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Heat and superdiffusive melting
fronts in unsaturated porous
media
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'PoreLab, Department of Physics, University of Oslo, Oslo, Norway, *PorelLab, Department of
Chemistry, Norwegian University of Science and Technology, Trondheim, Norway, *Porelab,
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

When water is present in a medium with pore sizes in a range of approximately
10 nm, the corresponding freezing-point depression will cause long-range
broadening of a melting front. Describing the freezing-point depression by the
Gibbs—Thomson equation and the pore-size distribution by a power law, we
derive a nonlinear diffusion equation for the fraction of melted water. This
equation yields superdiffusive spreading of the melting front with a diffusion
exponent, which is given by the spatial dimension and the exponent describing
the pore size distribution. We derive this solution analytically from energy
conservation in the limit where all the energy is consumed by the melting
and explore the validity of this approximation numerically. Finally, we explore a
geological application of the theory to the case of one-dimensional subsurface
melting fronts in granular or soil systems. These fronts, which are produced by
heating of the surface, spread at a superdiffusive rate and affect the subsurface
to significantly larger depths than a system without the effects of freezing-point
depression.

KEYWORDS

Gibbs-Thomson equation, pore size distribution, non-linear diffusion equation,
superdiffusive spreading, melting front, diffusion exponent, spatial dimension, energy
conservation

1 Introduction

Water residing in ~ 10 nm pores will stay in the liquid state at temperatures well below
the bulk freezing point. Such freezing-point depression is caused by the Gibbs-Thomson
effect, which in a porous medium with a range of pore sizes, will cause residual amounts
of liquid water in small pores while water in the larger pores freezes. The frozen state of a
single pore is illustrated in Figure 1, where a pre-melted layer of liquid water is assumed
to be present. The situation where pores of different sizes coexist is illustrated in Figure 2.
Several experimental studies of the freezing-point depression in small pores have been
carried out, showing that quantitatively, the effect depends on such factors as salinity [1],
wetting properties [2], and the pore geometry [3-5].

The equilibrium states of frozen systems have been studied experimentally in both
natural [1] and synthetic media, such as cylindrical silica nanopores [6] of controlled sizes
in the 2-10 nm range. However, much less has been learned about the non-equilibrium
processes of heat propagating through such systems, where only a fraction of the ice melts.
When sufficient amounts of water are present at the right temperature, the energy required
for this melting will dominate the energy balance; that is, the latent heat is larger than the
energy needed to change the temperature due to the heat capacity. When different pore
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FIGURE 1
Left: A pore of total volume V|, containing a liquid film and a core of
ice. Right: A smaller pore containing liquid water at the same
temperature.
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FIGURE 2

Pores containing water. Ice melting with (upper figure) and without
(lower figure) the freezing-point depression. Ice is shown in gray, and
liquid water is shown in blue.

sizes are present, the heat may be consumed by melting only in a
narrow range of these sizes (see Figure 2). This causes an increased
spreading of the heat as well as the fraction C of melted water. We will
show that this fraction may spread in a superdiffusive manner when
the pore size distribution is given by a power law. By comparison, a
melting front in a medium where all the pores have the same size
and melt at the same temperature will stop abruptly at the point
in space where the available energy is consumed and thus has no
long tail. Superdiffusion is characterized by the fact that the second
spatial moment of the water fraction C increases with time ¢ as ~ "
with the exponent 7 > 1/2, the normal diffusion value being 7= 1/2.
This behavior may arise in physical, biological, or geological systems;
examples include Levy flights [7, 8], particle motion in random
potentials, or the seemingly random paths of objects moving in
turbulent flows [9, 10].

In addition to the shift in the equilibrium freezing point itself,
there may be an effect of metastable states that cause superheating
or supercooling. In order to address this question, we discuss
qualitatively how the Gibbs-Thomson effect may be modified by
nucleation barriers as well as the pore geometry and shapes of the
ice. However, because the melting process is generally less affected
by nucleation barriers and alternative nucleation pathways [3, 4, 11]
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than the freezing process, our theory is formulated for melting fronts
and proceeds on the basis that metastable states may be neglected
[12, 13].

We show that when the porous medium has a power law pore
size distribution, the fraction of liquid water satisfies a non-linear
diffusion equation. Solving this equation analytically, we proceed to
demonstrate that this results in a superdiffusive, and, in some cases,
even hyper-ballistic spreading of the heat and liquid concentration.
The diffusion exponent is given in terms of the exponent governing
the pore size distribution and the dimensionality.

These results may be of relevance for modeling melting in
environments such as tundras. We therefore apply the model result
to explore potential consequences for the depths at which the
Gibbs-Thomson effect may affect the melting of ice in such contexts.
Given the above assumptions, the depths at which the ice fraction is
perturbed may be up to a factor 10 larger than without the effect of
freezing-point depression. We also show numerically that this effect
survives, even with realistic values for the energy consumed by the
heat capacity of the water and the solid medium.

The article is organized as follows: In the theory section, we
introduce the standard thermodynamics of the Gibbs-Thomson
effect, deriving the expression for the freezing-point depression.
Following the discussion of the equilibrium states, we discuss the
assumption of a power law distribution for the pore sizes before
we turn to the consequences for a time-dependent equation that
governs the evolution of the melted water fraction and obtain
its solutions in different spatial dimensions. Finally, we interpret
these results in an assumed geological scenario where a melting
front is caused by surface heating, which leads to a long-range,
superdiffusive spreading of the melting front.

2 Theory

In the following, we obtain the volume fraction of liquid water
as a function of temperature for a porous medium with a given pore
size distribution and water/ice saturation C,. For this purpose, we
need the freezing point as a function of pore size.

It is a general fact that most water-bearing solids, or even ice
itself [14], will have a pre-melted liquid layer [15, 16] of a thickness
~nm, as illustrated in Figure 1. While the thickness of the melted
films varies with the interaction energy between the water molecules
and the walls [2], the existence of the film is quite insensitive to the
corresponding wetting properties of the wall.

Being interested in pores on the nano- to micrometer scale, we
will assume that the chemical potential y is constant over the pores.
This is justified by the fact that diffusion is fast on these scales, and
so the water will quickly equilibrate to the chemical potential of
the surroundings. This will be assumed to be the case whether the
pore is open to the surrounding pore volume or not. The situation
is illustrated in Figure 1. In this case, a body of ice will adjust its
volume V(r) so as to minimize the Landau, or grand canonical,
potential Q in equilibrium. We will not consider the case where
the increase in specific volume of the water during freezing leads
to significant pressure changes. So, the theory is limited to the cases
where there is some freedom for the water to expand or be absorbed,
as is generally the case in unsaturated or unconsolidated porous
media with boundaries that are open to the surroundings.
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2.1 Freezing-point depression and the
thermodynamics of the Gibbs—Thomson
effect in spherical pores

The net energy effect of introducing a liquid layer between a solid
(or vapor) and ice may be described by the Landau free energy

Quw = AgAy/ (121d%), (1)

where A is the surface area, and d the liquid layer thickness. We
have introduced the Hamaker constant A;; ~1072° - 107" J (albeit
with an unconventional sign to keep Aj; positive).

Adding the free energy of the ice-water interface cA(r),
where A(r) is the area of this interface and o is the ice-water
surface energy per unit area, to the energy of the pre-melted
layer given in Equation 1 yields the total free energy

Apdy

Q=0A+ —— +
127(R - 1)?

o )
where the bulk free energy €, is independent of the interface
contributions. Because in general ) = — PV, the combined potential

for both the liquid and ice is

Qy=-P,V;=P,(Vy- V), ©)
where the ice pressure P; and water pressure P, will in general differ.

At the bulk melting temperature T,, = 273 K, there will be no
change in Q) under a change in V; when y and T are kept fixed, so,

using the fact that Q, = E— TS — uN, we can write

0=dO, =dE- T,,dS - udN (4)

where E, S, and N are the total ice-water energy, entropy, and
molecule number, respectively. The heat needed to melt a volume
—dV; of ice is p,AdV;, where p, is the ice mass density and A is
the latent heat per unit mass. Using this, the above equation may

also be written
-pAdV;=T,,dS = dE - udN. (5)

Because p; and A change very little over a modest temperature
variation, we may also get dQ); in the case where T # T, by writing

dQ, = (dE - udN) - Tleds

m

T
~—|1-— . >
< Tm>p1AdVI

which indicates that the free energy change due to an ice volume

(6)

increase is negative below the bulk freezing point. Integrating from
V; =0, where Q, = — P, (4, T) V), yields

T
Qoz—<1—T—>piAVi—PWVO, )
m
which, when inserted in Equation 2, gives
AL A
Q:0A+L—<l—l)piAVi—PwVO. (8)
1271(R - 7)? T,

The change in this energy as r is increased from r = 0 is

(

Ay

A A
+ 02
12m

1—- — —
(R-1)* R

T
T )Pi’lvi

m

AQzaA—(

). 9
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FIGURE 3
The Landau free energy per unit area in a pore of radius R =10 nm

with a surface layer of water as a function of the radius r of the ice
volume at temperatures around Ty = 264 K. The black curves show
the free energy with Ay = 10 20 3, while the red curves show the free
energy with A, =0 J. For the blue curves, T=Tg.

The equilibrium value of the ice radius is given by the global
minimum of AQ, which, for sufficiently small R values, will be
at r=0, that is, for the complete liquid state. Above this critical
pore size, the minimum will be at r,, <R, a value that is given by
the equilibrium thickness of the surface melted layer. As may be
noted from Figure 3, this minimum does not change much with
the pore size R. When Q(r=0) > Q(r,,), there will still be ice.
The condition for complete melting is that Q(r = 0) < Q(r,,), which
yields the freezing-point depression.

Taking r = R, Ay = 0 gives the free energy change in passing from
a liquid to a fully frozen pore

T
AQzaA—(l—T—m>piAVi, (10)
where A = 47R? and V,=(4/ 3)7R®. The condition AQ =0 implies
that a pore of radius R will freeze at a temperature T = T} given by

)

This is the standard expression for the Gibbs-Thomson effect. For
a cylindrical pore, the geometrical factor of 3 must be replaced by
2. In the following, we shall use the value 3. Note that, due to the
tendency of the surface tension to minimize the interface area, these

30

1- =22

11
pAR ()

Tp(R) = Tm<

smooth geometrical shapes will also be relevant in more complex
pore geometries.

2.2 Corrections to the Gibbs—Thomson
effect due to nucleation barriers

Thus far, we have ignored the time it takes for a metastable state
to be replaced by the equilibrium state, implicitly assuming that the
system has had time to reach the overall minimum state for the
free energy. This is in general not the case as some metastable states
may be very long-lived, a phenomenon that is quantified in classical
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nucleation theory [17, 18], which is based on the probability that a
free energy barrier is traversed by the thermal activation energy k T.
Moreover, the stability against melting may be very different from
the stability against the reverse process of freezing. It is generally
much more difficult to superheat a solid than to supercool a liquid
[12, 13]. Superheated crystalline solids have only been observed in
some rather singular cases where the heated region is along a single
crystal plane or the crystals are confined inside a non-melting matrix
[19, 20]. The existence of supercooled liquids, on the other hand,
only requires the absence of nucleation sites.

Assuming our pre-melted surface layer of water, there is no extra
energy cost (nucleation barrier) in forming a new liquid-ice surface
during the melting process. Yet, there will be a nucleation barrier
that must be crossed during melting when the temperature is T = Tf.
The reason for this is that when melting happens around T = T <
T, the bulk free energy must increase, while the surface energy is
decreased. Thus, as r decreases from a value around R in Figure 3,
the free energy initially increases. As a result, there is a free energy
barrier against both melting and freezing. This fact implies the
possible existence of solid ice that is superheated relative to its
depressed freezing point Tf.

Using nucleation theory, it is possible to estimate the lifetime of
- AQ(R))/(kgT)), where
the free energy AQ(r) is shown in Figure 3 and takes its maximum

these metastable states as oc exp ((AQ(7,,,,,)

at r =r,,,,. Requiring that the lifetime be within a realistic range, it
is possible to show that the melting temperature must be increased
above Ty by an amount that corresponds to a reduction of the
freezing-point depression T,, — T by ~ 20% for pore sizes greater
than ~ 1 nm.

It may be shown that nucleation barriers are significantly
more influential during freezing (supercooled liquid). In this case,
however, nucleation pathways other than ice forming as a spherical
crystal are likely to dominate, as has been shown for the case where
ice nucleates in pockets or corner geometries [3, 4, 11].

In the following, we will consider melting on the basis that
metastable states may be neglected, although there is a nucleation
barrier to be passed both for the melting and freezing transition
in isolated pores. For melting, this assumption implies that there
may be quantitative corrections to the depression T, — Ty by ~ 20%,
which are ignored.

2.3 Heat in a nanoporous medium with
partially frozen water

Having dealt with the equilibrium problem of the freezing-point
depression, we now investigate the non-equilibrium effects of this
phenomenon in the context of a nanoporous material. We shall
consider a melting front, for which the shift in melting temperature
is small, and so the shift in the freezing-point depression will not be
applied. Note, however, that a freezing front may differ significantly
from the melting front through the possible existence of metastable
pockets of supercooled liquid.

The pore size distributions may be estimated through nitrogen
absorption [21], electron microscopy, or mercury injection
experiments and measurements of the heat capacity variations
with temperature when there is water present [22]. For silts, clays,
and synthetic media made of glass powders [1], they may yield
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distributions that extend down at least to the nm scale. Freezing and
melting of water confined in silica nanopores have been observed
down to pore sizes of 3 nm [6].

The distributions may be given in terms of a relative volume
fraction per unit length g(R) so that Ing(R) = ¢, the porosity of
the medium. Our main assumption is that this distribution may be
approximated with a power law above a minimum cut-off length
Rmiw

¢(R) =N(R-R,,;, )} (12)

where N = (8+ 1)¢/(R, — Rypin)P*! is the normalization.

Mercury intrusion experiments are challenged by the fact that
high injection pressures may crush or deform the smallest pores.
Yet, in rigid materials, such as cement, the technique may be used

to measure pores down to R,;, ~ 1 nm [23]. In order to cover

min
the smaller pore ranges, nitrogen adsorption techniques are often
better [21]. Zhao etal. [24] measured pore size distribution for
porous sandstone from the Ordos basin by mercury injection,
finding g(R)-distributions that are well described by R,,;,, ~ 10 nm
and =1 over 1 to 2 decades in pore sizes. Using N, adsorption
techniques on porous glass powders, Fujinomori soil, and bentonite
clay, Watanabe et al. [ 1] found g(R)-distributions where R
R
distributions. Different sediments produced R,,;, values from 1 nm
to 100 nm with distributions that could be described by a =2
power law over roughly a decade. There is thus a range of natural and

min =~ 1 nm,

max = 3—4nm, and f= 1-2. Park etal. [25] measured pore-size

synthetic materials that seem to fulfill the assumed pore-size power
law distribution over an adequate range of length scales.

In a medium that is described by Equation 12, all the pores are
frozen when

o
R

T=T=Ty—Tp—") (13)

min

where we have introduced the length ry=30/(p,A)=3.3nm.
Correspondingly, there is an upper temperature

7o

Tyox=Tp—T,, s (14)

R

max

where all pore water is melted.

The initial filling fraction of water in the pores C, gives the total
water (ice or liquid) fraction ¢C,,. The fraction of liquid water, C(T),
is the fraction contained in the pores that are so small that they have
not frozen. These pores have sizes less than

30

pA(1-T/T,) 1)

(1) =
This means that when T,,,;,, < T< T,,,.

r(T)
=y darg®

()
= NCOJ dR(RiRmin)
NC,
= ﬁ+(i (r(T) _Rmin)[g-'.1 (16)

_ NG ﬁ+1<T_Tmin>ﬁ+l
B+ e\ T, -T )

17)
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by use of Equation12 and Equation 13. Close to the

absolute freezing point T,,,, the above denominator is close to
(T, —T,,;)*", so we shall use
T— B+l
c(n = B( ) , (18)
Tmz'n
with
R, pAT )\
B:C0¢<$M> (19)
Rypax = Rinin 30T,

by use of Equation 13 and the definition of N.

2.4 Contribution of pre-melted surface
layers

Having neglected the thickness of the pre-melted films in the
ice-filled pores by setting Ay =0, we should compare the relative
contributions to C(T) from these films and the liquid-filled pores.
Because there is no film in the liquid-filled pores, we need only take
the R > r(T) pores into account. We take the film contribution to be
given by the film thickness d = R —1(T) as

AV(R)

V(R)’
where the fraction AV/V = 3d/R is the ratio of the film volume to
the pore volume. Then,

AC(T) = coj “dRg(R) AR (20)

(R-R,;,)

mm)

R

max

AC(T) = 3chojR dR , (21)

«(T)
where R, is the upper cut-off for g(R). When f = 1, this integral is

easily evaluated to give

max

max

1 R 22
“<rm (22)

AC(T) = 3d(T)NC, (RW —r(T) =R,

Taking the R,,,, term to dominate in this expression and using
Equation 16, the ratio becomes
R
B e — (23)
(Y(T) - Rmin)

which may well be larger than one when #(T) > R,,,;,,.

However, as we shall see below, it is the rates of change dC/dT
of the volume fractions that are important, not the absolute value of
AC/C. The film thickness d may be estimated from Equation 9 as the

minimum of AQ when ¢ = 0. This gives the standard expression [16].

Ay, 13
:(#) , (24)
6r(T,,—T)p;A
where we can use the relatively high value A, =10"" 7J.

Together with the constants given in Table 1, this gives d =1 nm,
while the other relevant length, which appears in Equation 9, is

30/(p;A) = 0.3 nm.
Because Coc (T—-T,,;,)* and, to leading order AC ocd o
(T-r,)" 13 we have that dc/dT=(+1)C/(T-T,,;,) while

dAC/dT = AC/(3(T,, — T)), so that the ratio of the changes in these
two quantities due to a temperature change when =1 is

T, dryR
SAC _ m 03 max (25)
6C T-T,, R
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TABLE 1 Material constants.
Kice = 2.3 W/(mK) Thermal conductivity of ice

«,, = 0.6 W/(mK) Thermal conductivity of water

K, ~ 1 W/(mK) Typical thermal conductivity of clays
A =0.33 MJ/kg Latent heat of fusion for water
0=0.033N/m Water-ice surface energy per unit area
p; =917 kg/m’ Mass density of H,O ice

Cice = 2.3 MJ/Km’ Heat capacity of ice

¢, = 4.2 MJ/Km?®

Heat capacity of water

Ap=107-10"] Typical values of the Hamaker constant

close to the absolute freezing point T,,;,. Here, we have used

Equation 13 to substitute (T, — T,,;,,)/T,, = rO/Rmm. The condition
that SAC/0C <« 1 may be taken as a condition on the range of pore
sizes R,/ Rypin:
2
Rmax < Rmin T- Tmin (26)
Rmin drO Tm
or, equivalently,
I- Tmin > d Rmux (27)
Tm - Tmin Rmin R
When R,,;, = 30 nm, for instance, and (T-T,,;,)/T,, = 1/273, we
get that R, /R,,;, < 10. It is quite natural that the condition for

the domination of pore-versus film fluid is a limited range of pore
sizes, as a domination of the large pores, which all carry a film
contribution, would leave a smaller fraction of the porosity to be
represented by smaller pores.

/R
but C changes significantly. In this case, we may

In other words, when R <« 10, AC changes relatively

max min

slowlywith T = T, ,
neglect the variations in the film contribution to the overall change
in liquid volume fraction. For this reason, we shall only use the C in
the following, keeping in mind that it is the fraction of liquid pore

water, and not the total fraction of liquid water.

2.5 Governing equation for the evolution
of melted water concentration

In a 1D setting, the conservation of energy in a slab of thickness
dx over a time df may be written

(j(x) —j(x +dx)) AAdt = ApAAdxdC + c,AAdxdT (28)
where AA is the cross-sectional area, ¢, is the combined specific
heat capacity of the porous medium and the water, and T is the
temperature. In Equation 28, the left-hand side is the net energy
transfer to the slab, the first term on the right is the energy consumed
by melting (latent heat), and the last term is the energy absorbed due
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to the heat capacities of the water, ice, and the porous medium itself.
As dx — 0, Equation 28 becomes
9 oC  oT

)j
— +Ap— — =0.
x P Ty

o 0 (29)

To describe the heat flow, we apply the Fourier law, which
takes the form

ar

ox’ (30)

j=—x
where « is the bulk thermal conductivity of the porous medium, so
inserting this in Equation 29 gives

9 ( aT) ( aC ) oT

Z(«E)=(p & < 31

ax \“ox ) T\Por ) Gy
where we have used 0C/dt=(dC/dT)(dT/dt). Generalizing to
arbitrary dimension (d/dx — V) and replacing T-T,,;, by
T,,n(C/B)Y B+ using Equation 18 yields the diffusion equation

(1+M) %_f =D,V (Cl/(ﬁ”)_lVC). (32)

where

Kp Tmin

CbTmin
D, = = D, (33)
* T Ap(B+1)BYED T Np(B+1)BYED

and D, = k,/c, = Imm?/s is the average thermal diffusivity of the
porous medium, and

b Trm'n Cl/uﬂl)il

~ (B+1)pABYBD

B 3¢,0T,, R,.x—R
B+D(pA)(Cop) " FD R,

The last expression comes from replacing B by the
expression in Equation 19, and p = /(f+1). Using the material

min o=y, (34)

constants in Table 1 gives

M= lRmax -R

S Lonl (35)
min
where [~ 0.4 nm. So M < 1 when the range of pore sizes is limited
and as long as C does not become too small.
We shall proceed to analyze the case where the M-term may be

dropped, leaving the equation

ac _ D,V-(CVC). (36)
ot

We note at this point that the condition for neglecting the energy
needed to change temperature, which is represented by the M-term,
coincides with the condition to neglect the contribution of pre-
melted films. Both conditions may be fulfilled by media with a
limited range of pore sizes above a minimum size R,;, 210 nm.

The fact that we have neglected the energy contribution given by
the heat capacities means that we have assumed that all the energy is
spent melting the ice in the pores. We note in passing that the same
assumption is made in treatments of the moving boundary problem
associated with melting fronts (the Stefan problem) [26].

The mobile energy density oc C, which means that Equation 36
may be read as a statement of energy conservation. We will consider
the response to a localized addition of energy that causes a local
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initial volume V; of melted water. Solving Equation 36 subject to the
normalization condition

V.- JdVC (37)

in d dimensions [27] for a point source initial C(r,0) gives

p(r/t)
C(r,t) = , (38)
IO
where
f(t)—<2‘_dVD ) 9
Na-pv ")
and
p(y)=[—y yz+k]r, (40)
210-p V!

where y=r/f(f) and k is an integration constant given by the
normalization condition. It takes the value of [27].

ROREG
J k|
r(5-5)

The functional form given in Equation 38 immediately yields the

k= V_l“W( Y (41)

! 2m(1-y)

second moment for the concentration profile

jdrrd'erC(r, 1)

= o (1) o< £ (42)
jdrrd’IC(r, )
with [27, 28]. Here
1
T= m, (43)
or, in terms of 3,
(B+1) (44)

T @- )G

When the dimension d =3, we obtain hyper-ballistic spreading
(r>1) if 1/2 < <2 and superdiffusion (7>1/2) if 0<f<2. A
value of = 1, which would correspond to a linear initial growth of
g(R), gives f = 1 and 7 = 2, which should be compared to the ballistic
value 7= 1 and the normal diffusive value of 7=1/2. A heat pulse
will thus spread at an accelerating rate, causing a rapid, long-range
front of melting.

The d =1 case is relevant when a heat pulse spreads downward
in the ground. In this case, f =1 gives 7=2/3, and f =2 gives 7=
3/4, both superdiffusive values.

The superdiffusive spread of C and thus T with time follows from
the fact that a heat pulse will lower the local melting temperature,
thus keeping the remaining ice from receiving more latent heat as
the temperature is rising. In contrast, a melting front that propagates
through a medium with a single pore size will only spread diffusively,
propagating at a speed ~ V.
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3 Potential applications to tundra-like
surfaces

On the tundra, an increase in heat penetration depth due to
superdiffusion will increase the water melting caused by annual
heating, thus increasing the melting depth. Freezing and melting on
a tundra is believed to affect the subsurface over depths of the order
~4 m. Provided the relevant range of pore sizes is present, we may
speculate that when the ground is heated by the sun, melting fronts
lasting days or months will propagate downward, giving rise to a
one-dimensional problem of the type we have discussed above. This
raises the question of how much deeper a superdiffusive spreading
of heat, or C-fluctuations, will propagate than the normal melting
front, and will this affect the release of trapped methane?

It is instructive first to consider the case of a medium with
a single pore size R,,;, and look at the case where a heat pulse
propagates from the surface. Then, g(R) = §(R—R,,;,), and all the
pores melt at the same temperature Ty, given by setting T — T,

n

in Equation 13. Taking this to be the initial temperature in the
ground, the temperature will spread out downward until it reaches
the melting front below which T = Tp,. The volume fraction as a
function of T'is C = C,®(T — Tg,), where @ is the Lorentz—Heaviside
function, and

dc _
ar -~

which is zero away from the melting front. In this case, dC/dT cannot

Cod (T - Tgy) (45)

be assumed to be larger than c;; rather, for T # Ty, Equation 31
reduces to the normal diffusion equation

oT « o*T

= 46
ot Cy axz ( )

which describes standard diffusive spreading of T.

At the point where all the energy supplied at the surface has been
consumed as latent heat at the melting front, the front propagation
stops. This will happen at a depth zp= Q/(pA) ~ 1-4 m where Q is
the thermal energy per unit area initially supplied at the surface and
p the total mass density. This layer is usually called the “active layer.”

Now, returning to the case we have considered, where g(R) oc
(R-R
pulse propagates from the surface and downward? This question
may be answered by examining the analytic solutions given in

i), what happens in the one-dimensional case when a heat

Equation 38. Choosing 5 = 1 and setting d = 1 in Equation 44 gives
the diffusion exponent 7=2/3. If = 2, then 7= 3/4. These values
are sufficiently close that it may be hard to distinguish between them
experimentally, and so the end result will not depend strongly on the
B-value. So, we shall use 3 = 1, which corresponds to a linear increase
in g(R) for R near R

Using the value of the thermal diffusivity for ice D, ~ 1 mm?/s
and R,,,, =2R,,;, = 60 nm, which yields D, = 0.015 mm?/s, we
can estimate the typical penetration depths with the superdiffusive

min*

contribution of the latent heat. In [27], it is shown that the second
moment of C is given by

1 d
d 4 dpt F(; T2 1) 2(1-y) g1
rfms = Eﬂzkz ’ 1 y
r(;)
1,
v R, (47)
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The 1D solution is given by setting V; = 2¢C,l;, where [ is the
initial thickness of the active (melted) layer, and ¢ is the porosity.
The factor 2 comes from the fact that our solution describes the
symmetric situation where C(z, t) spreads out symmetrically in both
directions from z = 0, while we are interested in the case where it
only spreads downward. Setting [;= 2m, Cy;=1,=1,and d=1,
the result becomes

3Dyt
(2¢Coly)’

Inserting the numbers ¢ = 0.5, C, =1, 1;= 2m, and D, = 0.01-0.1
mm?/s, the r,,,. may be written as

4/3
2= (271)2/3( ) (26Cyly)%. (48)

F o\

Trms ~ <}E> 10m (49)
which is a typical factor of 10 or so larger than [, This result
shows that superdiffusive spreading of heat may cause temperature
variations almost an order of magnitude deeper than the variations
caused by a normal diffusive melting front.

The main approximation made in our theory is the neglect of
the heat capacities compared to the latent heat contributions. We
now solve the full heat balance equation, Equation 32, numerically,
including the finite value of the heat capacity.

Figures 4, 5 show the results of this. Note that the analytic
T,

solutions are only plotted for C values where M <1 and T< T,,,,,

the freezing temperature of pores of size R It is seen that

max*
the full solution of Equation 32 gives a somewhat smaller z-value

where C approaches zero, but the scaling of r,,,, oc  with time
is still seen to hold for the first months after the heat pulse, as
may be seen from Figure 6. Note that from Equation 35 and the
assumption that R, = 2R, ., we have that M oc 1/R,;,, and so,
a the agreement between the analytical ¢, = 0 approximation and

numerical results is expected to improve as R,;, is increased. This

min
is indeed observed in Figure 5.

Even in the R,;, =10-60nm cases, the penetration of
Cx

be seen from Figure 5.

1% fluctuations extends deeper than 10m, as may

4 Discussion and conclusion

Starting from the thermodynamics of the Gibbs-Thomson
effect describing the melting of ice in pores and a power law
distribution of pore sizes, we have shown that the requirement
of energy conservation produces a non-linear equation that yields
superdiffusive spreading of the melted water fraction.

The physical picture that emerges from this analysis is that the
spreading of heat, or the melted water concentration, is strongly
increased by the fact that the heat will bypass any pore that is
either too big for melting to occur or so small that the melting
has already happened. This is true in the range of temperatures
where some pores contain water and some contain ice. As a result,
a subsurface porous medium containing ice will experience melting
perturbations at depths that greatly exceed those that are expected
from a treatment that ignores the freezing-point depression.

Formalisms involving time fractional derivatives can cover
descriptions of anomalous diffusion, both in the subdiffusive and
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FIGURE 4

Top: The melted water fraction as a function of depth at different
times t =4 months, 8 months, and 12 months. The black curves show
the analytic solutions of Equation 32 in the domains where they are
assumed to apply, that is, where T< T,,,, and M < 1. The red curves
show the corresponding numerical solution of the full heat

equation from Equation 32. The blue curve shows the case where
there is a constant pore size and no superdiffusive spreading. Bottom:
The corresponding temperature. Here, =1, R,,,;, = Rpax/2 = 5 nm, and
Cp= 2MJ/m?3, as is close to both the ice and typical clay/silt values.

FIGURE 5
The same results as in Figure 4, but with R,

=R,

min max/zz 30 nm.
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FIGURE 6

The increase in rms depth of the melted water fraction as a function of
time for different minimum pore sizes. The time increases from t= 0,
and ty > 0 corresponds to the fact that, for numerical reasons, the
initial C(z,0)-profile is not a §-function but has a finite width. The full
lines, drawn in colors that correspond to the (o)-points, show the
theoretical value of Equation 48 (so, they all have slope =2/3) while
the (o)-points show the values measured from the numerical solution
of Equation 32. The parameter values are the same as in Figure 4.

superdiffusive domains [29-31]. These formalisms are not focused
on the effects of freezing-point depression as in the present case.
However, they are relevant to heat flow in media with complex
geometries, like porous media and fractured systems, and in some
cases, they yield analytic solutions.

In the present modeling, we have neglected all effects coming
from the deformations of the solid skeleton that are caused by the
difference in specific volume between water and ice. While such
effects are key to important phenomena like frost heave [32], they
have no important role in the energy budget associated with melting
and freezing that we are considering. The added work that is carried
out by ice displacing parts of the solid skeleton could, in principle,
be incorporated as a small correction to A, the latent heat of fusion.
This correction is ignored in the present work.

The superdiffusive spreading of temperature or melted water
fraction may also be used as a method to measure pore size
distributions: The estimate given in Equation 23 shows that close
to T,

win> the sensitivity to temperature variations is mainly in the
pore liquid fraction C, and not the liquid fraction contained in the
surface melted films. In the cases where the pore size distribution
is in fact given by a power law distribution, the measurement of
a spreading temperature profile may thus provide a value for the
diffusion exponent 7and thus for the pore size distribution exponent
B. Due to the higher sensitivity to the bulk pore water, this method
may be superior to conventional NMR measurements, which cannot
distinguish between the liquid water that resides in the pores and
that which is contained in the films. Compared to mercury injection
measurements, which need high pressures to probe the smallest
pores, the temperature technique is less likely to alter the medium
through crushing of the smallest pores. It does, however, rely on the
basic assumption of a power law pore size distribution.
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Our study is not restricted to pure water—solid systems. Methane
hydrates, which may exist in the subsurface where glaciers have
recently withdrawn, have similar values of density and latent heat
as water ice [33]. This may give rise to superdiffusive behavior, even
when the active substance is not water, but methane in combination
with water. Measurements showing the freezing-point depression of
methane and CO, hydrates in natural sediments [25] support this
assertion.

Finally, we note that experimental verification of our predictions
would be of great interest. Nanoporous man-made materials, such
as activated carbons, zeolites, aluminas, mesoporous silicas, and
microporous metal-organic frameworks, may all be tailored to have
pores in the ~ nm range. They are thus promising candidates
for applications in experimental studies of superdiffusive heat
flows, provided proper control and monitoring of the temperature
variations are designed.
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