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Null Bertrand partner D-curves 
on spacelike surfaces

Tanju Kahraman*

Department of Mathematics, Manisa Celal Bayar University, Manisa, Türkiye

In this paper, by using the Darboux frame of null curves, we define null Bertrand 
partner D-curves and present the relations between curvatures of these curves 
in Minkowski 3-space E3

1 . In addition, we obtain some special results. Finally, 
by considering surface construction methods, we provide examples for null 
Bertrand partner D-curves in E3

1 .
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 1 Introduction

The associated curve of a given curve is a fascinating subject of differential geometry. 
So, finding such a curve is an interesting problem. Many geometers have investigated this 
problem in different spaces. The well-known examples of associated curves are Bertrand 
and Mannheim curves in the Euclidean 3-space. A Bertrand curve is a curve that shares 
its principal normal vectors with another curve and is characterized by the property that 
λκ+ μτ = 1, where λ, μ are constants [1]. Similarly, Mannheim curves are special curves for 
which the principal normal of one of the curves is linearly dependent on the binormal vector 
of the other curve.

Considering the curves on surfaces is more interesting and provides an idea for defining 
new types of associated curves on surfaces. We note that a new type of Bertrand curve 
has been defined on surfaces and is called the Bertrand partner D-curves [2, 3]. In this 
definition, the authors have considered the Darboux frames of surface curves and obtained 
some characterizations of those curves.

Moreover, studying a concept of Euclidean space within Minkowski space is particularly 
interesting since the curves of this space are related to physics and the theory of relativity. A 
timelike curve corresponds to the path of an observer moving slower than the speed of light, 
a null curve corresponds to the observer moving at the speed of light, and a spacelike curve 
corresponds to an observer moving faster than light [4]. Particularly, null curves have extra 
importance since the classical relativistic string is a surface or world-sheet in Minkowski 
space, which satisfies the Lorentzian analog of the minimal surface equation [5]. Moreover, 
string equations are useful tools for simplifying the wave equation and a few additional 
simple equations. For instance, the solution of a two-dimensional (2D) wave equation shows 
that strings are related to null curve pairs, and if the string is open, it is related to a single 
null curve [5, 6].

In this paper, we define null Bertrand partner D-curves lying on spacelike 
surfaces and present characterizations for these associated null curves. We obtain 
relations between curvatures of null Bertrand partner D-curves. Finally, we provide 
some examples for null Bertrand partner D-curves in Minkowski 3-space E3

1.
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 2 Preliminaries

The Minkowski 3-space E3
1 is the real vector space IR3 provided 

with the standard flat metric given by ⟨,⟩ = − dx2
1 + dx2

2 + dx2
3, where 

(x1,x2,x3) is a rectangular coordinate system of E3
1. An arbitrary 

vector v = (v1,v2,v3) in E3
1 can have one of three Lorentzian causal 

characters; it can be spacelike if ⟨v,v⟩ > 0 or v = 0, timelike if ⟨v,v⟩ <
0, and null (light-like) if ⟨v,v⟩ = 0 and v ≠ 0. Similarly, an arbitrary 
curve α = α(s) can locally be spacelike, timelike, or null (light-
like) if all of its velocity vectors α′(s) are spacelike, timelike, or 
null (light-like), respectively. For any vectors x = (x1,x2,x3) and y =
(y1,y2,y3) in E3

1, the Lorentz vector product of x and y is defined
as follows:

x× y = ||

|

e1 −e2 −e3

x1 x2 x3

y1 y2 y3

||

|

= (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2) ,

where δij = {
1 i = j,
0 i ≠ j,

ei = (δi1,δi2,δi3) and e1 × e2 = − e3, e2 × e3 =

e1, e3 × e1 = − e2 [7, 8].
{l, n, u} is used to denote the moving frame along the null curve 

α(s) in E3
1. For an arbitrary null curve α(s), the following Frenet 

formulas are given

[[

[

l′

n′

u′

]]

]

= [[

[

0 0 k1

0 0 −k2

−k2 k1 0

]]

]

[[

[

l
n
u

]]

]

,

where ⟨l, l⟩ = ⟨n,n⟩ = ⟨l,u⟩ = ⟨u,n⟩ = 0, ⟨u,u⟩ = ⟨l,n⟩ = 1 and 
“ ′” denotes the derivative with respect to the arc length
parameter s [9].

Similar to the curves, a surface in E3
1 can be timelike or spacelike. 

A surface S : U ⊂ R2→ E3
1 is called a timelike (spacelike) surface 

if the induced metric on the surface is a Lorentz metric (positive 
definite Riemannian metric); i.e., the normal vector on the spacelike 
(timelike) surface is a timelike (spacelike) vector, where U is an open 
set in R2 [10].

Let S be a spacelike surface in E3
1 defined on an open set U ⊂ R2, 

and let us consider a null curve α(s) on S with Frenet frame {T,N,B}. 
Since α(s) lies on S, there exists another frame along α(s), which 
is called the Darboux frame of α(s) and is denoted by {T,U,V}. 
In this frame, T is the unit tangent of the curve, U is the unit 
normal of the surface S along α(s), and V is the unique vector
obtained by

V = 1
⟨X,T⟩
{X−
⟨X,X⟩

2⟨X,T⟩
T}, X ∈ Tα(t)S, ⟨X,T⟩ ≠ 0,

where

⟨T,T⟩ = ⟨V,V⟩ = ⟨T,U⟩ = ⟨V,U⟩ = 0, ⟨T,V⟩ = ⟨U,U⟩ = 1. (1)

Therefore, the Darboux formula of the moving frame is

[[

[

T′

V′

U′

]]

]

= [[[

[

kg 0 kn

0 −kg τg

−τg −kn 0

]]]

]

[[

[

T
V
U

]]

]

. (2)

In these formulas, kg, kn, and τg are called the geodesic 
curvature, the normal curvature, and the geodesic torsion, 
respectively. Henceforth, we use “quote” to denote the derivative 
with respect to the arc length parameter of α(s) [9, 11]. 

3 Null Bertrand partner D-curves on 
spacelike surfaces in E3

1

In this section, by considering the Darboux frame of null 
curves, we define null Bertrand partner D-curves and provide the 
characterizations of these curves in E3

1.

Definition 1: Let S1 and S2 be oriented spacelike surfaces in E3
1, and 

let us consider the unit-speed null curves α1(s1) and α2(s2) lying fully 
on S1 and S2, respectively. The Darboux frames of null curves α1(s1)
and α2(s2) are denoted by {T1,U1,V1} and {T2,U2,V2}, respectively. 
If there exists a corresponding relationship between the curves α and
α1 such that at the corresponding points of the curves, the Darboux 
frame element U1 of  α1 coincides with the Darboux frame element U2
of  α2, then α1 is called a null Bertrand D-curve and α2 is called a null 
Bertrand partner D-curve of  α1. Then, the pair {α1,α2} is said to be a 
null Bertrand D-pair. 

Theorem 1: Let S1 and S2 be oriented spacelike surfaces in E3
1, and 

let null curves α1(s1) and α2(s2) with non-zero normal curvatures kn1

and kn2
 lie on S1 and S2, respectively. Then, α1(s1) and α2(s2) are null 

Bertrand partner D-curves if and only if the following equality holds:

k2
n2
( ds

ds1
)

4
= k2

n1
. (3)

Proof. Suppose that the pair {α1,α2} is a null Bertrand D-pair. The 
Darboux frames of α1(s1) and α2(s2) are denoted by {T1,U1,V1} and 
{T2,U2,V2}, respectively. Then, by the definition, we can assume that

α2 (s2) = α1 (s1) + λ (s1) U1 (s1) , (4)

for some smooth function λ(s1). By taking the derivative of 
Equation 4 with respect to s1 and applying the Darboux Formula 2,
we obtain

T2
ds2

ds1
= (1− λτg1

)T1 − λkn1
V1 + λ′U1. (5)

Since the direction of U1 coincides with the direction of U2, the 
inner product of Equation 5 with U1 yields

λ′ (s1) = 0. (6)

Thus, λ is a non-zero constant. Now, equality Equation 5 can 
be written as

T2
ds2

ds1
= (1− λτg1

)T1 − λkn1
V1. (7)

Taking the inner product of Equation 7 with itself, we obtain

0 = 2kn1
(1− λτg1

) . (8)

From Equation 8, we obtain

τg1
= 1

λ
. (9)

Therefore, Equation 7 can be written as follows:

T2
ds2

ds1
= −λkn1

V1. (10)
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By taking the derivative of Equation 10, we obtain

(kg2
(

ds2
ds1
)

2
+

d2s2

ds2
1
)T2 + kn2

(
ds2
ds1
)

2
U2 = −kn1

U1 + (−λk′n1
+ λkn1

kg1
)V1,

(11)

 and taking the inner product of Equation 11 with itself, we obtain

k2
n2
(

ds2

ds1
)

4
= k2

n1
, (12)

which yields Equation 3.
Conversely, we assume that Equation 3 holds. For a non-zero 

constant λ, we define a curve as

α2 (s2) = α1 (s1) + λU1 (s1) . (13)

We will prove that α1 is a null Bertrand D-curve and that α2 is 
the null Bertrand partner D-curve of α1. By taking the derivative of 
Equation 13 with respect to s1 twice, we obtain

T2
ds2

ds1
= (1− λτg1

)T1 − λkn1
V1, (14)

and

(kg2
(

ds2

ds1
)

2
+

d2s2

ds2
1
)T2 + kn2

(
ds2

ds1
)

2
U2 =(−λτ′g1

+ kg1
− λkg1

τg1
)T1

+ (−λk′n1
+ λkn1

kg1
)V1

+ (kn1
− 2λkn1

τg1
)U1

,

(15)

respectively. Taking the cross-product of Equation 15 and
Equation 14, we obtain

kn2
(

ds2

ds1
)

3
V2 = λk2

n1
(1− 2λτg1

)T1. (16)

Without loss of generality, taking the inner product of 
Equation 14 with itself yields τg1

= 1
λ

. Thus, Equation 14 can 
be written as

T2
ds2

ds1
= −λkn1

V1. (17)

Finally, the cross-product of Equation 16 and Equation 17 shows 
that the Darboux frame element U1 of α1 coincides with the Darboux 
frame element U2 of α2 at the corresponding points of the curves; i.e., 
the curves α1 and α2 are null Bertrand D-pair curves. 

Theorem 2 has the following corollaries.

Corollary 1: The distance between the corresponding points of null 
Bertrand curves is constant and is given by λ = 1

τg1
. 

Corollary 2: Let the pair {α1,α2} be a null Bertrand D-pair. Then, the 
geodesic torsion of  α1 is a non-zero constant and is given by τg1

= 1
λ

. 

Corollary 3: There is no null Bertrand D-curve α that is a principal 
line; i.e., τg = 0. 

Theorem 2: Let α1(s1) and α2(s2) be null Bertrand partner D-curves 
with non-zero normal curvatures kn1

 and kn2
, respectively. Then,

kn1
= kn2
(1+ 2λτg2

)(
ds2

ds1
)

2
. (18)

Proof. Based on the definition, we can assume that

α1 (s1) = α2 (s2) − λU2 (s2) (19)

for a non-zero constant λ. By taking the derivative of 
Equation 19 with respect to s1 twice and applying the Darboux 
formulas, we obtain

T1 = (1+ λτg2
)

ds2

ds1
T2 + λkn2

ds2

ds1
V2 (20)

and

T′1 = kg1
T1 + kn1

U1

= [(λτ′g2
+ kg2
+ λkg2

τg2
)(

ds2

ds1
)

2
+ (1+ λτg2

)
d2s2

ds2
1
]T2

+[(λk′n2
− λkn2

kg2
)(

ds2

ds1
)

2
+ λkn2

d2s2

ds2
1
]V2

+ kn2
(1+ 2λτg2

)(
ds2

ds1
)

2
U2

, (21)

respectively. By substituting Equation 20 into Equation 21, we obtain

kg1
(1+ λτg2

)
ds2

ds1
T2 + λkg1

kn2

ds2

ds1
V2 + kn1

U1

= [(λτ′g2
+ kg2
+ λkg2

τg2
)(

ds2

ds1
)

2

− kg1
(1+ λτg2

)
ds2

ds1
+ (1+ λτg2

)
d2s2

ds2
1
]T2

+[(λk′n2
− λkn2

kg2
)(

ds2

ds1
)

2

− λkn2
kg1

ds2

ds1
+ λkn2

d2s2

ds2
1
]V2

+ kn2
(1+ 2λτg2

)(
ds2

ds1
)

2
U2

. (22)

Since α1(s1) and α2(s2) are null Bertrand partner D−curves, we 
obtain the desired equation

kn1
= kn2
(1+ 2λτg2

)(
ds2

ds1
)

2
. (23)

Theorem 3: Let α1 and α2 be null Bertrand partner D−curves lying 
on surfaces S1 and S2, respectively. Then, the geodesic torsion of  α2 is 
constant and is given by τg2

= −1
λ

. 
Proof. From (Equation 3), we obtain

(
ds2

ds1
)

2
= ∓

kn1

kn2

, (24)

and by substituting Equation 24 into Equation 23, we obtain

τg2
= −1

λ
. (25)

From corollary 4 and theorem 7, we have the following corollary.

Corollary 4: The relationship between the geodesic torsions of null 
Bertrand partner D−curves α1 and α2 is given by

τg1
= −τg2
= 1

λ
.
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FIGURE 1
Surface S1(s,v) and geodesic null curve α1(s).

FIGURE 2
Surface S2(s,v) and geodesic null Bertrand partner D−curve α2(s).

Corollary 5: Let α1 and α2 be null Bertrand partner D−curves. Then, 
the curvatures of  α1 and α2 hold

(λk′n2
− λkn2

kg2
)(

ds2

ds1
)

2
= λkn2
(kg1

ds2

ds1
−

d2s2

ds2
1
). (26)

Proof. It is proven based on Equation 22.

Corollary 6: Let α1 and α2 be null Bertrand partner D−curves. Then,
α1 and α2 are geodesic null Bertrand partner D−curves on S1 and S2

FIGURE 3
Surface S3(s,v) and null geodesic curve α3(s).

FIGURE 4
Surface S4(s,v) and null geodesic Bertrand partner D−curve α4(s).

if and only if

k′n2
(

ds2

ds1
)

2
+

d2s2

ds2
1

kn2
= 0.

Proof. The proof is clear from Equation 26. 

4 Examples

In this section, we provide some examples of null Bertrand 
partner D−curves. For this purpose, we use a method related to the 
construction of spacelike surfaces [12].
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Example 1: Let us consider the null curve α1(s) = (sinh s,cosh s, s). 
Then, by using the method proposed by [12], the spacelike 
surface S1 containing α1(s) as a geodesic is obtained as S1(s,v) =
(A1(s,v),B1(s,v),C1(s,v)), where

A1 (s,v) = sinh s (1+ sin (sv)) − 1
2

sinh v cosh s,

B1 (s,v) = cosh s (1+ sin (sv)) − 1
2

sinh s sinh v,

C1 (s,v) = s+ 1
2

sinh v,

where −0.5 ≤ s,v ≤ 1.5 (Figure 1). Then, by using the Darboux frame 
components, the Bertrand partner D−curve α2 of α1 is obtained as

α2 (s) = (− sinh s,−cosh s, s) .

Then, we can construct a spacelike surface S2(s,v) with null 
geodesic α2 as S2(s,v) = (A2(s,v),B2(s,v),C2(s,v)), where

A2 (s,v) = − sinh s (1+ sin (sv)) − cosh s sinh v,
B2 (s,v) = −cosh s (1+ sin (sv)) − sinh s sinh v,
C2 (s,v) = s+ sinh v,

and −1.5 ≤ s,v ≤ 1.5 (Figure 2). 

Example 2: Let α3(s) = (s, sin s,cos s) be a null curve. Similarly, 
by using the method described by [12], the surface S3(s,v)
containing α3(s) as a geodesic is constructed as S3(s,v) =
(A3(s,v),B3(s,v),C3(s,v)), where

A3 (s,v) = s+ sin v− v2,
B3 (s,v) = sin s+ sin v cos s+ v2 cos s,
C3 (s,v) = cos s− sin v sin s− v2 sin s,

and −2π ≤ s ≤ 2π and −π ≤ v ≤ π (Figure 3). Then, by using the 
Darboux frame, the Bertrand partner D−curve α4 of α3 is
obtained as

α4 (s) = (s,− sin s,−cos s) .

Now, the surface S4(s,v) containing α4 as a geodesic is 
constructed as S4(s,v) = (A4(s,v),B4(s,v),C4(s,v)), where

A4 (s,v) = s− 1
2

sin(s2v) ,

B4 (s,v) = − sin s− 1
2

cos s sin(s2v) + sin s sin v,

C4 (s,v) = −cos s+ 1
2

sin s sin(s2v) + cos s sin v,

and −2 ≤ s ≤ 2 and −1 ≤ v ≤ 1 (Figure 4). 

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material; further inquiries can be directed 
to the corresponding author.

Author contributions

TK: Writing – original draft. 

Funding

The author declares that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author declares that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

1. Matsuda H, Yorozu S. Notes on bertrand curves. Yokohama Math J (2003) 
50:41–58.

2. Kazaz M, Uğurlu HH, Önder M, Oral S. Bertrand partner D-curves in 
the euclidean 3-space E3. Afyon Kocatepe Univ J Sci Eng (2016) 16:76–83. 
doi:10.5578/fmbd.25270

3. Kazaz M, Uğurlu HH, Önder M, Oral S. Bertrand partner D-curves in the 
minkowski 3-space. Math Sci Appl E-Notes (2014) 2(1):68–82.

4. El Naschie MS. Einstein’s dream and fractal geometry. Chaos Solitons Fractals
(2005) 24:1–5. doi:10.1016/j.chaos.2004.09.001

5. Hughston LP, Shaw WT. Constraint-free analysis of relativistic 
strings. Classical Quan Gravity (1988) 5:69–72. doi:10.1088/0264-9381/5/
3/001

6. Hughston LP, Shaw WT. Real classical string. Proc R Soc Lond Ser A (1987) 
414:415–422.

7. O‘Neill B. Semi-riemannian geometry with applications to relativity. New York: 
Academic Press (1983).

8. Walrave J, Leuven KU. Curves and surfaces in minkowski space. Leuven: Fac of 
Science (1995). PhD thesis.

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1611559
https://doi.org/10.5578/fmbd.25270
https://doi.org/10.1016/j.chaos.2004.09.001
https://doi.org/10.1088/0264-9381/5/3/001
https://doi.org/10.1088/0264-9381/5/3/001
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Kahraman 10.3389/fphy.2025.1611559

9. Duggal KL, Bejancu A. Lightlike submanifolds of Semi-Riemannian manifolds and 
applications. Dordrecht: Kluwer Academic Publishers (1996). p. 54–75.

10. Beem JK, Ehrlich PE. Global lorentzian geometry. New York: Marcel Dekker 
(1981).

11. Çöken AC, Çiftçi Ü. On null curves on surfaces and null vectors in lorentz space. 
Süleyman Demirel Univ J Sci (2007) 2(1):111–116.

12. Şaffak G, Kasap E. Family of surface with a common null geodesic. Int J Phys Sci
(2009) 4(8):428–433.

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1611559
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Preliminaries
	3 Null Bertrand partner D-curves on spacelike surfaces in E_13
	4 Examples
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

