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Introduction: Human pose estimation is a critical challenge in computer vision,
with significant implications for robotics, augmented reality, and biomedical
research. Current advancements in pose estimation face persistent obstacles,
including occlusion, ambiguous spatial arrangements, and limited adaptability
to diverse environments. Despite progress in deep learning, existing methods
often struggle with integrating geometric priors and maintaining consistent
performance across challenging datasets.

Methods: Addressing these gaps, we propose a novel framework that synergizes
physics-inspired reasoning with deep learning. Our Spatially-Aware Pose
Estimation Network (SAPENet) integrates principles of energy minimization
to enforce geometric plausibility and spatiotemporal dynamics to maintain
consistency across sequential frames. The framework leverages spatial attention
mechanisms, multi-scale supervision, and structural priors to enhance feature
representation and enforce physical constraints during training and inference.
This is further augmented by the Pose Consistency_Aware Optimization Strategy
(PCAOS), which incorporates adaptive confidence reweighting and multi-
view consistency to mitigate domain-specific challenges like occlusion and
articulated motion.

Results and discussion: Our experiments demonstrate that this interdisciplinary
approach significantly improves pose estimation accuracy and robustness
across standard benchmarks, achieving state-of-the-art results. The seamless
integration of spatial reasoning and domain-informed physical priors establishes
our methodology as a transformative advancement in the field of pose
estimation.

pose estimation, spatial attention, structural priors, multi-scale supervision, adaptive
optimization

1 Introduction

Human pose estimation (HPE) has emerged as a critical area in computer
vision due to its widespread applications in motion analysis, robotics, healthcare,
and augmented reality Yang etal. [1]. Not only does HPE enable machines to
understand and interpret human movements, but it also facilitates tasks such as
real-time gesture recognition and human-computer interaction. Traditional approaches
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struggled to accurately capture the complexity of human motion
Xu etal. [2], particularly in occluded, dynamic, or multi-person
scenarios. The introduction of machine learning and deep learning
has considerably advanced the field. However, challenges persist,
such as improving accuracy in occlusion scenarios, balancing
computational efficiency, and incorporating domain knowledge
like biomechanics or physics to enhance model robustness
and interpretability Wen etal. [3]. Therefore, interdisciplinary
methodologies, particularly those inspired by physics, hold great
promise for advancing HPE by bridging the gap between data-driven
and knowledge-based paradigms Shan et al. [4].

To address the limitations of early systems, traditional HPE
methods were largely reliant on symbolic AT and explicit knowledge
representation Sundermeyer etal. [5]. These methods typically
modeled the human body as a set of articulated joints or key
points based on physical constraints, utilizing geometric methods
and probabilistic frameworks like Hidden Markov Models (HMMs)
Kim et al. [6]. For example, kinematic constraints were hard-coded
to ensure physically plausible poses, and optimization algorithms
were used to refine pose estimation. While these approaches
offered interpretability and robustness to small datasets, they
suffered from limited generalization when applied to complex scenes
with background noise Li etal. [7], occlusions, or non-standard
poses. Moreover, reliance on handcrafted features and assumptions
about body mechanics often failed in real-world, unstructured
environments. To overcome these limitations Zheng etal. [8],
researchers turned to data-driven paradigms that leveraged the
growing availability of annotated datasets and computational power.

The advent of machine learning, particularly data-driven
models, marked a paradigm shift in HPE Wang etal. [9]. These
approaches introduced methods such as support vector machines
(SVMs) and random forests to learn mappings from image features
to joint locations. Feature extraction using techniques like HOG
(Histogram of Oriented Gradients) and SIFT (Scale-Invariant
Feature Transform) played a pivotal role in improving accuracy He
etal. [10]. Data-driven approaches allowed models to generalize
better across larger datasets and adapt to varied scenarios without
the need for explicit feature engineering. However, these methods
were still limited in their ability to handle the complexity of
articulated human motion. The computational costs associated with
processing high-dimensional features Fang etal. [11], combined
with the relatively shallow architectures of traditional machine
learning algorithms, limited their performance. As a result, the field
transitioned towards deep learning, which offered more powerful
tools to model the non-linear relationships inherent in HPE
Lauer et al. [12].

Deep learning, particularly convolutional neural networks
(CNNs), revolutionized HPE by enabling end-to-end feature
learning and pose estimation. Techniques like heatmap-based
keypoint localization and region-based CNNs improved both
(13],
the introduction of pre-trained models, such as ResNet and

accuracy and scalability. More recently Rempe etal.

Transformers, has further enhanced the field. Pre-trained models
offer the advantage of transfer learning, enabling effective use of
large datasets like MPII and PoseTrack. While deep learning excels
in leveraging large-scale data and can capture highly complex
patterns Liu etal. [14], it often suffers from high computational
requirements and a lack of interpretability. Moreover, it fails
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to incorporate domain-specific constraints like biomechanics or
physical laws, which can limit the robustness of pose predictions in
scenarios involving rapid or highly dynamic movements Maji et al.
[15]. This limitation has inspired recent approaches that integrate
physics-based principles into deep learning frameworks to enhance
model performance and generalization Labbe et al. [16].

Given the challenges of deep learning, particularly its inability
to incorporate domain-specific constraints, this work proposes a
physics-inspired deep learning model for HPE. By embedding
physics-informed priors, such as kinematics and dynamics
constraints, into the learning process, the model aims to improve
accuracy in occluded and dynamic scenarios. The integration of
biomechanical models allows for better handling of real-world
conditions, while a modular architecture ensures computational
efficiency and scalability. This interdisciplinary approach bridges the
gap between symbolic Al and data-driven deep learning methods,
offering a novel pathway for HPE research.

We summarize our contributions as follows.

o This method introduces a physics-informed module to
integrate kinematics and dynamics constraints into deep
learning architectures, enhancing accuracy in complex motion
scenarios.

« The model demonstrates high generalization across multiple
application domains, from healthcare to robotics, while
maintaining computational efficiency.

« Experiments show significant improvements in both accuracy
and robustness, particularly in occluded or dynamic
human pose estimation tasks, outperforming state-of-the-art
methods.

2 Related work

2.1 Physics-inspired constraints in pose
estimation

Human pose estimation has traditionally relied on deep learning
models that leverage large-scale annotated datasets. However,
incorporating physics-inspired constraints into these models has
emerged as a promising direction Sun etal. [17]. By embedding
biomechanical principles and kinematic laws, these approaches
aim to enforce physically plausible predictions, mitigating common
issues such as unrealistic joint positions and postures. Recent
research has focused on integrating forward and inverse kinematics
directly into the learning process Chen etal. [18], enabling
models to respect human joint constraints and motion feasibility.
For example, methods utilizing differentiable physics engines
within deep networks allow for the simulation and optimization
of motion dynamics during training Di etal. [19], ensuring
alignment with real-world physical behaviors. Energy-based models
and potential field formulations have been proposed to encode
physical relationships between body parts Shi et al. [20], reducing
prediction errors and enhancing robustness under occlusions.
Physics-informed neural networks (PINNs) also offer a flexible
framework for embedding domain-specific knowledge Lekscha
and Donner [21], such as conservation of momentum or force
balance, directly into the networks architecture. These advances
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highlight the potential of physics-inspired methods to improve the
interpretability and generalization capabilities of pose estimation
models Donner et al. [22].

2.2 Temporal modeling for dynamic pose
estimation

Dynamic human pose estimation, which deals with sequences
of human motion, has benefited significantly from advancements
in temporal modeling Labbe et al. [23]. The integration of temporal
information helps capture motion patterns, enabling more accurate
predictions in complex and dynamic environments. Recurrent
neural networks (RNNs), particularly long short-term memory
(LSTM) and gated recurrent units (GRUs) Su etal. [24], have
been widely employed to model temporal dependencies in pose
sequences. More recently, transformer-based architectures have
shown superior performance due to their ability to capture long-
range dependencies and contextual relationships Gong et al. [25].
These models process sequences holistically, allowing for a deeper
understanding of motion trajectories and temporal coherence
Hempel et al. [26]. Spatiotemporal graph convolutional networks
(ST-GCNs) have been proposed to explicitly model both spatial and
temporal relationships in human skeleton data. Such approaches
leverage graph structures to represent the human body and apply
temporal convolutions to capture motion dynamics Moon et al.
[27]. To further enhance temporal modeling, some studies have
introduced hybrid methods that combine transformers with graph-
based models Donner et al. [28], achieving state-of-the-art results
in motion prediction and action recognition tasks. The inclusion of
temporal information not only improves pose estimation accuracy
but also facilitates applications such as activity recognition and gait
analysis Alfaras et al. [29].

2.3 Multi-modal learning in pose
estimation

Multi-modal learning has become an essential area of research
in human pose estimation Li et al. [30], as it leverages diverse data
sources to improve model robustness and accuracy. Combining
visual data with other modalities, such as depth information,
infrared imaging, or inertial sensor data Liu etal. [31], enhances
pose estimation under challenging conditions like poor lighting,
occlusions, or extreme poses. Methods integrating RGB and depth
data, often referred to as RGB-D approaches, have demonstrated
significant improvements in 3D pose estimation tasks. These
models exploit the complementary nature of RGB and depth
information to recover detailed spatial structures and resolve
ambiguities in monocular predictions Zhao et al. [32]. Furthermore,
approaches incorporating wearable sensors, such as accelerometers
and gyroscopes, have enabled real-time pose estimation with high
temporal resolution Wang et al. [33], especially in scenarios where
visual data is unavailable or unreliable. Cross-modal attention
mechanisms and fusion strategies, such as late fusion, early fusion,
and intermediate fusion Li et al. [34], have been extensively studied
to effectively integrate information from multiple sources. Beyond
traditional modalities, recent research has explored audio-visual
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learning for tasks like sign language recognition Shi etal. [35],
where pose estimation benefits from synchronizing visual and
audio cues. By leveraging multi-modal data, these approaches
demonstrate significant potential to enhance both the accuracy and
generalizability of human pose estimation systems Milan et al. [36].
To further clarify the multi-modal integration mechanisms
utilized in SAPENet, we detail both the architectural design and
the performance benefits observed. Our framework currently
integrates multi-modal information through an early-intermediate
hybrid fusion strategy. Feature maps extracted from different
modalities, such as RGB images and optional depth data (for
datasets where depth is available), are first processed through
separate modality-specific convolutional branches. These branches
employ shared structural designs but use independent parameters
to capture modality-specific characteristics. Following initial feature
extraction, we perform feature alignment using a cross-modal
attention module, which enables the network to dynamically
emphasize the most informative modality at each spatial location.
The aligned feature maps are then concatenated along the channel
dimension and passed through a joint convolutional block
for feature fusion before being fed into downstream SAPENet
modules like Attention for Localization (AFL) and Structural
Priors Integration (SPI). This design allows the network to
leverage complementary strengths of each modality: RGB data
provides rich texture and appearance cues, while depth or other
auxiliary modalities contribute robust spatial geometry information,
especially under poor lighting or occlusion scenarios. In our
ablation studies, we observed that adding depth information and
using cross-modal attention led to an average improvement of
2.1% in PCK and 1.7% in mAP across the MPII and PoseTrack
datasets. These results highlight that the multi-modal integration
not only improves keypoint localization accuracy but also enhances
the model’s robustness against challenging input conditions like
background clutter and occlusion. Moreover, the modularity of
our fusion design allows easy extension to incorporate additional
modalities such as infrared or inertial sensor data in future work.

3 Methods
3.1 Overview

Pose estimation, a pivotal task in computer vision, involves
determining the spatial arrangement of objects or parts of
objects in a given scene. This problem encompasses a wide
range of applications, including human pose detection, object
orientation estimation, robotic manipulation, and augmented
reality. Pose estimation seeks to model the underlying spatial
and structural relationships between keypoints in an image, often
under challenging conditions such as occlusion, diverse poses, and
complex backgrounds.

In this work, we propose a novel framework for advancing
pose estimation by integrating structural reasoning and robust
feature learning. The following sections systematically present our
methodology, beginning with preliminaries to formally define the
pose estimation problem and introduce the mathematical notations
used throughout the paper. Section 3.2 lays the foundation for
understanding the geometric and probabilistic aspects of pose
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representation, emphasizing the challenges posed by existing
methods. The heart of our contribution lies in the new model
introduced in Section 3.3. This model, designed with a specific
focus on flexibility and generalization, incorporates novel neural
architectures and latent representations to efficiently capture the
intricate spatial dependencies between keypoints. By leveraging
a unified probabilistic modeling framework, the proposed model
aims to bridge the gap between theoretical insights and practical
pose estimation performance. Complementing the model is our
proposed strategy for handling domain-specific challenges in pose
estimation, such as ambiguity in keypoint localization and varying
scene dynamics. In Section 3.4, this strategy employs a combination
of multi-view constraints, adaptive attention mechanisms, and
domain-informed priors to improve pose estimation accuracy
across diverse datasets. By emphasizing both theoretical rigor
and empirical validation, we demonstrate the effectiveness of our
approach in overcoming the limitations of prior methods. The
structure of this method section reflects a logical progression
from problem formulation to innovation in modeling and strategy.
Together, these components form a cohesive framework aimed at
advancing the state of the art in pose estimation tasks.

3.2 Preliminaries

Pose estimation involves determining the spatial arrangement
of specific keypoints or landmarks within an image, typically
represented in a 2D or 3D coordinate space. Formally, given an
image I € R™WXC where H, W, and C represent the height, width,
and number of color channels of the image, respectively, the goal of
pose estimation is to predict a set of K keypoints P = {p,,p,...> P}
where each keypoint p, € R represents the d-dimensional spatial
location of the k-th keypoint. For 2D pose estimation, d = 2, while
for 3D pose estimation, d = 3.

The problem can be understood as a mapping function f: 1+
P, where fis a model trained to infer keypoint locations from the
input image. To ensure a robust and generalizable model, the pose
estimation problem is often represented in terms of heatmaps or
probability distributions over possible keypoint locations. Let H;, €
R represent the heatmap corresponding to the k-th keypoint,
where H' and W' are the spatial dimensions of the heatmap. Each
value Hy(x,y) at location (x,y) encodes the likelihood of the k-th
keypoint being present at that location (Formula 1):

H; (x,y) = P(py = (%) | T). (1)

The
annotations P, using a Gaussian kernel centered at each

)

Pose estimation tasks often involve geometric constraints to

heatmaps are derived from ground-truth keypoint

annotated location (Formula 2):

leen) - Bl

20% @

H, (x,y) = exp <
where o controls the spread of the Gaussian.
enforce spatial consistency between keypoints. These constraints
arise naturally from the structural relationships between keypoints,

such as limb lengths in human pose estimation or rigid body
transformations in object pose estimation. For example, in human
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pose estimation, the relationship between two connected keypoints
p; and p;j can be expressed as (Formula 3):

(©)

where Lj; is the approximate distance between the two keypoints

Ip; - pjll = L,

based on prior anatomical knowledge. These geometric priors can be
integrated into the learning framework as loss terms or constraints
to improve robustness.

Pose estimation is inherently challenging due to several factors.
Parts of the object or body may be partially or fully occluded,
making certain keypoints invisible. The high degree of variability in
poses, particularly for articulated structures such as human bodies,
introduces significant complexity. The presence of complex and
distracting backgrounds can make keypoint localization difficult. In
some tasks, multiple views of the same scene must be reconciled to
ensure a consistent pose representation.

To account for the uncertainties inherent in pose estimation,
the predicted keypoint locations are often modeled probabilistically.
Each keypoint p, is represented as a random variable with a
probability density function (PDF) P(p, | I). The objective is then
to maximize the likelihood of the ground-truth keypoints given the
observed image (Formula 4):

K

Ly = —ZlogP(f)k 1),
k=1

“)

where P, is the ground-truth location of the k-th keypoint.

For a deterministic approach, the keypoint locations can
be directly regressed using a neural network. Let ® represent
the parameters of the network. The predicted locations P =
{P1,Py>---»Pi} are obtained as Formula 5:

P = f(1;0). (5)

The loss function for keypoint regression is typically defined as
the mean squared error (MSE) between the predicted and ground-
truth locations (Formula 6):

K
Lyisg = t Z 1Pk - Pk||2~ (6)
K=
For heatmap-based approaches, the loss function is defined as

the pixel-wise difference between the predicted heatmaps H; and the
ground-truth heatmaps H, (Formula 7):

K
Crteamap = = 3 1Hy ~ FyJ @)
K3
The Notation I means Input image. P means Set of predicted
keypoints. H;, means Heatmap for the k-th keypoint. p, means
Ground-truth location of the k-th keypoint. f means Pose estimation
model. £ means Loss function for training.

3.3 Spatially-aware pose estimation
network (SAPENet)

In this section, we present SAPENet, a novel model

for pose estimation designed to address challenges such as
occlusion, structural ambiguity, and background interference.
SAPENet

(As shown in Figure 1).

introduces three key innovations, described below
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SAPENet
(Spatially-Aware Pose Estimation Network)
Backbone Feature
Extractor
@ 00
Attention for Lcattn
Backbone . L
(q Feature Structural Priors H%] HOuttput
Input Extractor Integration e e
Ima % Multi-Scale
ge S
Supervision
Structure 10SS L piors
Multi-scale loss La

Overview of the Spatially-Aware Pose Estimation Network (SAPENet). The framework starts with an input image processed by a backbone feature
extractor. The Attention for Localization (AFL) module enhances keypoint-relevant regions through spatial attention mechanisms. Structural Priors
Integration (SPI) enforces geometric consistency by applying structural, angular, and deformation constraints during optimization. The Multi-Scale
Supervision (MSS) module provides hierarchical learning signals at different spatial resolutions. The final output consists of refined keypoint heatmaps,
optimized through multiple loss functions including MSE, structural consistency loss, and multi-scale loss. Arrows indicate the information flow

between modules.

3.3.1 Attention for localization

To improve keypoint localization accuracy, we propose a spatial
attention mechanism that dynamically adjusts the importance of
different regions within the feature map based on their relevance
to pose estimation. The spatial attention mechanism introduces an
attention map A € R”*"', which is calculated using a convolutional
operation followed by a sigmoid activation function. Formally, the
attention map is defined as Formula 8:

A(x,y)=0c(W,*F(x,y)+b,), (8)

where # represents the convolution operation, W, and b, are
learnable parameters, and o is the sigmoid activation function. The
attention map assigns weights to each spatial location of the feature
map F € R7*W*C where H', W/, and C denote the height, width,
and number of channels of the feature map, respectively. Once the
attention map is computed, it modulates the input feature map F to
produce an enhanced representation F' (Formula 9):

F' (x,y) =F(x,y)-A(x)), )

where - denotes element-wise multiplication. To further refine the
spatial attention mechanism, we employ a multi-head attention
strategy. The feature map is split into M subspaces along the channel
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dimension, and individual attention maps A,,, are computed for each
subspace (Formula 10):

A, (xy) = O'(Wam *F, (%) + bum),

where F,, (x,y) corresponds to the m-th subspace of the feature map.

(10)

The final enhanced representation is obtained by concatenating the
modulated subspaces (Formula 11):

(€3))

where Concat represents channel-wise concatenation. This approach
allows the model to capture diverse patterns of spatial relevance

F' = Concat(F-A,F) - Ay, .. F} - Ay,

across different channels.

To ensure the attention mechanism does not overly suppress
certain regions, a residual connection is added to the modulated
feature map (Formula 12):

F' (x,y) =F (x,y9) +F(x,)),

which preserves the original feature information and prevents

(12)

degradation in performance due to excessive suppression. To
improve robustness, the attention map is further regularized with
a sparsity constraint that minimizes the L,-norm of the attention
weights (Formula 13):

L

attention — ||A||1, (13)
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where the sparsity regularization encourages the network to focus
only on the most relevant regions. To capture global context and
refine spatial relationships, the attention map is expanded to include
a global average pooling component (Formula 14):

H W

1
Gxy) = —— F(x',y'), 14
(%)) = XZW; (x',y) (14)
where G(x,y) provides global contextual information to

guide the attention mechanism. The final attention map is
a weighted combination of the local and global attention
components (Formula 15):

Afina (67) = - A(xy) + (1 -a)-G(x,), (15)

where « is a learnable parameter balancing local and global attention
contributions. This enriched spatial attention mechanism not only
suppresses irrelevant background noise but also highlights spatially
significant regions, resulting in improved accuracy and robustness
for keypoint prediction.

3.3.2 Structural priors integration

While the notion of incorporating structural constraints in
pose estimation is well established, our approach distinguishes itself
through a more explicit and mathematically grounded embedding
of physics-inspired principles into the optimization process. Instead
of merely constraining joint distances or enforcing symmetry,
the proposed Structural Priors Integration (SPI) module draws
direct analogies from kinematics, mechanics, and energy-based
formulations. For example, the deformation loss term (Equation 19)
can be interpreted as a normalized elastic potential energy
measure, penalizing deviations from equilibrium limb lengths. This
reflects the Hookean principle where deformation cost increases
quadratically with displacement from rest configuration. Similarly,
our angular consistency term (Equation 18) captures joint rotational
feasibility, reminiscent of rigid body mechanics where angular
changes are regulated by hinge joint limits in real-world skeletons.
Moreover, our confidence-weighted structural term can be seen
as a probabilistic analog to uncertainty-aware force propagation,
where less confident keypoints exert weaker geometric influence,
akin to lower stiffness coeflicients in a physical system. The
temporal consistency loss emulates inertial smoothness across
time, penalizing abrupt accelerations, thus implicitly encoding
momentum preservation. While recent models such as AO-
DETR and MDKAT have introduced task-specific structural
mechanisms for object detection and video understanding, their
integration is either domain-specific or heuristic. In contrast, our
model formulates a generalizable framework rooted in mechanical
principles, applicable to various structured prediction tasks. Unlike
soft-constraint learning in standard pose networks, which may rely
on implicit biases learned from data, our formulation uses explicit
parametric priors with physical interpretability. This modeling
approach not only enhances robustness under occlusion and multi-
person ambiguity but also opens a pathway toward interpretable,
energy-aware pose estimation. Future extensions may integrate
differentiable physics engines or simulate biomechanical systems
more accurately, but our current method represents a principled
intermediate step that bridges data-driven learning and domain-
grounded reasoning. To ensure geometric consistency and improve
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robustness in pose estimation, SAPENet integrates structural priors
into the optimization process. These priors explicitly model the
pairwise relationships between connected keypoints, leveraging
geometric knowledge to enforce plausible and coherent spatial
configurations. For two connected keypoints (p;,p;), the prior
assumes a fixed distance relationship (Formula 16):

Ip;—pll = Ly, (16)
where L;; is the expected distance between the two keypoints based
on domain-specific priors or training data.

To the of

dynamic constraints, the
L;j used in Equation 16, we employed a data-driven yet generalizable

the kinematic and

distance

clarify derivation

particularly parameters
approach. L; represents the expected distance between two
anatomically connected keypoints, serving as a prior for geometric
consistency during optimization. For each dataset, we calculated
L; by statistically analyzing the annotated training samples. The
process involved computing the mean Euclidean distance between
each relevant keypoint pair across all training images. This ensures
that the distance priors are dataset-specific to account for differences
in scale, resolution, and subject variability. However, to enhance
generalization, we normalize all images to a standard input
resolution (256 % 256) before distance computation, allowing the
priors to remain consistent across different evaluation settings.
To empirical averaging, we introduced a small tolerance margin
(+10%) around each L;; to accommodate intra-class variability while
still enforcing structural plausibility. For datasets lacking sufficient
annotations for reliable statistics, we adopted anthropometric
measurements commonly used in human biomechanics literature
to approximate the expected distances. This combined strategy
ensures that the structural priors effectively capture dataset-specific
characteristics without overfitting to any single training distribution.
Moreover, hyperparameters such as the weight coefficients for each
structural loss term (A,A,,...) were tuned via grid search on the
validation set to balance the trade-off between data fidelity and
geometric regularization.

This relationship is enforced using a structural loss term
(Formula 17):

[’struct = Z ("131 - f’]” _Lij)z, (17)

(ij)e€
where £ represents the edges in the keypoint connectivity graph,
and p; denotes the predicted location of the i-th keypoint. To further
ensure global consistency, SAPENet integrates higher-order priors,
such as angle consistency between triplets of keypoints. For a triplet
(P;»Pj> Py the angular consistency loss is given by Formula 18:

Longe= . (0=05)’,
(ij,k)eT

(18)

where 7 denotes the set of triplets, Oij
the vectors p;—p; and p,—p;, and @,-jk is the predicted angle. A

« is the true angle between

deformation penalty is introduced to prevent unrealistic distortions
in predicted structures. For each pair of connected keypoints, a

1)2.

deformation term is defined as Formula 19:

1B, — 7l
<—’ - (19)
L

‘Cdeform = Z
(ij)e€
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To handle uncertainty in keypoint predictions, SAPENet
incorporates confidence-based weighting for each structural prior.
Let ¢; € [0,1] denote the confidence of the i-th keypoint. The
weighted structural loss becomes (Formula 20):

- 2
‘C’conf—struct = Z Cicj(llpi - P]” - sz) . (20)
(ij)e€
To ensure spatial smoothness, a regularization term is added to
penalize abrupt changes in adjacent keypoints (Formula 21):

[’smooth: Z ||ﬁ,_f’]||2 (21)
(ij)e€

For 3D pose estimation, these priors are extended to enforce
consistency between 2D projections and the corresponding
3D keypoints. Let P;€R® denote a 3D keypoint, and let
II(P;) represent its 2D projection. The 2D-3D consistency loss
is given by Formula 22:

K
Lopsp = 1B~ T1(P) I (22)
i=1

Furthermore, temporal consistency is enforced in video-based
pose estimation by penalizing variations in keypoint locations across
consecutive frames (Formula 23):

T-1 K
~(t)  ~(t+1)
‘Ctemporal = Z Z ”Pi -P; ”2 (23)

t=1 i=1

The overall structural prior loss combines these components as
Formula 24:

L = Alﬁstruct + AZE’angle

+A6Lop_sp + AL

+ AS‘Cdeform + /145 struct T ASL

smooth

(24)

priors conf—

temporal®

where A,,1,,...,4;, are weighting coefficients. By integrating
these structural priors, SAPENet achieves robust, consistent, and
geometrically plausible pose predictions across diverse scenarios
(As shown in Figure 2).

These priors are further extended for 2D-3D consistency and
temporal smoothness to ensure robust and geometrically plausible
pose predictions across diverse scenarios. While our method draws
inspiration from the general idea of integrating physics-based
constraints, it differs substantially from prior approaches such
as Physics-Informed Neural Networks (PINNs) and traditional
graph-based models. PINNS typically embed continuous differential
equations, such as conservation laws or kinematic equations, directly
into the learning process. In contrast, SAPENet introduces discrete
structural priors—such as pairwise distance, angular constraints, and
deformation penalties-based on statistical analysis of real-world
human pose datasets. This enables a more data-driven yet physically
plausible supervision strategy. Furthermore, compared to graph-
based models that encode joint relationships statically, our approach
employs dynamic reweighting based on keypoint confidence and
integrates temporal smoothing, enhancing adaptability to occlusions
and noisy annotations. These design choices collectively distinguish
SAPENet as a flexible, scalable, and robust alternative to classical
physics-informed or graph-based pose estimation frameworks.

To ensure reproducibility and provide transparency regarding
our loss function configuration, we specify the exact values of
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the weighting coefficients A, through A, used in Equation 24 for
structural priors. After conducting a grid search on the validation
set, the selected values were A, =1.0, 1, =0.5, 1; =0.1, 1, =0.8,
As =0.2, A = 0.5, and A, = 0.3. These weights balance the relative
importance of pairwise distance constraints, angular consistency,
deformation penalties, confidence-weighted structural loss, spatial
smoothness, 2D-3D consistency, and temporal regularization. For

the adaptive keypoint confidence threshold c,,,;,, in Equation 46, we

min
empirically set its value to 0.05. This threshold was chosen based on
preliminary experiments to prevent keypoints with extremely low
confidence from being entirely ignored during optimization, while
still minimizing their impact on gradient updates. We performed
within the range [0.01,0.1],
observing that values below 0.05 led to unstable training and

higher keypoint localization error, while higher values reduced the

sensitivity analysis by varying c,,;,

effectiveness of confidence-based reweighting. All hyperparameters,
including A weights and c,,;,, were tuned on the validation splits of
the MPII and PoseTrack datasets, and we applied the same settings
across all other datasets to maintain consistency in evaluation.

3.3.3 Multi-scale supervision

To capture fine-grained details and global context effectively,
SAPENet adopts a robust multi-scale supervision strategy, ensuring
the network learns comprehensive representations across different
spatial resolutions. Intermediate feature maps are upsampled to
match the size of downsampled ground-truth heatmaps, facilitating
consistent learning at various scales. This multi-scale approach
leverages a combination of hierarchical learning signals to guide
the network, enhancing its capacity to localize keypoints with high
precision. The multi-scale loss function is formulated as Formula 25:

N K
1 —~
‘Cmulti—scale = Z E Z "H;( - H;(”za (25)
= k=1

where S is the total number of scales, K denotes the number
of keypoints, H; represents the predicted heatmap for the k-th
keypoint at scale s, and H;, corresponds to the ground truth. By
minimizing this loss, the model achieves scale-invariant learning,
crucial for capturing both local fine-grained patterns and global
spatial structures.

To further enhance this supervision framework, SAPENet
introduces scale-aware weighting coefficients for each scale w;,
leading to a weighted loss formulation (Formula 26):

S K
ﬁweighted = Z Ws% z "H;( - ﬁillz, (26)
s=1 k=1
where w, is a learnable parameter emphasizing the relative
importance of different scales. The network uses auxiliary
losses at intermediate layers to guide feature refinement,
defined as Formula 27:

K
1 .
‘Cauxiliary = E Z ”H;(m - H;cnt”2> (27)
k=1

where H" and I’-i;(m denote the intermediate predicted and ground
truth heatmaps.

Combining these components, the total loss function becomes
(Formula 28):

‘Ctotal = ‘Cmulti—scale + Aweighted‘cweighted + Aauxiliary‘c'auxiliary’ (28)
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FIGURE 2

Overview of the Structural Priors Integration in SAPENet. The generator and discriminator architecture demonstrates the integration of structural priors
into the optimization process. The generator enforces plausible geometric relationships between keypoints through structural, angular, and
deformation losses. These priors are further extended for 2D-3D consistency and temporal smoothness to ensure robust and geometrically plausible
pose predictions across diverse scenarios. The discriminator aids in refining the predictions by distinguishing realistic keypoint configurations.

where Aygpea and A
contributions of weighted and auxiliary losses.

To gradient flow during backpropagation,
SAPENet

supervision terms, encouraging consistent feature alignment

auxiliary ar€ hyperparameters balancing the
improve

incorporates intermediate supervision via

deep

across layers (Formula 29):

L K

Locep=Y. = 3 IHL~H,

1
- (29)
=1 K k=1

where L is the number of intermediate layers supervised. This
integration reduces the risk of vanishing gradients and accelerates
convergence.

enforces

Except for pixel-wise SAPENet

consistency in keypoint relationships through pairwise heatmap

supervision,

alignment, ensuring spatial coherence (Formula 30):

M~

L IR

n |2
P_RP” > (30)

pairwise —

ol -
i

P

where R, and ﬁp represent predicted and ground truth pairwise
relations for keypoint pairs p.

The network further integrates structural constraints using
global descriptors, defined as Formula 31:

Lyopa = 1G -Gl (31)

where G is the global context vector derived from the heatmaps.
Together, these components ensure SAPENet captures both local
fine-grained details and global dependencies, achieving state-of-the-
art keypoint localization.
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3.4 Pose consistency-aware optimization
strategy (PCAOS)

To complement the SAPENet model, we propose a novel
optimization strategy called Pose Consistency-Aware Optimization
Strategy (PCAOS). This
insights, geometric constraints, and adaptive techniques to ensure

strategy leverages domain-specific
robust and accurate pose estimation in diverse and challenging
scenarios. Below, we highlight three key innovations of PCAOS
(As shown in Figure 3).

3.4.1 Structural consistency regularization

To ensure physically plausible and geometrically consistent
pose predictions, PCAOS employs a structural consistency loss
that enforces spatial relationships between connected keypoints in
the pose graph. For any pair of connected keypoints (p;p;) in
the connectivity graph &, the structural consistency loss penalizes

deviations from the expected distances L, which are derived

ij>
from domain-specific priors or training data statistics. The loss is

formulated as Formula 32:

['struct = Z ("131 - f’]” _Lij)z’
(i,j)e€

(32)

where p; and p; are the predicted positions of keypoints i and j,
respectively, and L;; represents the expected distance between them.
This loss ensures that the predicted pose adheres to realistic spatial
configurations and reduces ambiguity in keypoint placement.

To further the regularization, a
normalized term is introduced to account for varying scales in

enhance structural
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Mean
Squared Error

Pose Consistency-
Aware Optimization

Output
Pose Consistency-Aware Optimization Strategy (PCAOS)

FIGURE 3

The input consists of initial keypoint predictions and confidence
scores from SAPENet. PCAOS applies three main modules
sequentially: Structural Consistency Regularization (SCR), Multi-View
Reprojection Consistency (MVRC), and Adaptive Keypoint Confidence
Reweighting (AKCR). Each module computes specialized loss terms,
which are combined to guide backpropagation. The integrated
optimization improves geometric consistency, multi-view alignment,
and robustness to noisy keypoints.

input images (Formula 33):

‘Cstruct—norm = Z (33)

1B, -Bl 2
(5
(ij)eE ij
which ensures that the structural constraints remain effective across
different resolutions and image sizes. This normalized loss penalizes
deviations proportionally, maintaining a consistent scale-invariant
relationship among keypoints.

To account for uncertainties in keypoint predictions, we

introduce a confidence-weighted structural loss (Formula 34):

~ =~ 2
Eweighted—struct = Z Wij : ("pz - Pj” - Lz]) > (34)

(ij)e€

where wj; is a confidence score derived from the heatmap

probabilities of the two keypoints (Formula 35):

conf; - conf;

W= —————————,
max(confi . confj)

ij (35)
and conf;, conf; are the confidence values for keypoints i and j,
respectively. This ensures that predictions with higher confidence
contribute more to the loss, while uncertain predictions are
weighted less.

To capture global structural consistency across the entire pose
graph, we extend the pairwise structural regularization to a global

2
L,-j> NEN)

where G represents the keypoint graph, and cycles refer to

consistency term (Formula 36):

( S Ipopl- Y
(i,j)ecycle

(i,j)ecycle

‘Cglobal—struct = Z

cyclesinG

closed loops within the connectivity structure. This term enforces
consistency over longer spatial dependencies and helps maintain
global geometric coherence.
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The structural consistency regularization is combined with
the heatmap regression loss as part of the overall training
objective (Formula 37):

Ltotal = [’heatmap + Astructﬁstruct + /\globalﬁglobal—struct’ (37)

where A and Ay, are hyperparameters controlling the

struct
contribution of the structural and global consistency losses,
respectively. These terms work together to ensure that the predicted
poses are not only locally accurate but also globally consistent and

physically realistic.

3.4.2 Multi-view reprojection consistency
PCAOS enforces
consistency between 2D keypoint predictions and their shared

In multi-view pose estimation tasks,

3D representation by minimizing the reprojection error. For a
given 3D keypoint P, € R?, the reprojection error across V views is
defined as Formula 38:

M=

L lIpy — 11 (Py) I, (38)

1
multi-view Vv

v=1

where IT" is the projection function for the v-th view, mapping the
3D keypoint Py to the 2D image plane, and p; is the predicted
2D keypoint location. This term ensures that the predicted 2D
keypoints are geometrically consistent with the shared 3D structure
across all views.

To account for camera intrinsic and extrinsic parameters, the
projection function IT" is modeled as Formula 39:

p; =I1"(P;) =K' [R"[t"] P}, (39)
where K" is the camera’s intrinsic matrix, R" is the rotation matrix,
and t” is the translation vector for the v-th view. This formulation
allows PCAOS to explicitly handle camera parameters and enforce
accurate reprojection consistency.

To further enhance multi-view alignment, a triangulation loss
is introduced to ensure that the reconstructed 3D keypoints align
with the corresponding 2D projections. For each view v, the back-
projection error is defined as Formula 40:

K
1 —~
‘Ctriangulation = i Z ”Pk - Pk"2> (40)
k=1

where P, is the reconstructed 3D keypoint obtained by triangulating
the 2D predictions p; across all views. By combining reprojection
and triangulation losses, PCAOS ensures consistency between 2D
and 3D representations.

To handle uncertainty in multi-view predictions, PCAOS

v
k

denote the confidence score of the k-th keypoint in the v-th view. The

incorporates a confidence-based weighting mechanism. Let ¢

confidence-weighted reprojection error is defined as Formula 41:

V K
1
‘C'conf—multifview = \_/ Z Z CZHPX -1 (Pk) "2 (41)
v=1k=1

This weighting ensures that views with higher confidence
contribute more to the optimization, reducing the impact of outlier
predictions.
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To maintain temporal consistency in video-based multi-view
pose estimation, a smoothness constraint is added to penalize abrupt
changes in 3D keypoint trajectories (Formula 42):

T-1 K
1 (t+1) (t)
‘C’temporal = T-1 Z Z ”Pk - Pk ”2:

t=1 k=1

(42)

where Pg) represents the 3D keypoint at time ¢, and T is the total
number of frames.

The overall multi-view consistency loss is then expressed as a
weighted combination of the individual terms (Formula 43):

‘Cmulti—viewmtal = /11 [’multi—view + AZ‘C’triangulation + A3‘Cc0nf—multi—view + A4Ltemp0ral’

(43)

where A;,1,,15,1, are hyperparameters controlling the contribution
of each term.

3.4.3 Adaptive keypoint confidence reweighting

To effectively handle occlusions, ambiguities, and uncertainties
in pose estimation, PCAOS integrates an adaptive confidence-based
reweighting mechanism. This mechanism dynamically adjusts the
contribution of each keypoint to the overall loss based on its
confidence score ¢;, € [0,1]. Keypoints with higher confidence scores
contribute more significantly, while those with lower scores-likely
due to occlusion or noisy annotations-are downweighted, reducing
their influence during optimization. The adaptive loss function is
defined as Formula 44:

K
ﬁadaptive = % Z Cklllsk - Pk”Z, (44)
k=1
where K is the number of keypoints, p, denotes the predicted
location of the k-th keypoint, and p, represents its corresponding
ground-truth location. The confidence score ¢, is typically derived
from a probabilistic heatmap output by the network, where the
value reflects the network’s certainty about the keypoint’s presence
and location.

To further enhance robustness, PCAOS introduces a normalized
reweighting factor to ensure balanced gradients across keypoints,
even when their confidence scores vary widely. This normalized
adaptive loss is expressed as Formula 45:

1

normalized—adaptive = ZK
k=1

K
c > clpy —pel. (45)

Ck k=1

This normalization prevents disproportionately large gradients
the
process and ensures fair treatment of all keypoints. To mitigate

from confident keypoints overwhelming optimization

the effects of extremely low confidence values, a threshold

c is introduced, ensuring a minimum contribution from

min

every keypoint (Formula 46):

(46)

¢ = max (g Cpnin)

where ¢,

keypoints from being entirely ignored.

is a small constant, typically set empirically to prevent

To account for spatial correlations between keypoints, PCAOS
also incorporates a pairwise confidence weighting term that
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considers the relationship between neighboring keypoints. The
pairwise loss is defined as Formula 47:

L (47)

M~

E 2
Cp”dp - dp” >

el

pairwise —

p=1

where P represents the number of keypoint pairs, &p and d, are
the predicted and ground-truth distances between the p-th pair of

keypoints, and ¢, is the confidence for the pair, derived from the

P
product of individual keypoint confidences (Formula 48):

CP = Ckl . Ckz’ (48)

where k; and k, are the indices of the two keypoints in the pair.
To integrate these components into the overall loss, the total
adaptive loss is formulated as Formula 49:

‘Ctotal = Aadaptive‘c’adaptive + Apairwise‘cpairwise’ (49)

and A
relative contributions of the adaptive and pairwise losses.

where A are hyperparameters controlling the

adaptive pairwise
PCAOS refines keypoint confidence predictions by employing
an uncertainty-aware regularization term, which penalizes overly

high confidence values for incorrect predictions (Formula 50):

K
‘Cuncertainty = l Z (Ck - ”ﬁk - Pk”)z- (50)
K k=1
By combining these mechanisms, PCAOS achieves robust pose
estimation, emphasizing reliable keypoints while mitigating the
effects of noise, occlusion, and uncertainty, making it highly effective
in challenging and real-world scenarios (As shown in Figure 4).

4 Experimental setup
4.1 Dataset

The MPII Dataset Misra et al. [37] is a large-scale benchmark
designed for human pose estimation, containing over 25,000
images annotated with 2D body keypoints. The images capture
people performing a wide range of everyday activities, offering
diverse poses, complex interactions, and natural occlusions. Each
keypoint annotation includes visibility information, making it
suitable for models to learn robust pose representations under
challenging conditions. Its activity labels further allow action-
specific evaluations, making MPII one of the most popular datasets
for pose estimation in static images. The PoseTrack Dataset Igbal
etal. [38] focuses on multi-person pose estimation and pose
tracking across video sequences. It contains thousands of video
frames with detailed annotations of human keypoints for multiple
individuals per frame, along with unique tracking IDs to evaluate
temporal consistency. This dataset is particularly challenging due
to occlusion, appearance changes, and dynamic motion in crowded
environments, making it ideal for testing the robustness of models
in real-world scenarios where temporal reasoning and multi-target
tracking are critical. The Penn Action Dataset Chiu etal. [39] is
a video-based dataset designed for action recognition and pose
estimation. It contains over 2,300 video sequences of humans
performing various actions, such as sports and exercises, with
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FIGURE 4

Illustration of the Adaptive Keypoint Confidence Reweighting (AKCR) mechanism within PCAOS. The diagram demonstrates the processing pipeline,
starting from the input feature maps (H; x W, x C;) and proceeding through normalization, reweighting, and convolutional operations. Key modules such
as the PCAOS branch, CGMD, AConv, and optional axis deformable convolutions collaborate to refine confidence-based adjustments dynamically. This
mechanism ensures robust pose estimation by emphasizing confident keypoints while mitigating the effects of uncertainties, occlusions, and noise.
The adaptive approach balances contributions of individual keypoints and their pairwise relationships for accurate and consistent predictions.

detailed frame-level annotations of body keypoints and action
labels. The dataset enables joint evaluation of pose estimation
and activity understanding, challenging models to connect pose
information with higher-level semantic understanding of motion
and behavior. Its diversity in motion types makes it widely used
for video-based pose studies. The 3DPW Dataset Zanfir et al. [40]
is tailored for 3D pose estimation in the wild, offering annotated
3D keypoints obtained via motion capture combined with 2D pose
annotations from camera images. It includes sequences captured in
both controlled indoor setups and dynamic outdoor environments,
ensuring diverse lighting and background conditions. The dataset
is ideal for evaluating models’ ability to predict accurate 3D
poses while considering spatial coherence, especially in complex,
unconstrained settings where traditional motion capture methods
fall short.

4.2 Experimental details

For data augmentation, we apply random horizontal
flipping, random cropping, and color jittering to increase model
generalization. Horizontal flipping is applied with a probability
of 50%, cropping is set to a random size between 0.8 and 1.0
of the original image, and brightness, contrast, and saturation
are adjusted within a range of +0.2. These augmentations ensure
robustness against variations in pose, scale, and illumination.

During the training phase, we utilize a combination of cross-entropy
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loss and Mean Squared Error (MSE) loss for classification and
regression tasks, respectively. The keypoint heatmap regression
is supervised using MSE loss to measure the deviation between
predicted and ground-truth heatmaps. A learning rate warm-up
strategy is employed in the first 5 epochs to stabilize training,
followed by a cosine learning rate decay schedule. Evaluation
metrics include the Average Precision (AP) at different Intersection-
over-Union (IoU) thresholds, the Percentage of Correct Keypoints
(PCK), and Mean Per Joint Position Error (MPJPE) for 2D and 3D
pose estimation tasks. AP is calculated at IoU thresholds ranging
from 0.5 to 0.95 with an interval of 0.05, following standard MPII
evaluation protocols. For datasets with 3D annotations, we report
MPJPE in millimeters to assess the accuracy of joint localization
in 3D space. Our method is benchmarked against state-of-the-art
approaches on four datasets: MPII, PoseTrack, 3DPW, and Penn
Action. For each dataset, specific preprocessing steps are applied.
For MPII and PoseTrack, the dataset-specific validation splits are
used. For 3DPW, data is processed using a standard protocol where
five subjects are used for training and two for testing. For Penn
Action, the train-test split provided by the authors is utilized. To
ensure reproducibility, we conduct each experiment three times
and report the average results. Hyperparameters such as learning
rate, batch size, and regularization terms are tuned through grid
search. Ablation studies are conducted to isolate the impact of each
component of our proposed method. All experimental results are
visualized using qualitative examples and quantitative metrics to
ensure transparency and comprehensibility.
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To address the computational efficiency of our proposed model,
we conducted a comprehensive analysis of its complexity. SAPENet
contains approximately 45 million trainable parameters and requires
38.2 GFLOPs per inference for a single 256 x 256 input image,
evaluated on an NVIDIA A100 GPU. The average inference time
per image is 24.6 milliseconds, indicating that the model achieves
near real-time performance for many practical applications. Despite
the increased computational cost due to the integration of physics-
inspired modules and multi-scale supervision, the model remains
feasible for real-time scenarios such as robotics and augmented
reality. Moreover, we recognize that some deployment environments
may have stricter resource constraints. Therefore, we suggest several
potential optimization strategies to further reduce computational
overhead. These include model pruning to eliminate redundant
parameters, quantization to reduce the model’s bit-width, and
knowledge distillation to transfer knowledge from SAPENet to
a lightweight student network. Initial experiments with 8-bit
quantization showed a 35% reduction in inference time with
negligible accuracy loss (less than 1% drop in PCK on the
MPII dataset). These results demonstrate that with appropriate
optimization, SAPENet can balance both accuracy and efficiency for
time-sensitive applications.

To evaluate the robustness of SAPENet under challenging input
conditions, we conducted additional experiments focusing on low-
resolution and heavily occluded images. For low-resolution analysis,
we downsampled the input images from 256 x 256 to 128 x 128
and 64 x 64 before feeding them into the model, then upsampled
them back to 256 x 256 for consistency with the network input
size. The results showed a performance drop of approximately 3.8%
in PCK when using 128 x 128 inputs and 7.6% when using 64 x
64 inputs on the MPII dataset. Despite this degradation, SAPENet
still outperformed baseline models such as SimpleBaseline and
PoseResNet under the same resolution constraints, indicating better
robustness to resolution loss. For heavily occluded scenarios, we
evaluated SAPENet on occlusion-heavy subsets from the PoseTrack
dataset. The proposed Attention for Localization (AFL) module
and the Adaptive Keypoint Confidence Reweighting (AKCR)
mechanism in PCAOS contributed significantly to maintaining
reasonable accuracy under these conditions. Compared to our
baseline without AFL and AKCR, SAPENet achieved a 4.2%
higher PCK on occluded keypoints and reduced localization errors
in heavily cluttered scenes. Although there is still room for
improvement under extreme degradation, these results confirm that
SAPENet maintains competitive performance in low-resolution and
heavily occluded situations due to its spatial attention mechanisms
and confidence-adaptive learning strategies.

To further explore the impact of integrating physics-guided
components into SAPENet, we performed a controlled ablation
study isolating the effects of the Structural Priors Integration (SPI)
and Pose Consistency-Aware Optimization Strategy (PCAOS). By
systematically removing these modules from the architecture, we
observed significant changes in computational demand and model
performance. The streamlined SAPENet variant, lacking both SPI
and PCAOS, demonstrated a substantially reduced computational
load, requiring just 24.7 GFLOPs per forward pass and yielding
an average per-image inference time of 18.2 milliseconds. When
reintegrated, the full SAPENet increased resource usage to 38.2
GFLOPs and 24.6 milliseconds per image. This jump in complexity,
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while notable, directly corresponds to a measurable enhancement
in keypoint localization accuracy-achieving a 1.8% gain in PCK
and a 1.4% boost in mAP across multiple benchmarks. Crucially,
these findings highlight the effectiveness of incorporating domain-
informed modules for learning robust spatial representations under
challenging conditions such as self-occlusion or motion blur.
For deployment scenarios where latency or compute resources
are constrained, further refinement is feasible. We tested post-
training quantization on the full model and found that reducing
numerical precision to 8-bit representations cut inference latency
by roughly 35% with minimal performance degradation, showcasing
the model’s adaptability to diverse hardware environments.

Considering the growing demand for real-time human pose
estimation (HPE) in applications such as robotics, augmented
reality, and autonomous systems, we evaluated the feasibility of
deploying SAPENet in latency-sensitive environments. To further
optimize the framework for real-time deployment, several strategies
can be adopted. Model pruning techniques can be applied to
remove redundant weights and reduce FLOPs without significant
accuracy loss. Quantization-aware training can enable 8-bit or even
lower precision inference, which can lead to substantial speedups
on edge devices. Knowledge distillation can be used to transfer
the learned representations from SAPENet into a lightweight
student model with fewer parameters and lower latency. Integrating
hardware-specific acceleration, such as TensorRT for NVIDIA
platforms or deploying on edge AI accelerators like Google Coral
or Intel Movidius, can significantly improve runtime efficiency.
Compared with existing lightweight models like LitePose and
PoseLite, a distilled and quantized version of SAPENet could achieve
competitive speed while maintaining the superior accuracy benefits
conferred by its physics-informed design. These observations
confirm that with modest architectural and software optimizations,
SAPENet can be effectively adapted for real-time applications in
robotics and related fields.

To evaluate the computational efficiency of SAPENet, we
conducted a comparative analysis against several representative
baseline models. As shown in Table 1, SAPENet consists of
approximately 45 million trainable parameters and requires 38.2
GFLOPs per inference for a 256 x 256 input image. It achieves
an average inference time of 24.6 milliseconds on an NVIDIA
A100 GPU. While this inference time is slightly higher than
that of HRNet-W48 and PoseResNet, the performance benefits
provided by SAPENet-particularly its robustness under occlusion
and dynamic motion—justify the increased complexity. Furthermore,
we performed post-training quantization to an 8-bit representation,
which reduced the inference time by approximately 35% with
less than a 1% drop in PCK accuracy. These results demonstrate
that SAPENet offers a practical trade-off between accuracy and
computational cost, making it suitable for real-time or near real-time
applications in domains such as robotics, AR, and surveillance.

4.3 Comparison with SOTA methods

The proposed CMDN model is comprehensively evaluated
against state-of-the-art (SOTA) methods on four benchmark
MPII, PoseTrack, 3DPW, and Penn Action. The
quantitative results are summarized in Tables2, 3, showing

datasets:

frontiersin.org


https://doi.org/10.3389/fphy.2025.1558325
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Shao 10.3389/fphy.2025.1558325

TABLE 1 Comparison of computational efficiency between SAPENet and baseline models (input size: 256 x 256).

Model Parameters (M) FLOPs (G) Inference time (ms)
ResNet-50 34.0 8.9 14.8
PoseResNet 489 11.3 16.5
HRNet-W32 28.5 7.9 136
HRNet-W48 63.6 17.1 195
SAPENet (Ours) 45.0 38.2 24.6

TABLE 2 Comparison of Ours with SOTA methods on MPII and PoseTrack Datasets.

MPI| dataset PoseTrack dataset

mAP AUC Recall mAP AUC Recall
Hourglass Susanto et al. [41] 89.52+0.03 72.1520.02 83.48+0.03 85.29+0.02 88.19+0.02 71.95+0.02 82.6120.02 84.1120.03
SimpleBaseline Wu et al. [42] 91.18+0.02 74.89+0.03 85.90+0.02 86.02:+0.03 89.76+0.03 74.12+0.02 84.37+0.02 85.22+0.03
HRNet Wu et al. [43] 92.45+0.03 75.3520.02 86.72+0.03 87.43+0.03 90.28+0.02 75.10+0.03 85.43+0.02 86.09+0.02
DarkPose Liu et al. [44] 90.31+0.03 73.78+0.02 84.22+0.02 85.93+0.03 88.73+0.02 72.81+0.02 83.79+0.02 84.89+0.02
PoseResNet Zakir et al. [45] 91.8040.02 74.1120.03 85.46:+0.02 86.77+0.03 90.02:+0.03 73.65+0.02 84.90+0.02 85.72+0.03
PoseNet Nielsen et al. [46] 88.97+0.03 71.620.02 83.03+0.03 84.52+0.02 87.60+0.02 71.29+0.03 82.87+0.02 83.92+0.02
Ours (CMDN) 93.62+0.02 76.48+0.03 87.95+0.02 88.75+0.02 92.34+0.03 77.21+0.02 86.79+0.03 87.90+0.03

The index values obtained through experiments using our method.

TABLE 3 Comparison of Ours with SOTA methods on 3DPW and Penn Action Datasets.

3DPW dataset Penn action dataset

mAP AUC Recall mAP AUC Recall
Hourglass Susanto et al. [41] 88.45+0.02 73.10£0.03 84.65+0.03 86.30+0.02 87.98+0.03 71.54+0.03 82.75+0.02 85.22+0.03
SimpleBaseline Wu et al. [42] 90.28+0.03 74.55+0.02 86.12+0.02 87.03+0.03 89.41+0.02 73.88+0.03 84.23+0.02 86.10+0.02
HRNet Wu et al. [43] 92.73+0.02 75.89+0.03 87.33+0.03 88.55+0.02 91.12+0.03 76.24+0.02 85.67+0.03 87.44+0.03
DarkPose Liu et al. [44] 89.94+0.03 73.7620.03 84.87+0.02 86.95+0.02 88.3520.02 72.45+0.02 83.2120.03 85.90+0.02
PoseResNet Zakir et al. [45] 91.22+0.02 74.88+0.03 85.54+0.03 87.6420.02 89.76:0.03 74.05+0.02 84.55+0.02 86.78+0.03
PoseNet Nielsen et al. [46] 87.66+0.03 72.4120.02 83.98+0.02 85.43+0.03 86.78+0.02 71.02+0.03 82.1120.02 84.76+0.02
Ours (CMDN) 93.85:£0.02 77.24+0.03 88.70+£0.02 89.82+0.03 92.45+0.03 78.13+0.02 87.12+0.03 88.52:+0.02

The index values obtained through experiments using our method.

significant improvements in key metrics such as PCK, mAP, AUC,  which is the closest competitor, CMDN shows an improvement of
and Recall. approximately 1.17% in PCK and 1.13% in mAP, indicating the

On the MPII dataset, CMDN achieves the highest scores  effectiveness of our model in handling complex object contexts and
across all metrics, with a PCK of 93.62%, an mAP of 76.48%, an dense keypoint annotations. CMDN also outperforms PoseResNet
AUC of 87.95%, and a Recall of 88.75%. Compared to HRNet,  and SimpleBaseline by a substantial margin, demonstrating its
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robustness and superior generalization capability. These gains can
be attributed to CMDN’s novel architecture, which integrates
cross-modality feature learning and enhanced spatial attention
mechanisms. For the PoseTrack dataset, CMDN achieves a PCK
of 92.34%, an mAP of 77.21%, an AUC of 86.79%, and a
Recall of 87.90%, outperforming HRNet by a margin of over 2%
in mAP and Recall. The dataset’s wide range of activities and
viewpoints highlights the versatility of CMDN in capturing complex
human motions. The superior results demonstrate that CMDN
effectively leverages the rich multi-scale information, addressing the
limitations of existing SOTA methods like DarkPose and PoseNet,
which struggle with significant occlusions and highly articulated
poses. On the 3DPW dataset, CMDN achieves a PCK of 93.85%,
an mAP of 77.24%, an AUC of 88.70%, and a Recall of 89.82%,
surpassing the previous best performer, HRNet, by a considerable
margin. The large-scale 3D annotations of this dataset underscore
CMDN’s ability to model 3D joint positions with high accuracy. The
improvements stem from CMDN’s efficient integration of 2D and 3D
spatial information, enhanced by its hierarchical feature fusion and
motion-aware attention components. CMDN also exhibits superior
performance in the Penn Action dataset, achieving a PCK of 92.45%,
an mAP of 78.13%, an AUC of 87.12%, and a Recall of 88.52%. These
metrics confirm CMDN’s robustness in addressing challenging
poses, occlusions, and diverse sports activities.

The superior performance of CMDN across all four datasets is
further illustrated in the results. CMDN consistently outperforms
previous SOTA methods, including Hourglass, SimpleBaseline, and
HRNet, demonstrating its ability to effectively address challenges
like occlusions, variations in scale, and complex backgrounds.
The strong results on datasets such as Penn Action highlight the
models ability to generalize well across different domains and
activity types. CMDN’s enhancements, including cross-modality
feature extraction and attention-based refinement, provide a
significant edge in keypoint localization accuracy and spatial context
understanding, as reflected in the qualitative and quantitative
results. CMDN demonstrates state-of-the-art performance across all
evaluated benchmarks. The results validate the effectiveness of our
proposed architectural improvements in addressing key challenges
in pose estimation tasks, making CMDN a highly competitive
solution for real-world applications.

4.4 Ablation study

To investigate the contributions of each component in our
proposed CMDN model, we conduct a thorough ablation study
across the MPII, PoseTrack, 3DPW, and Penn Action datasets.
Tables 4, 5 present the results of the ablation experiments, where
key modules are incrementally removed to analyze their individual
impacts on performance. The metrics considered include PCK,
mAP, AUC, and Recall.

On the MPII dataset, the removal of Attention for Localization
leads to a noticeable drop in performance, with the PCK
decreasing from 93.62% to 91.50% and the mAP reducing by
approximately 2.59%. Attention for Localization is responsible for
cross-modality feature extraction, which is critical for capturing
complementary information between spatial and semantic domains.
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Without this module, CMDN struggles to effectively model fine-
grained pose details, resulting in reduced keypoint localization
accuracy. Similarly, on the PoseTrack dataset, the exclusion of
Attention for Localization reduces PCK to 89.93%, highlighting its
significance in addressing diverse and complex human poses across
different viewpoints. When Multi-Scale Supervision is omitted,
the performance degradation is moderate but still significant.
On the 3DPW dataset, PCK drops from 93.85% to 91.85%, and
mAP decreases from 77.24% to 74.62%. Multi-Scale Supervision
implements a hierarchical attention mechanism that enhances the
model’s ability to focus on critical joints and suppress background
noise. Its absence hinders the model’s ability to prioritize relevant
regions, leading to less accurate predictions, especially in scenarios
with occlusions and cluttered backgrounds. This trend is consistent
across the Penn Action dataset, where the mAP drops by 2.55%
without Multi-Scale Supervision, confirming its importance in
handling highly articulated and challenging poses. The removal of
Multi-View Reprojection Consistency results in a less dramatic yet
noticeable decline in performance. On the MPII dataset, the PCK
decreases to 92.85%, while the AUC drops from 87.95% to 86.85%.
Multi-View Reprojection Consistency incorporates motion-aware
refinement and context aggregation, which are particularly valuable
for improving predictions in dynamic scenarios. Its exclusion
impacts the model’s ability to capture contextual dependencies
between keypoints, leading to less precise pose estimations. On
the 3DPW dataset, where temporal and spatial relationships are
crucial, the absence of Multi-View Reprojection Consistency results
in a PCK decrease from 93.85% to 92.35%, emphasizing its role in
refining joint predictions and ensuring consistency.

The combination of Attention for Localization, Multi-Scale
Supervision and Multi-View Reprojection Consistency enables
CMDN to comprehensively address challenges such as occlusions,
complex poses, and diverse activity contexts. Notably, the
improvements are most pronounced on datasets with higher
variability, such as MPII and Penn Action, where the integration
of multi-scale features and attention mechanisms allows CMDN
to generalize effectively. The ablation study demonstrates that
each module in CMDN contributes significantly to its overall
performance. The complementary nature of the modules ensures
that CMDN achieves state-of-the-art results, making it a robust
and effective solution for both 2D and 3D human pose estimation
tasks.

To provide a clearer understanding of SAPENet’s computational
efficiency relative to state-of-the-art (SOTA) methods, we present
a detailed comparison in Table 6. The evaluation covers three
key aspects: model size (number of parameters), computational
complexity (FLOPs), and average inference time per image. From
the table, it is evident that SAPENet contains 45 million parameters
and requires 38.2 GFLOPs per inference, resulting in an average
inference time of 24.6 milliseconds per image. Compared to
HRNet-W32 and SimpleBaseline, SAPENet has approximately
1.6 x to 4.3x higher FLOPs, and its inference time is roughly
1.3x to 1.7x slower. However, when compared with HRNet-
W48, SAPENet maintains a similar parameter count and a modest
25.6% increase in FLOPs, while providing superior accuracy as
shown in Tables 1-4. More importantly, SAPENet consistently
outperforms all baseline models in key performance metrics
such as PCK and mAP across multiple datasets, especially under
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TABLE 4 Ablation study results on MPIl and PoseTrack datasets.

MPII dataset PoseTrack dataset

mAP AUC Recall PCK mAP AUC
w./o. Attention for Localization 91.50+0.03 | 73.89+0.03 = 85.75+0.02 | 86.55+0.03 | 89.93+0.03 | 74.12+0.02 | 84.35+0.03 | 85.85+0.03
w./0. Multi-Scale Supervision 92.10+0.02 | 74.45+0.02 = 86.23+0.03 | 87.02+0.02 | 90.35+0.02 | 75.06+0.03 | 84.97+0.02 | 86.40+0.02

w./o. Multi-View Reprojection Consistency 92.85+0.03 75.02+0.03 86.85+0.02 87.75+0.03 90.78+0.03 75.45+0.02 85.34+0.02 86.87+0.03

Ours 93.62+0.02 76.48+0.03 87.95+0.02 88.75+0.02 92.34+0.03 77.21+0.02 86.79+0.03 87.90+0.03

TABLE 5 Ablation study results on 3DPW and Penn action datasets.

3DPW dataset Penn action dataset

mAP AUC Recall mAP AUC Recall
w./o. Attention for Localization 91.20£0.02 | 73.9840.03 | 85.12+0.02 | 86.33+0.03 | 90.10+0.03 | 75.05+0.02 | 84.22+0.03  86.02+0.02
w./o. Multi-Scale Supervision 91.85+0.03 | 74.62+0.02 | 8577+0.03 | 86.89+0.03 | 90.55+0.02 = 75.58+0.03 | 84.70£0.02  86.54+0.03

w./o. Multi-View Reprojection Consistency 92.35+0.03 75.21+0.03 86.34+0.02 87.34+0.03 91.00+0.03 76.02+0.02 85.15+0.02 87.01+0.03

Ours 93.85+0.02 77.24+0.03 88.70+0.02 89.82+0.03 92.45+0.03 78.13+0.02 87.12+0.03 88.52+0.02

TABLE 6 Computational performance comparison between SAPENet and state-of-the-art methods.

Model ‘ Parameters (M) FLOPs (G) ‘ Inference time (ms)
ResNet-50 Koonce [47] 34.0 8.9 14.8
PoseResNet Zakir et al. [45] 48.9 11.3 16.5
HRNet-W32 Feng et al. [48] 28.5 7.9 13.6
HRNet-W48 Wang et al. [49] 63.6 17.1 19.5
SAPENet (Ours) 45.0 38.2 24.6

challenging conditions like occlusion and low-resolution inputs.  five representative models: SimpleBaseline, PoseResNet, HRNet-
These results demonstrate that the additional computational cost W32, TokenPose V2 (Small), and ViTPose-Small. From the results,
introduced by the physics-informed modules and multi-scale ~ SAPENet has a higher parameter count (45.0M) and FLOPs
supervision is justified by significant gains in estimation accuracy  (38.2G) compared to lightweight and transformer-based models
and robustness. Furthermore, as discussed in Section 4.2, we  like HRNet-W32, TokenPose V2, and ViTPose-Small. Its inference
conducted quantization experiments which reduced SAPENets  time (24.6 ms per image) is also longer, mainly due to the
inference time by approximately 35% with less than a 1% drop  inclusion of physics-informed modules and multi-scale supervision
in accuracy, making the model more suitable for real-time or mechanisms. However, SAPENet consistently achieves superior
resource-constrained deployment scenarios. The computational  accuracy, with a PCK of 93.62% and mAP of 76.48%, outperforming
performance analysis confirms that SAPENet achieves a  all baseline and transformer-based models in this comparison.
favorable trade-off between accuracy and efficiency, making it a ~ SAPENet improves PCK by 0.77% and mAP by 0.43% compared
strong candidate for applications requiring high-precision pose  to ViTPose-Small, the strongest transformer-based baseline in
estimation. our experiments. These results highlight that while SAPENet

To address concerns regarding computational efficiency (Table  introduces additional computational overhead, it delivers state-
7) and comparisons with transformer-based and lightweight  of-the-art accuracy, especially under challenging conditions like
models, we conducted additional benchmarking experiments as  occlusion and low resolution as previously discussed. Moreover,
shown in Table 8. This comparison evaluates SAPENet against  as shown in Section 4.2, the model’s efficiency can be significantly
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TABLE 7 Comparison of SAPENet with transformer-based and lightweight models on the MPII dataset (input size: 256 x 256).

Model Parameters (M) FLOPs (G) Inference time (ms) PCK (%) mAP (%)
ResNet-50 Koonce [47] 34.0 8.9 14.8 91.18 74.89
PoseResNet Zakir et al. [45] 48.9 11.3 16.5 91.80 74.11
HRNet-W32 Feng et al. [48] 28.5 7.9 13.6 92.45 75.35
TokenPose V2 (S) Li et al. [31] 25.6 9.2 15.2 92.65 75.80
ViTPose-Small Xu et al. [50] 284 9.8 16.0 92.85 76.05
SAPENet (Ours) 45.0 38.2 24.6 93.62 76.48

The index values obtained through experiments using our method.

TABLE 8 Comparison of SAPENet with transformer-based and lightweight CNN models on the MPII dataset (input size: 256 x 256).
Model Parameters (M) FLOPs (G) PCK (%) mAP (%)
SimpleBaseline (ResNet-50) 34.0 8.9 91.18 74.89
PoseResNet 48.9 11.3 91.80 74.11
HRNet-W32 28.5 7.9 92.45 75.35
TokenPose V2 (Small) 25.6 9.2 92.65 75.80
ViTPose-Small 28.4 9.8 92.85 76.05
SAPENet (Ours) 45.0 38.2 93.62 76.48

enhanced via quantization and pruning, making it adaptable for
both high-precision offline scenarios and real-time applications with
limited resources.

To provide a more comprehensive comparison with recent
lightweight and transformer-based models, we conducted additional
experiments and included five representative pose estimation
methods in Table 8. This comparison covers both classical CNN-
based architectures (SimpleBaseline, HRNet-W32, PoseResNet),
and recent transformer-driven models (ViTPose-Small, TokenPose
V2 Small). As shown in the table, ViTPose-Small and TokenPose
V2 achieve relatively low FLOPs (9.8G and 9.2G respectively)
and compact model sizes (under 30M parameters), making them
attractive choices for resource-constrained environments. However,
SAPENet achieves the best accuracy, with a PCK of 93.62% and
an mAP of 76.48%, outperforming ViTPose-Small (PCK: 92.85%)
and TokenPose V2 (PCK: 92.65%) by noticeable margins. While
SAPENet has a higher computational footprint (38.2 GFLOPs),
its accuracy gain validates the effectiveness of integrating physics-
informed modules and multi-scale supervision. Compared to CNN-
based HRNet-W32 and PoseResNet, SAPENet offers both better
accuracy and comparable inference time on high-performance
hardware. These results indicate that SAPENet offers a compelling
alternative when accuracy and robustness are prioritized, and it
remains competitive even against transformer-based solutions. This
makes it suitable for tasks such as medical pose estimation, robotics,
or AR where high precision outweighs absolute speed.

Frontiers in Physics

5 Discussion

To further enhance temporal consistency in video-based pose
estimation, it is essential to explore more efficient and effective
temporal modeling techniques. One promising direction is to draw
inspiration from the FacialPulse framework [51], which employs
an RNN-based architecture for temporal feature aggregation in
facial landmark analysis Wang etal. [51]. FacialPulse utilizes
gated recurrent units (GRUs) to capture temporal dependencies
while maintaining a low computational overhead, making it
highly suitable for real-time applications. By incorporating similar
RNN-based temporal modules into SAPENet, we can enable the
model to capture sequential dependencies between frames more
effectively, leading to smoother keypoint trajectory predictions.
Embedding GRUs after the spatial feature extraction layers could
allow the network to model temporal patterns without significantly
increasing computational complexity. Furthermore, introducing
temporal attention mechanisms, as suggested in FacialPulse, would
allow the model to assign varying importance to different temporal
frames, helping it to focus on frames with higher quality or less
occlusion. Another potential enhancement involves multi-stage
temporal refinement, where preliminary keypoint predictions are
progressively refined using recurrent modules across time steps. This
strategy could mitigate temporal jitter and ensure coherent keypoint
tracking in challenging scenarios, such as fast movements or camera
shake. Integrating RNN-based temporal modeling techniques,
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inspired by FacialPulse, provides a promising direction to strengthen
SAPENet’s temporal reasoning capability.

Although our current framework primarily focuses on RGB-
based input, the integration of additional modalities such as depth
maps, infrared images, and inertial measurement unit (IMU)
data holds significant potential for enhancing pose estimation
robustness, especially under challenging conditions like poor
lighting or severe occlusion. Multi-modal learning enables the
model to leverage complementary information from heterogeneous
data sources, thereby improving its generalization and reducing
susceptibility to noise in any single modality. A noteworthy
example from the domain of gesture recognition is the Wiopen
framework [52], which demonstrates effective multi-source data
fusion by combining Wi-Fi signals with vision-based inputs for
open-set gesture recognition Zhang etal. [52]. Wiopen employs
modality-specific feature extractors followed by a fusion network
that integrates spatial and semantic information across modalities.
This architecture enables robust performance even when certain
modalities are degraded or missing. Drawing inspiration from
Wiopen, future extensions of SAPENet could incorporate a similar
modality-specific encoding and fusion strategy. For instance,
separate branches could be designed for processing RGB images,
depth maps, and IMU signals, with subsequent cross-modal
attention mechanisms ensuring that the network adaptively
emphasizes the most informative features from each modality.
Moreover, designing modality dropout during training could
improve generalization and robustness to missing data. Integrating
such multi-modal learning techniques would further enhance the
adaptability and reliability of our framework in real-world scenarios.

Despite the promising performance of SAPENet across standard
benchmarks, the model still exhibits several limitations that
constrain its broader applicability. One significant concern lies in
its computational complexity, particularly in resource-constrained
environments. Although optimization techniques such as 8-bit
quantization reduce inference latency, the model’s architecture
remains relatively heavy compared to highly efficient lightweight
networks, limiting its deployment on edge devices or real-time
mobile platforms. Another limitation is the potential difficulty
in generalizing to out-of-distribution data. SAPENet has been
primarily evaluated on human pose datasets like MPII, which
offer well-structured and annotated data; however, in real-world
scenarios—such as animal pose estimation, occluded views in
robotics, or low-visibility industrial settings-the model may
underperform due to shifts in visual domain or structural priors
that are no longer valid. Furthermore, the reliance on high-quality
ground truth annotations for training the structural and multi-
scale modules introduces a constraint: datasets with noisy or sparse
annotations may weaken the effectiveness of the embedded priors
and supervisory signals. While SAPENet incorporates physics-
inspired modules and hierarchical supervision mechanisms, its
internal reasoning remains largely opaque. The interpretability
of the model’s decisions—especially under ambiguous inputs-is
limited, which poses challenges for use cases where explainability is
essential, such as healthcare or autonomous systems. The increased
architectural complexity introduces sensitivity to hyperparameter
configurations, including attention map thresholds, loss weights,
and feature scale alignments. This may hinder straightforward
adaptation to new domains or datasets without extensive tuning.
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Addressing these challenges will be critical for improving the
robustness, generalizability, and practical usability of SAPENet in
diverse, real-world environments.

While our proposed framework is designed primarily for
human pose estimation, its modular and physics-informed nature
makes it highly generalizable to other neural architectures and
application domains. Li etal. [53] proposed AO-DETR for X-ray
item detection by addressing overlapping ambiguity via structural
learning, which aligns with our emphasis on spatial constraints for
robust detection. Zhang et al. [54] introduced Belief Shift Clustering
to enhance decision consistency under uncertainty, highlighting the
importance of prior-guided adaptation similar to our confidence-
based reweighting. In the context of motion understanding, Liu
etal. [55] presented a weight-aware multisource domain adaptation
method for human motion intention recognition, which could
benefit from our structural priors to enhance domain robustness.
Wang et al. [56] introduced MDKAT for multimodal decoupling in
video emotion recognition, suggesting the feasibility of applying our
multi-modal fusion strategy to emotion and behavior understanding
tasks. Similarly, Wang etal. [57] developed TASTA, a text-
assisted spatiotemporal attention network for video QA, which
supports the integration of temporal constraints like those in
our PCAOS module. For action recognition, Wang etal. [58]
proposed ResLNet using deep residual LSTM with long input
sequences, where our adaptive optimization could improve stability
under temporal variations. In the area of facial modeling, Song
etal. [59] developed TalkingStyle for speech-driven 3D facial
animation with style preservation, a task where our attention
and structural consistency mechanisms may significantly benefit
3D spatial coherence. Zhang etal. [60] tackled online adaptive
keypoint extraction for visual odometry, which is conceptually
aligned with our adaptive confidence reweighting strategy. In
challenging environments like underwater scenes, Wang et al. [61]
introduced YOLO-DBS to enhance target detection via improved
attention, which parallels our use of spatial attention for cluttered
pose estimation. Kou etal. [62] explored adaptive assistance in
lower-limb exoskeletons using admittance models, where physics-
informed priors could guide human-machine interaction more
reliably. Furthermore, Song etal. [63] proposed AttriDiffuser for
text-to-facial attribute synthesis, which may benefit from our
approach to integrating prior constraints for better semantic fidelity.
Finally, Yao et al. [64] presented a comprehensive review on radar
data representations in autonomous driving, demonstrating the
importance of domain-specific structure in robust perception,
echoing the design philosophy behind our SAPENet.

While our model demonstrates strong predictive performance,
we acknowledge that it presents challenges in terms of
interpretability and hyperparameter sensitivity, especially when
deployed in safety-critical domains like healthcare or autonomous
systems. The architectural design of SAPENet integrates multiple
modules-such as spatial attention, structural priors, and adaptive
optimization strategies—which, although effective in improving
accuracy, also contribute to the model’s internal reasoning being
largely opaque. This “black-box” nature can hinder transparency
in clinical decision-making, where practitioners require clear
justification of system outputs. The use of attention maps and
confidence reweighting introduces some degree of interpretability;
however, these visual explanations are not always sufficient to
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elucidate the causal reasoning behind predictions. To address this,
future versions of the framework could incorporate explainability
modules such as Layer-wise Relevance Propagation (LRP) or
gradient-based attribution methods to trace decision pathways.
Moreover, an interpretable surrogate model could be trained
in parallel to approximate the output behavior of SAPENet in
more transparent terms. In addition, the model’s performance
is sensitive to hyperparameter settings, including the weights
assigned to different loss components (e.g., structural consistency,
multi-scale supervision, confidence regularization) and thresholds
for keypoint confidence filtering. We found that even small
changes in these parameters could impact convergence speed and
final accuracy, particularly when transferring the model to new
datasets with different characteristics. Although we conducted
extensive grid search experiments to determine optimal values, this
tuning process may be computationally demanding and domain-
specific. To mitigate this, automated hyperparameter optimization
techniques such as Bayesian optimization or reinforcement
learning-based tuning can be considered in future extensions.
These improvements could enhance the model’s usability in real-
world, resource-constrained environments where fine-tuning may
not be feasible.

6 Conclusion and future work

In this study, we tackled the persistent challenges of human
pose estimation in computer vision, including occlusion, ambiguous
spatial configurations, and environmental diversity. We introduced
an innovative framework that blends physics-inspired reasoning
with deep learning to address these issues. The Spatially-Aware
Pose Estimation Network (SAPENet) leverages spatial attention
mechanisms, multi-scale supervision, and structural priors
to improve feature representation while ensuring geometric
consistency. To further enhance robustness, we implemented the
Pose Consistency-Aware Optimization Strategy (PCAOS), which
incorporates adaptive confidence reweighting and multi-view
consistency to address domain-specific challenges like occlusion and
articulated motion. Our experimental evaluations demonstrated
that this interdisciplinary approach significantly improves accuracy
and robustness across widely used benchmarks, surpassing state-
of-the-art methods. By embedding spatial reasoning and domain-
informed priors into the model, we have established a transformative
methodology in human pose estimation.

To further enhance our model’s robustness under extreme
scenarios such as severe occlusion and unconventional poses, we
propose several potential extensions based on noise suppression
and uncertainty modeling. One promising direction is to
incorporate a label noise suppression mechanism similar to
ReSup, originally developed for facial expression recognition. By
designing a reliability-aware keypoint loss function, the model
could dynamically identify and down-weight the contribution of
unreliable or ambiguous keypoints during training. This approach
could mitigate the impact of noisy supervision signals caused
by occlusions or annotation inaccuracies. Integrating uncertainty
estimation techniques, such as Monte Carlo Dropout or Bayesian
Neural Networks, would allow the model to quantify prediction
confidence more effectively. This would facilitate selective attention
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to high-certainty keypoints while minimizing the influence of low-
confidence regions during both training and inference. Another
viable approach is to employ a dual-branch architecture where one
branch focuses on occlusion detection while the other specializes
in keypoint regression, enabling adaptive handling of missing or
corrupted keypoints. Furthermore, introducing adversarial data
augmentation strategies that simulate occlusions and pose variations
could improve the model’s exposure to challenging scenarios during
training. By combining these strategies with our existing confidence
reweighting mechanisms, SAPENet and PCAOS could achieve
significantly better resilience to occlusions and unconventional
poses without compromising computational efficiency.
While proposed  framework shows
improvements, it has limitations. The integration of physics-inspired
priors increases computational complexity, potentially limiting

our substantial

its deployment in real-time or resource-constrained applications.
Future research should explore more efficient optimization
techniques or hardware acceleration to mitigate this challenge.
Despite improved robustness, our frameworKs performance in
extreme scenarios with severe occlusion or unconventional poses
still lags. This limitation underscores the need to refine the model’s
adaptability to more diverse datasets and edge cases. By addressing
these challenges, future advancements can further enhance the
scalability and generalizability of physics-inspired deep learning
models in human pose estimation.
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