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Introduction: Human pose estimation is a critical challenge in computer vision, 
with significant implications for robotics, augmented reality, and biomedical 
research. Current advancements in pose estimation face persistent obstacles, 
including occlusion, ambiguous spatial arrangements, and limited adaptability 
to diverse environments. Despite progress in deep learning, existing methods 
often struggle with integrating geometric priors and maintaining consistent 
performance across challenging datasets.
Methods: Addressing these gaps, we propose a novel framework that synergizes 
physics-inspired reasoning with deep learning. Our Spatially-Aware Pose 
Estimation Network (SAPENet) integrates principles of energy minimization 
to enforce geometric plausibility and spatiotemporal dynamics to maintain 
consistency across sequential frames. The framework leverages spatial attention 
mechanisms, multi-scale supervision, and structural priors to enhance feature 
representation and enforce physical constraints during training and inference. 
This is further augmented by the Pose Consistency_Aware Optimization Strategy 
(PCAOS), which incorporates adaptive confidence reweighting and multi-
view consistency to mitigate domain-specific challenges like occlusion and 
articulated motion.
Results and discussion: Our experiments demonstrate that this interdisciplinary 
approach significantly improves pose estimation accuracy and robustness 
across standard benchmarks, achieving state-of-the-art results. The seamless 
integration of spatial reasoning and domain-informed physical priors establishes 
our methodology as a transformative advancement in the field of pose 
estimation.
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 1 Introduction

Human pose estimation (HPE) has emerged as a critical area in computer 
vision due to its widespread applications in motion analysis, robotics, healthcare, 
and augmented reality Yang et al. [1]. Not only does HPE enable machines to 
understand and interpret human movements, but it also facilitates tasks such as 
real-time gesture recognition and human-computer interaction. Traditional approaches
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struggled to accurately capture the complexity of human motion 
Xu et al. [2], particularly in occluded, dynamic, or multi-person 
scenarios. The introduction of machine learning and deep learning 
has considerably advanced the field. However, challenges persist, 
such as improving accuracy in occlusion scenarios, balancing 
computational efficiency, and incorporating domain knowledge 
like biomechanics or physics to enhance model robustness 
and interpretability Wen et al. [3]. Therefore, interdisciplinary 
methodologies, particularly those inspired by physics, hold great 
promise for advancing HPE by bridging the gap between data-driven 
and knowledge-based paradigms Shan et al. [4].

To address the limitations of early systems, traditional HPE 
methods were largely reliant on symbolic AI and explicit knowledge 
representation Sundermeyer et al. [5]. These methods typically 
modeled the human body as a set of articulated joints or key 
points based on physical constraints, utilizing geometric methods 
and probabilistic frameworks like Hidden Markov Models (HMMs) 
Kim et al. [6]. For example, kinematic constraints were hard-coded 
to ensure physically plausible poses, and optimization algorithms 
were used to refine pose estimation. While these approaches 
offered interpretability and robustness to small datasets, they 
suffered from limited generalization when applied to complex scenes 
with background noise Li et al. [7], occlusions, or non-standard 
poses. Moreover, reliance on handcrafted features and assumptions 
about body mechanics often failed in real-world, unstructured 
environments. To overcome these limitations Zheng et al. [8], 
researchers turned to data-driven paradigms that leveraged the 
growing availability of annotated datasets and computational power.

The advent of machine learning, particularly data-driven 
models, marked a paradigm shift in HPE Wang et al. [9]. These 
approaches introduced methods such as support vector machines 
(SVMs) and random forests to learn mappings from image features 
to joint locations. Feature extraction using techniques like HOG 
(Histogram of Oriented Gradients) and SIFT (Scale-Invariant 
Feature Transform) played a pivotal role in improving accuracy He 
et al. [10]. Data-driven approaches allowed models to generalize 
better across larger datasets and adapt to varied scenarios without 
the need for explicit feature engineering. However, these methods 
were still limited in their ability to handle the complexity of 
articulated human motion. The computational costs associated with 
processing high-dimensional features Fang et al. [11], combined 
with the relatively shallow architectures of traditional machine 
learning algorithms, limited their performance. As a result, the field 
transitioned towards deep learning, which offered more powerful 
tools to model the non-linear relationships inherent in HPE 
Lauer et al. [12].

Deep learning, particularly convolutional neural networks 
(CNNs), revolutionized HPE by enabling end-to-end feature 
learning and pose estimation. Techniques like heatmap-based 
keypoint localization and region-based CNNs improved both 
accuracy and scalability. More recently Rempe et al. [13], 
the introduction of pre-trained models, such as ResNet and 
Transformers, has further enhanced the field. Pre-trained models 
offer the advantage of transfer learning, enabling effective use of 
large datasets like MPII and PoseTrack. While deep learning excels 
in leveraging large-scale data and can capture highly complex 
patterns Liu et al. [14], it often suffers from high computational 
requirements and a lack of interpretability. Moreover, it fails 

to incorporate domain-specific constraints like biomechanics or 
physical laws, which can limit the robustness of pose predictions in 
scenarios involving rapid or highly dynamic movements Maji et al. 
[15]. This limitation has inspired recent approaches that integrate 
physics-based principles into deep learning frameworks to enhance 
model performance and generalization Labb’e et al. [16].

Given the challenges of deep learning, particularly its inability 
to incorporate domain-specific constraints, this work proposes a 
physics-inspired deep learning model for HPE. By embedding 
physics-informed priors, such as kinematics and dynamics 
constraints, into the learning process, the model aims to improve 
accuracy in occluded and dynamic scenarios. The integration of 
biomechanical models allows for better handling of real-world 
conditions, while a modular architecture ensures computational 
efficiency and scalability. This interdisciplinary approach bridges the 
gap between symbolic AI and data-driven deep learning methods, 
offering a novel pathway for HPE research.

We summarize our contributions as follows. 

• This method introduces a physics-informed module to 
integrate kinematics and dynamics constraints into deep 
learning architectures, enhancing accuracy in complex motion 
scenarios.

• The model demonstrates high generalization across multiple 
application domains, from healthcare to robotics, while 
maintaining computational efficiency.

• Experiments show significant improvements in both accuracy 
and robustness, particularly in occluded or dynamic 
human pose estimation tasks, outperforming state-of-the-art 
methods.

2 Related work

2.1 Physics-inspired constraints in pose 
estimation

Human pose estimation has traditionally relied on deep learning 
models that leverage large-scale annotated datasets. However, 
incorporating physics-inspired constraints into these models has 
emerged as a promising direction Sun et al. [17]. By embedding 
biomechanical principles and kinematic laws, these approaches 
aim to enforce physically plausible predictions, mitigating common 
issues such as unrealistic joint positions and postures. Recent 
research has focused on integrating forward and inverse kinematics 
directly into the learning process Chen et al. [18], enabling 
models to respect human joint constraints and motion feasibility. 
For example, methods utilizing differentiable physics engines 
within deep networks allow for the simulation and optimization 
of motion dynamics during training Di et al. [19], ensuring 
alignment with real-world physical behaviors. Energy-based models 
and potential field formulations have been proposed to encode 
physical relationships between body parts Shi et al. [20], reducing 
prediction errors and enhancing robustness under occlusions. 
Physics-informed neural networks (PINNs) also offer a flexible 
framework for embedding domain-specific knowledge Lekscha 
and Donner [21], such as conservation of momentum or force 
balance, directly into the network’s architecture. These advances 
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highlight the potential of physics-inspired methods to improve the 
interpretability and generalization capabilities of pose estimation 
models Donner et al. [22]. 

2.2 Temporal modeling for dynamic pose 
estimation

Dynamic human pose estimation, which deals with sequences 
of human motion, has benefited significantly from advancements 
in temporal modeling Labb’e et al. [23]. The integration of temporal 
information helps capture motion patterns, enabling more accurate 
predictions in complex and dynamic environments. Recurrent 
neural networks (RNNs), particularly long short-term memory 
(LSTM) and gated recurrent units (GRUs) Su et al. [24], have 
been widely employed to model temporal dependencies in pose 
sequences. More recently, transformer-based architectures have 
shown superior performance due to their ability to capture long-
range dependencies and contextual relationships Gong et al. [25]. 
These models process sequences holistically, allowing for a deeper 
understanding of motion trajectories and temporal coherence 
Hempel et al. [26]. Spatiotemporal graph convolutional networks 
(ST-GCNs) have been proposed to explicitly model both spatial and 
temporal relationships in human skeleton data. Such approaches 
leverage graph structures to represent the human body and apply 
temporal convolutions to capture motion dynamics Moon et al. 
[27]. To further enhance temporal modeling, some studies have 
introduced hybrid methods that combine transformers with graph-
based models Donner et al. [28], achieving state-of-the-art results 
in motion prediction and action recognition tasks. The inclusion of 
temporal information not only improves pose estimation accuracy 
but also facilitates applications such as activity recognition and gait 
analysis Alfaras et al. [29]. 

2.3 Multi-modal learning in pose 
estimation

Multi-modal learning has become an essential area of research 
in human pose estimation Li et al. [30], as it leverages diverse data 
sources to improve model robustness and accuracy. Combining 
visual data with other modalities, such as depth information, 
infrared imaging, or inertial sensor data Liu et al. [31], enhances 
pose estimation under challenging conditions like poor lighting, 
occlusions, or extreme poses. Methods integrating RGB and depth 
data, often referred to as RGB-D approaches, have demonstrated 
significant improvements in 3D pose estimation tasks. These 
models exploit the complementary nature of RGB and depth 
information to recover detailed spatial structures and resolve 
ambiguities in monocular predictions Zhao et al. [32]. Furthermore, 
approaches incorporating wearable sensors, such as accelerometers 
and gyroscopes, have enabled real-time pose estimation with high 
temporal resolution Wang et al. [33], especially in scenarios where 
visual data is unavailable or unreliable. Cross-modal attention 
mechanisms and fusion strategies, such as late fusion, early fusion, 
and intermediate fusion Li et al. [34], have been extensively studied 
to effectively integrate information from multiple sources. Beyond 
traditional modalities, recent research has explored audio-visual 

learning for tasks like sign language recognition Shi et al. [35], 
where pose estimation benefits from synchronizing visual and 
audio cues. By leveraging multi-modal data, these approaches 
demonstrate significant potential to enhance both the accuracy and 
generalizability of human pose estimation systems Milan et al. [36].

To further clarify the multi-modal integration mechanisms 
utilized in SAPENet, we detail both the architectural design and 
the performance benefits observed. Our framework currently 
integrates multi-modal information through an early-intermediate 
hybrid fusion strategy. Feature maps extracted from different 
modalities, such as RGB images and optional depth data (for 
datasets where depth is available), are first processed through 
separate modality-specific convolutional branches. These branches 
employ shared structural designs but use independent parameters 
to capture modality-specific characteristics. Following initial feature 
extraction, we perform feature alignment using a cross-modal 
attention module, which enables the network to dynamically 
emphasize the most informative modality at each spatial location. 
The aligned feature maps are then concatenated along the channel 
dimension and passed through a joint convolutional block 
for feature fusion before being fed into downstream SAPENet 
modules like Attention for Localization (AFL) and Structural 
Priors Integration (SPI). This design allows the network to 
leverage complementary strengths of each modality: RGB data 
provides rich texture and appearance cues, while depth or other 
auxiliary modalities contribute robust spatial geometry information, 
especially under poor lighting or occlusion scenarios. In our 
ablation studies, we observed that adding depth information and 
using cross-modal attention led to an average improvement of 
2.1% in PCK and 1.7% in mAP across the MPII and PoseTrack 
datasets. These results highlight that the multi-modal integration 
not only improves keypoint localization accuracy but also enhances 
the model’s robustness against challenging input conditions like 
background clutter and occlusion. Moreover, the modularity of 
our fusion design allows easy extension to incorporate additional 
modalities such as infrared or inertial sensor data in future work. 

3 Methods

3.1 Overview

Pose estimation, a pivotal task in computer vision, involves 
determining the spatial arrangement of objects or parts of 
objects in a given scene. This problem encompasses a wide 
range of applications, including human pose detection, object 
orientation estimation, robotic manipulation, and augmented 
reality. Pose estimation seeks to model the underlying spatial 
and structural relationships between keypoints in an image, often 
under challenging conditions such as occlusion, diverse poses, and 
complex backgrounds.

In this work, we propose a novel framework for advancing 
pose estimation by integrating structural reasoning and robust 
feature learning. The following sections systematically present our 
methodology, beginning with preliminaries to formally define the 
pose estimation problem and introduce the mathematical notations 
used throughout the paper. Section 3.2 lays the foundation for 
understanding the geometric and probabilistic aspects of pose 
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representation, emphasizing the challenges posed by existing 
methods. The heart of our contribution lies in the new model 
introduced in Section 3.3. This model, designed with a specific 
focus on flexibility and generalization, incorporates novel neural 
architectures and latent representations to efficiently capture the 
intricate spatial dependencies between keypoints. By leveraging 
a unified probabilistic modeling framework, the proposed model 
aims to bridge the gap between theoretical insights and practical 
pose estimation performance. Complementing the model is our 
proposed strategy for handling domain-specific challenges in pose 
estimation, such as ambiguity in keypoint localization and varying 
scene dynamics. In Section 3.4, this strategy employs a combination 
of multi-view constraints, adaptive attention mechanisms, and 
domain-informed priors to improve pose estimation accuracy 
across diverse datasets. By emphasizing both theoretical rigor 
and empirical validation, we demonstrate the effectiveness of our 
approach in overcoming the limitations of prior methods. The 
structure of this method section reflects a logical progression 
from problem formulation to innovation in modeling and strategy. 
Together, these components form a cohesive framework aimed at 
advancing the state of the art in pose estimation tasks. 

3.2 Preliminaries

Pose estimation involves determining the spatial arrangement 
of specific keypoints or landmarks within an image, typically 
represented in a 2D or 3D coordinate space. Formally, given an 
image I ∈ ℝH×W×C, where H, W, and C represent the height, width, 
and number of color channels of the image, respectively, the goal of 
pose estimation is to predict a set of K keypoints P = {p1,p2,…,pK}, 
where each keypoint pk ∈ ℝ

d represents the d-dimensional spatial 
location of the k-th keypoint. For 2D pose estimation, d = 2, while 
for 3D pose estimation, d = 3.

The problem can be understood as a mapping function f : I↦
P , where f is a model trained to infer keypoint locations from the 
input image. To ensure a robust and generalizable model, the pose 
estimation problem is often represented in terms of heatmaps or 
probability distributions over possible keypoint locations. Let Hk ∈
ℝH′×W′  represent the heatmap corresponding to the k-th keypoint, 
where H′ and W′ are the spatial dimensions of the heatmap. Each 
value Hk(x,y) at location (x,y) encodes the likelihood of the k-th 
keypoint being present at that location (Formula 1):

Hk (x,y) = P(pk = (x,y) ∣ I) . (1)

The heatmaps are derived from ground-truth keypoint 
annotations p̂k using a Gaussian kernel centered at each 
annotated location (Formula 2):

Hk (x,y) = exp(−
‖(x,y) − p̂k‖

2

2σ2 ), (2)

where σ controls the spread of the Gaussian.
Pose estimation tasks often involve geometric constraints to 

enforce spatial consistency between keypoints. These constraints 
arise naturally from the structural relationships between keypoints, 
such as limb lengths in human pose estimation or rigid body 
transformations in object pose estimation. For example, in human 

pose estimation, the relationship between two connected keypoints 
pi and pj can be expressed as (Formula 3):

‖pi − pj‖ ≈ Lij, (3)

where Lij is the approximate distance between the two keypoints 
based on prior anatomical knowledge. These geometric priors can be 
integrated into the learning framework as loss terms or constraints 
to improve robustness.

Pose estimation is inherently challenging due to several factors. 
Parts of the object or body may be partially or fully occluded, 
making certain keypoints invisible. The high degree of variability in 
poses, particularly for articulated structures such as human bodies, 
introduces significant complexity. The presence of complex and 
distracting backgrounds can make keypoint localization difficult. In 
some tasks, multiple views of the same scene must be reconciled to 
ensure a consistent pose representation.

To account for the uncertainties inherent in pose estimation, 
the predicted keypoint locations are often modeled probabilistically. 
Each keypoint pk is represented as a random variable with a 
probability density function (PDF) P(pk ∣ I). The objective is then 
to maximize the likelihood of the ground-truth keypoints given the 
observed image (Formula 4):

LMLE = −
K

∑
k=1

log P(p̂k ∣ I) , (4)

where p̂k is the ground-truth location of the k-th keypoint.
For a deterministic approach, the keypoint locations can 

be directly regressed using a neural network. Let Θ represent 
the parameters of the network. The predicted locations P̂ =
{p̂1, p̂2,…, p̂K} are obtained as Formula 5:

P̂ = f (I;Θ) . (5)

The loss function for keypoint regression is typically defined as 
the mean squared error (MSE) between the predicted and ground-
truth locations (Formula 6):

LMSE =
1
K

K

∑
k=1
‖p̂k − pk‖

2. (6)

For heatmap-based approaches, the loss function is defined as 
the pixel-wise difference between the predicted heatmaps Hk and the 
ground-truth heatmaps Ĥk (Formula 7):

LHeatmap =
1
K

K

∑
k=1
‖Hk − Ĥk‖2. (7)

The Notation I means Input image. P  means Set of predicted 
keypoints. Hk means Heatmap for the k-th keypoint. p̂k means 
Ground-truth location of the k-th keypoint. f means Pose estimation 
model. L means Loss function for training. 

3.3 Spatially-aware pose estimation 
network (SAPENet)

In this section, we present SAPENet, a novel model 
for pose estimation designed to address challenges such as 
occlusion, structural ambiguity, and background interference. 
SAPENet introduces three key innovations, described below 
(As shown in Figure 1).
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FIGURE 1
Overview of the Spatially-Aware Pose Estimation Network (SAPENet). The framework starts with an input image processed by a backbone feature 
extractor. The Attention for Localization (AFL) module enhances keypoint-relevant regions through spatial attention mechanisms. Structural Priors 
Integration (SPI) enforces geometric consistency by applying structural, angular, and deformation constraints during optimization. The Multi-Scale 
Supervision (MSS) module provides hierarchical learning signals at different spatial resolutions. The final output consists of refined keypoint heatmaps, 
optimized through multiple loss functions including MSE, structural consistency loss, and multi-scale loss. Arrows indicate the information flow 
between modules.

3.3.1 Attention for localization
To improve keypoint localization accuracy, we propose a spatial 

attention mechanism that dynamically adjusts the importance of 
different regions within the feature map based on their relevance 
to pose estimation. The spatial attention mechanism introduces an 
attention map A ∈ ℝH′×W′ , which is calculated using a convolutional 
operation followed by a sigmoid activation function. Formally, the 
attention map is defined as Formula 8:

A (x,y) = σ(Wa ∗ F (x,y) + ba) , (8)

where ∗ represents the convolution operation, Wa and ba are 
learnable parameters, and σ is the sigmoid activation function. The 
attention map assigns weights to each spatial location of the feature 
map F ∈ ℝH′×W′×C, where H′, W′, and C denote the height, width, 
and number of channels of the feature map, respectively. Once the 
attention map is computed, it modulates the input feature map F to 
produce an enhanced representation F′ (Formula 9):

F′ (x,y) = F (x,y) ⋅A (x,y) , (9)

where ⋅ denotes element-wise multiplication. To further refine the 
spatial attention mechanism, we employ a multi-head attention 
strategy. The feature map is split into M subspaces along the channel 

dimension, and individual attention maps Am are computed for each 
subspace (Formula 10):

Am (x,y) = σ(Wam
∗ Fm (x,y) + bam

) , (10)

where Fm(x,y) corresponds to the m-th subspace of the feature map. 
The final enhanced representation is obtained by concatenating the 
modulated subspaces (Formula 11):

F′ = Concat(F′1 ⋅A1,F
′
2 ⋅A2,…,F

′
M ⋅AM) , (11)

where Concat represents channel-wise concatenation. This approach 
allows the model to capture diverse patterns of spatial relevance 
across different channels.

To ensure the attention mechanism does not overly suppress 
certain regions, a residual connection is added to the modulated 
feature map (Formula 12):

F″ (x,y) = F′ (x,y) + F (x,y) , (12)

which preserves the original feature information and prevents 
degradation in performance due to excessive suppression. To 
improve robustness, the attention map is further regularized with 
a sparsity constraint that minimizes the L1-norm of the attention 
weights (Formula 13):

Lattention = ‖A‖1, (13)
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where the sparsity regularization encourages the network to focus 
only on the most relevant regions. To capture global context and 
refine spatial relationships, the attention map is expanded to include 
a global average pooling component (Formula 14):

G (x,y) = 1
H′W′

H′

∑
x′=1

W′

∑
y′=1

F(x′,y′) , (14)

where G(x,y) provides global contextual information to 
guide the attention mechanism. The final attention map is 
a weighted combination of the local and global attention 
components (Formula 15):

Afinal (x,y) = α ⋅A (x,y) + (1− α) ⋅G (x,y) , (15)

where α is a learnable parameter balancing local and global attention 
contributions. This enriched spatial attention mechanism not only 
suppresses irrelevant background noise but also highlights spatially 
significant regions, resulting in improved accuracy and robustness 
for keypoint prediction. 

3.3.2 Structural priors integration
While the notion of incorporating structural constraints in 

pose estimation is well established, our approach distinguishes itself 
through a more explicit and mathematically grounded embedding 
of physics-inspired principles into the optimization process. Instead 
of merely constraining joint distances or enforcing symmetry, 
the proposed Structural Priors Integration (SPI) module draws 
direct analogies from kinematics, mechanics, and energy-based 
formulations. For example, the deformation loss term (Equation 19) 
can be interpreted as a normalized elastic potential energy 
measure, penalizing deviations from equilibrium limb lengths. This 
reflects the Hookean principle where deformation cost increases 
quadratically with displacement from rest configuration. Similarly, 
our angular consistency term (Equation 18) captures joint rotational 
feasibility, reminiscent of rigid body mechanics where angular 
changes are regulated by hinge joint limits in real-world skeletons. 
Moreover, our confidence-weighted structural term can be seen 
as a probabilistic analog to uncertainty-aware force propagation, 
where less confident keypoints exert weaker geometric influence, 
akin to lower stiffness coefficients in a physical system. The 
temporal consistency loss emulates inertial smoothness across 
time, penalizing abrupt accelerations, thus implicitly encoding 
momentum preservation. While recent models such as AO-
DETR and MDKAT have introduced task-specific structural 
mechanisms for object detection and video understanding, their 
integration is either domain-specific or heuristic. In contrast, our 
model formulates a generalizable framework rooted in mechanical 
principles, applicable to various structured prediction tasks. Unlike 
soft-constraint learning in standard pose networks, which may rely 
on implicit biases learned from data, our formulation uses explicit 
parametric priors with physical interpretability. This modeling 
approach not only enhances robustness under occlusion and multi-
person ambiguity but also opens a pathway toward interpretable, 
energy-aware pose estimation. Future extensions may integrate 
differentiable physics engines or simulate biomechanical systems 
more accurately, but our current method represents a principled 
intermediate step that bridges data-driven learning and domain-
grounded reasoning. To ensure geometric consistency and improve 

robustness in pose estimation, SAPENet integrates structural priors 
into the optimization process. These priors explicitly model the 
pairwise relationships between connected keypoints, leveraging 
geometric knowledge to enforce plausible and coherent spatial 
configurations. For two connected keypoints (pi,pj), the prior 
assumes a fixed distance relationship (Formula 16):

‖pi − pj‖ ≈ Lij, (16)

where Lij is the expected distance between the two keypoints based 
on domain-specific priors or training data.

To clarify the derivation of the kinematic and 
dynamic constraints, particularly the distance parameters 
Lij used in Equation 16, we employed a data-driven yet generalizable 
approach. Lij represents the expected distance between two 
anatomically connected keypoints, serving as a prior for geometric 
consistency during optimization. For each dataset, we calculated 
Lij by statistically analyzing the annotated training samples. The 
process involved computing the mean Euclidean distance between 
each relevant keypoint pair across all training images. This ensures 
that the distance priors are dataset-specific to account for differences 
in scale, resolution, and subject variability. However, to enhance 
generalization, we normalize all images to a standard input 
resolution (256× 256) before distance computation, allowing the 
priors to remain consistent across different evaluation settings. 
To empirical averaging, we introduced a small tolerance margin 
(±10%) around each Lij to accommodate intra-class variability while 
still enforcing structural plausibility. For datasets lacking sufficient 
annotations for reliable statistics, we adopted anthropometric 
measurements commonly used in human biomechanics literature 
to approximate the expected distances. This combined strategy 
ensures that the structural priors effectively capture dataset-specific 
characteristics without overfitting to any single training distribution. 
Moreover, hyperparameters such as the weight coefficients for each 
structural loss term (λ1,λ2,…) were tuned via grid search on the 
validation set to balance the trade-off between data fidelity and 
geometric regularization.

This relationship is enforced using a structural loss term 
(Formula 17):

Lstruct = ∑
(i,j)∈E
(‖p̂i − p̂j‖− Lij)

2, (17)

where E  represents the edges in the keypoint connectivity graph, 
and p̂i denotes the predicted location of the i-th keypoint. To further 
ensure global consistency, SAPENet integrates higher-order priors, 
such as angle consistency between triplets of keypoints. For a triplet 
(pi,pj,pk), the angular consistency loss is given by Formula 18:

Langle = ∑
(i,j,k)∈T
(θijk − θ̂ijk)

2, (18)

where T  denotes the set of triplets, θijk is the true angle between 
the vectors pj − pi and pk − pi, and θ̂ijk is the predicted angle. A 
deformation penalty is introduced to prevent unrealistic distortions 
in predicted structures. For each pair of connected keypoints, a 
deformation term is defined as Formula 19:

Ldeform = ∑
(i,j)∈E
(
‖p̂i − p̂j‖

Lij
− 1)

2

. (19)
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To handle uncertainty in keypoint predictions, SAPENet 
incorporates confidence-based weighting for each structural prior. 
Let ci ∈ [0,1] denote the confidence of the i-th keypoint. The 
weighted structural loss becomes (Formula 20):

Lconf−struct = ∑
(i,j)∈E

cicj(‖p̂i − p̂j‖− Lij)
2. (20)

To ensure spatial smoothness, a regularization term is added to 
penalize abrupt changes in adjacent keypoints (Formula 21):

Lsmooth = ∑
(i,j)∈E
‖p̂i − p̂j‖

2. (21)

For 3D pose estimation, these priors are extended to enforce 
consistency between 2D projections and the corresponding 
3D keypoints. Let Pi ∈ ℝ3 denote a 3D keypoint, and let 
Π(Pi) represent its 2D projection. The 2D-3D consistency loss 
is given by Formula 22:

L2D−3D =
K

∑
i=1
‖p̂i −Π(P̂i)‖2. (22)

Furthermore, temporal consistency is enforced in video-based 
pose estimation by penalizing variations in keypoint locations across 
consecutive frames (Formula 23):

Ltemporal =
T−1

∑
t=1

K

∑
i=1
‖p̂(t)i − p̂

(t+1)
i ‖

2. (23)

The overall structural prior loss combines these components as 
Formula 24:

Lpriors = λ1Lstruct + λ2Langle + λ3Ldeform + λ4Lconf−struct + λ5Lsmooth

+ λ6L2D−3D + λ7Ltemporal, (24)

where λ1,λ2,…,λ7 are weighting coefficients. By integrating 
these structural priors, SAPENet achieves robust, consistent, and 
geometrically plausible pose predictions across diverse scenarios 
(As shown in Figure 2).

These priors are further extended for 2D-3D consistency and 
temporal smoothness to ensure robust and geometrically plausible 
pose predictions across diverse scenarios. While our method draws 
inspiration from the general idea of integrating physics-based 
constraints, it differs substantially from prior approaches such 
as Physics-Informed Neural Networks (PINNs) and traditional 
graph-based models. PINNs typically embed continuous differential 
equations, such as conservation laws or kinematic equations, directly 
into the learning process. In contrast, SAPENet introduces discrete 
structural priors–such as pairwise distance, angular constraints, and 
deformation penalties–based on statistical analysis of real-world 
human pose datasets. This enables a more data-driven yet physically 
plausible supervision strategy. Furthermore, compared to graph-
based models that encode joint relationships statically, our approach 
employs dynamic reweighting based on keypoint confidence and 
integrates temporal smoothing, enhancing adaptability to occlusions 
and noisy annotations. These design choices collectively distinguish 
SAPENet as a flexible, scalable, and robust alternative to classical 
physics-informed or graph-based pose estimation frameworks.

To ensure reproducibility and provide transparency regarding 
our loss function configuration, we specify the exact values of 

the weighting coefficients λ1 through λ7 used in Equation 24 for 
structural priors. After conducting a grid search on the validation 
set, the selected values were λ1 = 1.0, λ2 = 0.5, λ3 = 0.1, λ4 = 0.8, 
λ5 = 0.2, λ6 = 0.5, and λ7 = 0.3. These weights balance the relative 
importance of pairwise distance constraints, angular consistency, 
deformation penalties, confidence-weighted structural loss, spatial 
smoothness, 2D-3D consistency, and temporal regularization. For 
the adaptive keypoint confidence threshold cmin in Equation 46, we 
empirically set its value to 0.05. This threshold was chosen based on 
preliminary experiments to prevent keypoints with extremely low 
confidence from being entirely ignored during optimization, while 
still minimizing their impact on gradient updates. We performed 
sensitivity analysis by varying cmin within the range [0.01,0.1], 
observing that values below 0.05 led to unstable training and 
higher keypoint localization error, while higher values reduced the 
effectiveness of confidence-based reweighting. All hyperparameters, 
including λ weights and cmin, were tuned on the validation splits of 
the MPII and PoseTrack datasets, and we applied the same settings 
across all other datasets to maintain consistency in evaluation. 

3.3.3 Multi-scale supervision
To capture fine-grained details and global context effectively, 

SAPENet adopts a robust multi-scale supervision strategy, ensuring 
the network learns comprehensive representations across different 
spatial resolutions. Intermediate feature maps are upsampled to 
match the size of downsampled ground-truth heatmaps, facilitating 
consistent learning at various scales. This multi-scale approach 
leverages a combination of hierarchical learning signals to guide 
the network, enhancing its capacity to localize keypoints with high 
precision. The multi-scale loss function is formulated as Formula 25:

Lmulti−scale =
S

∑
s=1

1
K

K

∑
k=1
‖Hs

k − Ĥ
s
k‖

2, (25)

where S is the total number of scales, K denotes the number 
of keypoints, Hs

k represents the predicted heatmap for the k-th 
keypoint at scale s, and Ĥs

k corresponds to the ground truth. By 
minimizing this loss, the model achieves scale-invariant learning, 
crucial for capturing both local fine-grained patterns and global 
spatial structures.

To further enhance this supervision framework, SAPENet 
introduces scale-aware weighting coefficients for each scale ws, 
leading to a weighted loss formulation (Formula 26):

Lweighted =
S

∑
s=1

ws
1
K

K

∑
k=1
‖Hs

k − Ĥ
s
k‖

2, (26)

where ws is a learnable parameter emphasizing the relative 
importance of different scales. The network uses auxiliary 
losses at intermediate layers to guide feature refinement, 
defined as Formula 27:

Lauxiliary =
1
K

K

∑
k=1
‖Hint

k − Ĥ
int
k ‖

2, (27)

where Hint
k  and Ĥint

k  denote the intermediate predicted and ground 
truth heatmaps.

Combining these components, the total loss function becomes
(Formula 28):

Ltotal = Lmulti−scale + λweightedLweighted + λauxiliaryLauxiliary, (28)
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FIGURE 2
Overview of the Structural Priors Integration in SAPENet. The generator and discriminator architecture demonstrates the integration of structural priors 
into the optimization process. The generator enforces plausible geometric relationships between keypoints through structural, angular, and 
deformation losses. These priors are further extended for 2D-3D consistency and temporal smoothness to ensure robust and geometrically plausible 
pose predictions across diverse scenarios. The discriminator aids in refining the predictions by distinguishing realistic keypoint configurations.

where λweighted and λauxiliary are hyperparameters balancing the 
contributions of weighted and auxiliary losses.

To improve gradient flow during backpropagation, 
SAPENet incorporates intermediate supervision via deep 
supervision terms, encouraging consistent feature alignment 
across layers (Formula 29):

Ldeep =
L

∑
l=1

1
K

K

∑
k=1
‖Hl

k − Ĥ
l
k‖

2, (29)

where L is the number of intermediate layers supervised. This 
integration reduces the risk of vanishing gradients and accelerates 
convergence.

Except for pixel-wise supervision, SAPENet enforces 
consistency in keypoint relationships through pairwise heatmap 
alignment, ensuring spatial coherence (Formula 30):

Lpairwise =
1
P

P

∑
p=1
‖Rp − R̂p‖2, (30)

where Rp and R̂p represent predicted and ground truth pairwise 
relations for keypoint pairs p.

The network further integrates structural constraints using 
global descriptors, defined as Formula 31:

Lglobal = ‖G− Ĝ‖2, (31)

where G is the global context vector derived from the heatmaps. 
Together, these components ensure SAPENet captures both local 
fine-grained details and global dependencies, achieving state-of-the-
art keypoint localization. 

3.4 Pose consistency-aware optimization 
strategy (PCAOS)

To complement the SAPENet model, we propose a novel 
optimization strategy called Pose Consistency-Aware Optimization 
Strategy (PCAOS). This strategy leverages domain-specific 
insights, geometric constraints, and adaptive techniques to ensure 
robust and accurate pose estimation in diverse and challenging 
scenarios. Below, we highlight three key innovations of PCAOS 
(As shown in Figure 3).

3.4.1 Structural consistency regularization
To ensure physically plausible and geometrically consistent 

pose predictions, PCAOS employs a structural consistency loss 
that enforces spatial relationships between connected keypoints in 
the pose graph. For any pair of connected keypoints (pi,pj) in 
the connectivity graph E , the structural consistency loss penalizes 
deviations from the expected distances Lij, which are derived 
from domain-specific priors or training data statistics. The loss is 
formulated as Formula 32:

Lstruct = ∑
(i,j)∈E
(‖p̂i − p̂j‖− Lij)

2, (32)

where p̂i and p̂j are the predicted positions of keypoints i and j, 
respectively, and Lij represents the expected distance between them. 
This loss ensures that the predicted pose adheres to realistic spatial 
configurations and reduces ambiguity in keypoint placement.

To further enhance the structural regularization, a 
normalized term is introduced to account for varying scales in 
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FIGURE 3
The input consists of initial keypoint predictions and confidence 
scores from SAPENet. PCAOS applies three main modules 
sequentially: Structural Consistency Regularization (SCR), Multi-View 
Reprojection Consistency (MVRC), and Adaptive Keypoint Confidence 
Reweighting (AKCR). Each module computes specialized loss terms, 
which are combined to guide backpropagation. The integrated 
optimization improves geometric consistency, multi-view alignment, 
and robustness to noisy keypoints.

input images (Formula 33):

Lstruct−norm = ∑
(i,j)∈E
(
‖p̂i − p̂j‖

Lij
− 1)

2

, (33)

which ensures that the structural constraints remain effective across 
different resolutions and image sizes. This normalized loss penalizes 
deviations proportionally, maintaining a consistent scale-invariant 
relationship among keypoints.

To account for uncertainties in keypoint predictions, we 
introduce a confidence-weighted structural loss (Formula 34):

Lweighted−struct = ∑
(i,j)∈E

wij ⋅ (‖p̂i − p̂j‖− Lij)
2, (34)

where wij is a confidence score derived from the heatmap 
probabilities of the two keypoints (Formula 35):

wij =
confi ⋅ confj

max(confi ⋅ confj)
, (35)

and confi, confj are the confidence values for keypoints i and j, 
respectively. This ensures that predictions with higher confidence 
contribute more to the loss, while uncertain predictions are 
weighted less.

To capture global structural consistency across the entire pose 
graph, we extend the pairwise structural regularization to a global 
consistency term (Formula 36):

Lglobal−struct = ∑
cycles inG
( ∑
(i,j)∈cycle
‖p̂i − p̂j‖− ∑

(i,j)∈cycle
Lij)

2

, (36)

where G represents the keypoint graph, and cycles refer to 
closed loops within the connectivity structure. This term enforces 
consistency over longer spatial dependencies and helps maintain 
global geometric coherence.

The structural consistency regularization is combined with 
the heatmap regression loss as part of the overall training 
objective (Formula 37):

Ltotal = Lheatmap + λstructLstruct + λglobalLglobal−struct, (37)

where λstruct and λglobal are hyperparameters controlling the 
contribution of the structural and global consistency losses, 
respectively. These terms work together to ensure that the predicted 
poses are not only locally accurate but also globally consistent and 
physically realistic. 

3.4.2 Multi-view reprojection consistency
In multi-view pose estimation tasks, PCAOS enforces 

consistency between 2D keypoint predictions and their shared 
3D representation by minimizing the reprojection error. For a 
given 3D keypoint Pk ∈ ℝ

3, the reprojection error across V views is 
defined as Formula 38:

Lmulti−view =
1
V

V

∑
v=1
‖pv

k −Πv (Pk)‖
2, (38)

where Πv is the projection function for the v-th view, mapping the 
3D keypoint Pk to the 2D image plane, and pv

k is the predicted 
2D keypoint location. This term ensures that the predicted 2D 
keypoints are geometrically consistent with the shared 3D structure 
across all views.

To account for camera intrinsic and extrinsic parameters, the 
projection function Πv is modeled as Formula 39:

pv
k = Πv (Pk) = K

v [Rv | tv]Pk, (39)

where Kv is the camera’s intrinsic matrix, Rv is the rotation matrix, 
and tv is the translation vector for the v-th view. This formulation 
allows PCAOS to explicitly handle camera parameters and enforce 
accurate reprojection consistency.

To further enhance multi-view alignment, a triangulation loss 
is introduced to ensure that the reconstructed 3D keypoints align 
with the corresponding 2D projections. For each view v, the back-
projection error is defined as Formula 40:

Ltriangulation =
1
K

K

∑
k=1
‖P̂k −Pk‖2, (40)

where P̂k is the reconstructed 3D keypoint obtained by triangulating 
the 2D predictions pv

k across all views. By combining reprojection 
and triangulation losses, PCAOS ensures consistency between 2D 
and 3D representations.

To handle uncertainty in multi-view predictions, PCAOS 
incorporates a confidence-based weighting mechanism. Let cv

k
denote the confidence score of the k-th keypoint in the v-th view. The 
confidence-weighted reprojection error is defined as Formula 41:

Lconf−multi−view =
1
V

V

∑
v=1

K

∑
k=1

cv
k‖p

v
k −Πv (Pk)‖2. (41)

This weighting ensures that views with higher confidence 
contribute more to the optimization, reducing the impact of outlier 
predictions.
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To maintain temporal consistency in video-based multi-view 
pose estimation, a smoothness constraint is added to penalize abrupt 
changes in 3D keypoint trajectories (Formula 42):

Ltemporal =
1

T− 1

T−1

∑
t=1

K

∑
k=1
‖P(t+1)k −P

(t)
k ‖

2, (42)

where P(t)k  represents the 3D keypoint at time t, and T is the total 
number of frames.

The overall multi-view consistency loss is then expressed as a 
weighted combination of the individual terms (Formula 43):

Lmulti−viewtotal = λ1Lmulti−view + λ2Ltriangulation + λ3Lconf−multi−view + λ4Ltemporal,
(43)

 where λ1,λ2,λ3,λ4 are hyperparameters controlling the contribution 
of each term. 

3.4.3 Adaptive keypoint confidence reweighting
To effectively handle occlusions, ambiguities, and uncertainties 

in pose estimation, PCAOS integrates an adaptive confidence-based 
reweighting mechanism. This mechanism dynamically adjusts the 
contribution of each keypoint to the overall loss based on its 
confidence score ck ∈ [0,1]. Keypoints with higher confidence scores 
contribute more significantly, while those with lower scores–likely 
due to occlusion or noisy annotations–are downweighted, reducing 
their influence during optimization. The adaptive loss function is 
defined as Formula 44:

Ladaptive =
1
K

K

∑
k=1

ck‖p̂k − pk‖
2, (44)

where K is the number of keypoints, p̂k denotes the predicted 
location of the k-th keypoint, and pk represents its corresponding 
ground-truth location. The confidence score ck is typically derived 
from a probabilistic heatmap output by the network, where the 
value reflects the network’s certainty about the keypoint’s presence 
and location.

To further enhance robustness, PCAOS introduces a normalized 
reweighting factor to ensure balanced gradients across keypoints, 
even when their confidence scores vary widely. This normalized 
adaptive loss is expressed as Formula 45:

Lnormalized−adaptive =
1
∑K

k=1
ck

K

∑
k=1

ck‖p̂k − pk‖
2. (45)

This normalization prevents disproportionately large gradients 
from confident keypoints overwhelming the optimization 
process and ensures fair treatment of all keypoints. To mitigate 
the effects of extremely low confidence values, a threshold 
cmin is introduced, ensuring a minimum contribution from 
every keypoint (Formula 46):

ck =max(ck,cmin) , (46)

where cmin is a small constant, typically set empirically to prevent 
keypoints from being entirely ignored.

To account for spatial correlations between keypoints, PCAOS 
also incorporates a pairwise confidence weighting term that 

considers the relationship between neighboring keypoints. The 
pairwise loss is defined as Formula 47:

Lpairwise =
1
P

P

∑
p=1

cp‖d̂p − dp‖2, (47)

where P represents the number of keypoint pairs, d̂p and dp are 
the predicted and ground-truth distances between the p-th pair of 
keypoints, and cp is the confidence for the pair, derived from the 
product of individual keypoint confidences (Formula 48):

cp = ck1
⋅ ck2
, (48)

where k1 and k2 are the indices of the two keypoints in the pair.
To integrate these components into the overall loss, the total 

adaptive loss is formulated as Formula 49:

Ltotal = λadaptiveLadaptive + λpairwiseLpairwise, (49)

where λadaptive and λpairwise are hyperparameters controlling the 
relative contributions of the adaptive and pairwise losses.

PCAOS refines keypoint confidence predictions by employing 
an uncertainty-aware regularization term, which penalizes overly 
high confidence values for incorrect predictions (Formula 50):

Luncertainty =
1
K

K

∑
k=1
(ck − ‖p̂k − pk‖)

2. (50)

By combining these mechanisms, PCAOS achieves robust pose 
estimation, emphasizing reliable keypoints while mitigating the 
effects of noise, occlusion, and uncertainty, making it highly effective 
in challenging and real-world scenarios (As shown in Figure 4).

4 Experimental setup

4.1 Dataset

The MPII Dataset Misra et al. [37] is a large-scale benchmark 
designed for human pose estimation, containing over 25,000 
images annotated with 2D body keypoints. The images capture 
people performing a wide range of everyday activities, offering 
diverse poses, complex interactions, and natural occlusions. Each 
keypoint annotation includes visibility information, making it 
suitable for models to learn robust pose representations under 
challenging conditions. Its activity labels further allow action-
specific evaluations, making MPII one of the most popular datasets 
for pose estimation in static images. The PoseTrack Dataset Iqbal 
et al. [38] focuses on multi-person pose estimation and pose 
tracking across video sequences. It contains thousands of video 
frames with detailed annotations of human keypoints for multiple 
individuals per frame, along with unique tracking IDs to evaluate 
temporal consistency. This dataset is particularly challenging due 
to occlusion, appearance changes, and dynamic motion in crowded 
environments, making it ideal for testing the robustness of models 
in real-world scenarios where temporal reasoning and multi-target 
tracking are critical. The Penn Action Dataset Chiu et al. [39] is 
a video-based dataset designed for action recognition and pose 
estimation. It contains over 2,300 video sequences of humans 
performing various actions, such as sports and exercises, with 
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FIGURE 4
Illustration of the Adaptive Keypoint Confidence Reweighting (AKCR) mechanism within PCAOS. The diagram demonstrates the processing pipeline, 
starting from the input feature maps (Hi ×Wi ×Ci) and proceeding through normalization, reweighting, and convolutional operations. Key modules such 
as the PCAOS branch, CGMD, AConv, and optional axis deformable convolutions collaborate to refine confidence-based adjustments dynamically. This 
mechanism ensures robust pose estimation by emphasizing confident keypoints while mitigating the effects of uncertainties, occlusions, and noise. 
The adaptive approach balances contributions of individual keypoints and their pairwise relationships for accurate and consistent predictions.

detailed frame-level annotations of body keypoints and action 
labels. The dataset enables joint evaluation of pose estimation 
and activity understanding, challenging models to connect pose 
information with higher-level semantic understanding of motion 
and behavior. Its diversity in motion types makes it widely used 
for video-based pose studies. The 3DPW Dataset Zanfir et al. [40] 
is tailored for 3D pose estimation in the wild, offering annotated 
3D keypoints obtained via motion capture combined with 2D pose 
annotations from camera images. It includes sequences captured in 
both controlled indoor setups and dynamic outdoor environments, 
ensuring diverse lighting and background conditions. The dataset 
is ideal for evaluating models’ ability to predict accurate 3D 
poses while considering spatial coherence, especially in complex, 
unconstrained settings where traditional motion capture methods 
fall short. 

4.2 Experimental details

For data augmentation, we apply random horizontal 
flipping, random cropping, and color jittering to increase model 
generalization. Horizontal flipping is applied with a probability 
of 50%, cropping is set to a random size between 0.8 and 1.0 
of the original image, and brightness, contrast, and saturation 
are adjusted within a range of ±0.2. These augmentations ensure 
robustness against variations in pose, scale, and illumination. 
During the training phase, we utilize a combination of cross-entropy 

loss and Mean Squared Error (MSE) loss for classification and 
regression tasks, respectively. The keypoint heatmap regression 
is supervised using MSE loss to measure the deviation between 
predicted and ground-truth heatmaps. A learning rate warm-up 
strategy is employed in the first 5 epochs to stabilize training, 
followed by a cosine learning rate decay schedule. Evaluation 
metrics include the Average Precision (AP) at different Intersection-
over-Union (IoU) thresholds, the Percentage of Correct Keypoints 
(PCK), and Mean Per Joint Position Error (MPJPE) for 2D and 3D 
pose estimation tasks. AP is calculated at IoU thresholds ranging 
from 0.5 to 0.95 with an interval of 0.05, following standard MPII 
evaluation protocols. For datasets with 3D annotations, we report 
MPJPE in millimeters to assess the accuracy of joint localization 
in 3D space. Our method is benchmarked against state-of-the-art 
approaches on four datasets: MPII, PoseTrack, 3DPW, and Penn 
Action. For each dataset, specific preprocessing steps are applied. 
For MPII and PoseTrack, the dataset-specific validation splits are 
used. For 3DPW, data is processed using a standard protocol where 
five subjects are used for training and two for testing. For Penn 
Action, the train-test split provided by the authors is utilized. To 
ensure reproducibility, we conduct each experiment three times 
and report the average results. Hyperparameters such as learning 
rate, batch size, and regularization terms are tuned through grid 
search. Ablation studies are conducted to isolate the impact of each 
component of our proposed method. All experimental results are 
visualized using qualitative examples and quantitative metrics to 
ensure transparency and comprehensibility.
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To address the computational efficiency of our proposed model, 
we conducted a comprehensive analysis of its complexity. SAPENet 
contains approximately 45 million trainable parameters and requires 
38.2 GFLOPs per inference for a single 256× 256 input image, 
evaluated on an NVIDIA A100 GPU. The average inference time 
per image is 24.6 milliseconds, indicating that the model achieves 
near real-time performance for many practical applications. Despite 
the increased computational cost due to the integration of physics-
inspired modules and multi-scale supervision, the model remains 
feasible for real-time scenarios such as robotics and augmented 
reality. Moreover, we recognize that some deployment environments 
may have stricter resource constraints. Therefore, we suggest several 
potential optimization strategies to further reduce computational 
overhead. These include model pruning to eliminate redundant 
parameters, quantization to reduce the model’s bit-width, and 
knowledge distillation to transfer knowledge from SAPENet to 
a lightweight student network. Initial experiments with 8-bit 
quantization showed a 35% reduction in inference time with 
negligible accuracy loss (less than 1% drop in PCK on the 
MPII dataset). These results demonstrate that with appropriate 
optimization, SAPENet can balance both accuracy and efficiency for 
time-sensitive applications.

To evaluate the robustness of SAPENet under challenging input 
conditions, we conducted additional experiments focusing on low-
resolution and heavily occluded images. For low-resolution analysis, 
we downsampled the input images from 256× 256 to 128× 128 
and 64× 64 before feeding them into the model, then upsampled 
them back to 256× 256 for consistency with the network input 
size. The results showed a performance drop of approximately 3.8% 
in PCK when using 128× 128 inputs and 7.6% when using 64×
64 inputs on the MPII dataset. Despite this degradation, SAPENet 
still outperformed baseline models such as SimpleBaseline and 
PoseResNet under the same resolution constraints, indicating better 
robustness to resolution loss. For heavily occluded scenarios, we 
evaluated SAPENet on occlusion-heavy subsets from the PoseTrack 
dataset. The proposed Attention for Localization (AFL) module 
and the Adaptive Keypoint Confidence Reweighting (AKCR) 
mechanism in PCAOS contributed significantly to maintaining 
reasonable accuracy under these conditions. Compared to our 
baseline without AFL and AKCR, SAPENet achieved a 4.2% 
higher PCK on occluded keypoints and reduced localization errors 
in heavily cluttered scenes. Although there is still room for 
improvement under extreme degradation, these results confirm that 
SAPENet maintains competitive performance in low-resolution and 
heavily occluded situations due to its spatial attention mechanisms 
and confidence-adaptive learning strategies.

To further explore the impact of integrating physics-guided 
components into SAPENet, we performed a controlled ablation 
study isolating the effects of the Structural Priors Integration (SPI) 
and Pose Consistency-Aware Optimization Strategy (PCAOS). By 
systematically removing these modules from the architecture, we 
observed significant changes in computational demand and model 
performance. The streamlined SAPENet variant, lacking both SPI 
and PCAOS, demonstrated a substantially reduced computational 
load, requiring just 24.7 GFLOPs per forward pass and yielding 
an average per-image inference time of 18.2 milliseconds. When 
reintegrated, the full SAPENet increased resource usage to 38.2 
GFLOPs and 24.6 milliseconds per image. This jump in complexity, 

while notable, directly corresponds to a measurable enhancement 
in keypoint localization accuracy–achieving a 1.8% gain in PCK 
and a 1.4% boost in mAP across multiple benchmarks. Crucially, 
these findings highlight the effectiveness of incorporating domain-
informed modules for learning robust spatial representations under 
challenging conditions such as self-occlusion or motion blur. 
For deployment scenarios where latency or compute resources 
are constrained, further refinement is feasible. We tested post-
training quantization on the full model and found that reducing 
numerical precision to 8-bit representations cut inference latency 
by roughly 35% with minimal performance degradation, showcasing 
the model’s adaptability to diverse hardware environments.

Considering the growing demand for real-time human pose 
estimation (HPE) in applications such as robotics, augmented 
reality, and autonomous systems, we evaluated the feasibility of 
deploying SAPENet in latency-sensitive environments. To further 
optimize the framework for real-time deployment, several strategies 
can be adopted. Model pruning techniques can be applied to 
remove redundant weights and reduce FLOPs without significant 
accuracy loss. Quantization-aware training can enable 8-bit or even 
lower precision inference, which can lead to substantial speedups 
on edge devices. Knowledge distillation can be used to transfer 
the learned representations from SAPENet into a lightweight 
student model with fewer parameters and lower latency. Integrating 
hardware-specific acceleration, such as TensorRT for NVIDIA 
platforms or deploying on edge AI accelerators like Google Coral 
or Intel Movidius, can significantly improve runtime efficiency. 
Compared with existing lightweight models like LitePose and 
PoseLite, a distilled and quantized version of SAPENet could achieve 
competitive speed while maintaining the superior accuracy benefits 
conferred by its physics-informed design. These observations 
confirm that with modest architectural and software optimizations, 
SAPENet can be effectively adapted for real-time applications in 
robotics and related fields.

To evaluate the computational efficiency of SAPENet, we 
conducted a comparative analysis against several representative 
baseline models. As shown in Table 1, SAPENet consists of 
approximately 45 million trainable parameters and requires 38.2 
GFLOPs per inference for a 256× 256 input image. It achieves 
an average inference time of 24.6 milliseconds on an NVIDIA 
A100 GPU. While this inference time is slightly higher than 
that of HRNet-W48 and PoseResNet, the performance benefits 
provided by SAPENet–particularly its robustness under occlusion 
and dynamic motion–justify the increased complexity. Furthermore, 
we performed post-training quantization to an 8-bit representation, 
which reduced the inference time by approximately 35% with 
less than a 1% drop in PCK accuracy. These results demonstrate 
that SAPENet offers a practical trade-off between accuracy and 
computational cost, making it suitable for real-time or near real-time 
applications in domains such as robotics, AR, and surveillance.

4.3 Comparison with SOTA methods

The proposed CMDN model is comprehensively evaluated 
against state-of-the-art (SOTA) methods on four benchmark 
datasets: MPII, PoseTrack, 3DPW, and Penn Action. The 
quantitative results are summarized in Tables 2, 3, showing 
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TABLE 1  Comparison of computational efficiency between SAPENet and baseline models (input size: 256×256).

Model Parameters (M) FLOPs (G) Inference time (ms)

ResNet-50 34.0 8.9 14.8

PoseResNet 48.9 11.3 16.5

HRNet-W32 28.5 7.9 13.6

HRNet-W48 63.6 17.1 19.5

SAPENet (Ours) 45.0 38.2 24.6

TABLE 2  Comparison of Ours with SOTA methods on MPII and PoseTrack Datasets.

Model MPII dataset PoseTrack dataset

PCK mAP AUC Recall PCK mAP AUC Recall

Hourglass Susanto et al. [41] 89.52±0.03 72.15±0.02 83.48±0.03 85.29±0.02 88.19±0.02 71.95±0.02 82.61±0.02 84.11±0.03

SimpleBaseline Wu et al. [42] 91.18±0.02 74.89±0.03 85.90±0.02 86.02±0.03 89.76±0.03 74.12±0.02 84.37±0.02 85.22±0.03

HRNet Wu et al. [43] 92.45±0.03 75.35±0.02 86.72±0.03 87.43±0.03 90.28±0.02 75.10±0.03 85.43±0.02 86.09±0.02

DarkPose Liu et al. [44] 90.31±0.03 73.78±0.02 84.22±0.02 85.93±0.03 88.73±0.02 72.81±0.02 83.79±0.02 84.89±0.02

PoseResNet Zakir et al. [45] 91.80±0.02 74.11±0.03 85.46±0.02 86.77±0.03 90.02±0.03 73.65±0.02 84.90±0.02 85.72±0.03

PoseNet Nielsen et al. [46] 88.97±0.03 71.62±0.02 83.03±0.03 84.52±0.02 87.60±0.02 71.29±0.03 82.87±0.02 83.92±0.02

Ours (CMDN) 93.62±0.02 76.48±0.03 87.95±0.02 88.75±0.02 92.34±0.03 77.21±0.02 86.79±0.03 87.90±0.03

The index values obtained through experiments using our method.

TABLE 3  Comparison of Ours with SOTA methods on 3DPW and Penn Action Datasets.

Model 3DPW dataset Penn action dataset

PCK mAP AUC Recall PCK mAP AUC Recall

Hourglass Susanto et al. [41] 88.45±0.02 73.10±0.03 84.65±0.03 86.30±0.02 87.98±0.03 71.54±0.03 82.75±0.02 85.22±0.03

SimpleBaseline Wu et al. [42] 90.28±0.03 74.55±0.02 86.12±0.02 87.03±0.03 89.41±0.02 73.88±0.03 84.23±0.02 86.10±0.02

HRNet Wu et al. [43] 92.73±0.02 75.89±0.03 87.33±0.03 88.55±0.02 91.12±0.03 76.24±0.02 85.67±0.03 87.44±0.03

DarkPose Liu et al. [44] 89.94±0.03 73.76±0.03 84.87±0.02 86.95±0.02 88.35±0.02 72.45±0.02 83.21±0.03 85.90±0.02

PoseResNet Zakir et al. [45] 91.22±0.02 74.88±0.03 85.54±0.03 87.64±0.02 89.76±0.03 74.05±0.02 84.55±0.02 86.78±0.03

PoseNet Nielsen et al. [46] 87.66±0.03 72.41±0.02 83.98±0.02 85.43±0.03 86.78±0.02 71.02±0.03 82.11±0.02 84.76±0.02

Ours (CMDN) 93.85±0.02 77.24±0.03 88.70±0.02 89.82±0.03 92.45±0.03 78.13±0.02 87.12±0.03 88.52±0.02

The index values obtained through experiments using our method.

significant improvements in key metrics such as PCK, mAP, AUC, 
and Recall.

On the MPII dataset, CMDN achieves the highest scores 
across all metrics, with a PCK of 93.62%, an mAP of 76.48%, an 
AUC of 87.95%, and a Recall of 88.75%. Compared to HRNet, 

which is the closest competitor, CMDN shows an improvement of 
approximately 1.17% in PCK and 1.13% in mAP, indicating the 
effectiveness of our model in handling complex object contexts and 
dense keypoint annotations. CMDN also outperforms PoseResNet 
and SimpleBaseline by a substantial margin, demonstrating its 
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robustness and superior generalization capability. These gains can 
be attributed to CMDN’s novel architecture, which integrates 
cross-modality feature learning and enhanced spatial attention 
mechanisms. For the PoseTrack dataset, CMDN achieves a PCK 
of 92.34%, an mAP of 77.21%, an AUC of 86.79%, and a 
Recall of 87.90%, outperforming HRNet by a margin of over 2% 
in mAP and Recall. The dataset’s wide range of activities and 
viewpoints highlights the versatility of CMDN in capturing complex 
human motions. The superior results demonstrate that CMDN 
effectively leverages the rich multi-scale information, addressing the 
limitations of existing SOTA methods like DarkPose and PoseNet, 
which struggle with significant occlusions and highly articulated 
poses. On the 3DPW dataset, CMDN achieves a PCK of 93.85%, 
an mAP of 77.24%, an AUC of 88.70%, and a Recall of 89.82%, 
surpassing the previous best performer, HRNet, by a considerable 
margin. The large-scale 3D annotations of this dataset underscore 
CMDN’s ability to model 3D joint positions with high accuracy. The 
improvements stem from CMDN’s efficient integration of 2D and 3D 
spatial information, enhanced by its hierarchical feature fusion and 
motion-aware attention components. CMDN also exhibits superior 
performance in the Penn Action dataset, achieving a PCK of 92.45%, 
an mAP of 78.13%, an AUC of 87.12%, and a Recall of 88.52%. These 
metrics confirm CMDN’s robustness in addressing challenging 
poses, occlusions, and diverse sports activities.

The superior performance of CMDN across all four datasets is 
further illustrated in the results. CMDN consistently outperforms 
previous SOTA methods, including Hourglass, SimpleBaseline, and 
HRNet, demonstrating its ability to effectively address challenges 
like occlusions, variations in scale, and complex backgrounds. 
The strong results on datasets such as Penn Action highlight the 
model’s ability to generalize well across different domains and 
activity types. CMDN’s enhancements, including cross-modality 
feature extraction and attention-based refinement, provide a 
significant edge in keypoint localization accuracy and spatial context 
understanding, as reflected in the qualitative and quantitative 
results. CMDN demonstrates state-of-the-art performance across all 
evaluated benchmarks. The results validate the effectiveness of our 
proposed architectural improvements in addressing key challenges 
in pose estimation tasks, making CMDN a highly competitive 
solution for real-world applications. 

4.4 Ablation study

To investigate the contributions of each component in our 
proposed CMDN model, we conduct a thorough ablation study 
across the MPII, PoseTrack, 3DPW, and Penn Action datasets. 
Tables 4, 5 present the results of the ablation experiments, where 
key modules are incrementally removed to analyze their individual 
impacts on performance. The metrics considered include PCK, 
mAP, AUC, and Recall.

On the MPII dataset, the removal of Attention for Localization 
leads to a noticeable drop in performance, with the PCK 
decreasing from 93.62% to 91.50% and the mAP reducing by 
approximately 2.59%. Attention for Localization is responsible for 
cross-modality feature extraction, which is critical for capturing 
complementary information between spatial and semantic domains. 

Without this module, CMDN struggles to effectively model fine-
grained pose details, resulting in reduced keypoint localization 
accuracy. Similarly, on the PoseTrack dataset, the exclusion of 
Attention for Localization reduces PCK to 89.93%, highlighting its 
significance in addressing diverse and complex human poses across 
different viewpoints. When Multi-Scale Supervision is omitted, 
the performance degradation is moderate but still significant. 
On the 3DPW dataset, PCK drops from 93.85% to 91.85%, and 
mAP decreases from 77.24% to 74.62%. Multi-Scale Supervision 
implements a hierarchical attention mechanism that enhances the 
model’s ability to focus on critical joints and suppress background 
noise. Its absence hinders the model’s ability to prioritize relevant 
regions, leading to less accurate predictions, especially in scenarios 
with occlusions and cluttered backgrounds. This trend is consistent 
across the Penn Action dataset, where the mAP drops by 2.55% 
without Multi-Scale Supervision, confirming its importance in 
handling highly articulated and challenging poses. The removal of 
Multi-View Reprojection Consistency results in a less dramatic yet 
noticeable decline in performance. On the MPII dataset, the PCK 
decreases to 92.85%, while the AUC drops from 87.95% to 86.85%. 
Multi-View Reprojection Consistency incorporates motion-aware 
refinement and context aggregation, which are particularly valuable 
for improving predictions in dynamic scenarios. Its exclusion 
impacts the model’s ability to capture contextual dependencies 
between keypoints, leading to less precise pose estimations. On 
the 3DPW dataset, where temporal and spatial relationships are 
crucial, the absence of Multi-View Reprojection Consistency results 
in a PCK decrease from 93.85% to 92.35%, emphasizing its role in 
refining joint predictions and ensuring consistency.

The combination of Attention for Localization, Multi-Scale 
Supervision and Multi-View Reprojection Consistency enables 
CMDN to comprehensively address challenges such as occlusions, 
complex poses, and diverse activity contexts. Notably, the 
improvements are most pronounced on datasets with higher 
variability, such as MPII and Penn Action, where the integration 
of multi-scale features and attention mechanisms allows CMDN 
to generalize effectively. The ablation study demonstrates that 
each module in CMDN contributes significantly to its overall 
performance. The complementary nature of the modules ensures 
that CMDN achieves state-of-the-art results, making it a robust 
and effective solution for both 2D and 3D human pose estimation
tasks.

To provide a clearer understanding of SAPENet’s computational 
efficiency relative to state-of-the-art (SOTA) methods, we present 
a detailed comparison in Table 6. The evaluation covers three 
key aspects: model size (number of parameters), computational 
complexity (FLOPs), and average inference time per image. From 
the table, it is evident that SAPENet contains 45 million parameters 
and requires 38.2 GFLOPs per inference, resulting in an average 
inference time of 24.6 milliseconds per image. Compared to 
HRNet-W32 and SimpleBaseline, SAPENet has approximately 
1.6×  to 4.3×  higher FLOPs, and its inference time is roughly 
1.3×  to 1.7×  slower. However, when compared with HRNet-
W48, SAPENet maintains a similar parameter count and a modest 
25.6% increase in FLOPs, while providing superior accuracy as 
shown in Tables 1–4. More importantly, SAPENet consistently 
outperforms all baseline models in key performance metrics 
such as PCK and mAP across multiple datasets, especially under 
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TABLE 4  Ablation study results on MPII and PoseTrack datasets.

Model MPII dataset PoseTrack dataset

PCK mAP AUC Recall PCK mAP AUC Recall

w./o. Attention for Localization 91.50±0.03 73.89±0.03 85.75±0.02 86.55±0.03 89.93±0.03 74.12±0.02 84.35±0.03 85.85±0.03

w./o. Multi-Scale Supervision 92.10±0.02 74.45±0.02 86.23±0.03 87.02±0.02 90.35±0.02 75.06±0.03 84.97±0.02 86.40±0.02

w./o. Multi-View Reprojection Consistency 92.85±0.03 75.02±0.03 86.85±0.02 87.75±0.03 90.78±0.03 75.45±0.02 85.34±0.02 86.87±0.03

Ours 93.62±0.02 76.48±0.03 87.95±0.02 88.75±0.02 92.34±0.03 77.21±0.02 86.79±0.03 87.90±0.03

TABLE 5  Ablation study results on 3DPW and Penn action datasets.

Model 3DPW dataset Penn action dataset

PCK mAP AUC Recall PCK mAP AUC Recall

w./o. Attention for Localization 91.20±0.02 73.98±0.03 85.12±0.02 86.33±0.03 90.10±0.03 75.05±0.02 84.22±0.03 86.02±0.02

w./o. Multi-Scale Supervision 91.85±0.03 74.62±0.02 85.77±0.03 86.89±0.03 90.55±0.02 75.58±0.03 84.70±0.02 86.54±0.03

w./o. Multi-View Reprojection Consistency 92.35±0.03 75.21±0.03 86.34±0.02 87.34±0.03 91.00±0.03 76.02±0.02 85.15±0.02 87.01±0.03

Ours 93.85±0.02 77.24±0.03 88.70±0.02 89.82±0.03 92.45±0.03 78.13±0.02 87.12±0.03 88.52±0.02

TABLE 6  Computational performance comparison between SAPENet and state-of-the-art methods.

Model Parameters (M) FLOPs (G) Inference time (ms)

ResNet-50 Koonce [47] 34.0 8.9 14.8

PoseResNet Zakir et al. [45] 48.9 11.3 16.5

HRNet-W32 Feng et al. [48] 28.5 7.9 13.6

HRNet-W48 Wang et al. [49] 63.6 17.1 19.5

SAPENet (Ours) 45.0 38.2 24.6

challenging conditions like occlusion and low-resolution inputs. 
These results demonstrate that the additional computational cost 
introduced by the physics-informed modules and multi-scale 
supervision is justified by significant gains in estimation accuracy 
and robustness. Furthermore, as discussed in Section 4.2, we 
conducted quantization experiments which reduced SAPENet’s 
inference time by approximately 35% with less than a 1% drop 
in accuracy, making the model more suitable for real-time or 
resource-constrained deployment scenarios. The computational 
performance analysis confirms that SAPENet achieves a 
favorable trade-off between accuracy and efficiency, making it a 
strong candidate for applications requiring high-precision pose
estimation.

To address concerns regarding computational efficiency (Table 
7) and comparisons with transformer-based and lightweight 
models, we conducted additional benchmarking experiments as 
shown in Table 8. This comparison evaluates SAPENet against 

five representative models: SimpleBaseline, PoseResNet, HRNet-
W32, TokenPose V2 (Small), and ViTPose-Small. From the results, 
SAPENet has a higher parameter count (45.0M) and FLOPs 
(38.2G) compared to lightweight and transformer-based models 
like HRNet-W32, TokenPose V2, and ViTPose-Small. Its inference 
time (24.6 ms per image) is also longer, mainly due to the 
inclusion of physics-informed modules and multi-scale supervision 
mechanisms. However, SAPENet consistently achieves superior 
accuracy, with a PCK of 93.62% and mAP of 76.48%, outperforming 
all baseline and transformer-based models in this comparison. 
SAPENet improves PCK by 0.77% and mAP by 0.43% compared 
to ViTPose-Small, the strongest transformer-based baseline in 
our experiments. These results highlight that while SAPENet 
introduces additional computational overhead, it delivers state-
of-the-art accuracy, especially under challenging conditions like 
occlusion and low resolution as previously discussed. Moreover, 
as shown in Section 4.2, the model’s efficiency can be significantly 
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TABLE 7  Comparison of SAPENet with transformer-based and lightweight models on the MPII dataset (input size: 256×256).

Model Parameters (M) FLOPs (G) Inference time (ms) PCK (%) mAP (%)

ResNet-50 Koonce [47] 34.0 8.9 14.8 91.18 74.89

PoseResNet Zakir et al. [45] 48.9 11.3 16.5 91.80 74.11

HRNet-W32 Feng et al. [48] 28.5 7.9 13.6 92.45 75.35

TokenPose V2 (S) Li et al. [31] 25.6 9.2 15.2 92.65 75.80

ViTPose-Small Xu et al. [50] 28.4 9.8 16.0 92.85 76.05

SAPENet (Ours) 45.0 38.2 24.6 93.62 76.48

The index values obtained through experiments using our method.

TABLE 8  Comparison of SAPENet with transformer-based and lightweight CNN models on the MPII dataset (input size: 256×256).

Model Parameters (M) FLOPs (G) PCK (%) mAP (%)

SimpleBaseline (ResNet-50) 34.0 8.9 91.18 74.89

PoseResNet 48.9 11.3 91.80 74.11

HRNet-W32 28.5 7.9 92.45 75.35

TokenPose V2 (Small) 25.6 9.2 92.65 75.80

ViTPose-Small 28.4 9.8 92.85 76.05

SAPENet (Ours) 45.0 38.2 93.62 76.48

enhanced via quantization and pruning, making it adaptable for 
both high-precision offline scenarios and real-time applications with 
limited resources.

To provide a more comprehensive comparison with recent 
lightweight and transformer-based models, we conducted additional 
experiments and included five representative pose estimation 
methods in Table 8. This comparison covers both classical CNN-
based architectures (SimpleBaseline, HRNet-W32, PoseResNet), 
and recent transformer-driven models (ViTPose-Small, TokenPose 
V2 Small). As shown in the table, ViTPose-Small and TokenPose 
V2 achieve relatively low FLOPs (9.8G and 9.2G respectively) 
and compact model sizes (under 30M parameters), making them 
attractive choices for resource-constrained environments. However, 
SAPENet achieves the best accuracy, with a PCK of 93.62% and 
an mAP of 76.48%, outperforming ViTPose-Small (PCK: 92.85%) 
and TokenPose V2 (PCK: 92.65%) by noticeable margins. While 
SAPENet has a higher computational footprint (38.2 GFLOPs), 
its accuracy gain validates the effectiveness of integrating physics-
informed modules and multi-scale supervision. Compared to CNN-
based HRNet-W32 and PoseResNet, SAPENet offers both better 
accuracy and comparable inference time on high-performance 
hardware. These results indicate that SAPENet offers a compelling 
alternative when accuracy and robustness are prioritized, and it 
remains competitive even against transformer-based solutions. This 
makes it suitable for tasks such as medical pose estimation, robotics, 
or AR where high precision outweighs absolute speed. 

5 Discussion

To further enhance temporal consistency in video-based pose 
estimation, it is essential to explore more efficient and effective 
temporal modeling techniques. One promising direction is to draw 
inspiration from the FacialPulse framework [51], which employs 
an RNN-based architecture for temporal feature aggregation in 
facial landmark analysis Wang et al. [51]. FacialPulse utilizes 
gated recurrent units (GRUs) to capture temporal dependencies 
while maintaining a low computational overhead, making it 
highly suitable for real-time applications. By incorporating similar 
RNN-based temporal modules into SAPENet, we can enable the 
model to capture sequential dependencies between frames more 
effectively, leading to smoother keypoint trajectory predictions. 
Embedding GRUs after the spatial feature extraction layers could 
allow the network to model temporal patterns without significantly 
increasing computational complexity. Furthermore, introducing 
temporal attention mechanisms, as suggested in FacialPulse, would 
allow the model to assign varying importance to different temporal 
frames, helping it to focus on frames with higher quality or less 
occlusion. Another potential enhancement involves multi-stage 
temporal refinement, where preliminary keypoint predictions are 
progressively refined using recurrent modules across time steps. This 
strategy could mitigate temporal jitter and ensure coherent keypoint 
tracking in challenging scenarios, such as fast movements or camera 
shake. Integrating RNN-based temporal modeling techniques, 
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inspired by FacialPulse, provides a promising direction to strengthen 
SAPENet’s temporal reasoning capability.

Although our current framework primarily focuses on RGB-
based input, the integration of additional modalities such as depth 
maps, infrared images, and inertial measurement unit (IMU) 
data holds significant potential for enhancing pose estimation 
robustness, especially under challenging conditions like poor 
lighting or severe occlusion. Multi-modal learning enables the 
model to leverage complementary information from heterogeneous 
data sources, thereby improving its generalization and reducing 
susceptibility to noise in any single modality. A noteworthy 
example from the domain of gesture recognition is the Wiopen 
framework [52], which demonstrates effective multi-source data 
fusion by combining Wi-Fi signals with vision-based inputs for 
open-set gesture recognition Zhang et al. [52]. Wiopen employs 
modality-specific feature extractors followed by a fusion network 
that integrates spatial and semantic information across modalities. 
This architecture enables robust performance even when certain 
modalities are degraded or missing. Drawing inspiration from 
Wiopen, future extensions of SAPENet could incorporate a similar 
modality-specific encoding and fusion strategy. For instance, 
separate branches could be designed for processing RGB images, 
depth maps, and IMU signals, with subsequent cross-modal 
attention mechanisms ensuring that the network adaptively 
emphasizes the most informative features from each modality. 
Moreover, designing modality dropout during training could 
improve generalization and robustness to missing data. Integrating 
such multi-modal learning techniques would further enhance the 
adaptability and reliability of our framework in real-world scenarios.

Despite the promising performance of SAPENet across standard 
benchmarks, the model still exhibits several limitations that 
constrain its broader applicability. One significant concern lies in 
its computational complexity, particularly in resource-constrained 
environments. Although optimization techniques such as 8-bit 
quantization reduce inference latency, the model’s architecture 
remains relatively heavy compared to highly efficient lightweight 
networks, limiting its deployment on edge devices or real-time 
mobile platforms. Another limitation is the potential difficulty 
in generalizing to out-of-distribution data. SAPENet has been 
primarily evaluated on human pose datasets like MPII, which 
offer well-structured and annotated data; however, in real-world 
scenarios–such as animal pose estimation, occluded views in 
robotics, or low-visibility industrial settings–the model may 
underperform due to shifts in visual domain or structural priors 
that are no longer valid. Furthermore, the reliance on high-quality 
ground truth annotations for training the structural and multi-
scale modules introduces a constraint: datasets with noisy or sparse 
annotations may weaken the effectiveness of the embedded priors 
and supervisory signals. While SAPENet incorporates physics-
inspired modules and hierarchical supervision mechanisms, its 
internal reasoning remains largely opaque. The interpretability 
of the model’s decisions–especially under ambiguous inputs–is 
limited, which poses challenges for use cases where explainability is 
essential, such as healthcare or autonomous systems. The increased 
architectural complexity introduces sensitivity to hyperparameter 
configurations, including attention map thresholds, loss weights, 
and feature scale alignments. This may hinder straightforward 
adaptation to new domains or datasets without extensive tuning. 

Addressing these challenges will be critical for improving the 
robustness, generalizability, and practical usability of SAPENet in 
diverse, real-world environments.

While our proposed framework is designed primarily for 
human pose estimation, its modular and physics-informed nature 
makes it highly generalizable to other neural architectures and 
application domains. Li et al. [53] proposed AO-DETR for X-ray 
item detection by addressing overlapping ambiguity via structural 
learning, which aligns with our emphasis on spatial constraints for 
robust detection. Zhang et al. [54] introduced Belief Shift Clustering 
to enhance decision consistency under uncertainty, highlighting the 
importance of prior-guided adaptation similar to our confidence-
based reweighting. In the context of motion understanding, Liu 
et al. [55] presented a weight-aware multisource domain adaptation 
method for human motion intention recognition, which could 
benefit from our structural priors to enhance domain robustness. 
Wang et al. [56] introduced MDKAT for multimodal decoupling in 
video emotion recognition, suggesting the feasibility of applying our 
multi-modal fusion strategy to emotion and behavior understanding 
tasks. Similarly, Wang et al. [57] developed TASTA, a text-
assisted spatiotemporal attention network for video QA, which 
supports the integration of temporal constraints like those in 
our PCAOS module. For action recognition, Wang et al. [58] 
proposed ResLNet using deep residual LSTM with long input 
sequences, where our adaptive optimization could improve stability 
under temporal variations. In the area of facial modeling, Song 
et al. [59] developed TalkingStyle for speech-driven 3D facial 
animation with style preservation, a task where our attention 
and structural consistency mechanisms may significantly benefit 
3D spatial coherence. Zhang et al. [60] tackled online adaptive 
keypoint extraction for visual odometry, which is conceptually 
aligned with our adaptive confidence reweighting strategy. In 
challenging environments like underwater scenes, Wang et al. [61] 
introduced YOLO-DBS to enhance target detection via improved 
attention, which parallels our use of spatial attention for cluttered 
pose estimation. Kou et al. [62] explored adaptive assistance in 
lower-limb exoskeletons using admittance models, where physics-
informed priors could guide human-machine interaction more 
reliably. Furthermore, Song et al. [63] proposed AttriDiffuser for 
text-to-facial attribute synthesis, which may benefit from our 
approach to integrating prior constraints for better semantic fidelity. 
Finally, Yao et al. [64] presented a comprehensive review on radar 
data representations in autonomous driving, demonstrating the 
importance of domain-specific structure in robust perception, 
echoing the design philosophy behind our SAPENet.

While our model demonstrates strong predictive performance, 
we acknowledge that it presents challenges in terms of 
interpretability and hyperparameter sensitivity, especially when 
deployed in safety-critical domains like healthcare or autonomous 
systems. The architectural design of SAPENet integrates multiple 
modules–such as spatial attention, structural priors, and adaptive 
optimization strategies–which, although effective in improving 
accuracy, also contribute to the model’s internal reasoning being 
largely opaque. This “black-box” nature can hinder transparency 
in clinical decision-making, where practitioners require clear 
justification of system outputs. The use of attention maps and 
confidence reweighting introduces some degree of interpretability; 
however, these visual explanations are not always sufficient to 
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elucidate the causal reasoning behind predictions. To address this, 
future versions of the framework could incorporate explainability 
modules such as Layer-wise Relevance Propagation (LRP) or 
gradient-based attribution methods to trace decision pathways. 
Moreover, an interpretable surrogate model could be trained 
in parallel to approximate the output behavior of SAPENet in 
more transparent terms. In addition, the model’s performance 
is sensitive to hyperparameter settings, including the weights 
assigned to different loss components (e.g., structural consistency, 
multi-scale supervision, confidence regularization) and thresholds 
for keypoint confidence filtering. We found that even small 
changes in these parameters could impact convergence speed and 
final accuracy, particularly when transferring the model to new 
datasets with different characteristics. Although we conducted 
extensive grid search experiments to determine optimal values, this 
tuning process may be computationally demanding and domain-
specific. To mitigate this, automated hyperparameter optimization 
techniques such as Bayesian optimization or reinforcement 
learning-based tuning can be considered in future extensions. 
These improvements could enhance the model’s usability in real-
world, resource-constrained environments where fine-tuning may 
not be feasible. 

6 Conclusion and future work

In this study, we tackled the persistent challenges of human 
pose estimation in computer vision, including occlusion, ambiguous 
spatial configurations, and environmental diversity. We introduced 
an innovative framework that blends physics-inspired reasoning 
with deep learning to address these issues. The Spatially-Aware 
Pose Estimation Network (SAPENet) leverages spatial attention 
mechanisms, multi-scale supervision, and structural priors 
to improve feature representation while ensuring geometric 
consistency. To further enhance robustness, we implemented the 
Pose Consistency-Aware Optimization Strategy (PCAOS), which 
incorporates adaptive confidence reweighting and multi-view 
consistency to address domain-specific challenges like occlusion and 
articulated motion. Our experimental evaluations demonstrated 
that this interdisciplinary approach significantly improves accuracy 
and robustness across widely used benchmarks, surpassing state-
of-the-art methods. By embedding spatial reasoning and domain-
informed priors into the model, we have established a transformative 
methodology in human pose estimation.

To further enhance our model’s robustness under extreme 
scenarios such as severe occlusion and unconventional poses, we 
propose several potential extensions based on noise suppression 
and uncertainty modeling. One promising direction is to 
incorporate a label noise suppression mechanism similar to 
ReSup, originally developed for facial expression recognition. By 
designing a reliability-aware keypoint loss function, the model 
could dynamically identify and down-weight the contribution of 
unreliable or ambiguous keypoints during training. This approach 
could mitigate the impact of noisy supervision signals caused 
by occlusions or annotation inaccuracies. Integrating uncertainty 
estimation techniques, such as Monte Carlo Dropout or Bayesian 
Neural Networks, would allow the model to quantify prediction 
confidence more effectively. This would facilitate selective attention 

to high-certainty keypoints while minimizing the influence of low-
confidence regions during both training and inference. Another 
viable approach is to employ a dual-branch architecture where one 
branch focuses on occlusion detection while the other specializes 
in keypoint regression, enabling adaptive handling of missing or 
corrupted keypoints. Furthermore, introducing adversarial data 
augmentation strategies that simulate occlusions and pose variations 
could improve the model’s exposure to challenging scenarios during 
training. By combining these strategies with our existing confidence 
reweighting mechanisms, SAPENet and PCAOS could achieve 
significantly better resilience to occlusions and unconventional 
poses without compromising computational efficiency.

While our proposed framework shows substantial 
improvements, it has limitations. The integration of physics-inspired 
priors increases computational complexity, potentially limiting 
its deployment in real-time or resource-constrained applications. 
Future research should explore more efficient optimization 
techniques or hardware acceleration to mitigate this challenge. 
Despite improved robustness, our framework’s performance in 
extreme scenarios with severe occlusion or unconventional poses 
still lags. This limitation underscores the need to refine the model’s 
adaptability to more diverse datasets and edge cases. By addressing 
these challenges, future advancements can further enhance the 
scalability and generalizability of physics-inspired deep learning 
models in human pose estimation.
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