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When water is present in a medium with pore sizes in a range of approximately 10 nm, the corresponding freezing-point depression will cause long-range broadening of a melting front. Describing the freezing-point depression by the Gibbs–Thomson equation and the pore-size distribution by a power law, we derive a nonlinear diffusion equation for the fraction of melted water. This equation yields superdiffusive spreading of the melting front with a diffusion exponent, which is given by the spatial dimension and the exponent describing the pore size distribution. We derive this solution analytically from energy conservation in the limit where all the energy is consumed by the melting and explore the validity of this approximation numerically. Finally, we explore a geological application of the theory to the case of one-dimensional subsurface melting fronts in granular or soil systems. These fronts, which are produced by heating of the surface, spread at a superdiffusive rate and affect the subsurface to significantly larger depths than a system without the effects of freezing-point depression.
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1 INTRODUCTION
Water residing in ∼ 10 nm pores will stay in the liquid state at temperatures well below the bulk freezing point. Such freezing-point depression is caused by the Gibbs–Thomson effect, which in a porous medium with a range of pore sizes, will cause residual amounts of liquid water in small pores while water in the larger pores freezes. The frozen state of a single pore is illustrated in Figure 1, where a pre-melted layer of liquid water is assumed to be present. The situation where pores of different sizes coexist is illustrated in Figure 2. Several experimental studies of the freezing-point depression in small pores have been carried out, showing that quantitatively, the effect depends on such factors as salinity [1], wetting properties [2], and the pore geometry [3–5].
[image: Diagram showing two circular regions. The left circle represents ice, with a shaded outer ring labeled \(V_0T\mu\) and an inner radius labeled \(R\). A radial line inside marks \(r\) with \(V(r)\). The right circle is labeled "Water." Both circles are shaded in different tones.]FIGURE 1 | Left: A pore of total volume V0 containing a liquid film and a core of ice. Right: A smaller pore containing liquid water at the same temperature.[image: Diagram showing two sets of blue circles increasing in size as they move up. The top set is labeled "Ice," while the bottom set shows an increase in temperature, labeled "T - increase." An upward arrow indicates the growth direction.]FIGURE 2 | Pores containing water. Ice melting with (upper figure) and without (lower figure) the freezing-point depression. Ice is shown in gray, and liquid water is shown in blue.The equilibrium states of frozen systems have been studied experimentally in both natural [1] and synthetic media, such as cylindrical silica nanopores [6] of controlled sizes in the 2–10 nm range. However, much less has been learned about the non-equilibrium processes of heat propagating through such systems, where only a fraction of the ice melts. When sufficient amounts of water are present at the right temperature, the energy required for this melting will dominate the energy balance; that is, the latent heat is larger than the energy needed to change the temperature due to the heat capacity. When different pore sizes are present, the heat may be consumed by melting only in a narrow range of these sizes (see Figure 2). This causes an increased spreading of the heat as well as the fraction C of melted water. We will show that this fraction may spread in a superdiffusive manner when the pore size distribution is given by a power law. By comparison, a melting front in a medium where all the pores have the same size and melt at the same temperature will stop abruptly at the point in space where the available energy is consumed and thus has no long tail. Superdiffusion is characterized by the fact that the second spatial moment of the water fraction C increases with time t as ∼tτ with the exponent τ>1/2, the normal diffusion value being τ=1/2. This behavior may arise in physical, biological, or geological systems; examples include Levy flights [7, 8], particle motion in random potentials, or the seemingly random paths of objects moving in turbulent flows [9, 10].
In addition to the shift in the equilibrium freezing point itself, there may be an effect of metastable states that cause superheating or supercooling. In order to address this question, we discuss qualitatively how the Gibbs–Thomson effect may be modified by nucleation barriers as well as the pore geometry and shapes of the ice. However, because the melting process is generally less affected by nucleation barriers and alternative nucleation pathways [3, 4, 11] than the freezing process, our theory is formulated for melting fronts and proceeds on the basis that metastable states may be neglected [12, 13].
We show that when the porous medium has a power law pore size distribution, the fraction of liquid water satisfies a non-linear diffusion equation. Solving this equation analytically, we proceed to demonstrate that this results in a superdiffusive, and, in some cases, even hyper-ballistic spreading of the heat and liquid concentration. The diffusion exponent is given in terms of the exponent governing the pore size distribution and the dimensionality.
These results may be of relevance for modeling melting in environments such as tundras. We therefore apply the model result to explore potential consequences for the depths at which the Gibbs–Thomson effect may affect the melting of ice in such contexts. Given the above assumptions, the depths at which the ice fraction is perturbed may be up to a factor 10 larger than without the effect of freezing-point depression. We also show numerically that this effect survives, even with realistic values for the energy consumed by the heat capacity of the water and the solid medium.
The article is organized as follows: In the theory section, we introduce the standard thermodynamics of the Gibbs–Thomson effect, deriving the expression for the freezing-point depression. Following the discussion of the equilibrium states, we discuss the assumption of a power law distribution for the pore sizes before we turn to the consequences for a time-dependent equation that governs the evolution of the melted water fraction and obtain its solutions in different spatial dimensions. Finally, we interpret these results in an assumed geological scenario where a melting front is caused by surface heating, which leads to a long-range, superdiffusive spreading of the melting front.
2 THEORY
In the following, we obtain the volume fraction of liquid water as a function of temperature for a porous medium with a given pore size distribution and water/ice saturation C0. For this purpose, we need the freezing point as a function of pore size.
It is a general fact that most water-bearing solids, or even ice itself [14], will have a pre-melted liquid layer [15, 16] of a thickness ∼nm, as illustrated in Figure 1. While the thickness of the melted films varies with the interaction energy between the water molecules and the walls [2], the existence of the film is quite insensitive to the corresponding wetting properties of the wall.
Being interested in pores on the nano- to micrometer scale, we will assume that the chemical potential μ is constant over the pores. This is justified by the fact that diffusion is fast on these scales, and so the water will quickly equilibrate to the chemical potential of the surroundings. This will be assumed to be the case whether the pore is open to the surrounding pore volume or not. The situation is illustrated in Figure 1. In this case, a body of ice will adjust its volume V(r) so as to minimize the Landau, or grand canonical, potential Ω in equilibrium. We will not consider the case where the increase in specific volume of the water during freezing leads to significant pressure changes. So, the theory is limited to the cases where there is some freedom for the water to expand or be absorbed, as is generally the case in unsaturated or unconsolidated porous media with boundaries that are open to the surroundings.
2.1 Freezing-point depression and the thermodynamics of the Gibbs–Thomson effect in spherical pores
The net energy effect of introducing a liquid layer between a solid (or vapor) and ice may be described by the Landau free energy
ΩVW=A0AH/12πd2,(1)
where A0 is the surface area, and d the liquid layer thickness. We have introduced the Hamaker constant AH∼10−20−10−19 J (albeit with an unconventional sign to keep AH positive).
Adding the free energy of the ice–water interface σA(r), where A(r) is the area of this interface and σ is the ice–water surface energy per unit area, to the energy of the pre-melted layer given in Equation 1 yields the total free energy
Ω=σA+AHA012πR−r2+Ω0,(2)
where the bulk free energy Ω0 is independent of the interface contributions. Because in general Ω=−PV, the combined potential for both the liquid and ice is
Ω0=−PiVi−PwV0−Vi,(3)
where the ice pressure Pi and water pressure Pw will in general differ.
At the bulk melting temperature Tm= 273 K, there will be no change in Ω0 under a change in Vi when μ and T are kept fixed, so, using the fact that Ω0=E−TS−μN, we can write
0=dΩ0=dE−TmdS−μdN(4)
where E, S, and N are the total ice–water energy, entropy, and molecule number, respectively. The heat needed to melt a volume −dVi of ice is ρiλdVi, where ρi is the ice mass density and λ is the latent heat per unit mass. Using this, the above equation may also be written
−ρiλdVi=TmdS=dE−μdN.(5)
Because ρi and λ change very little over a modest temperature variation, we may also get dΩ0 in the case where T≠Tm by writing
dΩ0=dE−μdN−TTmTmdS≈−1−TTmρiλdVi,(6)
which indicates that the free energy change due to an ice volume increase is negative below the bulk freezing point. Integrating from Vi=0, where Ωo=−Pw(μ,T)V0, yields
Ω0≈−1−TTmρiλVi−PwV0,(7)
which, when inserted in Equation 2, gives
Ω=σA+AHA012πR−r2−1−TTmρiλVi−PwV0.(8)
The change in this energy as r is increased from r=0 is
ΔΩ=σA−1−TTmρiλVi+AH12πA0R−r2−A0R2.(9)
The equilibrium value of the ice radius is given by the global minimum of ΔΩ, which, for sufficiently small R values, will be at r=0, that is, for the complete liquid state. Above this critical pore size, the minimum will be at rm≲R, a value that is given by the equilibrium thickness of the surface melted layer. As may be noted from Figure 3, this minimum does not change much with the pore size R. When Ω(r=0)>Ω(rm), there will still be ice. The condition for complete melting is that Ω(r=0)<Ω(rm), which yields the freezing-point depression.
[image: Graph showing ΔΩ (Joules per square centimeter) versus r/R. Three temperature conditions are depicted: T equals T sub F minus 3 Kelvin (black dotted line), T equals T sub F plus 3 Kelvin (black dashed line), and T equals T sub F (blue solid line). The curves start near zero, initially decreasing before sharply increasing, particularly at higher r/R values. Temperature variations affect curve shapes and peak points.]FIGURE 3 | The Landau free energy per unit area in a pore of radius R=10 nm with a surface layer of water as a function of the radius r of the ice volume at temperatures around TF= 264 K. The black curves show the free energy with AH= 10−20 J, while the red curves show the free energy with AH=0 J. For the blue curves, T=TF.Taking r=R, AH=0 gives the free energy change in passing from a liquid to a fully frozen pore
ΔΩ=σA−1−TTmρiλVi,(10)
where A=4πR2 and Vi=(4/3)πR3. The condition ΔΩ=0 implies that a pore of radius R will freeze at a temperature T=TF given by
TFR=Tm1−3σρiλR.(11)
This is the standard expression for the Gibbs–Thomson effect. For a cylindrical pore, the geometrical factor of 3 must be replaced by 2. In the following, we shall use the value 3. Note that, due to the tendency of the surface tension to minimize the interface area, these smooth geometrical shapes will also be relevant in more complex pore geometries.
2.2 Corrections to the Gibbs–Thomson effect due to nucleation barriers
Thus far, we have ignored the time it takes for a metastable state to be replaced by the equilibrium state, implicitly assuming that the system has had time to reach the overall minimum state for the free energy. This is in general not the case as some metastable states may be very long-lived, a phenomenon that is quantified in classical nucleation theory [17, 18], which is based on the probability that a free energy barrier is traversed by the thermal activation energy kBT. Moreover, the stability against melting may be very different from the stability against the reverse process of freezing. It is generally much more difficult to superheat a solid than to supercool a liquid [12, 13]. Superheated crystalline solids have only been observed in some rather singular cases where the heated region is along a single crystal plane or the crystals are confined inside a non-melting matrix [19, 20]. The existence of supercooled liquids, on the other hand, only requires the absence of nucleation sites.
Assuming our pre-melted surface layer of water, there is no extra energy cost (nucleation barrier) in forming a new liquid–ice surface during the melting process. Yet, there will be a nucleation barrier that must be crossed during melting when the temperature is T≈TF. The reason for this is that when melting happens around T≈TF<Tm, the bulk free energy must increase, while the surface energy is decreased. Thus, as r decreases from a value around R in Figure 3, the free energy initially increases. As a result, there is a free energy barrier against both melting and freezing. This fact implies the possible existence of solid ice that is superheated relative to its depressed freezing point TF.
Using nucleation theory, it is possible to estimate the lifetime of these metastable states as ∝exp((ΔΩ(rmax)−ΔΩ(R))/(kBT)), where the free energy ΔΩ(r) is shown in Figure 3 and takes its maximum at r=rmax. Requiring that the lifetime be within a realistic range, it is possible to show that the melting temperature must be increased above TF by an amount that corresponds to a reduction of the freezing-point depression Tm−TF by ∼ 20% for pore sizes greater than ∼ 1 nm.
It may be shown that nucleation barriers are significantly more influential during freezing (supercooled liquid). In this case, however, nucleation pathways other than ice forming as a spherical crystal are likely to dominate, as has been shown for the case where ice nucleates in pockets or corner geometries [3, 4, 11].
In the following, we will consider melting on the basis that metastable states may be neglected, although there is a nucleation barrier to be passed both for the melting and freezing transition in isolated pores. For melting, this assumption implies that there may be quantitative corrections to the depression Tm−TF by ∼ 20%, which are ignored.
2.3 Heat in a nanoporous medium with partially frozen water
Having dealt with the equilibrium problem of the freezing-point depression, we now investigate the non-equilibrium effects of this phenomenon in the context of a nanoporous material. We shall consider a melting front, for which the shift in melting temperature is small, and so the shift in the freezing-point depression will not be applied. Note, however, that a freezing front may differ significantly from the melting front through the possible existence of metastable pockets of supercooled liquid.
The pore size distributions may be estimated through nitrogen absorption [21], electron microscopy, or mercury injection experiments and measurements of the heat capacity variations with temperature when there is water present [22]. For silts, clays, and synthetic media made of glass powders [1], they may yield distributions that extend down at least to the nm scale. Freezing and melting of water confined in silica nanopores have been observed down to pore sizes of 3 nm [6].
The distributions may be given in terms of a relative volume fraction per unit length g(R) so that ∫dRg(R)=ϕ, the porosity of the medium. Our main assumption is that this distribution may be approximated with a power law above a minimum cut-off length Rmin,
gR=NR−Rminβ(12)
where N=(β+1)ϕ/(Rmax−Rmin)β+1 is the normalization.
Mercury intrusion experiments are challenged by the fact that high injection pressures may crush or deform the smallest pores. Yet, in rigid materials, such as cement, the technique may be used to measure pores down to Rmin∼ 1 nm [23]. In order to cover the smaller pore ranges, nitrogen adsorption techniques are often better [21]. Zhao et al. [24] measured pore size distribution for porous sandstone from the Ordos basin by mercury injection, finding g(R)-distributions that are well described by Rmin∼ 10 nm and β=1 over 1 to 2 decades in pore sizes. Using N2 adsorption techniques on porous glass powders, Fujinomori soil, and bentonite clay, Watanabe et al. [1] found g(R)-distributions where Rmin≈ 1 nm, Rmax≈ 3–4 nm, and β= 1–2. Park et al. [25] measured pore-size distributions. Different sediments produced Rmin values from 1 nm to 100 nm with distributions that could be described by a β≈2 power law over roughly a decade. There is thus a range of natural and synthetic materials that seem to fulfill the assumed pore-size power law distribution over an adequate range of length scales.
In a medium that is described by Equation 12, all the pores are frozen when
T=Tmin=Tm−Tmr0Rmin,(13)
where we have introduced the length r0=3σ/(ρiλ)≈3.3nm. Correspondingly, there is an upper temperature
Tmax=Tm−Tmr0Rmax,(14)
where all pore water is melted.
The initial filling fraction of water in the pores C0 gives the total water (ice or liquid) fraction ϕC0. The fraction of liquid water, C(T), is the fraction contained in the pores that are so small that they have not frozen. These pores have sizes less than
rT=3σρiλ1−T/Tm.(15)
This means that when Tmin<T<Tmax
CT=C0∫RminrTdRgR=NC0∫RminrTdRR−Rminβ=NC0β+1rT−Rminβ+1(16)
=NC0β+1Rminβ+1T−TminTm−Tβ+1,(17)
by use of Equation 12 and Equation 13. Close to the absolute freezing point Tmin, the above denominator is close to (Tm−Tmin)β+1, so we shall use
CT=BT−TminTminβ+1,(18)
with
B=C0ϕRmin2Rmax−RminρiλTmin3σTmβ+1(19)
by use of Equation 13 and the definition of N.
2.4 Contribution of pre-melted surface layers
Having neglected the thickness of the pre-melted films in the ice-filled pores by setting AH=0, we should compare the relative contributions to C(T) from these films and the liquid-filled pores. Because there is no film in the liquid-filled pores, we need only take the R>r(T) pores into account. We take the film contribution to be given by the film thickness d=R−r(T) as
ΔCT=C0∫rTRmaxdRgRΔVRVR,(20)
where the fraction ΔV/V≈3 d/R is the ratio of the film volume to the pore volume. Then,
ΔCT=3dNC0∫rTRmaxdRR−RminβR,(21)
where Rmax is the upper cut-off for g(R). When β=1, this integral is easily evaluated to give
ΔCT=3dTNC0Rmax−rT−Rmin⁡lnRmaxrT.(22)
Taking the Rmax term to dominate in this expression and using Equation 16, the ratio becomes
ΔCC≈6dTRmaxrT−Rmin2,(23)
which may well be larger than one when r(T)≳Rmin.
However, as we shall see below, it is the rates of change dC/dT of the volume fractions that are important, not the absolute value of ΔC/C. The film thickness d may be estimated from Equation 9 as the minimum of ΔΩ when σ=0. This gives the standard expression [16].
d=AHTm6πTm−Tρiλ1/3,(24)
where we can use the relatively high value AH=10−19 J. Together with the constants given in Table 1, this gives d≈1 nm, while the other relevant length, which appears in Equation 9, is 3σ/(ρiλ)≈ 0.3 nm.
TABLE 1 | Material constants.	κice = 2.3 W/(mK)	Thermal conductivity of ice
	κw = 0.6 W/(mK)	Thermal conductivity of water
	κb∼ 1 W/(mK)	Typical thermal conductivity of clays
	λ = 0.33 MJ/kg	Latent heat of fusion for water
	σ = 0.033 N/m	Water–ice surface energy per unit area
	ρi = 917 kg/m3	Mass density of H2O ice
	cice = 2.3 MJ/Km3	Heat capacity of ice
	cw = 4.2 MJ/Km3	Heat capacity of water
	AH = 10−20-10−19 J	Typical values of the Hamaker constant


Because C∝(T−Tmin)2 and, to leading order ΔC∝d∝(T−Tm)−1/3, we have that dC/dT=(β+1)C/(T−Tmin) while dΔC/dT=ΔC/(3(Tm−T)), so that the ratio of the changes in these two quantities due to a temperature change when β=1 is
δΔCδC=TmT−Tmindr0RmaxRmin3.(25)
close to the absolute freezing point Tmin. Here, we have used Equation 13 to substitute (Tm−Tmin)/Tm=r0/Rmin. The condition that δΔC/δC≪1 may be taken as a condition on the range of pore sizes Rmax/Rmin:
RmaxRmin≪Rmin2dr0T−TminTm,(26)
or, equivalently,
T−TminTm−Tmin≫dRminRmaxRmin.(27)
When Rmin= 30 nm, for instance, and (T−Tmin)/Tm= 1/273, we get that Rmax/Rmin≪10. It is quite natural that the condition for the domination of pore-versus film fluid is a limited range of pore sizes, as a domination of the large pores, which all carry a film contribution, would leave a smaller fraction of the porosity to be represented by smaller pores.
In other words, when Rmax/Rmin≪10, ΔC changes relatively slowly with T≈Tmin, but C changes significantly. In this case, we may neglect the variations in the film contribution to the overall change in liquid volume fraction. For this reason, we shall only use the C in the following, keeping in mind that it is the fraction of liquid pore water, and not the total fraction of liquid water.
2.5 Governing equation for the evolution of melted water concentration
In a 1D setting, the conservation of energy in a slab of thickness dx over a time dt may be written
jx−jx+dxΔAdt=λρΔAdxdC+cbΔAdxdT(28)
where ΔA is the cross-sectional area, cb is the combined specific heat capacity of the porous medium and the water, and T is the temperature. In Equation 28, the left-hand side is the net energy transfer to the slab, the first term on the right is the energy consumed by melting (latent heat), and the last term is the energy absorbed due to the heat capacities of the water, ice, and the porous medium itself. As dx→0, Equation 28 becomes
∂j∂x+λρ∂C∂t+cb∂T∂t=0.(29)
To describe the heat flow, we apply the Fourier law, which takes the form
j=−κ∂T∂x,(30)
where κ is the bulk thermal conductivity of the porous medium, so inserting this in Equation 29 gives
∂∂xκ∂T∂x=ρλ∂C∂T+cb∂T∂t(31)
where we have used ∂C/∂t=(∂C/∂T)(∂T/∂t). Generalizing to arbitrary dimension (∂/∂x→∇) and replacing T−Tmin by Tmin(C/B)1/(β+1) using Equation 18 yields the diffusion equation
1+M∂C∂t=D0∇⋅C1/β+1−1∇C.(32)
where
D0=κbTminλρβ+1B1/β+1=cbTminλρβ+1B1/β+1Dt,(33)
and Dt=κb/cb≈ 1mm2/s is the average thermal diffusivity of the porous medium, and
M=cbTminC1/β+1−1β+1ρiλB1/β+1=3cbσTmβ+1ρiλ2C0ϕ1/β+1Rmax−RminRmin2C−γ.(34)
The last expression comes from replacing B by the expression in Equation 19, and γ=β/(β+1). Using the material constants in Table 1 gives
M=lRmax−RminRmin2C−γ(35)
where l≈ 0.4 nm. So M≪1 when the range of pore sizes is limited and as long as C does not become too small.
We shall proceed to analyze the case where the M-term may be dropped, leaving the equation
∂C∂t=D0∇⋅C−γ∇C.(36)
We note at this point that the condition for neglecting the energy needed to change temperature, which is represented by the M-term, coincides with the condition to neglect the contribution of pre-melted films. Both conditions may be fulfilled by media with a limited range of pore sizes above a minimum size Rmin≳10 nm.
The fact that we have neglected the energy contribution given by the heat capacities means that we have assumed that all the energy is spent melting the ice in the pores. We note in passing that the same assumption is made in treatments of the moving boundary problem associated with melting fronts (the Stefan problem) [26].
The mobile energy density ∝C, which means that Equation 36 may be read as a statement of energy conservation. We will consider the response to a localized addition of energy that causes a local initial volume Vi of melted water. Solving Equation 36 subject to the normalization condition
Vi=∫dVC(37)
in d dimensions [27] for a point source initial C(r,0) gives
Cr,t=pr/tτfdt,(38)
where
ft=2−dγ1−γViγD0t12−dγ.(39)
and
py=γ21−γViγy2+k−1γ,(40)
where y=r/f(t) and k is an integration constant given by the normalization condition. It takes the value of [27].
k=Vi1−dγ/2γ2π1−γd2Γ1γΓ1γ−d22γdγ−2.(41)
The functional form given in Equation 38 immediately yields the second moment for the concentration profile
rrms2=∫drrd−1r2Cr,t∫drrd−1Cr,t∝f2t∝t2τ(42)
with [27, 28]. Here
τ=12−dγ,(43)
or, in terms of β,
τ=β+1d−d−2β+1.(44)
When the dimension d=3, we obtain hyper-ballistic spreading (τ>1) if 1/2<β<2 and superdiffusion (τ>1/2) if 0<β<2. A value of β=1, which would correspond to a linear initial growth of g(R), gives β=1 and τ=2, which should be compared to the ballistic value τ=1 and the normal diffusive value of τ=1/2. A heat pulse will thus spread at an accelerating rate, causing a rapid, long-range front of melting.
The d=1 case is relevant when a heat pulse spreads downward in the ground. In this case, β=1 gives τ=2/3, and β=2 gives τ=3/4, both superdiffusive values.
The superdiffusive spread of C and thus T with time follows from the fact that a heat pulse will lower the local melting temperature, thus keeping the remaining ice from receiving more latent heat as the temperature is rising. In contrast, a melting front that propagates through a medium with a single pore size will only spread diffusively, propagating at a speed ∼t.
3 POTENTIAL APPLICATIONS TO TUNDRA-LIKE SURFACES
On the tundra, an increase in heat penetration depth due to superdiffusion will increase the water melting caused by annual heating, thus increasing the melting depth. Freezing and melting on a tundra is believed to affect the subsurface over depths of the order ∼4 m. Provided the relevant range of pore sizes is present, we may speculate that when the ground is heated by the sun, melting fronts lasting days or months will propagate downward, giving rise to a one-dimensional problem of the type we have discussed above. This raises the question of how much deeper a superdiffusive spreading of heat, or C-fluctuations, will propagate than the normal melting front, and will this affect the release of trapped methane?
It is instructive first to consider the case of a medium with a single pore size Rmin and look at the case where a heat pulse propagates from the surface. Then, g(R)=δ(R−Rmin), and all the pores melt at the same temperature TF0 given by setting T→TF0 in Equation 13. Taking this to be the initial temperature in the ground, the temperature will spread out downward until it reaches the melting front below which T=TF0. The volume fraction as a function of T is C=C0Θ(T−TF0), where Θ is the Lorentz–Heaviside function, and
dCdT=C0δT−TF0(45)
which is zero away from the melting front. In this case, dC/dT cannot be assumed to be larger than cb; rather, for T≠TF0, Equation 31 reduces to the normal diffusion equation
∂T∂t=κcb∂2T∂x2(46)
which describes standard diffusive spreading of T.
At the point where all the energy supplied at the surface has been consumed as latent heat at the melting front, the front propagation stops. This will happen at a depth zf=Q/(ρλ)∼ 1–4 m where Q is the thermal energy per unit area initially supplied at the surface and ρ the total mass density. This layer is usually called the “active layer.”
Now, returning to the case we have considered, where g(R)∝(R−Rmin)β, what happens in the one-dimensional case when a heat pulse propagates from the surface and downward? This question may be answered by examining the analytic solutions given in Equation 38. Choosing β=1 and setting d=1 in Equation 44 gives the diffusion exponent τ=2/3. If β=2, then τ=3/4. These values are sufficiently close that it may be hard to distinguish between them experimentally, and so the end result will not depend strongly on the β-value. So, we shall use β=1, which corresponds to a linear increase in g(R) for R near Rmin.
Using the value of the thermal diffusivity for ice Dt≈ 1 mm2/s and Rmax=2Rmin= 60 nm, which yields D0≈ 0.015 mm2/s, we can estimate the typical penetration depths with the superdiffusive contribution of the latent heat. In [27], it is shown that the second moment of C is given by
rrms2=d2πd2kd2+1−1γΓ1γ−d2−1Γ1γ21−γγd2+1Vidγ2+γ−1f2t.(47)
The 1D solution is given by setting Vi=2ϕC0ld, where ld is the initial thickness of the active (melted) layer, and ϕ is the porosity. The factor 2 comes from the fact that our solution describes the symmetric situation where C(z,t) spreads out symmetrically in both directions from z=0, while we are interested in the case where it only spreads downward. Setting ld= 2 m, C0=1, β=1, and d=1, the result becomes
rrms2=2π2/33D0t2ϕC0ld24/32ϕC0ld2.(48)
Inserting the numbers ϕ=0.5, C0=1, ld= 2 m, and D0= 0.01–0.1 mm2/s, the rrms may be written as
rrms∼tyear2/3 10 m(49)
which is a typical factor of 10 or so larger than li. This result shows that superdiffusive spreading of heat may cause temperature variations almost an order of magnitude deeper than the variations caused by a normal diffusive melting front.
The main approximation made in our theory is the neglect of the heat capacities compared to the latent heat contributions. We now solve the full heat balance equation, Equation 32, numerically, including the finite value of the heat capacity.
Figures 4, 5 show the results of this. Note that the analytic solutions are only plotted for C values where M<1 and T<Tmax, the freezing temperature of pores of size Rmax. It is seen that the full solution of Equation 32 gives a somewhat smaller z-value where C approaches zero, but the scaling of rrms∝tτ with time is still seen to hold for the first months after the heat pulse, as may be seen from Figure 6. Note that from Equation 35 and the assumption that Rmax=2Rmin, we have that M∝1/Rmin, and so, a the agreement between the analytical cb=0 approximation and numerical results is expected to improve as Rmin is increased. This is indeed observed in Figure 5.
[image: Top graph shows concentration (C) in percentage decreasing with depth (z) in meters. Three black and two red curves display different rates of decrease. Bottom graph illustrates temperature difference (T - Tr) in Kelvin, also decreasing with depth, shown by three black curves.]FIGURE 4 | Top: The melted water fraction as a function of depth at different times t=4 months, 8 months, and 12 months. The black curves show the analytic solutions of Equation 32 in the domains where they are assumed to apply, that is, where T<Tmax and M<1. The red curves show the corresponding numerical solution of the full heat equation from Equation 32. The blue curve shows the case where there is a constant pore size and no superdiffusive spreading. Bottom: The corresponding temperature. Here, β=1, Rmin=Rmax/2= 5 nm, and cb=2MJ/m3, as is close to both the ice and typical clay/silt values.[image: Graph showing concentration (C in percentage) versus distance (z in meters). The plot includes several curves. A blue line starting at 20% at z=0 drops to 0% by z=5 m. Black and red curves show different decay rates, starting at around 18% and decreasing rapidly towards 0% between z=5 and z=20 meters.]FIGURE 5 | The same results as in Figure 4, but with Rmin=Rmax/2= 30 nm.[image: Log-log plot showing the relationship between the logarithm of root mean square height \( \log_{10}(r_{\text{rms}}) \) in meters and the logarithm of time \( \log_{10}((t+t_0) \) in months. Four datasets with different \( R_{\text{min}} \) values (60 nm, 30 nm, 10 nm, 5 nm) are indicated by black, red, green, and blue circles respectively. The blue dataset also includes a line with a slope of 2/3.]FIGURE 6 | The increase in rms depth of the melted water fraction as a function of time for different minimum pore sizes. The time increases from t= 0, and t0>0 corresponds to the fact that, for numerical reasons, the initial C(z,0)-profile is not a δ-function but has a finite width. The full lines, drawn in colors that correspond to the (◦)-points, show the theoretical value of Equation 48 (so, they all have slope =2/3) while the (◦)-points show the values measured from the numerical solution of Equation 32. The parameter values are the same as in Figure 4.Even in the Rmin=10–60 nm cases, the penetration of C≳ 1% fluctuations extends deeper than 10 m, as may be seen from Figure 5.
4 DISCUSSION AND CONCLUSION
Starting from the thermodynamics of the Gibbs–Thomson effect describing the melting of ice in pores and a power law distribution of pore sizes, we have shown that the requirement of energy conservation produces a non-linear equation that yields superdiffusive spreading of the melted water fraction.
The physical picture that emerges from this analysis is that the spreading of heat, or the melted water concentration, is strongly increased by the fact that the heat will bypass any pore that is either too big for melting to occur or so small that the melting has already happened. This is true in the range of temperatures where some pores contain water and some contain ice. As a result, a subsurface porous medium containing ice will experience melting perturbations at depths that greatly exceed those that are expected from a treatment that ignores the freezing-point depression.
Formalisms involving time fractional derivatives can cover descriptions of anomalous diffusion, both in the subdiffusive and superdiffusive domains [29–31]. These formalisms are not focused on the effects of freezing-point depression as in the present case. However, they are relevant to heat flow in media with complex geometries, like porous media and fractured systems, and in some cases, they yield analytic solutions.
In the present modeling, we have neglected all effects coming from the deformations of the solid skeleton that are caused by the difference in specific volume between water and ice. While such effects are key to important phenomena like frost heave [32], they have no important role in the energy budget associated with melting and freezing that we are considering. The added work that is carried out by ice displacing parts of the solid skeleton could, in principle, be incorporated as a small correction to λ, the latent heat of fusion. This correction is ignored in the present work.
The superdiffusive spreading of temperature or melted water fraction may also be used as a method to measure pore size distributions: The estimate given in Equation 23 shows that close to Tmin, the sensitivity to temperature variations is mainly in the pore liquid fraction C, and not the liquid fraction contained in the surface melted films. In the cases where the pore size distribution is in fact given by a power law distribution, the measurement of a spreading temperature profile may thus provide a value for the diffusion exponent τ and thus for the pore size distribution exponent β. Due to the higher sensitivity to the bulk pore water, this method may be superior to conventional NMR measurements, which cannot distinguish between the liquid water that resides in the pores and that which is contained in the films. Compared to mercury injection measurements, which need high pressures to probe the smallest pores, the temperature technique is less likely to alter the medium through crushing of the smallest pores. It does, however, rely on the basic assumption of a power law pore size distribution.
Our study is not restricted to pure water–solid systems. Methane hydrates, which may exist in the subsurface where glaciers have recently withdrawn, have similar values of density and latent heat as water ice [33]. This may give rise to superdíffusive behavior, even when the active substance is not water, but methane in combination with water. Measurements showing the freezing-point depression of methane and CO2 hydrates in natural sediments [25] support this assertion.
Finally, we note that experimental verification of our predictions would be of great interest. Nanoporous man-made materials, such as activated carbons, zeolites, aluminas, mesoporous silicas, and microporous metal-organic frameworks, may all be tailored to have pores in the ∼ nm range. They are thus promising candidates for applications in experimental studies of superdiffusive heat flows, provided proper control and monitoring of the temperature variations are designed.
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