

OPEN ACCESS

EDITED AND REVIEWED BY
Giuseppe Remuzzi,
Istituto di Ricerche Farmacologiche Mario Negri
IRCCS, Italy

*CORRESPONDENCE
Xinlei Guan,

is xinleiguan@163.com
Chengliang Zhang,
is clzhang@tjh.tjmu.edu.cn

[†]These authors share first authorship

RECEIVED 21 September 2025 ACCEPTED 02 October 2025 PUBLISHED 27 October 2025

CITATION

Gao P, Du X, Liu L, Xu H, Liu M, Guan X and Zhang C (2025) Correction: Astragaloside IV alleviates tacrolimus-induced chronic nephrotoxicity via p62-Keap1-Nrf2 pathway. *Front. Pharmacol.* 16:1710116. doi: 10.3389/fphar.2025.1710116

COPYRIGHT

© 2025 Gao, Du, Liu, Xu, Liu, Guan and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

Correction: Astragaloside IV alleviates tacrolimus-induced chronic nephrotoxicity via p62-Keap1-Nrf2 pathway

Ping Gao^{1†}, Xiaoyi Du^{2,3†}, Lili Liu⁴, Hua Xu¹, Maochang Liu¹, Xinlei Guan^{5*} and Chengliang Zhang^{6*}

¹Department of Clinical Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ²Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ³Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ⁴Department of Pathology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ⁵Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ⁶Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

KEYWORDS

astragaloside IV, tacrolimus, chronic nephrotoxicity, p62-Keap1-Nrf2 pathway, oxidative stress

A Correction on

Astragaloside IV alleviates tacrolimus-induced chronic nephrotoxicity via p62-Keap1-Nrf2 pathway

by Gao P, Du X, Liu L, Xu H, Liu M, Guan X and Zhang C (2021). Front. Pharmacol. 11:610102. doi: 10.3389/fphar.2020.610102

In the published article there were mistakes in Figures 3D, 6E as published. In Figure 3D, the image of Tac group (the second group) was misused. In Figure 6E, the Western blot of p62 was misused. The corrected Figures 3, 6 appear below.

The original article has been updated.

Generative AI statement

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the

Gao et al. 10.3389/fphar.2025.1710116

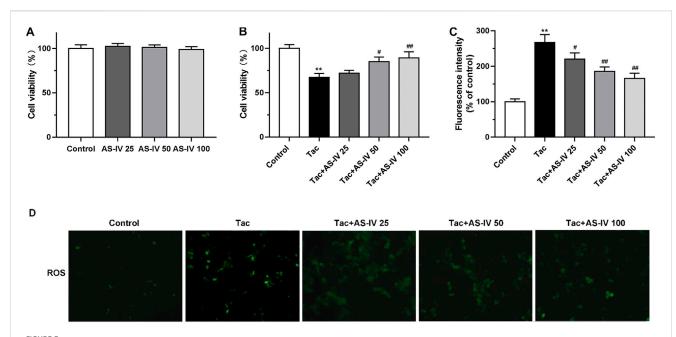
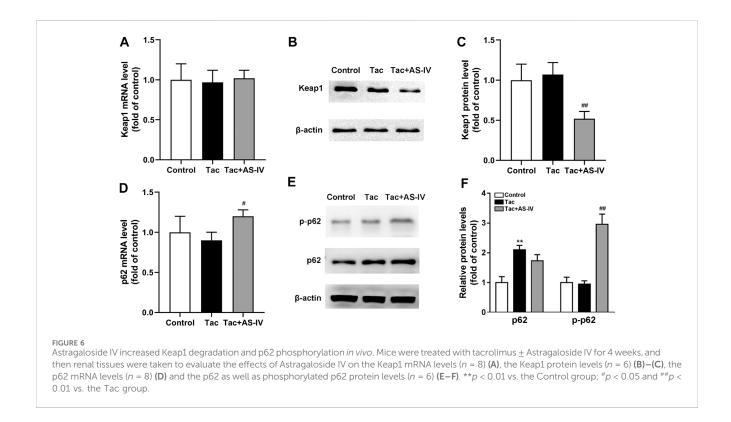



FIGURE 3
The cell protective and ROS scavenge effect of Astragaloside IV in HK-2 cells (A-B) HK-2 cells were treated with Astragaloside IV (25, 50 or $100 \mu M$) \pm tacrolimus (15 μM) for 24h, and then the cell viability was measured using Cell Counting Kit-8 assay. The results were calculated from three independent experiments (C-D) The levels of intracellular ROS were detected with 2', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. Results were calculated by the intensity of eight fields from three independent experiments. **p < 0.01 vs. the Control group; *p < 0.05 and **p < 0.01 vs. the Tac group.

reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.