. The medium Gaussian SVM
has also performed well, although with a slightly more scattering
of datapoints especially at higher values of lift coefficients. This
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shows a slight decrease in performance at higher angles of  overfitting on localized features without capturing global patterns
attack where flow separation and stall effects come in to play.  effectively.

The fine Gaussian SVM has produced a larger variance and a
noticeable underestimation in certain regions, possible due to
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Regression Charts for all SVM model for Predicting Coefficient of Lift CL

the largest spread of datapoints further from the ideal fit line  input parameters owing to nonlinearities inherent in lift generation,

at both low and high lift regions. This behavior depicts their  especially at transitional stages. Overall, the Figure 10 depicts that

inadequacy in handling the complexity of relationship between the lift coeflicients prediction is inherently more challenging than drag
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coeflicients prediction due to its dependency on more complex fluid
dynamics phenomena.

The regression plots of drag coefficients and lift coefficients
prediction have validated the data presented in Table 4. They
have also shown the superiority of nonlinear kernels including
the cubic and medium Gaussian SVMs in capturing aerodynamic
complexities more efficiently.

The performance ranking of different variants of SVMs is
supported by multiple performance measuring metrics (RMSE,
MAE, and Pearsons R) and by consistent patterns observed in
residual plots. As these indicators agree and the effect sizes
are clear, formal hypothesis testing was considered unnecessary.
Additionally, classical statistical tests assume that prediction errors
are independent and have a uniform spread across all operating
conditions, which is not strictly satisfied in the aerodynamic dataset
used in this work due to its structured nature, and could therefore
yield misleading p-values. The combination of several metrics
and regression plots is considered sufficient to demonstrate the
robustness of the conclusions.

4 Limitations and considerations

Despite the fact that the cubic and medium Gaussian SVM
models have fairly predicted the aerodynamic coefficients, it is
to be noted that there are some limitations associated with the
current study. First of all, the performance of the SVM models are
purely dependent upon the quality and quantity of the training
dataset. Machine learning techniques require large amount of
datasets for proper training, however, SVM models have been
trained only on a dataset of 440 simulation cases in this study,
which may be a potential limitation for the model’s performance.
Moreover, the investigated SVM model’s performance have been
assessed on a limited subset of airfoil (only NACA 4- and 5-
digit series) configurations under a limited flow condition to
maintain a controlled geometric parameter space and ensure
consistent CFD meshing and boundary conditions across all
cases. While this restriction enables fair benchmarking of SVM
kernels, it does not capture the full geometric diversity of airfoils.
Therefore, their performance may not be directly generalize to
other situations and datasets with the same level of accuracy
without retraining.

Secondly, in comparison to the traditional CFD techniques,
the SVM model operates as black-box model offering limited
physical interpretability of what’s happening inside the model.
Lastly, to simplify the model implementation, default values of
the hyperparameters have been used during training, which may
become a limitation in reaching optimal performance of the models.
In order to address these limitations, training the models on a
large and more diversified dataset obtained from further CFD
simulations of different types of airfoils under numerous settings,
hyperparameter optimization using various techniques like Bayesian
optimization etc., and integration with physics-based constraints
may help to increase the reliability of the results. A valuable
extension of this research would be to retrain representative deep
learning and ensemble models on the same dataset and evaluation
protocol used here. Such an experiment would allow a direct, fair,
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and quantitative comparison between SVMs and other state-of-the-
art techniques, providing further insight into the trade-offs between
accuracy, computational efficiency, and model interpretability.

5 Conclusion

In this study, we assessed the performance of six distinct Support
Vector Machine models in predicting the aerodynamic coefficients
of drag and lift under a wide range of flow conditions for four
different NACA airfoils. In this regard, a dataset of 440 cases
generated through numerical simulations was used to train and
evaluate the models. The cubic SVM exhibited the best predictive
performance among all the tested models, demonstrating the lowest
RMSE of 5.364 x 10 for drag coefficient and 40.702 x 107 for lift
coefficient. Correlation coeflicient values higher than 0.995 were also
achieved in each case, indicating a very high correlation between
tested and predicted data. The performance of the medium Gaussian
SVM was also comparable to the cubic SVM model, signifying
its capability to model the complex and nonlinear aerodynamic
behavior. On the other hand, the linear SVM and quadratic SVM
had the worst performance for drag coefficient and lift coefficient
with RMSE values of 14.156 x 107> and 93.703 x 1073, respectively,
while correlation coefficient values remained above 0.9650.

Overall, the SVM models proved effective in aerodynamic
modeling of airfoil aerodynamics under varying angles of attack
and Reynolds numbers. The results indicate that adequately tuned
machine learning models, especially the nonlinear SVM models, can
act as surrogates for costly numerical schemes without a substantial
compromise in accuracy. However, it is important to highlight that
the results are based on the specific dataset used in this study and
may not be applicable globally in the present form. Additionally,
the models were trained using default MATLAB hyperparameters to
maintain fairness and simplicity across comparisons. The findings
of this study can be further expanded by including additional
airfoils and more flow regimes to get larger datasets. Moreover,
hyperparameters tuning to get potentially better performance of
the SVM models may be done through optimization schemes and
integration with other machine learning algorithms in future studies
to further enhance the predictive capabilities and generalization of
these techniques for broader aerodynamic applications.
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