

OPEN ACCESS

EDITED AND REVIEWED BY

Massimo Nabissi,
University of Camerino, Italy

*CORRESPONDENCE

Lirit N. Franks,
✉ lirit.franks@hsc.utah.edu

RECEIVED 25 November 2025

REVISED 15 January 2026

ACCEPTED 16 January 2026

PUBLISHED 27 January 2026

CITATION

Franks LN, Raup-Konsavage W and Fonseca BM (2026) Editorial: The role of cannabinoids and the endocannabinoid system in anti-cancer therapy.

Front. Pharmacol. 17:1754350.

doi: 10.3389/fphar.2026.1754350

COPYRIGHT

© 2026 Franks, Raup-Konsavage and Fonseca. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: The role of cannabinoids and the endocannabinoid system in anti-cancer therapy

Lirit N. Franks^{1*}, Wesley Raup-Konsavage² and Bruno M. Fonseca³

¹Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States, ²Department of Neuroscience and Experimental Therapeutics, The Pennsylvania State University College of Medicine, Hershey, PA, United States, ³Applied Molecular Biosciences Unit (UCIBIO) and Associate Laboratory i4HB, Biochemistry Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal

KEYWORDS

anti-tumor mechanisms, cancer therapy, cannabinoids, chemotherapy synergy, endocannabinoid system, palliative care

Editorial on the Research Topic

The role of cannabinoids and the endocannabinoid system in anti-cancer therapy

Cancer is an increasing global health problem with a rising 2.3 fold incidence over the last 30 years and, currently, 1 in 5 people will develop cancer in their lifetime. (Zhu et al., 2025; Bray et al., 2024). Due to the variability in effectiveness of traditional treatments, there is a perpetual need to find new or improved therapies. Many patients turn to holistic and plant medicine to improve their quality of life and in hope of increasing the success of traditional chemotherapeutics. (Aycil and Karaca, 2025). Among plant medicines, one of the most common is the use of cannabis. (Martin et al., 2025; Hardy et al., 2025). Many patients use cannabis for palliative care, symptom management or to combat adverse reactions from cancer treatments. (Hardy et al., 2025). There are a few cannabinoid medications currently approved by drug agencies to help manage adverse effects caused by cancer chemotherapy. Synthetic Δ^9 -THC (dronabinol) and a synthetic analogue, nabilone, are approved for the treatment of nausea, vomiting, and lack of appetite in the United States and most of Europe. (Health Information, 2025). Cannabis-based medicinal products are now officially approved in several countries, including Portugal, Germany, and Italy, for the management of cancer-related symptoms such as pain, nausea and cachexia (Correa and Tucci, 2025).

Some patients, however, hope to battle the tumor itself using cannabis or cannabinoids, and there is some pre-clinical evidence for this intent. In many cancers, there is a dysregulation of phytocannabinoid receptors, including the CB₁ and CB₂ receptors and GPR55. (Perez-Gomez et al., 2015; Song et al., 2023; Shoeib et al., 2021; Wnorowski et al., 2021). Targeting these receptors and/or altering endocannabinoids has shown promise in pre-clinical trials. (Velasco et al., 2012; Lee et al., 2022; Elbaz et al., 2017; Oh et al., 2013). Some cannabinoids have been found to inhibit tumor progression or induce apoptosis in various cancer cell lines. (Cianchi et al., 2008; Fonseca et al., 2018; Patsos et al., 2010;

Sarfaraz et al., 2006). Other studies suggest that cannabinoids exhibit anti-angiogenic properties, disrupt signaling pathways that promote tumor proliferation thus impeding tumor progression, or modulate the immune system to foster an anti-tumor response. (Elbaz et al., 2017; Ramer et al., 2022; Casanova et al., 2003; Kogan et al., 2006; Pisanti et al., 2011; Portella et al., 2003; Ravi et al., 2016; Braile et al., 2021; Dada et al., 2022). There is also evidence that cannabinoids in conjunction with chemotherapeutics can provide improved therapy outcomes in humans, particularly with glioblastoma. (Kyriakou et al., 2021; Bhaskaran et al., 2024). Alternatively, there are studies that suggest that cannabinoids can promote cancer proliferation and could be contraindicated for certain cancers or interfere with existing therapies. (Li et al., 2021; Hasenoehrl et al., 2018; Hu et al., 2011; Martinez-Martinez et al., 2016).

Cannabis use is common among cancer patients and, due to the heterogeneity of cancers and cannabis products being used, there is inconclusive evidence on how cannabis can help or hurt. The aim or our Topic was to highlight recent research on the role of cannabis, cannabinoids, or the endocannabinoid system with regards to treating cancer.

To understand the larger picture of publication frequency and topics for cannabinoids/endocannabinoid system and cancer, Tan et al. conducted a bibliometric analysis of the current literature. They found that from 1995–2024, 3,052 publications were identified using the Web of Science Core Research Topic database spanning manuscripts from 86 countries and 3,362 institutions. The majority of publications on the topic were published after 2021. While most the top 100 publishing institutions were in the United States, cannabis and cancer research was most frequently done in Italy and Spain, with those countries hosting researchers that have published on the topic most frequently. The authors analyzed frequent keywords and revealed several “hotspots” including treatment for cancer-symptoms, (particularly nausea, vomiting, and pain) and the growing evidence for anti-tumor effects of cannabinoid (mostly Δ^9 -THC and CBD).

An overview of the therapeutic potential of the endocannabinoid system in cancer treatment is presented in a mini-review by Salum et al. The authors explain the endocannabinoid system, how it regulates physiological processes, and how these can potentially contribute to anticancer effects. This is followed by a summary of global impact of cancer, overview of carcinogenesis, and how the endocannabinoid system could interconnect. Specific studies of cannabinoids that suggest anti-tumor effects, including inhibition of tumor growth, cytotoxic effects, and modulation of angiogenesis, are presented. They also caution that some cannabinoids have pro-tumor effects based on context and tumor heterogeneity.

On a more granular level, Ravnik et al. explored possible molecular targets for phytocannabinoids by using an inverse molecular docking approach to search for potential protein targets, many of which are associated with cancer. Cannabinoids demonstrated protein binding similarity in two main categories 1) CBD, CBC, and CBG and 2) Δ^9 -THC and similar, including CBL-class, presenting opportunities for therapeutic benefits associated with THC but with less psychotropic effects. Two main targets were

associated with more favorable docking scores with 12 out of 14 cannabinoids tested: 1) GTPase KRas, a regulator of cell survival, differentiation and growth and which has not been historically receptive to pharmacotherapy attempts and 2) hematopoietic cell kinases, which are involved in cellular homeostasis, innate immune response, and have been linked to the onset of various cancers.

Another angle for therapeutic development of cannabinoids was approached by Vigano et al. by reviewing the evidence of cannabinoids’ ability to modulate the pharmacodynamics of immunotherapy checkpoint inhibitors. They detail the concept of immune checkpoints for inhibitor immunotherapy during cancer treatment, receptors associated with the endocannabinoid system and their interaction with the immune system. In discussing specific studies, the authors highlight that cannabinoids have been shown to inhibit T-cell mediated response in murine models. Observational studies found cannabinoid use leads to decreased time for tumor progression but minimized adverse events associated with immune therapy. The authors caution that studies to date are not uniform and need more statistical power.

Two *in vitro* studies delved into the mechanisms by which cannabinoids could affect cancer cells. Tong et al. conducted an *in vitro* study with two lines of ovarian cancer cells (SKOV3 and A2780) assessing the cytotoxicity of CBD, Δ^9 -THC, and both combined. The authors demonstrated cytotoxicity of both compounds in cancer cells lines, without harming the non-tumor IOSE cells, with ratio- and concentration-dependent synergy. The combination more effectively inhibited proliferation, impaired cellular migration, and induced apoptosis by down-regulating phosphorylation of and thus suppressing the PI3L/AKT/mTOR signaling pathway while restoring the tumor suppression function of PTEN.

Chen et al. explored the *in vitro* cytotoxic effects of natural cannabinoids and their synthetic derivatives in human ovarian cancer cells. CBD and CBN exhibited the greatest cytotoxicity with CBD showing more antiproliferative effects. The authors created fifty-six synthetic analogs of CBD and two of those showed enhanced cytotoxic effects. Both analogs contained an added piperazine moiety. At IC₅₀ concentrations, these two analogs did not show apoptotic effects but did show enhanced iron levels for ferroptosis, although mechanism of cell death still needs to be confirmed. They assessed these analogs for synergistic effects with cisplatin, and one analog enhanced the antiproliferative effects of cisplatin. This is of particular interest in developing medications for chemotherapy-resistant ovarian cancers.

In conclusion, it is evident that research about cannabinoids and the endocannabinoid affecting cancer treatment is on the rise. *In vitro* studies continue to show promise for cannabinoids to enhance treatments. Targets are expanding beyond direct cytotoxic effects to include synergistic combinations with established therapies and the exploration of novel molecular targets, supporting an integrative therapeutic role now being explored in multiple clinical trials. Continued research on how cannabinoids can assist with anti-tumor treatment both by enhancing anti-tumor treatments and improving patients’ quality of life is still essential. Encouraging evidence is steadily growing, providing strong momentum toward clinical applications.

Author contributions

LF: Writing – original draft, Writing – review and editing, Conceptualization. WR-K: Writing – review and editing, Conceptualization. BF: Writing – review and editing, Conceptualization.

Funding

The author(s) declared that financial support was not received for this work and/or its publication.

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Aycil, I., and Karaca, A. (2025). Assessment of cancer patients' attitudes toward holistic complementary and alternative medicine and factors influencing these attitudes. *Altern. Ther. Health Med.*

Bhaskaran, D., Savage, J., Patel, A., Collinson, F., Mant, R., Boele, F., et al. (2024). A randomised phase II trial of temozolamide with or without cannabinoids in patients with recurrent glioblastoma (ARISTOCRAT): protocol for a multi-centre, double-blind, placebo-controlled trial. *BMC Cancer* 24 (1), 83. doi:10.1186/s12885-023-11792-4

Braile, M., Marcella, S., Marone, G., Galdiero, M. R., Varricchi, G., and Loffredo, S. (2021). The interplay between the immune and the endocannabinoid systems in cancer. *Cells* 10 (6), 1282. doi:10.3390/cells10061282

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 74 (3), 229–263. doi:10.3322/caac.21834

Casanova, M. L., Blazquez, C., Martinez-Palacio, J., Villanueva, C., Fernández-Aceñero, M. J., Huffman, J. W., et al. (2003). Inhibition of skin tumor growth and angiogenesis *in vivo* by activation of cannabinoid receptors. *J. Clin. Invest.* 111 (1), 43–50. doi:10.1172/JCI16116

Cianchi, F., Papucci, L., Schiavone, N., Lulli, M., Magnelli, L., Vinci, M. C., et al. (2008). Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide *de novo* synthesis in colon cancer cells. *Clin. Cancer Res.* 14 (23), 7691–7700. doi:10.1158/1078-0432.CCR-08-0799

Correa, L. G., and Tucci, A. M. (2025). Impact of medical cannabis on the quality of life of cancer patients: a critical review. *J. Integr. Complement. Med.* doi:10.1177/27683605251377417

Dada, S., Ellis, S. L. S., Wood, C., Nohara, L. L., Dreier, C., Garcia, N. H., et al. (2022). Specific cannabinoids revive adaptive immunity by reversing immune evasion mechanisms in metastatic tumours. *Front. Immunol.* 13, 982082. doi:10.3389/fimmu.2022.982082

Elbaz, M., Ahirwar, D., Ravi, J., Nasser, M. W., and Ganju, R. K. (2017). Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-1/IGF-IR pathways in breast cancer. *Oncotarget* 8 (18), 29668–29678. doi:10.18632/oncotarget.9408

Fonseca, B. M., Correia-da-Silva, G., and Teixeira, N. A. (2018). Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis. *J. Physiol. Biochem.* 74 (2), 261–272. doi:10.1007/s13105-018-0611-7

Hardy, J. R., Green, R. M., Pelecanos, A. M., Huggett, G. E., Kearney, A. M., Gurgenc, T. H., et al. (2025). Medicinal cannabis for symptom control in advanced cancer: a double-blind, placebo-controlled, randomised clinical trial of 1:1 tetrahydrocannabinol and cannabidiol. *Support Care Cancer* 33 (8), 715. doi:10.1007/s00520-025-09763-5

Hasenoehrl, C., Feuersinger, D., Sturm, E. M., Bärnthaler, T., Heitzer, E., Graf, R., et al. (2018). G protein-coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. *Int. J. Cancer* 142 (1), 121–132. doi:10.1002/ijc.31030

Health Information (2025). Cannabis (Marijuana) and Cannabinoids: What You Need To Know. *Natl. Cent. Compliment. Integr. Health*. Available online at: <https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know> (Accessed November 14, 2025).

Hu, G., Ren, G., and Shi, Y. (2011). The putative cannabinoid receptor GPR55 promotes cancer cell proliferation. *Oncogene* 30 (2), 139–141. doi:10.1038/onc.2010.502

Kogan, N. M., Blazquez, C., Alvarez, L., Gallily, R., Schlesinger, M., Guzmán, M., et al. (2006). A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells. *Mol. Pharmacol.* 70 (1), 51–59. doi:10.1124/mol.105.021089

Kyriakou, I., Yarandi, N., and Polycarpou, E. (2021). Efficacy of cannabinoids against glioblastoma multiforme: a systematic review. *Phytomedicine* 88, 153533. doi:10.1016/j.phymed.2021.153533

Lee, H. S., Tamia, G., Song, H. J., Amarakoon, D., Wei, C. I., and Lee, S. H. (2022). Cannabidiol exerts anti-proliferative activity via a cannabinoid receptor 2-dependent mechanism in human colorectal cancer cells. *Int. Immunopharmacol.* 108, 108865. doi:10.1016/j.intimp.2022.108865

Li, L. T., Zhao, F. F., Jia, Z. M., Qi, L. Q., Zhang, X. Z., Zhang, L., et al. (2021). Cannabinoid receptors promote chronic intermittent hypoxia-induced breast cancer metastasis via IGF-1R/AKT/GSK-3beta. *Mol. Ther. Oncolytics* 23, 220–230. doi:10.1016/j.ymto.2021.09.007

Martin, C. D., Rivard, C., Kasza, K., Case, A. A., Hansen, E., Goniewicz, M. L., et al. (2025). Trends in cannabis use among those with and without a cancer diagnosis according to state-level cannabis policy: findings from the PATH study, waves 1–5 (2013–2019). *Support Care Cancer* 33 (7), 560. doi:10.1007/s00520-025-09617-0

Martinez-Martinez, E., Martin-Ruiz, A., Martin, P., Calvo, V., Provenco, M., and Garcia, J. M. (2016). CB2 cannabinoid receptor activation promotes colon cancer progression via AKT/GSK3beta signaling pathway. *Oncotarget* 7 (42), 68781–68791. doi:10.18632/oncotarget.11968

Oh, J. H., Lee, J. Y., Baeg, M. K., Han, K. H., Choi, M. G., and Park, J. M. (2013). Antineoplastic effect of WIN 55,212-2, a cannabinoid agonist, in a murine xenograft model of gastric cancer. *Cancer Therapy* 59 (3), 200–206. doi:10.1159/000355666

Patsos, H. A., Greenhough, A., Hicks, D. J., Al Kharusi, M., Collard, T. J., Lane, J. D., et al. (2010). The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells. *Int. J. Oncol.* 37 (1), 187–193. doi:10.3892/ijo_00000666

Perez-Gomez, E., Andrades, C., Blasco-Benito, S., Caffarel, M. M., García-Taboada, E., Villa-Morales, M., et al. (2015). Role of cannabinoid receptor CB2 in HER2 oncogenic signaling in breast cancer. *J. Natl. Cancer Inst.* 107 (6), djv077. doi:10.1093/jnci/djv077

Pisanti, S., Picardi, P., Prota, L., Proto, M. C., Laezza, C., McGuire, P. G., et al. (2011). Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. *Blood* 117 (20), 5541–5550. doi:10.1182/blood-2010-09-307355

Portella, G., Laezza, C., Laccetti, P., De Petrocellis, L., Di Marzo, V., and Bifulco, M. (2003). Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. *FASEB J.* 17 (12), 1771–1773. doi:10.1096/fj.02-1129fje

Ramer, R., Wendt, F., Wittig, F., Schäfer, M., Boeckmann, L., Emmert, S., et al. (2022). Impact of cannabinoid compounds on skin cancer. *Cancers (Basel)* 14 (7), 1769. doi:10.3390/cancers14071769

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Ravi, J., Elbaz, M., Wani, N. A., Nasser, M. W., and Ganju, R. K. (2016). Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway. *Mol. Carcinog.* 55 (12), 2063–2076. doi:10.1002/mc.22451

Sarfaraz, S., Afaq, F., Adhami, V. M., Malik, A., and Mukhtar, H. (2006). Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. *J. Biol. Chem.* 281 (51), 39480–39491. doi:10.1074/jbc.M603495200

Shoeib, A. M., Yarbrough, A. L., Ford, B. M., Franks, L. N., Urbaniak, A., Hensley, L. L., et al. (2021). Characterization of cannabinoid receptors expressed in Ewing sarcoma TC-71 and A-673 cells as potential targets for anti-cancer drug development. *Life Sci.* 285, 119993. doi:10.1016/j.lfs.2021.119993

Song, Q., Zhang, W., Shi, D., Zhang, Z., Zhao, Q., Wang, M., et al. (2023). Overexpression of cannabinoid receptor 2 is associated with human breast cancer proliferation, apoptosis, chemosensitivity and prognosis via the PI3K/Akt/mTOR signaling pathway. *Cancer Med.* 12 (12), 13538–13550. doi:10.1002/cam4.6037

Velasco, G., Sanchez, C., and Guzman, M. (2012). Towards the use of cannabinoids as antitumour agents. *Nat. Rev. Cancer* 12 (6), 436–444. doi:10.1038/nrc3247

Wnorowski, A., Wojcik, J., and Maj, M. (2021). Gene expression data mining reveals the involvement of GPR55 and its endogenous ligands in immune response, cancer, and differentiation. *Int. J. Mol. Sci.* 22 (24). doi:10.3390/ijms222413328

Zhu, L., Zhu, J., Wang, Q., Sun, X., Yuan, Y., Ding, S., et al. (2025). Global, regional, and national burden of 34 cancer groups across 204 countries and territories, 1990–2021, and projections to 2050: a systematic analysis of the global Burden of Disease Study 2021. *Front. Oncol.* 15, 1660125. doi:10.3389/fonc.2025.1660125