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Chronic liver diseases (CLDs), encompassing a spectrum of etiologies including
metabolic dysfunction, alcohol abuse, and viral infections, represent a significant
global health burden. The progression of these diseases to fibrosis, cirrhosis, and
hepatocellular carcinoma is underpinned by complex immunological
mechanisms in which liver-resident macrophages (LRMs) are central players.
LRMs are not a monolithic population but a heterogeneous consortium of cells,
primarily comprising embryonically-derived, self-renewing Kupffer cells and
dynamically recruited monocyte-derived macrophages. These subsets, along
with newly identified populations like lipid-associated macrophages and scar-
associated macrophages, exhibit distinct origins, phenotypes, and functions that
profoundly influence the trajectory of liver injury and repair. A new generation of
immunomodulatory therapies is being developed to specifically target the
pathways that govern LRM function. However, clinical responses to these
agents have been variable, a phenomenon largely attributable to their
differential effects on the diverse LRM subsets and the profound
heterogeneity of the patient population. This review elucidates the complex
heterogeneity of LRMs in the context of different CLDs. We dissect the
mechanisms by which emerging immunomodulatory therapies—including
PPAR agonists, chemokine receptor antagonists, and intracellular signaling
inhibitors—alter the balance, phenotype, and functional output of distinct LRM
populations. By integrating findings from preclinical models with outcomes from
recent clinical trials, we illustrate how the specific modulation of LRM subsets
correlates with therapeutic efficacy or failure. Furthermore, we discuss the critical
role of LRMs in the progression to hepatocellular carcinoma and the implications
for immune checkpoint inhibitor therapies. Finally, we outline the key challenges
in translating these findings into clinical practice and highlight future research
priorities, emphasizing the need for single-cell technologies, investigation of the
gut-liver axis, and development of combination therapies. A deeper
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understanding of LRM biology is paramount to advancing a precision medicine
approach, ultimately paving the way for more effective and personalized
treatments for patients with CLD.
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1 Introduction

The therapeutic paradigm for chronic liver diseases (CLDs),
such as metabolic dysfunction-associated steatohepatitis (MASH),
alcohol-associated liver disease (ALD), and viral hepatitis, is
undergoing a profound transformation. Historically, treatment
was largely confined to managing primary causes or addressing
end-stage complications. The contemporary approach, however, is
guided by a sophisticated understanding of the immunological
drivers of liver inflammation, fibrogenesis, and oncogenesis,
leading to the development of targeted immunomodulatory
therapies (Kamata et al., 2023; Hu et al., 2024; Gilgenkrantz
et al., 2025). These novel agents are designed to precisely
manipulate specific immune cell populations and signaling
pathways, moving beyond the limitations of broad-spectrum
immunosuppression. The therapeutic arsenal now includes a
diverse array of agents, from monoclonal antibodies targeting
immune checkpoints like programmed cell death-1/programmed
death-ligand 1 (PD-1/PD-L1) to small molecule inhibitors that
modulate key intracellular signaling cascades (Mohr et al., 2021;
Gao et al., 2022; Nathani and Bansal, 2023). However, the clinical
application of these therapies has yielded heterogeneous outcomes,
with some patients experiencing significant benefits while others
show minimal response or disease progression. This variability
highlights that CLD pathogenesis is not a monolithic process but
rather a consequence of the intricate crosstalk among diverse cell
types within the liver microenvironment (Saldarriaga et al., 2023).

Central to this intricate network are the liver-resident
macrophages (LRMs), the most abundant immune cell
population in the liver. Strategically positioned within the hepatic
sinusoids, they act as indispensable sentinels and master regulators
of homeostasis, inflammation, and repair (van der Heide et al.,
2019). In health, LRMs maintain an immunologically tolerant state,
crucial for processing gut-derived antigens without inciting undue
inflammation (Ma et al., 2024). They are vital for clearing pathogens,
cellular debris, and metabolic byproducts. With the onset of chronic
injury, their role shifts dramatically from guardians of homeostasis
to drivers of pathology (Elsherif and Alm, 2022; Guan et al., 2025).
Activated by damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs), LRMs release a
torrent of pro-inflammatory and pro-fibrotic mediators (Ma et al.,
2024). This persistent activation establishes a pathogenic feedback
loop involving hepatocyte death, inflammation, and the stimulation
of hepatic stellate cells (HSCs), which in turn drives the progressive
deposition of extracellular matrix (ECM) characteristic of fibrosis
(Guo Z. et al., 2024; Ran et al., 2025).

Crucially, the term “LRM” encompasses a functionally and
ontogenically diverse population. The two principal subsets are
the embryonically derived, self-renewing Kupffer cells (KCs) and
the dynamically recruited, bone marrow-derived monocyte-derived

macrophages (MoMφs) (van der Heide et al., 2019; Flores Molina
et al., 2022). KCs are the long-term residents, integral to the liver’s
architecture and homeostatic functions (Elsherif and Alm, 2022;
Flores Molina et al., 2022; Bennett et al., 2023). In contrast, MoMφs
are rapidly recruited from the circulation during injury, primarily
via the CCL2-CCR2 chemokine axis (Ma et al., 2024; Qian et al.,
2024). Once in the liver, they exhibit remarkable plasticity,
differentiating into functionally distinct subsets, classically
distinguished in murine models by Ly-6C expression.
Functionally, the Ly-6Chi subset predominantly executes pro-
inflammatory and pro-fibrotic programs, while the Ly-6Clo subset
is chiefly implicated in tissue repair and the resolution of fibrosis
(Elsherif and Alm, 2022; Ma et al., 2024; Ran et al., 2025). This
functional dichotomy between KCs andMoMφs, and amongMoMφ
subsets, is a cornerstone of CLD pathogenesis and a critical
consideration for therapeutic design (Bennett et al., 2023).

The central thesis of this review is that the clinical efficacy of
immunomodulatory agents in CLDs is fundamentally dependent on
their differential impact on these heterogeneous LRM populations.
Consequently, a “one-size-fits-all” approach for macrophage-
targeted therapy is unlikely to succeed given the distinct biology
of KCs versus MoMφs. A comprehensive understanding of how
specific therapies reshape the LRM landscape is essential for
advancing precision medicine in hepatology. This review will
systematically deconstruct the mechanisms by which these
interventions alter the abundance, phenotype, and function of
different LRM subsets. By integrating preclinical and clinical
evidence, we will explore how these cellular shifts correlate with
disease outcomes. Ultimately, this analysis aims to provide a
framework for developing next-generation therapeutic strategies
that can selectively target pathogenic macrophage subsets while
preserving or enhancing reparative ones, thereby heralding a new
era of personalized treatment for CLDs. Figure 1 provides a
comprehensive schematic overview of LRM heterogeneity in
health and disease, highlighting the pathogenic dynamics of
specific LRM subsets and key immunomodulatory strategies
aimed at their therapeutic targeting.

2 LRM subsets in health and disease

2.1 KCs

KCs are the archetypal tissue-resident macrophages of the liver,
defined by their unique embryonic provenance and their capacity for
self-renewal (Flores Molina et al., 2022). Originating from yolk sac
and fetal liver progenitors during development, KCs establish a
stable, long-lived population that maintains itself through in situ
proliferation, independent of replenishment from circulating bone
marrow-derived monocytes (Tacke, 2017; Bennett et al., 2023). This

Frontiers in Pharmacology frontiersin.org02

Ouyang et al. 10.3389/fphar.2025.1708240

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1708240


autonomy allows KCs to become deeply integrated into the liver’s
microarchitecture, forming a lasting cellular network that
contributes to their specialized roles in immune surveillance and
metabolic homeostasis. This developmental origin confers lasting
functional consequences, with certain core homeostatic roles being
exclusively executed by this authentic KC population and not fully
recapitulated by monocyte-derived cells that engraft the liver
following KC depletion (Blériot and Ginhoux, 2019).
Furthermore, the stable, self-renewing nature of KCs means that
epigenetic modifications or functional adaptations acquired in
response to chronic stimuli, such as a high-fat diet or alcohol,
can be perpetuated within the KC pool, establishing a form of
pathological memory that may contribute to a persistent pro-
inflammatory state even after the initial insult is removed
(Musrati et al., 2024).

By virtue of their strategic positioning within the hepatic
sinusoids, KCs form the liver’s primary line of defense, filtering
blood arriving directly from the gastrointestinal tract (Lopes et al.,
2022; Ma et al., 2024). Equipped with a broad array of pattern

recognition receptors (PRRs) like Toll-like receptors (TLRs), they
detect microbial products (PAMPs) and endogenous danger signals
(DAMPs), initiating rapid innate immune responses to control
infection (Zhou et al., 2022; Ma et al., 2023). Beyond their
defensive duties, KCs are critical for maintaining tissue
homeostasis. As highly efficient phagocytes, they clear apoptotic
cells, cellular debris, and circulating immune complexes, a process
that is actively immunoregulatory and prevents autoimmune
reactions (Guan et al., 2025). KCs also contribute directly to
tissue regeneration. Following acute liver injury, they secrete
growth factors, such as hepatocyte growth factor (HGF), which
stimulate hepatocyte proliferation and drive the restoration of liver
mass and function (Lkham-Erdene et al., 2024; Guan et al., 2025;
Zhao et al., 2025). This highlights the dual capacity of KCs to both
initiate inflammation and orchestrate its resolution and
subsequent repair.

In the setting of CLD, the homeostatic functions of KCs are
subverted (Wen et al., 2021; Yang et al., 2023). Persistent exposure to
injurious stimuli—lipotoxic metabolites in MASH, ethanol and its

FIGURE 1
Therapeutic targeting of liver-resident macrophages (LRMs) in chronic liver diseases (CLD). This schematic illustrates the pathogenic dynamics of
LRMs in CLD and outlines key immunomodulatory strategies. Left panel: Initial insults like metabolic stress or viral infection activate Kupffer cells (KCs),
making them pro-inflammatory and pro-fibrotic. Activated KCs (potentially expressing CCL2/CCR2) recruit monocyte-derived macrophages (MoMφs)
that also adopt pro-inflammatory and pro-fibrotic phenotypes. Specialized LRM subsets, such as lipid-associated macrophages (LAMs) and scar-
associated macrophages (SAMs), emerge in specific pathological contexts, contributing to liver injury and fibrotic scar formation. Right panel:
Immunomodulatory strategies. The ultimate objective of these strategies is to modulate LRM subsets to achieve fibrosis resolution and improve liver
outcomes. Abbreviations: ASK1, apoptosis signal-regulating kinase 1; BTK, Bruton’s tyrosine kinase; CCL2/CCR2, chemokine ligand 2/chemokine
receptor 2; MMPs, matrix metalloproteinases; PRRs, pattern recognition receptors; TLRs, toll-like receptors.
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byproducts in ALD, or viral components—triggers chronic KC
activation (Ma et al., 2024). This shift transforms them into pro-
inflammatory and pro-fibrotic effectors. Activated KCs are
characterized by a pro-inflammatory secretome, releasing key
mediators such as TNF-α, IL-1β, and chemokines like CCL2,
which perpetuate hepatocyte injury, recruit additional
inflammatory cells, and directly activate HSCs to produce
collagen (Gao et al., 2022; Seo et al., 2022; 2023; Jung et al.,
2024). Over time, this chronic insult can lead to KC senescence,
characterized by a pro-inflammatory secretome that further fuels the
disease process (Bai et al., 2025). In severe injury, the embryonic KC
population can become depleted and replaced by monocyte-derived
cells (Wang et al., 2021; Hirako et al., 2022). These monocyte-
derived replacements may not fully replicate the homeostatic
functions of their predecessors, creating a long-term deficit in
hepatic immune regulation that can exacerbate ongoing tissue
damage (Parthasarathy and Malhi, 2021; Su et al., 2021; Wang
et al., 2021; Guo W. et al., 2024).

2.2 MoMφs

Unlike the stable KC population, a substantial influx of MoMφs
is rapidly recruited from the bone marrow to the liver in response to
injury. This recruitment is a defining feature of hepatic
inflammation and is governed primarily by the CCL2-CCR2
chemokine axis (Ruiqi et al., 2023; Qian et al., 2024). Damaged
hepatocytes and activated KCs release CCL2, creating a potent
chemoattractant gradient that guides the migration of circulating
CCR2-expressing monocytes into the liver sinusoids (Wen et al.,
2021; Lee et al., 2022; Sauer et al., 2024). These cells then
transmigrate into the liver parenchyma, where they differentiate
into mature macrophages. The critical role of this pathway is
demonstrated by preclinical studies where genetic or
pharmacological blockade of CCR2 significantly reduces
macrophage infiltration and ameliorates liver injury and fibrosis
(Guillot and Tacke, 2023; Nathani and Bansal, 2023). Whereas this
process is essential for resolving acute insults, its unabated
persistence in chronic disease states transforms MoMφs into key
drivers of pathology (Kohlhepp et al., 2023; Sanchez Vasquez
et al., 2025).

Upon entering the hepatic parenchyma, MoMφs exhibit
remarkable functional polarization, differentiating into
functionally distinct subsets (Sayaf et al., 2023). In murine
models, these are often categorized based on the expression of
the surface marker Ly-6C (Sayaf et al., 2023; Ma et al., 2024).
The Ly-6Chi subset represents the classically activated, pro-
inflammatory macrophages. These cells constitute the initial wave
of infiltrating responders and are potent producers of inflammatory
cytokines (TNF-α, IL-1β) and reactive oxygen species (ROS) (Tada
et al., 2022; Makiuchi et al., 2023; Ma et al., 2024). In chronic disease,
their sustained presence perpetuates inflammation and they serve as
a major source of pro-fibrotic mediators like TGF-β1, which directly
activate HSCs (Li Y.-H. et al., 2021; Pan et al., 2024).

In contrast, the Ly-6Clo subset embodies an anti-inflammatory
and pro-resolving phenotype (Sayaf et al., 2023). These
macrophages are crucial for orchestrating tissue repair and the
resolution of fibrosis. They are characterized by the production

of anti-inflammatory cytokines like IL-10 and, critically, matrix
metalloproteinases (MMPs), such as MMP13, which are enzymes
that degrade the fibrotic scar (Fallowfield et al., 2007). The dynamic
transition from a pro-inflammatory Ly-6Chi state to a reparative Ly-
6Clo state is a pivotal event in the healing process. This phenotypic
switch represents a critical checkpoint that determines whether liver
injury progresses to fibrosis or resolves.

This functional dichotomy illustrates that MoMφs span the full
spectrum of the liver’s response to injury. In the initial phase, the
influx of Ly-6Chi MoMφs amplifies inflammation and initiates
fibrogenesis by activating HSCs. This sustained influx is a key
feature of progressive CLDs (Riad et al., 2023). However, these
same cells are also indispensable for healing. Upon removal of the
injurious stimulus or as the local microenvironment changes,
MoMφs can switch to a reparative Ly-6Clo phenotype. These
reparative macrophages actively dismantle the fibrotic scar by
producing MMPs and promote the clearance of activated HSCs
through apoptosis. This dual role makes MoMφs a compelling
therapeutic target. Consequently, the therapeutic goal is not
simple ablation, but rather a nuanced modulation of their
function: to block the recruitment of pathogenic Ly-6Chi cells
while simultaneously promoting the emergence and pro-resolving
functions of the Ly-6Clo subset, thereby tipping the balance from
fibrogenesis towards resolution.

2.3 LAMs and SAMs

The advent of high-resolution technologies, chief among them
single-cell RNA sequencing (scRNA-seq), has fundamentally
reshaped the conceptual framework of macrophage heterogeneity
beyond previous classifications, leading to the identification of novel
subsets linked to specific pathologies (Wang et al., 2023; Li B. et al.,
2024). In the context of MASH, a distinct population known as lipid-
associated macrophages (LAMs) has been identified (Shi S. et al.,
2025). These cells are defined by both their spatial proximity to lipid-
laden hepatocytes and a distinctive transcriptional program, which
includes high expression of the triggering receptor expressed on
myeloid cells 2 (TREM2) (Ganguly et al., 2024; Xu et al., 2025). The
abundance of TREM2+ LAMs strongly correlates with disease
severity in both human MASH and corresponding mouse models
(Ganguly et al., 2024; Shi S. et al., 2025). Analogously, another
specialized subset, designated scar-associated macrophages (SAMs),
has been described within the fibrotic niche of the liver (Fallowfield
et al., 2007; Fabre et al., 2023). SAMs, which can arise from both KCs
and MoMφs, are characterized by a gene expression profile that
reflects their integral role in tissue remodeling and fibrogenesis. The
discovery of these context-dependent macrophage populations
illustrates a core principle: the local tissue microenvironment
actively shapes macrophage identity and function.

LAMs and SAMs play distinct roles directly related to the
pathological hallmarks of MASH and fibrosis. The functional role
of TREM2+ LAMs appears to be multifaceted and context-
dependent (Ganguly et al., 2024). While their presence is
associated with disease severity, TREM2 is involved in lipid
clearance and phagocytosis of apoptotic cells, suggesting a
potentially protective role aimed at removing damaged, lipotoxic
hepatocytes (Shi S. et al., 2025). Indeed, studies in TREM2-deficient
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mice have shown exacerbated MASH, supporting a net protective
function for these cells (Ganguly et al., 2024). This suggests a
model wherein LAMs initially serve a protective function, but
that their reparative capacity becomes overwhelmed or
corrupted by the persistently lipotoxic environment, leading to
maladaptive outcomes.

SAMs, topographically situated within the dense fibrotic scar,
are pivotal regulators of ECM dynamics (Fallowfield et al., 2007;
Fabre et al., 2023). They are a major source of pro-fibrotic
mediators that sustain HSC activation. However, reflecting
macrophage plasticity, SAMs also possess the capacity for
resolution. They are a critical source of MMP13, the primary
collagenase responsible for degrading the fibrotic scar during the
resolution phase (Fallowfield et al., 2007). Therefore, the
functional balance of SAMs acts as a fulcrum, determining
whether the fibrotic scar undergoes progressive accumulation
or resolution. Targeted reprogramming of these specialized
macrophage subsets—shifting them from a pathogenic to a
reparative state—thus represents a promising therapeutic
frontier for treating advanced liver disease.

3 Therapeutic interventions
targeting LRMs

3.1 Modulating macrophage polarization:
the M1/M2 axis

Peroxisome proliferator-activated receptors (PPARs) are
nuclear hormone receptors that function as pivotal
transcriptional regulators of metabolism and inflammation
(Kazankov et al., 2019; Feng et al., 2021). Agonists of these
receptors have emerged as leading therapeutic candidates for
MASH, principally through their capacity to modulate
macrophage polarization. PPAR agonists, particularly those
targeting PPAR-γ and PPAR-δ, directly influence macrophage
function by skewing macrophage polarization from a pro-
inflammatory M1 phenotype toward an anti-inflammatory,
tissue-reparative M2 phenotype (Luo et al., 2017; Kazankov et al.,
2019; Yang et al., 2025). This is mechanistically accomplished by
inhibiting the activity of pro-inflammatory transcription factors like
NF-κB while simultaneously upregulating genes characteristic of
M2 macrophages, such as the mannose receptor (MR) and arginase
1 (Arg1). This reprogramming of KCs and other LRMs is crucial for
attenuating the chronic inflammation that drives MASH
progression (Ma et al., 2024).

The clinical development of PPAR agonists has yielded mixed
but informative results. Pioglitazone (PPAR-γ) has demonstrated
efficacy in improving steatosis and inflammation, though its
impact on fibrosis is less consistent (Jacques et al., 2021; Cho
et al., 2023; Mazhar et al., 2023; Inia et al., 2025). Elafibranor
(PPAR-α/δ) showed promise in a Phase II trial but failed to meet
its primary endpoint in the subsequent Phase III RESOLVE-IT
study (Kazankov et al., 2019; Cho et al., 2023; Levy et al., 2025).
The most promising results to date have come from the pan-
PPAR agonist lanifibranor, which targets all three isoforms (α, δ,
and γ). In the Phase IIb NATIVE trial, lanifibranor met both
primary endpoints relevant for accelerated approval: NASH

resolution without worsening of fibrosis and fibrosis
improvement without worsening of NASH (Sven et al., 2020;
Francque et al., 2021). These results, attributed to its
comprehensive targeting of metabolic, inflammatory, and
fibrotic pathways, have propelled lanifibranor into Phase III
trials (Francque et al., 2021).

The TLR4-NF-κB signaling axis represents a canonical
pathway in innate immunity and a key driver that induces
M1 macrophage polarization in CLDs (Tang et al., 2023; Pu
et al., 2025). In ALD, gut-derived lipopolysaccharide (LPS)
activates TLR4 on KCs, while in MASH, endogenous ligands
released from damaged cells serve as activators. This engagement
initiates a downstream signaling cascade culminating in the
nuclear translocation of NF-κB and its orchestration of a
broad pro-inflammatory gene expression program (Yin et al.,
2021; Tang et al., 2023). Inhibitors of this pathway, such as the
small molecule TAK-242, block TLR4 signaling, thereby
preventing NF-κB activation and the subsequent production of
M1-associated cytokines by macrophages. This effectively
suppresses the pro-inflammatory state that contributes to
hepatocyte damage and fibrosis (Xie et al., 2022). However,
the therapeutic implications of targeting this pathway are
complex. While its inhibition is beneficial in attenuating the
initial inflammatory and fibrogenic response (Ren et al., 2024),
the TLR4-NF-κB axis is also implicated in later stages of tissue
repair and regeneration (Li S. et al., 2021). Consequently,
complete blockade might compromise the reparative phase of
healing, as fibrosis resolution also depends on a degree of
macrophage activation. This duality highlights the need for a
nuanced therapeutic approach that modulates, rather than
completely abrogates, this critical signaling pathway.

An innovative strategy involves the direct administration of
macrophages polarized ex vivo to a desired phenotype. This
approach seeks to directly bolster the liver’s reparative capacity
(Pouyanfard et al., 2021). Preclinical studies have explored the
infusion of bone marrow-derived macrophages polarized to
either M1 or M2 states into mice with liver fibrosis (Ma
et al., 2017). Counterintuitively, M1-polarized macrophages
demonstrated superior therapeutic efficacy. The therapeutic
benefit, however, was found to be indirect; they acted as
potent modulators of the host immune environment,
enhancing the recruitment of endogenous restorative Ly-6Clo

macrophages, which then produced MMPs to degrade scar tissue
(Ma et al., 2017). The M1 macrophages also boosted the
activation of natural killer (NK) cells, which induced
apoptosis in activated HSCs (Ma et al., 2017). In contrast,
M2-polarized macrophages showed limited efficacy in these
models, challenging the simplistic notion that an anti-
inflammatory phenotype is always beneficial for resolving
established fibrosis.

This preclinical concept is now being translated into the clinic.
The MATCH Phase II trial investigated the infusion of autologous,
non-engineered macrophages in patients with cirrhosis (Moroni
et al., 2019; Brennan et al., 2025). The results showed the treatment
was well-tolerated and associated with a significant reduction in
clinical complications compared to standard care (Brennan et al.,
2025). Building on this, the upcoming EMERALD trial will test
“supercharged” macrophages, engineered ex vivo to enhance their
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reparative properties, in patients with advanced cirrhosis,
representing a next-generation cell therapy approach.

3.2 Blocking macrophage recruitment and
trafficking

A prominent therapeutic strategy is to inhibit the recruitment of
pro-inflammatory monocytes by targeting the chemokine receptors
CCR2 and CCR5, which are pivotal for their migration to the site of
hepatic injury (Ruiqi et al., 2023). This strategy is exemplified by
cenicriviroc, a dual antagonist of CCR2 and CCR5 (Madan et al.,
2024). By blocking these receptors, cenicriviroc prevents the
migration of pro-inflammatory Ly-6Chi monocytes into the liver,
thereby curtailing the accumulation of pathogenic macrophages that
drive inflammation and fibrosis (Wang et al., 2021). A key
theoretical advantage of this approach is its selectivity, aiming to
disrupt the detrimental influx of MoMφs without perturbing the
homeostatic functions of the resident KC population.

The initial promise of this strategy was supported by the Phase
IIb CENTAUR trial, where cenicriviroc demonstrated significant
anti-fibrotic effects, warranting its progression into a large Phase III
program (Francque et al., 2024). However, this initial optimism was
tempered when the subsequent Phase III AURORA study failed to
meet its primary endpoint, demonstrating no significant benefit of
cenicriviroc over placebo for fibrosis improvement in adults with
MASH (Anstee et al., 2024). This outcome, despite a robust
preclinical and Phase II rationale, serves as a cautionary example,
highlighting the challenges of targeting a single pathway in a
multifactorial disease and underscoring the confounding effect of
the significant placebo response rates frequently observed in MASH
trials. Furthermore, this failure likely reflects the profound
heterogeneity of the patient population. In patients with
established fibrosis, the liver’s pathogenic microenvironment may
become self-sustaining, driven by crosstalk between existing LRM
populations (like SAMs) and HSCs, thus becoming less reliant on
the continuous recruitment of new monocytes. In this context,
blocking monocyte influx alone may be insufficient to reverse
entrenched fibrosis. Additionally, factors such as genetic
background (e.g., PNPLA3 variants), co-existing type 2 diabetes,
and variations in the gut microbiome can create distinct disease
endotypes where the CCL2-CCR2 axis may not be the dominant
pathogenic driver, rendering its blockade insufficient in a broad,
unselected patient cohort (Xia et al., 2024; Lindén et al., 2025; Park
et al., 2025).

An alternative therapeutic modality involves neutralizing the
chemokine ligands directly, rather than blocking their receptors.
Pharmacological neutralization of CCL2, for instance with specific
inhibitors like RNA aptamers or antibodies, aims to dismantle the
chemotactic gradient required for monocyte recruitment (Kang
et al., 2023). In preclinical models, this strategy has been shown
to effectively curb the infiltration of Ly-6Chi MoMφs, resulting in
diminished HSC activation and a consequent reduction in liver
fibrosis (Xi et al., 2021). However, despite providing an upstream
and targeted intervention, a critical limitation of this strategy is the
inherent redundancy of the chemokine network. Targeting a single
ligand may be compensated by upregulation of other chemokines
(Diao et al., 2025; Geervliet et al., 2025).

3.3 Targeting intracellular
signaling pathways

Apoptosis signal-regulating kinase 1 (ASK1) functions as a
critical signaling hub that integrates cellular stress signals, such
as those from oxidative stress, to drive apoptosis and inflammation
in both hepatocytes and macrophages (Chen et al., 2023; Thakur
et al., 2025). The therapeutic rationale for inhibiting ASK1 with
selonsertib was therefore twofold: to concurrently shield hepatocytes
from cell death while also attenuating the activation of pro-
inflammatory signaling cascades (p38/JNK) within macrophages,
thereby decreasing the production of inflammatory cytokines (van
der Heide et al., 2019; Hou et al., 2021; Han and Im, 2024). Despite
this rationale and promising Phase II data, selonsertib conclusively
failed to meet its primary anti-fibrotic endpoints in two large Phase
III trials—STELLAR-3 (F3 fibrosis) and STELLAR-4
(F4 cirrhosis)—showing no significant improvement in fibrosis
compared to placebo in patients with advanced MASH (Harrison
et al., 2020; Rinella and Noureddin, 2020; Loomba et al., 2021). This
outcome provides a critical lesson, suggesting that targeting the
ASK1 pathway in isolation is likely insufficient to meaningfully alter
the trajectory of established, advanced fibrosis. This insufficiency is
exacerbated in heterogeneous patient populations where the
contribution of ASK1-mediated stress may vary, and where other
pro-fibrotic pathways, driven by metabolic comorbidities like severe
insulin resistance, become dominant and are not adequately
addressed by ASK1 inhibition alone (Powell et al., 2021; Peng
et al., 2024; Zhu and Cai, 2025).

As another emerging target, Bruton’s tyrosine kinase (BTK) is a
critical signaling molecule within the B-cell receptor and other
innate immune pathways, with its inhibition now being explored
for modulating macrophage function in liver disease.
Mechanistically, BTK inhibition can block pro-inflammatory
signaling downstream of Fc receptors and certain TLRs, reducing
the production of mediators like TNF-α and IL-1β (Palumbo et al.,
2017; Purvis et al., 2020). Intriguingly, BTK inhibition may also
promote a shift towards M2 polarization. This potential dual
action—suppressing M1-like inflammation while simultaneously
promoting an M2-like reparative state—makes BTK a novel and
attractive therapeutic target. Supporting this concept, preclinical
studies using BTK inhibitors have shown reduced monocyte/
macrophage recruitment and activation in the liver, leading to
improved metabolic inflammation (Purvis et al., 2020).

4 Differential responses of LRM subsets
to immunomodulation in specific CLDs

4.1 MASH

MASH is characterized by a profound remodeling of the LRM
landscape. The prevailing lipotoxic environment drives resident KCs
towards a senescent, pro-inflammatory state, which progressively
erodes their homeostatic capacity (Ma et al., 2024). Concurrently, a
robust upregulation of the CCL2-CCR2 axis prompts a massive
influx of pro-inflammatory Ly-6Chi MoMφs, which subsequently
emerge as the numerically and functionally dominant macrophage
population (Ganguly et al., 2024). This MoMφ dominance is a key
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driver of inflammation, hepatocyte death, and
fibrogenesis in MASH.

PPAR agonists exert their beneficial effects by concurrently
targeting both the metabolic and inflammatory dysregulation
inherent to MASH. It is understood that they preferentially act
on KCs to promote a switch towards an anti-inflammatory
M2 phenotype, helping to suppress the chronic low-grade
inflammation (Shi Q. et al., 2025). It is further hypothesized that
pleiotropic agents like the pan-PPAR agonist lanifibranor may have
broader effects, potentially influencing the phenotype of both
resident KCs and infiltrating MoMφs, a mechanism that could
account for its observed efficacy in reducing both inflammation
and fibrosis (Ma et al., 2024; Yu et al., 2025).

In contrast, CCR2/CCR5 antagonists like cenicriviroc were
designed with a more singular focus: to block the recruitment of
the pathogenic Ly-6Chi MoMφ population. The therapeutic
hypothesis was that by stemming this influx, the primary drivers
of inflammation and fibrosis would be intercepted before entering
the liver. The clinical failure of this strategy in Phase III, however,
prompts a re-evaluation of this premise. It suggests that in patients
with established advanced fibrosis, merely blocking the recruitment
of new MoMφs may be “too little, too late”. At this stage, the
pathology is likely perpetuated by self-sustaining pathogenic
feedback loops involving macrophage populations already
established within the liver, such as SAMs, which engage in
persistent pro-fibrotic crosstalk with HSCs through autocrine and
paracrine signaling. This entrenchment of disease mechanisms
makes the fibrotic process less dependent on the continuous
influx of peripheral monocytes. This reality, combined with the
possibilities that redundant pro-fibrotic pathways have become
dominant or that patient heterogeneity diluted the therapeutic
effect, provides a more comprehensive explanation for the
trial’s outcome.

4.2 ALD

In ALD, the LRM landscape is profoundly altered by the
confluence of direct ethanol-induced toxicity and increased gut
permeability. A critical consequence of this compromised gut
barrier is the translocation of bacterial LPS to the liver, where it
potently engages TLR4 on KCs (Mak and Shekhar, 2025). This
engagement triggers robust KC activation and the production of
pro-inflammatory cytokines, creating an intense inflammatory
milieu that drives hepatocyte injury and the subsequent
recruitment of large numbers of Ly-6Chi MoMφs, thereby
establishing a self-amplifying inflammatory loop that perpetuates
tissue damage (Slevin et al., 2020).

Given the central pathogenic role of the LPS-TLR4 axis in ALD,
its inhibition represents a highly rational therapeutic strategy. The
therapeutic premise is that by blocking TLR4 on KCs, these agents
can intercept the primary inflammatory trigger in ALD (Mou et al.,
2022). This intervention is predicted to reduce the secretion of key
cytokines like TNF-α, which in turn would diminish the chemotactic
signals responsible for the recruitment of pathogenic MoMφs,
ultimately ameliorating liver injury (Tang et al., 2025).

Similar to MASH, the intense inflammatory environment in
ALD drives the CCL2-dependent recruitment of Ly-6Chi MoMφs.

Therefore, targeting this axis by blocking MoMφ infiltration with
CCR2/CCR5 antagonists represents another compelling therapeutic
strategy (Madan et al., 2024). The intended outcome of this
approach is to mitigate the acute liver injury characteristic of
severe ALD by limiting the number of these potent inflammatory
effector cells.

4.3 Viral hepatitis and liver fibrosis/cirrhosis

In chronic viral hepatitis, LRMs assume a paradoxical role,
functioning as both antiviral effectors and facilitators of viral
persistence (Simón-Codina et al., 2024). While they are integral
to the initial antiviral response, they can be co-opted by viruses to
establish a state of immune tolerance that supports chronic infection
(Chi et al., 2023). This persistent, low-grade LRM activation fosters a
microenvironment of sustained inflammation, which serves as a key
catalyst for immune-mediated hepatocyte damage and the
inexorable progression to fibrosis (Wang J. et al., 2024b).

Navigating therapeutic immunomodulation in viral hepatitis
presents a formidable clinical challenge. While strategies aimed at
augmenting antiviral immunity (e.g., with checkpoint inhibitors)
hold the potential for viral clearance, they carry the inherent risk of
exacerbating immune-mediated liver injury (Biehl et al., 2021).
Conversely, conventional immunosuppression, while capable of
dampening inflammation, does so at the cost of permitting
unchecked viral replication. In this context, macrophage-targeted
therapies emerge as a potentially more refined strategy, offering a
pathway to selectively quell pathological inflammation without
globally compromising the adaptive immune responses essential
for viral containment (Qian et al., 2024).

In the context of established fibrosis, irrespective of the
underlying etiology, macrophages assume a pivotal role in
dictating the potential for disease resolution. Consequently, the
therapeutic paradigm shifts from mere inflammation control to
the active promotion of a pro-resolving macrophage phenotype,
typified by Ly-6Clo MoMφs and reparative SAMs. These cells are the
primary source of matrix-degrading metalloproteinases (MMPs)
required for the enzymatic dismantling of the fibrotic scar
(Fallowfield et al., 2007). Furthermore, they can induce apoptosis
of activated HSCs, thus eliminating the primary cellular source of
collagen production. Therapeutic strategies that can orchestrate this
phenotypic switch in macrophages hold immense promise for
inducing the regression of advanced liver fibrosis and cirrhosis.

5 Clinical implications and future
directions

5.1 Challenges in translating preclinical
findings to clinical practice

A fundamental challenge impeding CLD drug development is
the vast heterogeneity inherent to the patient population. While
preclinical models frequently rely on genetically homogenous
animals subjected to a uniform injurious stimulus, human CLD
is a multifactorial syndrome, with a trajectory shaped by a complex
interplay of genetics, diet, comorbidities, and gut microbiome
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composition. For example, genetic variants such as PNPLA3 and
TM6SF2 are potent drivers of MASH progression and may create a
disease state less amenable to therapies targeting purely
inflammatory pathways (Kozlitina et al., 2014; Lavrado et al.,
2024). Similarly, comorbidities like type 2 diabetes induce a more
aggressive, fibrosis-prone MASH phenotype, potentially requiring
more potent or combination therapies (Cai et al., 2025; Younossi
et al., 2025). Consequently, a therapeutic strategy targeting a single
pathway is unlikely to be universally effective, and an intervention
beneficial for early-stage inflammation may be futile against the
deeply entrenched pathological feedback loops of advanced
cirrhosis. This disconnect between preclinical models and clinical
reality likely contributed to the failure of mechanistically focused
agents like selonsertib and cenicriviroc when tested in broad,
unselected Phase III populations (Saldarriaga et al., 2024).

Addressing this heterogeneity necessitates the development of
predictive biomarkers capable of identifying patients most likely to
respond to a given therapy. Such tools are essential for enabling
patient stratification, which would not only improve the likelihood
of clinical trial success but also allow for more efficient, targeted
study designs. The ongoing revolution in ’omics’ technologies offers
a promising path forward, facilitating the identification of molecular
and cellular signatures linked to disease progression. For instance,
quantifying signatures of specific LRM subsets (e.g., circulating
soluble TREM2 as a surrogate marker for LAM activity) or
identifying specific gut microbiome profiles associated with pro-
inflammatory LRM activation could 1 day be used to enrich clinical
trials with patients most likely to benefit from therapies targeting
those distinct populations (Hendrikx et al., 2022; Liebold
et al., 2023).

Beyond efficacy, the deliberate modulation of the immune
system carries inherent safety considerations. For example, a
therapy that blocks inflammatory monocyte recruitment could
compromise host defense, increasing susceptibility to infection.
Similarly, therapeutically skewing macrophages toward an M2-
like phenotype could, in theory, blunt anti-tumor surveillance, a
critical concern in patients with cirrhosis who are at high risk for
hepatocellular carcinoma (HCC). Therefore, a deep mechanistic
understanding of any immunomodulatory agent, coupled with
vigilant patient monitoring, is paramount to navigating the fine
line between therapeutic benefit and immune-related adverse events.

5.2 The LRM-HCC axis and implications for
immunotherapy

The progression from CLD to HCC represents the most feared
outcome, and LRMs are pivotal players in this transition. The
chronic inflammatory microenvironment orchestrated by pro-
inflammatory KCs and MoMφs creates a mutagenic milieu that
promotes hepatocyte transformation (Ma et al., 2024; Wu et al.,
2025). As a tumor develops, the LRM landscape undergoes a further
dramatic shift. LRMs are recruited to the tumor mass, where the
local microenvironment, rich in factors like IL-10 and TGF-β,
reprograms them into tumor-associated macrophages (TAMs)
(Yang and Zhang, 2017).

These TAMs predominantly adopt an M2-like,
immunosuppressive phenotype. They actively suppress anti-

tumor immunity through multiple mechanisms: they release
cytokines that inhibit T-cell proliferation and function, remodel
the ECM to facilitate tumor invasion, and promote angiogenesis to
support tumor growth (Yang and Zhang, 2017; Zheng et al., 2023).
Crucially, TAMs are a major source of immune checkpoint ligands,
particularly PD-L1 (Li Z. et al., 2024). The expression of PD-L1 on
TAMs allows them to directly engage the PD-1 receptor on cytotoxic
T-lymphocytes, inducing their exhaustion and anergy, thereby
creating a potent shield that protects the tumor from immune-
mediated destruction (Wang L. et al., 2024c; Wang et al., 2024a).

This understanding has profound implications for HCC
therapy, particularly for immune checkpoint inhibitors (ICIs) like
anti-PD-1/PD-L1 antibodies. The efficacy of ICIs is often limited by
the immunosuppressive tumor microenvironment, in which TAMs
are a key component. This provides a strong rationale for
combination therapies. Strategies that deplete or repolarize
TAMs—for instance, by inhibiting the CSF1R pathway—could
dismantle the immunosuppressive shield and synergize with ICIs
to unleash a more effective anti-tumor T-cell response (Zhu et al.,
2019). Therefore, therapies originally developed for fibrosis that can
modulate LRM phenotype may find new life as adjuncts to
immunotherapy in HCC, strengthening the translational impact
of LRM-targeted research.

5.3 Future research priorities

A critical research priority is the systematic application of
scRNA-seq and other single-cell technologies to human liver
tissue (Ramachandran et al., 2019; Xiong et al., 2019). These
technologies provide the high-fidelity resolution needed to map
LRM heterogeneity directly within human patients across the
spectrum of CLDs (Wang et al., 2023; Li B. et al., 2024). Such
efforts are essential to 1) robustly validate or refute findings from
preclinical models, 2) identify novel, human-specific macrophage
subsets, and 3) uncover disease-specific LRM signatures that can be
leveraged for biomarker development and as novel therapeutic
targets (Fabre et al., 2023).

Intensified investigation into the gut-liver axis represents
another key research frontier. The continuous trafficking of
microbial products and metabolites from the gut is now
understood to be a primary determinant of the activation state of
KCs and other LRMs (Miyamoto et al., 2024). Establishing a
mechanistic link between specific dysbiotic signatures or
microbial metabolite profiles and the resultant LRM landscape in
diseases like MASH and ALD is therefore a high priority. For
instance, specific microbial metabolites such as short-chain fatty
acids (SCFAs) can directly modulate KC function through receptors
like G protein-coupled receptor 43 (GPR43), while secondary bile
acids are known to signal through the Takeda G protein-coupled
receptor 5 (TGR5) on macrophages, influencing their inflammatory
tone (Tan et al., 2023; Haag et al., 2025). This knowledge could pave
the way for novel therapeutic strategies, such as engineered
probiotics or targeted dietary interventions, designed to modulate
LRM function via the gut.

Finally, the multifactorial pathogenesis of CLDs strongly
suggests that combination therapies will be required to achieve
maximal therapeutic efficacy. Future strategies must therefore
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focus on the rational design of regimens that combine agents with
complementary mechanisms. For example, a logically designed
combination could pair a CCR2 antagonist, to block the
recruitment of new inflammatory monocytes, with a PPAR
agonist, to reprogram macrophages already resident within the
liver towards a reparative phenotype. Such a dual-pronged
strategy, simultaneously targeting both the influx and the
function of pathogenic macrophages, could produce synergistic
therapeutic effects and represents the next logical step in the
evolution of LRM-targeted therapies.

6 Conclusion

The study of LRMs is central to the ongoing paradigm shift in
hepatology, steering the field toward an era of targeted
immunomodulation and precision medicine. The recognition that
LRMs are a heterogeneous consortium with distinct, and often
opposing, functions has fundamentally reshaped our
understanding of CLD pathogenesis. This refined conceptual
framework has unveiled a landscape of novel therapeutic targets
aimed at selectively modulating specific LRM subsets. However,
translating these concepts into clinical success has been fraught with
challenges. The failures of recent, mechanistically targeted agents
serve as a crucial reminder of the immense hurdles posed by patient
heterogeneity and the recalcitrance of advanced disease. The critical
role of these cells in shaping the tumor microenvironment further
extends their therapeutic relevance into the realm of immuno-
oncology. The future of CLD therapy will therefore depend on a
deeper and more granular integration of LRM biology into
therapeutic design. By harnessing the power of single-cell
technologies, developing predictive biomarkers for patient
stratification, and deploying rationally designed combination
therapies, the field is poised to finally move beyond the “one-
size-fits-all” paradigm. The ultimate ambition is to precisely
tailor treatments to the unique macrophage-driven pathology of
each individual, ushering in an era where halting or even reversing
the course of CLD becomes a clinical reality.
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