

## **OPEN ACCESS**

EDITED AND REVIEWED BY Bernd Rosenkranz, Fundisa African Academy of Medicines Development, South Africa

\*CORRESPONDENCE
Sean D. Lawley,

☑ lawley@math.utah.edu

RECEIVED 06 November 2025 ACCEPTED 07 November 2025 PUBLISHED 26 November 2025

#### CITATION

Lawley SD, Gibson TB and Jiao Z (2025) Editorial: Mathematical modeling of medication nonadherence. Front. Pharmacol. 16:1741041. doi: 10.3389/fphar.2025.1741041

### COPYRIGHT

© 2025 Lawley, Gibson and Jiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Editorial: Mathematical modeling of medication nonadherence

Sean D. Lawley<sup>1\*</sup>, Teresa B. Gibson<sup>2</sup> and Zheng Jiao<sup>3</sup>

<sup>1</sup>Department of Mathematics, University of Utah, Salt Lake City, UT, United States, <sup>2</sup>School of Mathematics and Statistics, Rochester Institute of Technology, Rochester, NY, United States, <sup>3</sup>Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China

KEYWORDS

adherence, nonadherence, mathematical modeling, stochastic modeling, statistical analysis, artificial intelligence

## Editorial on the Research Topic

Mathematical modeling of medication nonadherence

Medication adherence is the process by which patients take their medications as prescribed (Vrijens et al., 2012). Medication *non*adherence is an age-old problem, as even Hippocrates warned physicians to "keep a watch also on the faults of the patients, which often make them lie about the taking of things prescribed" (Potter et al., 1923). Today, medication nonadherence results in over 100,000 preventable deaths and more than \$100 billion in healthcare costs each year in the United States alone (Osterberg and Blaschke, 2005; Kini and Ho, 2018). In fact, the World Health Organization has claimed (Sabaté et al., 2003):

"Increasing the effectiveness of adherence interventions may have a far greater impact on the health of the population than any improvement in specific medical treatments."

A former United States surgeon general famously observed, "drugs do not work in patients who do not take them" Lindenfeld and Jessup, 2017).

Medication nonadherence is challenging to understand and mitigate for many reasons. For one, nonadherence can be erratic, as patients do not miss doses on neat, predictable schedules. Indeed, adherence data for an individual patient over time shows doses taken ontime, doses taken late, doses skipped, double doses, etc. (Vrijens et al., 2008). Furthermore, these seemingly stochastic, temporal fluctuations in adherence vary considerably between patients (Blaschke et al., 2012), with perhaps at least six qualitatively distinct patterns seen in different patients (Urquhart, 2002). In addition to temporal and patient heterogeneity, the physiological consequences of nonadherence can vary considerably between drugs. For example, missing a morning dose of one medication may go largely undetected by the patient or might entail a lethargic afternoon, but a missing a dose of an antiepileptic drug might cause a seizure (Pellock et al., 2004). Moreover, even within a specific drug class, some drugs maintain efficacy despite lapses in adherence (so-called "forgiving" drugs), whereas other drugs require nearly perfect adherence to be effective (Osterberg et al., 2010).

Due to this complexity, mathematical and computational approaches are emerging as powerful tools to combat medication nonadherence. For instance, stochastic analysis can leverage the science of pharmacometrics to investigate remedial dosing protocols and design regimens to mitigate nonadherence (Jun and Nekka, 2007; Chen et al., 2013; Gu et al., 2020; Counterman and Lawley, 2021; Counterman and Lawley, 2022; Dai et al., 2025; Liu et al.,

Lawley et al. 10.3389/fphar.2025.1741041

2024; Li et al., 2023; Clark and Lawley, 2022; Clark and Lawley, 2024). Furthermore, "drug forgiveness" has been quantified with a number of approaches (Urquhart, 1997; Nony et al., 2002; Boissel and Nony, 2002; Goue Gohore et al., 2010; Dartois, 2011; Lowy et al., 2011; Assawasuwannakit et al., 2015; Assawasuwannakit et al., 2016; Pellock and Brittain, 2016; Morrison et al., 2017; McAllister and Lawley, 2022; Hwai-Ray and Lawley, 2024; Cengiz et al., 2025; Tung and Lawley, 2025), which enables the identification and design of drugs which are robust to nonadherence. In effect, the mathematical equations are a laboratory to conduct experiments which would not be feasible in human trials, such as quantifying how therapeutic efficacy depends on adherence rates and patterns. In addition, methods employing artificial intelligence (AI) and sophisticated statistical approaches are being applied to swaths of adherence data to predict, detect, and ameliorate nonadherence (Babel et al., 2021; Bohlmann et al., 2021; Gibson, 2022; DeClercq and Choi, 2020; Haff et al., 2022).

This Research Topic presents five articles in this burgeoning field. Three of the articles involve AI methods. Chang et al. propose algorithms based on machine learning to predict nonadherence and suggest dynamic, personalized interventions. Xie proposes an intelligent computing framework via a hierarchical latent prior structure to support pharmacotherapy decision-making by predicting adherence patterns and clinical outcomes for individual patients. Reis et al. review 7 studies of AI-based tools designed to support patient medication use and highlight their promise for improving medication adherence. Together, these three articles highlight the promise of AI for alleviating the deleterious health effects of nonadherence. Leguizamo-Martinez et al. employ groupbased statistical methodologies to identify adherence patterns over time. These authors use prescription data on nearly 30,000 patients who initiated direct oral anticoagulant therapy to categorize adherence trajectories and quantify how various factors correlate with nonadherence. Yan et al. created and administered a questionnaire to evaluate factors influencing the adherence of asthmatic children to inhaled corticosteroids. The authors then employ a variety of statistical tests to evaluate their questionnaire and its results, and ultimately obtain quantitative estimates of how various factors affect adherence in this patient population.

The articles in this Research Topic demonstrate the significant potential of mathematical modeling and AI in tackling the heterogeneous challenge of medication nonadherence. These emerging approaches are driving a paradigm shift from static assessment toward predictive, dynamic frameworks that can mitigate nonadherent behaviors. Looking ahead, the imperative is to accelerate the translation of these computational tools from theory into clinical practice, enabling the design of more

"forgiving" pharmacotherapies and the delivery of personalized interventions. Fulfilling this potential is critical to realizing the profound impact that improved adherence interventions can have on population health, as emphasized by the World Health Organization.

# **Author contributions**

SL: Writing – review and editing, Writing – original draft. TG: Writing – review and editing. ZJ: Writing – review and editing.

# **Funding**

The authors declare that financial support was received for the research and/or publication of this article. SDL was supported by the National Science Foundation (Grant Nos. CAREER DMS-1944574 and DMS-2325258).

# Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

## Generative Al statement

The authors declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

# Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

# References

Assawasuwannakit, P., Braund, R., and Duffull, S. B. (2015). Quantification of the forgiveness of drugs to imperfect adherence. *CPT Pharmacometrics and Syst. Pharmacol.* 4 (3), e00004–e00211. doi:10.1002/psp4.4

Assawasuwannakit, P., Braund, R., and Duffull, S. B. (2016). A framework for quantifying the influence of adherence and dose individualization. *Clin. Pharmacol. and Ther.* 99 (4), 452–459. doi:10.1002/cpt.268

Babel, A., Taneja, R., Malvestiti, F. M., Monaco, A., and Donde, S. (2021). Artificial intelligence solutions to increase medication adherence in patients with non-communicable diseases. *Front. Digital Health* 3, 669869. doi:10.3389/fdgth.2021.669869

Blaschke, T. F., Osterberg, L., Vrijens, B., and Urquhart, J. (2012). Adherence to medications: insights arising from studies on the unreliable link between prescribed and actual drug dosing histories. *Annu. Rev. Pharmacol. Toxicol.* 52 (1), 275–301. doi:10. 1146/annurev-pharmtox-011711-113247

Bohlmann, A., Mostafa, J., and Kumar, M. (2021). Machine learning and medication adherence: scoping review. *JMIRx Med.* 2 (4), e26993. doi:10.2196/26993

Boissel, J.-P., and Nony, P. (2002). Using pharmacokinetic-pharmacodynamic relationships to predict the effect of poor compliance. *Clin. Pharmacokinet.* 41 (1), 1–6. doi:10.2165/00003088-200241010-00001

Cengiz, A., Wu, C. C., and Lawley, S. D. (2025). Incretin mimetics for weight loss forgive nonadherence. *Diabetes, Obes. Metabolism* 27 (8), 4109–4117. doi:10.1111/dom. 16438

Chen, C., Wright, J., Gidal, B., and Messenheimer, J. (2013). Assessing impact of real-world dosing irregularities with lamotrigine extended-release and immediate-release formulations by pharmacokinetic simulation. *Ther. Drug Monit.* 35 (2), 188–193. doi:10.1097/FTD.0b013e318281891c

Clark, E. D., and Lawley, S. D. (2022). Should patients skip late doses of medication? A pharmacokinetic perspective. *J. Pharmacokinet. Pharmacodynamics* 49 (4), 429–444. doi:10.1007/s10928-022-09812-0

Clark, E. D., and Lawley, S. D. (2024). How drug onset rate and duration of action affect drug forgiveness. *J. Pharmacokinet. Pharmacodynamics* 51 (3), 213–226. doi:10. 1007/s10928-023-09897-1

Counterman, E. D., and Lawley, S. D. (2021). What should patients do if they miss a dose of medication? A theoretical approach. *J. Pharmacokinet. Pharmacodynamics* 48, 873–892. doi:10.1007/s10928-021-09777-6

Counterman, E. D., and Lawley, S. D. (2022). Designing drug regimens that mitigate nonadherence. *Bull. Math. Biol.* 84 (1), 1–36. doi:10.1007/s11538-021-00976-3

Dai, Z.-yan, Han, Lu, Wang, J., Liu, X.-qin, Chen, R., and Jiao, Z. (2025). Once-versus twice-daily tacrolimus therapy: does improved adherence lead to better efficacy? a pharmacokinetic perspective. *J. Clin. Pharmacol.* 65, 980–987. doi:10.1002/jcph.70021

Dartois, V. (2011). Drug forgiveness and interpatient pharmacokinetic variability in tuberculosis. J. Infect. Dis. 204, 1827–1829. doi:10.1093/infdis/jir662

DeClercq, J., and Choi, L. (2020). Statistical considerations for medication adherence research. Curr. Med. Res. Opin. 36 (9), 1549–1557. doi:10.1080/03007995.2020.1793312

Gibson, T. B. (2022). A dynamic analysis of medication adherence. *J. Manag. Care and Specialty Pharm.* 28 (12), 1392–1399. doi:10.18553/jmcp.2022.28.12.1392

Goue Gohore, D., Fenneteau, F., Barrière, O., Li, J., and Nekka, F. (2010). Rational drug delineation: a global sensitivity approach based on therapeutic tolerability to deviations in execution. *Pharmacol. and Pharm.* 1 (02), 42. doi:10.4236/pp.2010.12007

Gu, J.-qin, Guo, Y.-peng, Jiao, Z., Ding, J.-jie, and Guo-Fu, Li (2020). How to handle delayed or missed doses: a population pharmacokinetic perspective. *Eur. J. Drug Metabolism Pharmacokinet*. 45 (2), 163–172. doi:10.1007/s13318-019-00598-0

Haff, N., Sequist, T. D., Gibson, T. B., Benevent, R., Sears, E. S., Chaguturu, S., et al. (2022). Association between cost-saving prescription policy changes and adherence to chronic disease medications: an observational study. *J. General Intern. Med.* 37 (3), 531–538. doi:10.1007/s11606-021-07031-w

Jun, Li, and Nekka, F. (2007). A pharmacokinetic formalism explicitly integrating the patient drug compliance. *J. Pharmacokinet. Pharmacodynamics* 34 (1), 115–139. doi:10. 1007/s10928-006-9036-v

Kini, V., and Ho, P. M. (2018). Interventions to improve medication adherence: a review. *Jama* 320 (23), 2461–2473. doi:10.1001/jama.2018.19271

Li, Z.-ran, Wang, C.-yu, Lin, W.-wei, Chen, Y.-ting, Liu, X.-qin, and Jiao, Z. (2023). Handling delayed or missed dose of antiseizure medications: a model-informed individual remedial dosing. *Neurology* 100 (9), e921–e931. doi:10.1212/WNL. 00000000000201604

Lindenfeld, J., and Jessup, M. (2017). 'Drugs don't work in patients who don't take them' (C. Everett koop, MD, US surgeon general, 1985). Eur. J. Heart Fail. 19 (11), 1412–1413. doi:10.1002/ejhf.920

Liu, X.-Q., Li, Z.-R., Wang, C.-Yu, and Jiao, Z. (2024). Handling delayed or missed direct oral anticoagulant doses: model-informed individual remedial dosing. *Blood Adv.* 8 (22), 5906–5916. doi:10.1182/bloodadvances.2024013854

Lowy, A., Munk, V. C., Ong, S. H., Burnier, M., Vrijens, B., Tousset, E. P., et al. (2011). Effects on blood pressure and cardiovascular risk of variations in patients? Adherence to prescribed antihypertensive drugs: role of duration of drug action. *Int. J. Clin. Pract.* 65 (1), 41–53. doi:10.1111/j.1742-1241.2010.02569.x

Morrison, A., Stauffer, M. E., and Kaufman, A. S. (2017). Relationship between adherence rate threshold and drug 'forgiveness. *Clin. Pharmacokinet.* 56 (12), 1435–1440. doi:10.1007/s40262-017-0552-2

McAllister, N. P, and Lawley, S. D. (2022). A pharmacokinetic and pharmacodynamic analysis of drug forgiveness. *J. Pharmacokinet. Pharmacodynamics*, 1–17. doi:10.1007/s10928-022-09808-w

Nony, P., and Boissel, J.-P. (2002). Use of sensitivity functions to characterise and compare the forgiveness of drugs. *Clin. Pharmacokinet.* 41 (5), 371–380. doi:10.2165/00003088-200241050-00004

Osterberg, L., and Blaschke, T. (2005). Adherence to medication. N. Engl. J. Med. 353 (5), 487–497. doi:10.1056/NEJMra050100

Osterberg, L. G., Urquhart, J., and Blaschke, T. F. (2010). Understanding forgiveness: minding and mining the gaps between pharmacokinetics and therapeutics. *Clin. Pharmacol. and Ther.* 88 (4), 457–459. doi:10.1038/clpt.2010.171

Pellock, J. M., and Brittain, S. T. (2016). Use of computer simulations to test the concept of dose forgiveness in the era of extended-release (XR) drugs. *Epilepsy and Behav.* 55, 21–23. doi:10.1016/j.yebeh.2015.11.029

Pellock, J. M., Smith, M. C., Cloyd, J. C., Uthman, B., and Wilder, B. J. (2004). Extended-release formulations: simplifying strategies in the management of antiepileptic drug therapy. *Epilepsy and Behav.* 5 (3), 301–307. doi:10.1016/j.yebeh.2004.01.009

Potter, P., Withington, E. T., and Smith, W. D. (1923). Hippocrates: prognostic; regimen in acute diseases; the sacred disease; the art; breaths; law; decorum; physican, Vol. 2. Heinemann.

Sabaté, E. (2003). Adherence to long-term therapies: evidence for action. Geneva, Switzerland: World Health Organization.

Tung, H-R., and Lawley, S. D. (2024). Understanding and quantifying network robustness to stochastic inputs. Bull. Math. Biol. 86 (5), 55. doi:10.1007/s11538-024-01283-3

Tung, H.-R., and Lawley, S. D. (2025). How missed doses of antibiotics affect bacteria growth dynamics. Bull. Math. Biol. 87 (5), 58-21. doi:10.1007/s11538-025-01430-4

Urquhart, J. (1997). The electronic medication event monitor: lessons for pharmacotherapy. *Clin. Pharmacokinet.* 32 (5), 345–356. doi:10.2165/00003088-199732050-00001

Urquhart, J. (2002). The odds of the three nons when an aptly prescribed medicine isn't working: non-compliance, non-absorption, non-response. *Br. J. Clin. Pharmacol.* 54 (2), 212–220. doi:10.1046/j.1365-2125.2002.01629.x

Vrijens, B., Vincze, G., Kristanto, P., Urquhart, J., and Burnier, M. (2008). Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. *Bmj* 336 (7653), 1114–1117. doi:10.1136/bmj.39553.670231.25

Vrijens, B., De Geest, S., Hughes, D. A., Przemyslaw, K., Demonceau, J., Todd, R., et al. (2012). A new taxonomy for describing and defining adherence to medications. *Br. J. Clin. Pharmacol.* 73 (5), 691–705. doi:10.1111/j.1365-2125.2012.04167.x