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Heat and superdiffusive melting 
fronts in unsaturated porous 
media
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1PoreLab, Department of Physics, University of Oslo, Oslo, Norway, 2PoreLab, Department of 
Chemistry, Norwegian University of Science and Technology, Trondheim, Norway, 3PoreLab, 
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

When water is present in a medium with pore sizes in a range of approximately 
10 nm, the corresponding freezing-point depression will cause long-range 
broadening of a melting front. Describing the freezing-point depression by the 
Gibbs–Thomson equation and the pore-size distribution by a power law, we 
derive a nonlinear diffusion equation for the fraction of melted water. This 
equation yields superdiffusive spreading of the melting front with a diffusion 
exponent, which is given by the spatial dimension and the exponent describing 
the pore size distribution. We derive this solution analytically from energy 
conservation in the limit where all the energy is consumed by the melting 
and explore the validity of this approximation numerically. Finally, we explore a 
geological application of the theory to the case of one-dimensional subsurface 
melting fronts in granular or soil systems. These fronts, which are produced by 
heating of the surface, spread at a superdiffusive rate and affect the subsurface 
to significantly larger depths than a system without the effects of freezing-point 
depression.
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 1 Introduction

Water residing in ∼ 10 nm pores will stay in the liquid state at temperatures well below 
the bulk freezing point. Such freezing-point depression is caused by the Gibbs–Thomson 
effect, which in a porous medium with a range of pore sizes, will cause residual amounts 
of liquid water in small pores while water in the larger pores freezes. The frozen state of a 
single pore is illustrated in Figure 1, where a pre-melted layer of liquid water is assumed 
to be present. The situation where pores of different sizes coexist is illustrated in Figure 2. 
Several experimental studies of the freezing-point depression in small pores have been 
carried out, showing that quantitatively, the effect depends on such factors as salinity [1], 
wetting properties [2], and the pore geometry [3–5].

The equilibrium states of frozen systems have been studied experimentally in both 
natural [1] and synthetic media, such as cylindrical silica nanopores [6] of controlled sizes 
in the 2–10 nm range. However, much less has been learned about the non-equilibrium 
processes of heat propagating through such systems, where only a fraction of the ice melts. 
When sufficient amounts of water are present at the right temperature, the energy required 
for this melting will dominate the energy balance; that is, the latent heat is larger than the 
energy needed to change the temperature due to the heat capacity. When different pore
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FIGURE 1
Left: A pore of total volume V0 containing a liquid film and a core of 
ice. Right: A smaller pore containing liquid water at the same 
temperature.

FIGURE 2
Pores containing water. Ice melting with (upper figure) and without 
(lower figure) the freezing-point depression. Ice is shown in gray, and 
liquid water is shown in blue.

sizes are present, the heat may be consumed by melting only in a 
narrow range of these sizes (see Figure 2). This causes an increased 
spreading of the heat as well as the fraction C of melted water. We will 
show that this fraction may spread in a superdiffusive manner when 
the pore size distribution is given by a power law. By comparison, a 
melting front in a medium where all the pores have the same size 
and melt at the same temperature will stop abruptly at the point 
in space where the available energy is consumed and thus has no 
long tail. Superdiffusion is characterized by the fact that the second 
spatial moment of the water fraction C increases with time t as ∼ tτ

with the exponent τ > 1/2, the normal diffusion value being τ = 1/2. 
This behavior may arise in physical, biological, or geological systems; 
examples include Levy flights [7, 8], particle motion in random 
potentials, or the seemingly random paths of objects moving in 
turbulent flows [9, 10].

In addition to the shift in the equilibrium freezing point itself, 
there may be an effect of metastable states that cause superheating 
or supercooling. In order to address this question, we discuss 
qualitatively how the Gibbs–Thomson effect may be modified by 
nucleation barriers as well as the pore geometry and shapes of the 
ice. However, because the melting process is generally less affected 
by nucleation barriers and alternative nucleation pathways [3, 4, 11] 

than the freezing process, our theory is formulated for melting fronts 
and proceeds on the basis that metastable states may be neglected 
[12, 13].

We show that when the porous medium has a power law pore 
size distribution, the fraction of liquid water satisfies a non-linear 
diffusion equation. Solving this equation analytically, we proceed to 
demonstrate that this results in a superdiffusive, and, in some cases, 
even hyper-ballistic spreading of the heat and liquid concentration. 
The diffusion exponent is given in terms of the exponent governing 
the pore size distribution and the dimensionality.

These results may be of relevance for modeling melting in 
environments such as tundras. We therefore apply the model result 
to explore potential consequences for the depths at which the 
Gibbs–Thomson effect may affect the melting of ice in such contexts. 
Given the above assumptions, the depths at which the ice fraction is 
perturbed may be up to a factor 10 larger than without the effect of 
freezing-point depression. We also show numerically that this effect 
survives, even with realistic values for the energy consumed by the 
heat capacity of the water and the solid medium.

The article is organized as follows: In the theory section, we 
introduce the standard thermodynamics of the Gibbs–Thomson 
effect, deriving the expression for the freezing-point depression. 
Following the discussion of the equilibrium states, we discuss the 
assumption of a power law distribution for the pore sizes before 
we turn to the consequences for a time-dependent equation that 
governs the evolution of the melted water fraction and obtain 
its solutions in different spatial dimensions. Finally, we interpret 
these results in an assumed geological scenario where a melting 
front is caused by surface heating, which leads to a long-range, 
superdiffusive spreading of the melting front. 

2 Theory

In the following, we obtain the volume fraction of liquid water 
as a function of temperature for a porous medium with a given pore 
size distribution and water/ice saturation C0. For this purpose, we 
need the freezing point as a function of pore size.

It is a general fact that most water-bearing solids, or even ice 
itself [14], will have a pre-melted liquid layer [15, 16] of a thickness 
∼nm, as illustrated in Figure 1. While the thickness of the melted 
films varies with the interaction energy between the water molecules 
and the walls [2], the existence of the film is quite insensitive to the 
corresponding wetting properties of the wall.

Being interested in pores on the nano- to micrometer scale, we 
will assume that the chemical potential μ is constant over the pores. 
This is justified by the fact that diffusion is fast on these scales, and 
so the water will quickly equilibrate to the chemical potential of 
the surroundings. This will be assumed to be the case whether the 
pore is open to the surrounding pore volume or not. The situation 
is illustrated in Figure 1. In this case, a body of ice will adjust its 
volume V(r) so as to minimize the Landau, or grand canonical, 
potential Ω in equilibrium. We will not consider the case where 
the increase in specific volume of the water during freezing leads 
to significant pressure changes. So, the theory is limited to the cases 
where there is some freedom for the water to expand or be absorbed, 
as is generally the case in unsaturated or unconsolidated porous 
media with boundaries that are open to the surroundings. 
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2.1 Freezing-point depression and the 
thermodynamics of the Gibbs–Thomson 
effect in spherical pores

The net energy effect of introducing a liquid layer between a solid 
(or vapor) and ice may be described by the Landau free energy

ΩVW = A0AH/(12πd2) , (1)

where A0 is the surface area, and d the liquid layer thickness. We 
have introduced the Hamaker constant AH ∼ 10−20 − 10−19 J (albeit 
with an unconventional sign to keep AH positive).

Adding the free energy of the ice–water interface σA(r), 
where A(r) is the area of this interface and σ is the ice–water 
surface energy per unit area, to the energy of the pre-melted 
layer given in Equation 1 yields the total free energy

Ω = σA+
AHA0

12π(R− r)2
+Ω0, (2)

where the bulk free energy Ω0 is independent of the interface 
contributions. Because in general Ω = − PV, the combined potential 
for both the liquid and ice is

Ω0 = −PiVi − Pw (V0 −Vi) , (3)

where the ice pressure Pi and water pressure Pw will in general differ.
At the bulk melting temperature Tm =  273 K, there will be no 

change in Ω0 under a change in Vi when μ and T are kept fixed, so, 
using the fact that Ω0 = E−TS− μN, we can write

0 = dΩ0 = dE−TmdS− μdN (4)

where E, S, and N are the total ice–water energy, entropy, and 
molecule number, respectively. The heat needed to melt a volume 
−dVi of ice is ρiλdVi, where ρi is the ice mass density and λ is 
the latent heat per unit mass. Using this, the above equation may 
also be written

−ρiλdVi = TmdS = dE− μdN. (5)

Because ρi and λ change very little over a modest temperature 
variation, we may also get dΩ0 in the case where T ≠ Tm by writing

dΩ0 = (dE− μdN) − T
Tm

TmdS

≈ −(1− T
Tm
)ρiλdVi, (6)

 which indicates that the free energy change due to an ice volume 
increase is negative below the bulk freezing point. Integrating from 
Vi = 0, where Ωo = − Pw(μ,T)V0, yields

Ω0 ≈ −(1−
T

Tm
)ρiλVi − PwV0, (7)

which, when inserted in Equation 2, gives

Ω = σA+
AHA0

12π(R− r)2
−(1− T

Tm
)ρiλVi − PwV0. (8)

The change in this energy as r is increased from r = 0 is

ΔΩ = σA−(1− T
Tm
)ρiλVi +

AH

12π
(

A0

(R− r)2
−

A0

R2 ). (9)

FIGURE 3
The Landau free energy per unit area in a pore of radius R = 10 nm 
with a surface layer of water as a function of the radius r of the ice 
volume at temperatures around TF =  264 K. The black curves show 
the free energy with AH =  10−20 J, while the red curves show the free 
energy with AH = 0 J. For the blue curves, T = TF.

The equilibrium value of the ice radius is given by the global 
minimum of ΔΩ, which, for sufficiently small R values, will be 
at r = 0, that is, for the complete liquid state. Above this critical 
pore size, the minimum will be at rm ≲ R, a value that is given by 
the equilibrium thickness of the surface melted layer. As may be 
noted from Figure 3, this minimum does not change much with 
the pore size R. When Ω(r = 0) >Ω(rm), there will still be ice. 
The condition for complete melting is that Ω(r = 0) <Ω(rm), which 
yields the freezing-point depression.

Taking r = R, AH = 0 gives the free energy change in passing from 
a liquid to a fully frozen pore

ΔΩ = σA−(1− T
Tm
)ρiλVi, (10)

where A = 4πR2 and Vi = (4/3)πR3. The condition ΔΩ = 0 implies 
that a pore of radius R will freeze at a temperature T = TF given by

TF (R) = Tm(1−
3σ

ρiλR
). (11)

This is the standard expression for the Gibbs–Thomson effect. For 
a cylindrical pore, the geometrical factor of 3 must be replaced by 
2. In the following, we shall use the value 3. Note that, due to the 
tendency of the surface tension to minimize the interface area, these 
smooth geometrical shapes will also be relevant in more complex 
pore geometries. 

2.2 Corrections to the Gibbs–Thomson 
effect due to nucleation barriers

Thus far, we have ignored the time it takes for a metastable state 
to be replaced by the equilibrium state, implicitly assuming that the 
system has had time to reach the overall minimum state for the 
free energy. This is in general not the case as some metastable states 
may be very long-lived, a phenomenon that is quantified in classical 
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nucleation theory [17, 18], which is based on the probability that a 
free energy barrier is traversed by the thermal activation energy kBT. 
Moreover, the stability against melting may be very different from 
the stability against the reverse process of freezing. It is generally 
much more difficult to superheat a solid than to supercool a liquid 
[12, 13]. Superheated crystalline solids have only been observed in 
some rather singular cases where the heated region is along a single 
crystal plane or the crystals are confined inside a non-melting matrix 
[19, 20]. The existence of supercooled liquids, on the other hand, 
only requires the absence of nucleation sites.

Assuming our pre-melted surface layer of water, there is no extra 
energy cost (nucleation barrier) in forming a new liquid–ice surface 
during the melting process. Yet, there will be a nucleation barrier 
that must be crossed during melting when the temperature is T ≈ TF. 
The reason for this is that when melting happens around T ≈ TF <
Tm, the bulk free energy must increase, while the surface energy is 
decreased. Thus, as r decreases from a value around R in Figure 3, 
the free energy initially increases. As a result, there is a free energy 
barrier against both melting and freezing. This fact implies the 
possible existence of solid ice that is superheated relative to its 
depressed freezing point TF.

Using nucleation theory, it is possible to estimate the lifetime of 
these metastable states as ∝ exp ((ΔΩ(rmax) −ΔΩ(R))/(kBT)), where 
the free energy ΔΩ(r) is shown in Figure 3 and takes its maximum 
at r = rmax. Requiring that the lifetime be within a realistic range, it 
is possible to show that the melting temperature must be increased 
above TF by an amount that corresponds to a reduction of the 
freezing-point depression Tm −TF by ∼ 20% for pore sizes greater 
than ∼ 1 nm.

It may be shown that nucleation barriers are significantly 
more influential during freezing (supercooled liquid). In this case, 
however, nucleation pathways other than ice forming as a spherical 
crystal are likely to dominate, as has been shown for the case where 
ice nucleates in pockets or corner geometries [3, 4, 11].

In the following, we will consider melting on the basis that 
metastable states may be neglected, although there is a nucleation 
barrier to be passed both for the melting and freezing transition 
in isolated pores. For melting, this assumption implies that there 
may be quantitative corrections to the depression Tm −TF by ∼ 20%, 
which are ignored. 

2.3 Heat in a nanoporous medium with 
partially frozen water

Having dealt with the equilibrium problem of the freezing-point 
depression, we now investigate the non-equilibrium effects of this 
phenomenon in the context of a nanoporous material. We shall 
consider a melting front, for which the shift in melting temperature 
is small, and so the shift in the freezing-point depression will not be 
applied. Note, however, that a freezing front may differ significantly 
from the melting front through the possible existence of metastable 
pockets of supercooled liquid.

The pore size distributions may be estimated through nitrogen 
absorption [21], electron microscopy, or mercury injection 
experiments and measurements of the heat capacity variations 
with temperature when there is water present [22]. For silts, clays, 
and synthetic media made of glass powders [1], they may yield 

distributions that extend down at least to the nm scale. Freezing and 
melting of water confined in silica nanopores have been observed 
down to pore sizes of 3 nm [6].

The distributions may be given in terms of a relative volume 
fraction per unit length g(R) so that ∫dRg(R) = ϕ, the porosity of 
the medium. Our main assumption is that this distribution may be 
approximated with a power law above a minimum cut-off length 
Rmin,

g (R) = N(R−Rmin)
β (12)

where N = (β+ 1)ϕ/(Rmax −Rmin)β+1 is the normalization.
Mercury intrusion experiments are challenged by the fact that 

high injection pressures may crush or deform the smallest pores. 
Yet, in rigid materials, such as cement, the technique may be used 
to measure pores down to Rmin ∼ 1 nm [23]. In order to cover 
the smaller pore ranges, nitrogen adsorption techniques are often 
better [21]. Zhao et al. [24] measured pore size distribution for 
porous sandstone from the Ordos basin by mercury injection, 
finding g(R)-distributions that are well described by Rmin ∼ 10 nm 
and β = 1 over 1 to 2 decades in pore sizes. Using N2 adsorption 
techniques on porous glass powders, Fujinomori soil, and bentonite 
clay, Watanabe et al. [1] found g(R)-distributions where Rmin ≈ 1 nm, 
Rmax ≈ 3–4 nm, and β =  1–2. Park et al. [25] measured pore-size 
distributions. Different sediments produced Rmin values from 1 nm 
to 100 nm with distributions that could be described by a β ≈ 2
power law over roughly a decade. There is thus a range of natural and 
synthetic materials that seem to fulfill the assumed pore-size power 
law distribution over an adequate range of length scales.

In a medium that is described by Equation 12, all the pores are 
frozen when

T = Tmin = Tm −Tm
r0

Rmin
, (13)

where we have introduced the length r0 = 3σ/(ρiλ) ≈ 3.3nm. 
Correspondingly, there is an upper temperature

Tmax = Tm −Tm
r0

Rmax
, (14)

where all pore water is melted.
The initial filling fraction of water in the pores C0 gives the total 

water (ice or liquid) fraction ϕC0. The fraction of liquid water, C(T), 
is the fraction contained in the pores that are so small that they have 
not frozen. These pores have sizes less than

r (T) = 3σ
ρiλ(1−T/Tm)

. (15)

This means that when Tmin < T < Tmax

C (T) = C0∫
r(T)

Rmin

dRg (R)

= NC0∫
r(T)

Rmin

dR(R−Rmin)
β

=
NC0

β+ 1
(r (T) −Rmin)

β+1 (16)

=
NC0

(β+ 1)
Rβ+1

min(
T−Tmin

Tm −T
)

β+1
, (17)
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by use of Equation 12 and Equation 13. Close to the 
absolute freezing point Tmin, the above denominator is close to 
(Tm −Tmin)β+1, so we shall use

C (T) = B(
T−Tmin

Tmin
)

β+1
, (18)

with

B = C0ϕ(
R2

min

Rmax −Rmin

ρiλTmin

3σTm
)

β+1

(19)

by use of Equation 13 and the definition of N. 

2.4 Contribution of pre-melted surface 
layers

Having neglected the thickness of the pre-melted films in the 
ice-filled pores by setting AH = 0, we should compare the relative 
contributions to C(T) from these films and the liquid-filled pores. 
Because there is no film in the liquid-filled pores, we need only take 
the R > r(T) pores into account. We take the film contribution to be 
given by the film thickness d = R− r(T) as

ΔC (T) = C0∫
Rmax

r(T)
dRg (R)

ΔV (R)
V (R)
, (20)

where the fraction ΔV/V ≈ 3d/R is the ratio of the film volume to 
the pore volume. Then,

ΔC (T) = 3dNC0∫
Rmax

r(T)
dR
(R−Rmin)

β

R
, (21)

where Rmax is the upper cut-off for g(R). When β = 1, this integral is 
easily evaluated to give

ΔC (T) = 3d (T)NC0(Rmax − r (T) −Rmin ln(
Rmax

r (T)
)). (22)

Taking the Rmax term to dominate in this expression and using
Equation 16, the ratio becomes

ΔC
C
≈ 6d (T)

Rmax

(r (T) −Rmin)
2 , (23)

which may well be larger than one when r(T) ≳ Rmin.
However, as we shall see below, it is the rates of change dC/dT

of the volume fractions that are important, not the absolute value of 
ΔC/C. The film thickness d may be estimated from Equation 9 as the 
minimum of ΔΩ when σ = 0. This gives the standard expression [16].

d = (
AHTm

6π(Tm −T)ρiλ
)

1/3
, (24)

where we can use the relatively high value AH = 10−19 J. 
Together with the constants given in Table 1, this gives d ≈1 nm, 
while the other relevant length, which appears in Equation 9, is 
3σ/(ρiλ) ≈ 0.3 nm.

Because C∝ (T−Tmin)2 and, to leading order ΔC∝ d∝
(T−Tm)−1/3, we have that dC/dT = (β+ 1)C/(T−Tmin) while 
dΔC/dT = ΔC/(3(Tm −T)), so that the ratio of the changes in these 
two quantities due to a temperature change when β = 1 is

δΔC
δC
=

Tm

T−Tmin

dr0Rmax

R3
min

. (25)

TABLE 1  Material constants.

κice = 2.3 W/(mK) Thermal conductivity of ice

κw = 0.6 W/(mK) Thermal conductivity of water

κb ∼ 1 W/(mK) Typical thermal conductivity of clays

λ = 0.33 MJ/kg Latent heat of fusion for water

σ = 0.033 N/m Water–ice surface energy per unit area

ρi = 917 kg/m3 Mass density of H2O ice

cice = 2.3 MJ/Km3 Heat capacity of ice

cw = 4.2 MJ/Km3 Heat capacity of water

AH = 10−20-10−19 J Typical values of the Hamaker constant

close to the absolute freezing point Tmin. Here, we have used
Equation 13 to substitute (Tm −Tmin)/Tm = r0/Rmin. The condition 
that δΔC/δC≪ 1 may be taken as a condition on the range of pore 
sizes Rmax/Rmin:

Rmax

Rmin
≪

R2
min

dr0

T−Tmin

Tm
, (26)

or, equivalently,

T−Tmin

Tm −Tmin
≫ d

Rmin

Rmax

Rmin
. (27)

When Rmin =  30 nm, for instance, and (T−Tmin)/Tm =  1/273, we 
get that Rmax/Rmin ≪ 10. It is quite natural that the condition for 
the domination of pore-versus film fluid is a limited range of pore 
sizes, as a domination of the large pores, which all carry a film 
contribution, would leave a smaller fraction of the porosity to be 
represented by smaller pores.

In other words, when Rmax/Rmin ≪ 10, ΔC changes relatively 
slowly with T ≈ Tmin, but C changes significantly. In this case, we may 
neglect the variations in the film contribution to the overall change 
in liquid volume fraction. For this reason, we shall only use the C in 
the following, keeping in mind that it is the fraction of liquid pore 
water, and not the total fraction of liquid water. 

2.5 Governing equation for the evolution 
of melted water concentration

In a 1D setting, the conservation of energy in a slab of thickness 
dx over a time dt may be written

(j (x) − j (x+ dx))ΔAdt = λρΔAdxdC+ cbΔAdxdT (28)

where ΔA is the cross-sectional area, cb is the combined specific 
heat capacity of the porous medium and the water, and T is the 
temperature. In Equation 28, the left-hand side is the net energy 
transfer to the slab, the first term on the right is the energy consumed 
by melting (latent heat), and the last term is the energy absorbed due 
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to the heat capacities of the water, ice, and the porous medium itself. 
As dx→ 0, Equation 28 becomes

∂j
∂x
+ λρ ∂C

∂t
+ cb

∂T
∂t
= 0. (29)

To describe the heat flow, we apply the Fourier law, which 
takes the form

j = −κ ∂T
∂x
, (30)

where κ is the bulk thermal conductivity of the porous medium, so 
inserting this in Equation 29 gives

∂
∂x
(κ ∂T

∂x
) = (ρλ ∂C

∂T
+ cb)

∂T
∂t

(31)

where we have used ∂C/∂t = (∂C/∂T)(∂T/∂t). Generalizing to 
arbitrary dimension (∂/∂x→ ∇) and replacing T−Tmin by 
Tmin(C/B)1/(β+1) using Equation 18 yields the diffusion equation

(1+M) ∂C
∂t
= D0∇ ⋅ (C1/(β+1)−1∇C) . (32)

where

D0 =
κbTmin

λρ (β+ 1)B1/(β+1)
=

cbTmin

λρ (β+ 1)B1/(β+1)
Dt, (33)

and Dt = κb/cb ≈ 1mm2/s is the average thermal diffusivity of the 
porous medium, and

M =
cbTminC1/(β+1)−1

(β+ 1)ρiλB1/(β+1)

=
3cbσTm

(β+ 1) (ρiλ)
2(C0ϕ)1/(β+1)

Rmax −Rmin

R2
min

C−γ. (34)

The last expression comes from replacing B by the 
expression in Equation 19, and γ = β/(β+ 1). Using the material 
constants in Table 1 gives

M = l
Rmax −Rmin

R2
min

C−γ (35)

where l ≈ 0.4 nm. So M≪ 1 when the range of pore sizes is limited 
and as long as C does not become too small.

We shall proceed to analyze the case where the M-term may be 
dropped, leaving the equation

∂C
∂t
= D0∇ ⋅ (C−γ∇C) . (36)

We note at this point that the condition for neglecting the energy 
needed to change temperature, which is represented by the M-term, 
coincides with the condition to neglect the contribution of pre-
melted films. Both conditions may be fulfilled by media with a 
limited range of pore sizes above a minimum size Rmin ≳10 nm.

The fact that we have neglected the energy contribution given by 
the heat capacities means that we have assumed that all the energy is 
spent melting the ice in the pores. We note in passing that the same 
assumption is made in treatments of the moving boundary problem 
associated with melting fronts (the Stefan problem) [26].

The mobile energy density ∝ C, which means that Equation 36 
may be read as a statement of energy conservation. We will consider 
the response to a localized addition of energy that causes a local 

initial volume Vi of melted water. Solving Equation 36 subject to the 
normalization condition

Vi = ∫dVC (37)

in d dimensions [27] for a point source initial C(r,0) gives

C (r, t) =
p (r/tτ)

fd (t)
, (38)

where

f (t) = (
2− dγ

(1− γ)Vγ
i

D0t)

1
2−dγ

. (39)

and

p (y) = [
γ

2 (1− γ)Vγ
i

y2 + k]
− 1

γ

, (40)

where y = r/ f(t) and k is an integration constant given by the 
normalization condition. It takes the value of [27].

k = [[

[

V1−dγ/2
i (

γ
2π (1− γ)

)
d
2

Γ( 1
γ
)

Γ( 1
γ
− d

2
)
]]

]

2γ
dγ−2

. (41)

The functional form given in Equation 38 immediately yields the 
second moment for the concentration profile

r2
rms =
∫drrd−1r2C (r, t)

∫drrd−1C (r, t)
∝ f2 (t) ∝ t2τ (42)

with [27, 28]. Here

τ = 1
2− dγ
, (43)

or, in terms of β,

τ =
(β+ 1)

d− (d− 2) (β+ 1)
. (44)

When the dimension d = 3, we obtain hyper-ballistic spreading 
(τ > 1) if 1/2 < β < 2 and superdiffusion (τ > 1/2) if 0 < β < 2. A 
value of β = 1, which would correspond to a linear initial growth of 
g(R), gives β = 1 and τ = 2, which should be compared to the ballistic 
value τ = 1 and the normal diffusive value of τ = 1/2. A heat pulse 
will thus spread at an accelerating rate, causing a rapid, long-range 
front of melting.

The d = 1 case is relevant when a heat pulse spreads downward 
in the ground. In this case, β = 1 gives τ = 2/3, and β = 2 gives τ =
3/4, both superdiffusive values.

The superdiffusive spread of C and thus T with time follows from 
the fact that a heat pulse will lower the local melting temperature, 
thus keeping the remaining ice from receiving more latent heat as 
the temperature is rising. In contrast, a melting front that propagates 
through a medium with a single pore size will only spread diffusively, 
propagating at a speed ∼ √t. 
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3 Potential applications to tundra-like 
surfaces

On the tundra, an increase in heat penetration depth due to 
superdiffusion will increase the water melting caused by annual 
heating, thus increasing the melting depth. Freezing and melting on 
a tundra is believed to affect the subsurface over depths of the order 
∼4 m. Provided the relevant range of pore sizes is present, we may 
speculate that when the ground is heated by the sun, melting fronts 
lasting days or months will propagate downward, giving rise to a 
one-dimensional problem of the type we have discussed above. This 
raises the question of how much deeper a superdiffusive spreading 
of heat, or C-fluctuations, will propagate than the normal melting 
front, and will this affect the release of trapped methane?

It is instructive first to consider the case of a medium with 
a single pore size Rmin and look at the case where a heat pulse 
propagates from the surface. Then, g(R) = δ(R−Rmin), and all the 
pores melt at the same temperature TF0 given by setting T→ TF0
in Equation 13. Taking this to be the initial temperature in the 
ground, the temperature will spread out downward until it reaches 
the melting front below which T = TF0. The volume fraction as a 
function of T is C = C0Θ(T−TF0), where Θ is the Lorentz–Heaviside 
function, and

dC
dT
= C0δ(T−TF0) (45)

which is zero away from the melting front. In this case, dC/dT cannot 
be assumed to be larger than cb; rather, for T ≠ TF0, Equation 31 
reduces to the normal diffusion equation

∂T
∂t
= κ

cb

∂2T
∂x2 (46)

which describes standard diffusive spreading of T.
At the point where all the energy supplied at the surface has been 

consumed as latent heat at the melting front, the front propagation 
stops. This will happen at a depth z f = Q/(ρλ) ∼ 1–4 m where Q is 
the thermal energy per unit area initially supplied at the surface and 
ρ the total mass density. This layer is usually called the “active layer.”

Now, returning to the case we have considered, where g(R) ∝
(R−Rmin)β, what happens in the one-dimensional case when a heat 
pulse propagates from the surface and downward? This question 
may be answered by examining the analytic solutions given in 
Equation 38. Choosing β = 1 and setting d = 1 in Equation 44 gives 
the diffusion exponent τ = 2/3. If β = 2, then τ = 3/4. These values 
are sufficiently close that it may be hard to distinguish between them 
experimentally, and so the end result will not depend strongly on the 
β-value. So, we shall use β = 1, which corresponds to a linear increase 
in g(R) for R near Rmin.

Using the value of the thermal diffusivity for ice Dt ≈ 1 mm2/s 
and Rmax = 2Rmin =  60 nm, which yields D0 ≈ 0.015 mm2/s, we 
can estimate the typical penetration depths with the superdiffusive 
contribution of the latent heat. In [27], it is shown that the second 
moment of C is given by

r2
rms =

d
2

π
d
2 k

d
2
+1− 1

γ

Γ( 1
γ
− d

2
− 1)

Γ( 1
γ
)
(

2 (1− γ)
γ
)

d
2
+1

V
dγ
2
+γ−1

i f2 (t) . (47)

The 1D solution is given by setting Vi = 2ϕC0ld, where ld is the 
initial thickness of the active (melted) layer, and ϕ is the porosity. 
The factor 2 comes from the fact that our solution describes the 
symmetric situation where C(z, t) spreads out symmetrically in both 
directions from z = 0, while we are interested in the case where it 
only spreads downward. Setting ld =  2 m, C0 = 1, β = 1, and d = 1, 
the result becomes

r2
rms = (2π)2/3(

3D0t
(2ϕC0ld)

2)
4/3

(2ϕC0ld)
2. (48)

Inserting the numbers ϕ = 0.5, C0 = 1, ld =  2 m, and D0 =  0.01–0.1 
mm2/s, the rrms may be written as

rrms ∼ (
t

year
)

2/3
10m (49)

which is a typical factor of 10 or so larger than li. This result 
shows that superdiffusive spreading of heat may cause temperature 
variations almost an order of magnitude deeper than the variations 
caused by a normal diffusive melting front.

The main approximation made in our theory is the neglect of 
the heat capacities compared to the latent heat contributions. We 
now solve the full heat balance equation, Equation 32, numerically, 
including the finite value of the heat capacity.

Figures 4, 5 show the results of this. Note that the analytic 
solutions are only plotted for C values where M < 1 and T < Tmax, 
the freezing temperature of pores of size Rmax. It is seen that 
the full solution of Equation 32 gives a somewhat smaller z-value 
where C approaches zero, but the scaling of rrms ∝ tτ with time 
is still seen to hold for the first months after the heat pulse, as 
may be seen from Figure 6. Note that from Equation 35 and the 
assumption that Rmax = 2Rmin, we have that M∝ 1/Rmin, and so, 
a the agreement between the analytical cb = 0 approximation and 
numerical results is expected to improve as Rmin is increased. This 
is indeed observed in Figure 5.

Even in the Rmin = 10–60 nm cases, the penetration of 
C ≳ 1% fluctuations extends deeper than 10 m, as may 
be seen from Figure 5. 

4 Discussion and conclusion

Starting from the thermodynamics of the Gibbs–Thomson 
effect describing the melting of ice in pores and a power law 
distribution of pore sizes, we have shown that the requirement 
of energy conservation produces a non-linear equation that yields 
superdiffusive spreading of the melted water fraction.

The physical picture that emerges from this analysis is that the 
spreading of heat, or the melted water concentration, is strongly 
increased by the fact that the heat will bypass any pore that is 
either too big for melting to occur or so small that the melting 
has already happened. This is true in the range of temperatures 
where some pores contain water and some contain ice. As a result, 
a subsurface porous medium containing ice will experience melting 
perturbations at depths that greatly exceed those that are expected 
from a treatment that ignores the freezing-point depression.

Formalisms involving time fractional derivatives can cover 
descriptions of anomalous diffusion, both in the subdiffusive and 
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FIGURE 4
Top: The melted water fraction as a function of depth at different 
times t = 4 months, 8 months, and 12 months. The black curves show 
the analytic solutions of Equation 32 in the domains where they are 
assumed to apply, that is, where T < Tmax and M < 1. The red curves 
show the corresponding numerical solution of the full heat 
equation from Equation 32. The blue curve shows the case where 
there is a constant pore size and no superdiffusive spreading. Bottom: 
The corresponding temperature. Here, β = 1, Rmin = Rmax/2 =  5 nm, and 
cb = 2MJ/m3, as is close to both the ice and typical clay/silt values.

FIGURE 5
The same results as in Figure 4, but with Rmin = Rmax/2 =  30 nm.

FIGURE 6
The increase in rms depth of the melted water fraction as a function of 
time for different minimum pore sizes. The time increases from t =  0, 
and t0 > 0 corresponds to the fact that, for numerical reasons, the 
initial C(z,0)-profile is not a δ-function but has a finite width. The full 
lines, drawn in colors that correspond to the (◦)-points, show the 
theoretical value of Equation 48 (so, they all have slope = 2/3) while 
the (◦)-points show the values measured from the numerical solution 
of Equation 32. The parameter values are the same as in Figure 4.

superdiffusive domains [29–31]. These formalisms are not focused 
on the effects of freezing-point depression as in the present case. 
However, they are relevant to heat flow in media with complex 
geometries, like porous media and fractured systems, and in some 
cases, they yield analytic solutions.

In the present modeling, we have neglected all effects coming 
from the deformations of the solid skeleton that are caused by the 
difference in specific volume between water and ice. While such 
effects are key to important phenomena like frost heave [32], they 
have no important role in the energy budget associated with melting 
and freezing that we are considering. The added work that is carried 
out by ice displacing parts of the solid skeleton could, in principle, 
be incorporated as a small correction to λ, the latent heat of fusion. 
This correction is ignored in the present work.

The superdiffusive spreading of temperature or melted water 
fraction may also be used as a method to measure pore size 
distributions: The estimate given in Equation 23 shows that close 
to Tmin, the sensitivity to temperature variations is mainly in the 
pore liquid fraction C, and not the liquid fraction contained in the 
surface melted films. In the cases where the pore size distribution 
is in fact given by a power law distribution, the measurement of 
a spreading temperature profile may thus provide a value for the 
diffusion exponent τ and thus for the pore size distribution exponent 
β. Due to the higher sensitivity to the bulk pore water, this method 
may be superior to conventional NMR measurements, which cannot 
distinguish between the liquid water that resides in the pores and 
that which is contained in the films. Compared to mercury injection 
measurements, which need high pressures to probe the smallest 
pores, the temperature technique is less likely to alter the medium 
through crushing of the smallest pores. It does, however, rely on the 
basic assumption of a power law pore size distribution.
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Our study is not restricted to pure water–solid systems. Methane 
hydrates, which may exist in the subsurface where glaciers have 
recently withdrawn, have similar values of density and latent heat 
as water ice [33]. This may give rise to superdíffusive behavior, even 
when the active substance is not water, but methane in combination 
with water. Measurements showing the freezing-point depression of 
methane and CO2 hydrates in natural sediments [25] support this 
assertion.

Finally, we note that experimental verification of our predictions 
would be of great interest. Nanoporous man-made materials, such 
as activated carbons, zeolites, aluminas, mesoporous silicas, and 
microporous metal-organic frameworks, may all be tailored to have 
pores in the ∼ nm range. They are thus promising candidates 
for applications in experimental studies of superdiffusive heat 
flows, provided proper control and monitoring of the temperature 
variations are designed.
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