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Introduction: This study aimed to characterize time-dependent metabolic
alterations and identify metabolites associated with treatment response in
HER2-negative breast cancer patients undergoing neoadjuvant chemotherapy
(NAC) with the TEC regimen (docetaxel, epirubicin, and cyclophosphamide).
Methods: A total of 60 plasma samples were collected from 20 patients at three
time points: baseline (T1), after three cycles of NAC (T2), and before surgery (T3).
Pathological assessment classified patients into three response groups:
pathologic complete response (pCR, n = 5), pathologic partial response (pPR,
n = 7), and pathologic stable disease (pSD, n = 8).
Results: After three cycles of NAC, a greater decrease in
glycochenodeoxycholate was associated with poorer treatment response,
whereas a larger reduction in LysoPC(18:1) correlated with better response.
Following six cycles, elevated epinephrine levels were positively associated
with therapeutic efficacy, while increased cysteine levels were linked to
unfavorable outcomes. Ursodeoxycholic acid showed an upward trend in pCR
patients but declined in pPR and pSD groups. Combined analysis of
ursodeoxycholic acid and cysteine improved the predictive performance for
treatment response.
Discussion: These findings reveal dynamic metabolic reprogramming during
NAC and suggest that ursodeoxycholic acid and cysteine may serve as
potential predictive biomarkers of therapeutic efficacy in HER2-negative
breast cancer patients treated with the TEC regimen.
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1 Introduction

Neoadjuvant chemotherapy (NAC) is a preoperative treatment
strategy used in breast cancer patients with axillary lymph node
involvement or large tumor volumes who wish to undergo breast-
conserving surgery. It aims to downstage the disease and reduce tumor
size, thereby increasing the likelihood of successful surgery. A
multinational survey reported that approximately 7%–27% of newly
diagnosed breast cancer patients receive NAC as part of their treatment
strategy (Vaidya et al., 2018). Currently, NAC has become the standard
of care for patients with locally advanced breast cancer and plays a
crucial role in the systemic treatment of the disease. Due to the
heterogeneity of breast cancer, therapeutic responses vary across
molecular subtypes and chemotherapy regimens. NAC is typically
adapted from adjuvant regimens and commonly includes a
combination of anthracyclines and taxanes. Among these, the TAC
regimen (docetaxel, doxorubicin, and cyclophosphamide) has shown
superior efficacy and is widely used as a standard adjuvant option for
early-stage breast cancer (Xu et al., 2018). As a modified regimen, TEC
(docetaxel, epirubicin, and cyclophosphamide) regimen replaces
doxorubicin with epirubicin to reduce cardiotoxicity and has also
demonstrated favorable efficacy in NAC(3–5). Approximately 20%
of breast cancers are characterized by human epidermal growth
factor receptor 2 (HER2) amplification or overexpression (Nader-
Marta et al., 2022). For these HER2-positive patients, taxane-based
chemotherapy combined with trastuzumab is the standard of care. For
patients showing good clinical response, current guidelines recommend
completing 4 to 6 cycles of NAC before surgery (Gradishar et al., 2024).
The efficacy of NAC is primarily assessed through pathological
examination of surgical specimens. Pathologic complete response
(pCR) is an important indicator reflects the patient’s response to
NAC and helps predict prognosis. Attaining pCR after NAC is
associated with survival benefits, including prolonged overall
survival, sustained disease-free survival, and significantly diminished
recurrence rates (Cortazar et al., 2014).

However, the overall pCR rate among breast cancer patients
remains suboptimal, ranging from 19% to 27.8%, particularly in
HER2-negative (HER2-) subtypes. For instance, patients with
hormone receptor-positive and HER2-negative (HR+/HER2-)
breast cancer have pCR rates as low as 5%–10% (Houssami et al.,
2012; Boughey et al., 2014). Therefore, HER2-breast cancer requires
increased clinical and research investigation. In addition to
postoperative pathology, imaging monitoring typically requires
completion of 2–4 cycles of chemotherapy before tumor
progression can be determined. There are no validated biomarkers
for real-time assessment of treatment efficacy during therapy. As a
result, drug-resistant patientsmay not be identified early, which delays
treatment adjustments and even leads to decreased survival rates.
Identifying biomarkers that can dynamically evaluate NAC efficacy,
detect responsive patients, and optimize individualized treatment is
essential for guiding clinical decisions.

Metabolomics offers a powerful approach to predict treatment
outcomes in breast cancer. Growing evidence indicates that breast
cancer development and progression are closely linked to metabolic
dysregulation (Kühn et al., 2016; Wu et al., 2018). Notably,
chemotherapy-induced metabolic shifts in tumors and their
microenvironment often precede measurable tumor size changes
(Wang et al., 2023; Shajahan-Haq et al., 2015).

Several studies have explored the potential of metabolite panels
as biomarkers for early prediction of response to neoadjuvant
chemotherapy in breast cancer patients. Wei et al. reported that
pCR patients showed decreased threonine, glutamine, and alpha-
linolenic acid, and increased isoleucine levels in serum before NAC
with an anthracycline- and taxane-based sequential regimen (Wei
et al., 2013). However, this study only analyzed static metabolic
profiling before NAC treatment and did not consider the effects of
chemotherapy on metabolic network remodeling. Díaz et al.
reported that Luminal B patients who responded well to the
sequential regimen showed increased lysophospholipids and
decreased carnitines (Díaz et al., 2022). Glycohyocholic and
glycodeoxycholic acids before surgery were identified as
prognostic markers in triple-negative breast cancer (TNBC)
patients, capable of effectively predicting treatment response
(area under the receiver operating characteristic curve [AUC] =
0.946, 95% CI: 0.875–1) and distinguishing patients with an
expected survival of more than 2 years (AUC = 0.777, 95% CI:
0.541–1). Nonetheless, the sampling time points in the study were
mostly limited to before and after chemotherapy, lacking
longitudinal tracking of metabolic adaptations occurring during
treatment. Yamada et al. reported significantly lower baseline
levels of 3-indoxyl sulfate, creatine, and urate in patients who
achieved pCR (17). However, their study only vaguely described
the chemotherapy regimen as “anthracycline- and taxane-based”
without detailed protocol specifications (e.g., drug combinations,
dosages, or cycle intervals). Furthermore, metabolic profiling was
restricted to pre-treatment and the second cycle, omitting potential
dynamic changes in the later stages of NAC. All these previous
studies included HER2-positive patients receiving targeted therapies
(e.g., trastuzumab or pertuzumab), which may confound the
metabolic effects driven solely by chemotherapy and limit the
interpretability of findings in HER2-populations. Therefore,
metabolomics studies focusing on the TEC regimen in HER2-
breast cancer patients undergoing NAC remain limited.

In this study, we employed ultrahigh performance liquid
chromatography-high resolution mass spectrometry (UHPLC-
HRMS) to analyze plasma metabolomic changes at three time
points: before neoadjuvant chemotherapy (NAC), after the third
cycle, and prior to surgery in patients with HER2-breast cancer
receiving the TEC regimen. We further examined the correlation
between these metabolic changes and treatment efficacy.

2 Methods

2.1 Study cohort and design

The study was conducted in Qingdao Central Hospital between
December 2023 and June 2024. 20 patients with primary breast
cancer were recruited to participate. Inclusion criteria were as
follows: (Vaidya et al., 2018) female patients aged ≥18 years (Xu
et al., 2018); histologically or cytologically confirmed primary locally
advanced breast cancer, defined according to the American Joint
Committee on Cancer (AJCC) TNM staging system as T2–T4
(tumor size >2 cm), N0–N3 (lymph node status ranging from no
involvement to extensive regional nodal involvement, and M0 (no
distant metastasis) (Gu X. et al., 2015); HER2-negative status was

Frontiers in Pharmacology frontiersin.org02

Fang et al. 10.3389/fphar.2025.1707223

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1707223


confirmed by immunohistochemistry (IHC 0 or 1+ or IHC 2+ with
negative in situ hybridization) (Liu et al., 2019); no prior treatment
for breast cancer, except diagnostic biopsy or surgery for benign
breast disease (Li B. et al., 2021); scheduled to receive the TEC
regimen. Exclusion criteria included (Vaidya et al., 2018): stage IV
(metastatic) breast cancer (Xu et al., 2018); inflammatory breast
cancer (Gu X. et al., 2015); bilateral breast cancer (Liu et al., 2019);
history of other malignancies within the past 2 years.

All patients received 6 cycles of NAC with a regimen of
epirubicin 90 mg/m2, cyclophosphamide 600 mg/m2 and
docetaxel 80 mg/m2 intravenously every 3 weeks. Surgery was
performed within 21 days after completion of NAC. The surgical
procedure was a modified radical surgery, with breast-conserving
surgery as an option for patients with breast-conserving conditions.

Clinical information of the enrolled patients was collected,
including age, gender, presence of metabolic diseases, histologic
grading, hormone receptor expression, HER2 status, Ki-67
expression, tumor node metastasis (TNM) information, and
imaging results (ultrasound, mammography, magnetic resonance
imaging, and computed tomography). Information on Miller-Payne
(MP) grading, Residual Cancer Burden (RCB) grading and post-
neoadjuvant pathological TNM staging (ypTNM) was collected
from patients’ postoperative pathology reports.

The study was conducted in accordance with the Declaration of
Helsinki, International Conference on Harmonization and Good
Clinical Practice guidelines, and approved by the Medical Ethics
Committee of Qingdao Central Hospital (KY202321002), and all
patients signed a written informed consent prior to any protocol-
related procedures and treatments.

2.2 NAC response evaluation

Patients underwent breast ultrasonography before each treatment
cycle and mammography every two cycles during NAC. Treatment
response was evaluated through radiographic tumor size changes,
with tumor burden quantified by the sum of the longest diameter of
target lesions according to the RECIST 1.1 criteria. A comparative
analysis was performed between pretreatment core needle biopsy
specimens and surgically resected tumors. Following the completion
of neoadjuvant therapy, histopathological response was evaluated
using the Miller-Payne (MP) grading system and residual cancer
burden (RCB) classification. pCR was defined as the absence of
invasive carcinoma in the primary tumor bed (ductal carcinoma in
situ permitted) with negative axillary lymph nodes, corresponding to
MP grade 5 with nodal clearance or RCB class 0. Pathological partial
response (pPR) was defined asMP grades 3–4 with RCB class I-II, and
pathological stable disease (pSD) was defined as MP grades 1–2 with
RCB class III.

2.3 Sample collection

A total of 60 plasma samples were collected from 20 patients at
three time points during NAC (baseline, T1; after 3 cycles, T2; and
after 6 cycles, before surgery, T3). Patients fasted after 10 p.m. the
night before sample collection. On the following morning, 2 mL of
fasting venous blood sample was collected in an EDTA

anticoagulant tube for plasma separation. After centrifugation at
1,600 g for 10 min, the upper plasma layer was separated and divided
into three aliquots of no less than 0.2 mL each. All samples were
stored at −80 °C until further analysis.

2.4 Metabolite extraction and
UHPLC-HRMS analysis

After slowly thawing the samples at 4 °C, 100 µL of plasma
sample was added to 400 µL of pre-cooled methanol/acetonitrile/
water mixture (2:2:1, v/v) (Zhang et al., 2021; Li R. et al., 2021). The
mixture was vortexed and subjected to low-temperature ultrasound
for 30 min, followed by a 10-min incubation at −20 °C. The samples
were then centrifuged at 14,000 × g at 4 °C for 20 min. The
supernatant was vacuum-dried, and for mass spectrometry
analysis, 100 μL of acetonitrile-water solution (acetonitrile:
water = 1:1, v/v) was added for reconstitution. The mixture was
vortexed, centrifuged at 14,000×g at 4 °C for 15 min, and the
supernatant was collected for analysis.

After separation with the Vanquish LC ultrahigh performance
liquid chromatography (UHPLC) system, using a Waters ACQUITY
UPLC BEH Amide column (1.7 μm, 2.1 × 100 mm), mass
spectrometry analysis was performed using the Orbitrap Exploris™
480 mass spectrometer (Thermo Scientific, CA, United States). Both
positive and negative ion modes were used for electrospray ionization
(ESI) detection. The chromatography conditions were as follows:
column temperature 25 °C; flow rate 0.5 mL/min; injection volume
2 μL; mobile phase A: water containing 25 mM ammonium acetate
and 25 mM ammonia hydroxide; mobile phase B: acetonitrile. The
gradient elution programwas as follows: 0–0.5min, 95% B; 0.5–7min,
B linearly decreased from 95% to 65%; 7–8 min, B linearly decreased
from 65% to 40%; 8–9min, Bmaintained at 40%; 9–9.1min, B linearly
increased from 40% to 95%; 9.1–12min, Bmaintained at 95%. During
the entire analysis, the samples were kept in the 4 °C autosampler. To
minimize the effect of instrument signal fluctuations, the samples
were analyzed in a random order. QC samples were inserted into the
sample queue to monitor and evaluate the system’s stability and the
reliability of experimental data. For QC, 10 µL of supernatant from
each plasma extract was pooled to generate the QC sample, with a
total of eight QC samples prepared and injected after every ten study
samples throughout the analytical sequence.

The ESI source and mass spectrometry parameters were set as
follows: sheath gas, 50; auxiliary gas, 2; ion transfer tube
temperature, 350 °C; spray voltage, 3500 V in positive ion
mode and 2800 V in negative ion mode. The m/z range for
primary mass-to-charge ratio detection was 70–1,200 Da, with
a resolution of 60,000 and a scan accumulation time of 100 m. MS/
MS acquisition was performed using a stepped scan approach with
a scan range of 70–1,200 Da, with a resolution of 60,000. The scan
accumulation time was 100 m, and the dynamic exclusion time
was set to 4 s.

2.5 Data processing and analysis

The raw data were converted into mzXML format using
ProteoWizard (version 3.0), followed by peak alignment,
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retention time correction, and peak area extraction using the
XCMS Online (version 3.7.1). The data extracted by XCMS were
first used for metabolite identification and data preprocessing
(removing ion peaks with missing values >50%; imputing
missing values using k-nearest neighbors (KNN); filtering
features with RSD >50%). Following this, the quality of the
experimental data was evaluated, and then data analysis
was conducted.

One-way ANOVA was employed to compare normally
distributed continuous variables across multiple groups, while
the Chi-square test or Fisher’s exact test was applied to compare
categorical variables in other clinicopathological features. The
significance of metabolites in two groups was calculated by
T-test. Data were normalized and subjected to principal
component analysis (PCA) using the MetaboAnalyst
6.0 platform to visualize clustering relationships among all

TABLE 1 Clinicopathological characteristics of the study population.

Characteristics All (n = 20)
number (%)

pCR (n = 5)
number (%)

pPR (n = 7)
number (%)

pSD (n = 8)
number (%)

P
valuea

Age at diagnosis (median,
range)

46 (29–60) 46 (33–54) 48 (40–60) 42 (29–57) 0.472b

Menopausal status 1.000c

Pre- 14 (70.0) 4 (80.0) 5 (71.4) 5 (62.5)

Post- 6 (30.0) 1 (20.0) 2 (28.6) 3 (37.5)

Subtype 0.232c

Triple-negative 6 (30.0) 3 (60.0) 2 (28.6) 1 (12.5)

HR+/HER2- 14 (70.0) 2 (40.0) 5 (71.4) 7 (87.5)

Clinical T stage 0.299d

cT2 15 (75.0) 5 (100.0) 5 (71.4) 5 (62.5)

cT3 3 (15.0) 0 (0) 2 (28.6) 1 (12.5)

cT4 2 (10.0) 0 (0) 0 (0) 2 (25.0)

Clinical nodal stage 0.037d

cN0 6 (30.0) 3 (60.0) 3 (42.9) 0 (0)

cN1 13 (65.0) 2 (40.0) 4 (57.1) 7 (87.5)

cN2 1 (5.0) 0 (0) 0 (0) 1 (12.5)

Metabolic disease 0.387c

Yes 4 (20.0) 0 (0) 1 (14.3) 3 (37.5)

No 16 (80.0) 5 (100.0) 6 (85.7) 5 (62.5)

Ki-67 0.189c

≤20% 6 (30.0) 0 (0) 2 (28.6) 4 (50.0)

>20% 14 (70.0) 5 (100.0) 5 (71.4) 4 (50.0)

Stage 0.025d

IIA 5 (25.0) 3 (60.0) 2 (28.6) 0 (0)

IIB 11 (55.0) 2 (40.0) 4 (57.1) 5 (62.5) 0.034e

IIIA 2 (10.0) 0 (0) 1 (14.3) 1 (12.5)

IIIB 2 (10.0) 0 (0) 0 (0) 2 (25.0)

Histological grade 0.298c

G2 13 (65.0) 2 (40.0) 6 (85.7) 5 (62.5)

G3 7 (35.0) 3 (60.0) 1 (14.3) 3 (37.5)

aP values from overall comparisons (pCR, vs. pPR, vs. pSD).
bOne-way ANOVA.
cFisher-Freeman-Halton exact test.
dKruskal–Wallis H test.
ePost hoc pairwise comparison (pSD, vs. pCR): Dunn’s test with Bonferroni adjustment.
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samples. Partial least squares discriminant analysis (PLS-DA)
was used to differentiate the metabolic features among three
groups of samples. One sample from the T1 group was located
outside the 95% Hotelling’s T2 confidence interval in the PLS-DA
score plot. However, upon further inspection of raw data quality
indicators, including total peak counts and clustering behavior
with QC samples, no technical artifacts or abnormal signals were
detected. In line with the QComics guidelines, which advocate
retaining biologically plausible variability while minimizing
artificial bias, this sample was retained to preserve dataset
integrity and avoid unjustified exclusion (González-
Domínguez et al., 2024). In the PLS-DA model, metabolites
with a variable importance in projection (VIP) value greater
than 1.0 (VIP >1.0) in the first principal component were
considered as potential differential metabolites. The selection
of significantly differential metabolites between groups was based
on the thresholds of fold change (FC > 1.2 or FC < 0.833) and p <
0.05, as referenced from a recent metabolomics study using
human plasma samples (An et al., 2022). This criterion,
commonly applied in metabolomics, allows the detection of
subtle but consistent biological differences and improves
sensitivity, particularly when the sample size is limited. KEGG
pathway enrichment analysis was conducted on the differentially
expressed metabolites. Butterfly plots were generated using the
bioinformatics cloud platform tools (Applied Protein
Technology, Shanghai, China) to visualize the distribution
patterns of upregulated and downregulated metabolites within
enriched metabolic pathways. The predictive performance of
individual metabolites and the combined model was evaluated
by receiver operating characteristic (ROC) curve analysis using R
script (version 4.3.1) packages including pROC,
ggplot2 and glmnet.

3 Results

3.1 Patient clinical characteristics

A total of 20 patients at initial diagnosis of HER2-breast cancer
was enrolled, with a median age of 46 (range: 29–60) years. Six
patients were aged ≥50 years. There were 6 TNBC patients and
14 HR+/HER2-patients. Postoperative pathological evaluation
following completion of NAC and surgery showed that 5 patients
achieved pCR, 7 achieved pPR, and 8 achieved pSD. The pCR rate
for TNBC patients was 50%, while the pCR rate for HR+/HER2-
patients was 14.29%. The detailed demographic and

clinicopathological characteristics of the participants are listed in
Table 1. Except for the pSD group, which had a significantly higher
clinical stage than the pCR group (p = 0.034), no significant
differences were observed in other clinical characteristics among
the efficacy groups.

3.2 Analysis of imaging changes in tumor
size during NAC

No significant differences in tumor size were observed between
the groups at baseline (Table 2). However, after three and six cycles
of NAC, the pCR group exhibited significantly smaller tumors
compared to the pPR and pSD groups, indicating that pCR had
the best therapeutic response. Tumor size progressively decreased
throughout NAC treatment. Moreover, the degree of tumor
regression from baseline was significantly greater in the pCR
group after three and six cycles, demonstrating the highest
reduction among all groups (Figure 1A). As shown in Figure 1B,
tumor regression after three cycles of NAC varied widely, with most
patients (n = 11) achieving 30%–80% regression, while a smaller
subset (n = 8) showed minimal regression (0%–30%). Only one
patient reached near-complete regression (80%–100%). After six
cycles, the response improved: more patients (n = 4) achieved 80%–

100% remission, and fewer (n = 5) remained in the low-response
group (0%–30%).

3.3 Longitudinal screening of differential
metabolites across time in NAC

UHPLC-HRMS analysis identified 1,147 metabolites in
plasma samples. Principal component analysis (PCA) was
conducted on 60 plasma samples from 20 breast cancer
patients to assess metabolic changes across three NAC time
points (T1-T3). The PCA score plots showed a relatively
overlapping distribution of samples, which did not clearly
distinguish between the groups (Figure 2A). Permutational
multivariate analysis of variance indicated statistically
significant differences in overall metabolic profiles across
different NAC treatment time points (F = 2.8842, p = 0.029),
despite substantial inter-individual metabolic variability (R2 =
0.09). Supervised PLS-DA was performed to further characterize
metabolic changes (Figure 2B). The results revealed clear
separation between pre-NAC (T1, red) and post-NAC (T3,
blue) samples, confirming significant NAC-induced metabolic

TABLE 2 Imaging changes in tumor size during NAC.

Parameter All pCR pPR pSD P valuea

T1 (mm) 37.50 ± 18.95 25.20 ± 7.92 37.43 ± 10.16 45.25 ± 25.96 0.141

T2 (mm) 22.60 ± 16.93 10.40 ± 5.59 17.14 ± 4.10 35.00 ± 20.84 0.006

T3 (mm) 16.00 ± 12.22 3.00 ± 2.74 14.29 ± 4.68 25.63 ± 12.36 0.001

T2 vs. T1 regression (percentage) 40.60% ± 23.50% 60.40% ± 12.46% 49.43% ± 21.47% 20.50% ± 13.97% 0.012

T3 vs. T1 regression (percentage) 56.65% ± 27.08% 87.40% ± 12.68% 57.86% ± 20.73% 36.38% ± 19.57% 0.004

aDunn’s post hoc test (Bonferroni-adjusted) for pSD, vs. pCR, following a significant Kruskal–Wallis H test.
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alterations. Mid-NAC samples (T2, green) exhibited an
intermediate distribution, with partial overlap between pre-
and post-NAC clusters, reflecting progressive metabolic
remodeling during NAC. Notably, a subset of post-NAC
samples maintained transitional features, indicating
interpatient variability in response to extended chemotherapy.

Seventy-five potential differential metabolites were preliminarily
identified across the three NAC time points based on VIP values
(>1) from component 1 of the PLS-DA model. As illustrated in

Figure 3, these metabolites were categorized by chemical class, with
amino acids representing the most abundant group, followed by
fatty acids. Glycerophosphorylcholine and bile acids also constituted
significant proportions, potentially reflecting NAC-specific
metabolic alterations.

Figure 4 illustrates metabolic alterations in volcano plots,
comparing baseline with mid-NAC (T2-T1, Figure 4A), baseline
with post-NAC (T3-T1, Figure 4B), and mid-NAC with post-
NAC (T2-T3, Figure 4C) time points. Among branched-chain

FIGURE 1
(A) Comparison of tumor regression percentages in patients after three versus six cycles of neoadjuvant chemotherapy (NAC). (B) Distribution of
patients by tumor regression extent (0%–30%, 30%–80%, 80%–100%) following three and six cycles of NAC. Tumor size and regression data were
assessed via ultrasound imaging.
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amino acids, leucine demonstrated significant reduction
throughout NAC treatment. Valine showed a decreasing trend
at mid-treatment (T2) but rebounded to significantly elevated

levels post-treatment (T3), while glycerophosphorylcholine
levels tended to decrease post-NAC compared to baseline,
these changes did not reach statistical significance. In contrast,

FIGURE 2
Multivariate analysis of NAC treatment timepoints. (A) PCA score plot showing sample clustering among different NAC treatment cycles. (B) PLS-DA
score plot illustrating inter-group separations across chemotherapy phases. The elliptical areas represent 95% confidence regions, with colored points
indicating sample distributions of corresponding groups. T1: pre-NAC samples (pink); T2: post-3-cycle NAC specimens (green); T3: pre-operative
samples after 6 NAC cycles (blue).

FIGURE 3
Pie chart displaying the distribution of differentially metabolites across 3 NAC time points (T1: pre-NAC; T2: after 3 cycles; T3: after 6 cycles, before
surgery). Metabolites are categorized by chemical class, with percentage representation of each category reflecting its proportional in the total
differentially metabolites.
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bile acids exhibited significant downregulation following
NAC treatment.

3.4 Dynamic changes in plasma metabolites
and related pathways enrichment analysis

To characterize metabolic dynamic changes during NAC, we
conducted paired t-tests on the 75 potential differential metabolites
identified via PLS-DA, using T1 as the baseline for longitudinal
comparison at T2 and T3. Metabolites meeting criteria of fold
change >1.2 (or <0.833) with p < 0.05 were classified as
significantly altered. KEGG pathway enrichment analysis revealed
the biological significance of up- and downregulated metabolites
between time points (Figure 5). Eleven metabolites showed
significant changes at T2 versus T1, increasing to thirty
metabolites at T3 versus T1. Seven metabolites showed persistent
alterations across both treatment phases, with changes initiating in
T2 and persisting until T3. Those downregulated metabolites
included leucine, inosine 5′-diphosphate,
glycochenodeoxycholate, glycodeoxychycholic acid, and
acetylcholine, while the upregulated metabolites were nicotinate
D-ribonucleotide and N-acetyl-glucosamine 6-phosphate. In
addition, 25 metabolites demonstrated late-phase NAC-specific
changes (T2-T3 comparison), suggesting continued metabolic
reprogramming in response to NAC throughout treatment.

During the first three NAC cycles (T2 vs. T1, Table 3), leucine
(FC = 0.050, p = 0.019), glutamine (FC = 0.728, p = 0.004), inosine
5′-diphosphate (FC = 0.722, p = 0.001), and
glycochenodeoxycholate (FC = 0.461, p = 0.005) showed
significant downregulation. Conversely, nicotinate
D-ribonucleotide (FC = 3.669, p = 0.029) and 4-pyridoxic acid
(FC = 3.695, p = 0.014) showed marked upregulation. Pathway

enrichment analysis identified amino acid biosynthesis and central
carbon metabolism in cancer are the top two significantly affected
pathways (Figure 5A). Other enriched pathways included the purine
metabolism and mTOR signaling pathway, which regulates cell
metabolism, proliferation, growth, apoptosis, and autophagyBile
secretion was also significantly involved. The upregulated
metabolites enriched belonged to pathways of nicotinate and
nicotinamide metabolism as well as vitamin B6 metabolism.

Significantly different metabolites in the 4-6 cycles of NAC
(T3 vs. T2, Table 4; Figure 5B) revealed key shifts in energy
metabolism, amino acid/nucleic acid processing, and signaling
pathway activity. For example, phosphoribosyl pyrophosphate
(FC = 0.575, p = 0.008), deoxyinosine (FC = 0.723, p = 0.003),
tryptophan (FC = 0.754, p = 0.014), myo-inositol 1,4,5-
trisphosphate (FC = 0.773, p = 0.036) and adenosine (FC =
0.649, p = 0.007) showed significant downregulation. These
metabolites were enriched in purine metabolism, phenylalanine,
tyrosine and tryptophan biosynthesis, sphingolipid signaling and
cGMP-PKG signaling pathways, implying that NAC may hinder
tumor growth by disrupting nucleic acid metabolism and cell
signaling. In contrast, lactate (FC = 1.482, p = 0.036), 3-
hydroxybutyric acid (FC = 1.814, p = 0.026), and valine (FC =
1.758, p = 0.024) were significantly upregulated. These metabolites
were enriched in pathways such as cAMP signaling, central carbon
metabolism in cancer, glucagon signaling, ketone body synthesis and
degradation, regulation of lipolysis in adipocytes, and branched-
chain amino acid metabolism, suggesting that tumors may adapt to
energy demands by modulating these pathways during the later
3 cycles of NAC. Additionally, stress hormone pathways
(epinephrine/renin systems) showed enrichment, with
upregulation of epinephrine (FC = 1.304, p = 0.031), indicating
that NAC may influence systemic metabolic responses through
stress hormone regulation.

FIGURE 4
Volcano plot showing several labeled differential metabolites. (A) Volcano plot comparing baseline (T1) with mid-NAC (T2) phase. (B) Volcano plot
comparing baseline (T1) with post-NAC (T3) phase. (C) Volcano plot comparing mid-NAC (T2) phase with post-NAC (T3) phase. The volcano plot shows
log2 (fold change) on the x-axis and -log10 (p value) on the y-axis. Dashed thresholds indicate significance boundaries (|log2FC| > 0.263, p < 0.05). Red
indicates significantly upregulated metabolites, blue indicates significantly downregulated metabolites, and gray did not achieve significant change.
Annotated metabolite classes: glycerophosphorylcholines; bile acids; branched-chain amino acids.
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FIGURE 5
KEGG pathway enrichment analysis of stage-specific differential metabolites with thresholds of p < 0.05 and |log2FC| > 0.263. (A) First 3 cycles of
NAC (T2 vs. T1). (B) Cycles 4-6 of NAC (T3 vs. T2). (C) Full NAC course (T3 vs. T1). Y-axis: Metabolic pathways ordered by enrichment significance. X-axis:
Enrichment significance (-log10 (p-value)). Red and blue: Pathways enriched with upregulated and downregulated metabolites, respectively.
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TABLE 3 Significantly altered metabolites in plasma from patients in the first three cycles of NAC (T2 vs. T1).

Category Metabolite name FC value P value VIP

Amino acids and derivatives Leucine 0.050 0.019 2.486

O-acetyl-serine 0.776 0.007 1.591

Glutamine 0.728 0.004 1.445

Nucleotide metabolism Nicotinate d-ribonucleotide 3.669 0.029 2.542

Inosine 5′-diphosphate 0.722 0.001 1.998

Bile acids Glycochenodeoxycholate 0.461 0.005 2.937

Glycodeoxycholic acid 0.245 0.021 2.573

Acetylcholine 0.813 0.028 2.765

Glycerophosphocholines 1-Oleoyl-sn-glycero-3-phosphocholine (LysoPC(18:1)) 0.821 0.001 1.297

Vitamins and cofactors 4-Pyridoxic acid 3.695 0.014 1.520

Carbohydrate metabolism N-Acetyl-glucosamine 6-phosphate 1.234 0.018 2.141

TABLE 4 Significantly altered metabolites in plasma from patients in cycles 4-6 of NAC (T3 vs. T2).

Category Metabolite name FC value P value VIP

Amino acids and derivatives 4-Hydroxy-proline 0.778 0.019 2.369

Valine 1.758 0.024 2.357

Gamma-glutamylcysteine 0.745 0.005 1.744

Tryptophan 0.754 0.014 1.508

N6-methyl-lysine 0.748 0.009 1.469

Phe-phe 78.689 0.037 1.977

Nucleotide metabolism 5-methyl-5,6-dihydrouracil 0.762 0.027 2.301

2′-deoxycytidine 5′-monophosphate 0.579 0.001 1.824

Phosphoribosyl pyrophosphate 0.575 0.008 1.764

Purine 0.806 0.002 1.645

Adenosine 0.649 0.007 1.568

7-methylguanine 0.774 0.023 1.476

Deoxyinosine 0.723 0.003 1.237

Carbohydrate and energy metabolism Glucarate 0.675 0.008 2.219

Glucosamine 6-phosphate 0.736 0.012 1.619

Lactic acid 1.482 0.036 1.386

Myo-inositol 1,4,5-trisphosphate 0.773 0.036 1.998

2-keto-D-Gluconic acid 1.255 0.044 1.967

Sphingolipids Phytosphingosine 0.493 0.002 1.306

N-palmitoyl-sphingosine 0.696 0.008 1.576

Redox cofactors Coenzyme q2 0.726 0.002 2.450

Tetrahydro-biopterin 1.328 0.006 1.110

Organic amines Triethanolamine 1.806 0.038 1.754

Ketone 3-Hydroxybutyric acid 1.814 0.026 1.426

Neurotransmitters Epinephrine 1.304 0.031 1.471
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Throughout the complete NAC regimen (T3 vs. T1, Table 5;
Figure 5C), purine and pyrimidine metabolism pathways
demonstrated the most pronounced suppression among
downregulated pathways. This persistent suppression,
consistent with patterns observed during initial treatment
cycles, indicating sustained disruption of nucleic acid
synthesis as a mechanism of tumor growth control. Key
metabolites including thymidine 5′-monophosphate (TMP,
FC = 0.743, p = 0.034), phosphoribosyl pyrophosphate (PRPP,
FC = 0.716, p = 0.025), inosine 5′-diphosphate (IDP, FC = 0.793,
p = 0.031) and adenosine (FC = 0.702, p = 0.029) showed
significant depletion. In contrast, upregulated pathways

reflected metabolic reprogramming toward energy production
and biosynthetic processes. Elevated lactate levels (FC = 1.449,
p = 0.029) indicated enhanced glycolysis flux. Additionally,
aminoacyl-tRNA synthesis pathways, exemplified by valine
(FC = 1.800, p = 0.019), and adipocyte lipolysis were
activated, while protein digestion and absorption pathways
showed increased activity, suggesting enhanced protein
turnover. Nicotinate D-ribonucleotide (FC = 5.226, p = 0.029)
showed dramatic elevation in nicotinamide metabolism, while
elevated cysteine (FC = 1.234, p = 0.001) was associated with
pantothenate/CoA biosynthesis pathways, implying enhanced
NAD+ metabolism and coenzyme synthesis post-chemotherapy.

TABLE 5 Significantly altered metabolites in plasma from patients across the full six cycles of NAC (T3 vs. T1).

Category Metabolite name FC value P value VIP

Bile acids Glycochenodeoxycholate 0.421 0.003 2.937

Glycodeoxycholic acid 0.236 0.020 2.573

Ursodeoxycholic acid 0.527 0.027 1.574

Amino acids and derivatives Cysteine 1.234 0.001 2.830

Leucine 0.056 0.02 2.486

Valine 1.800 0.019 2.357

N-methyl-alanine 1.254 0.007 2.161

Phe-phe 33.741 0.045 1.977

γ-glutamylcysteine 0.773 0.021 1.744

4-Hydroxy-proline 0.716 0.004 2.369

1-methyl-histidine 1.312 0.012 1.583

Nucleotide metabolism Nicotinate d-ribonucleotide 5.226 0.029 2.542

Inosine 5′-diphosphate 0.793 0.031 1.998

2′-deoxycytidine 5′-monophosphate 0.634 0.003 1.824

Thymidine 5′-monophosphate 0.743 0.034 1.814

Phosphoribosyl pyrophosphate 0.716 0.025 1.764

Adenosine 0.702 0.029 1.568

Deoxyinosine 0.776 0.035 1.237

5-methyl-5,6-dihydrouracil 0.736 0.011 2.301

Carbohydrate and energy metabolism 2,3-Dehydro-2-deoxy-N-acetylneuraminic acid 14.145 0.017 1.871

Glucarate 0.705 0.019 2.219

N-Acetyl-glucosamine 6-phosphate 1.399 0.024 2.141

Organic acids 2-Keto-gluconic acid 1.258 0.042 1.967

Lactic acid 1.449 0.029 1.386

Fatty acids Heptadecanoic acid 1.274 0.012 2.055

Sphingolipids Phytosphingosine 0.591 0.042 1.306

Coenzymes Coenzyme q2 0.715 0.005 2.450

Organic amines Triethanolamine 1.960 0.020 1.754

Neurotransmitters Epinephrine 1.306 0.044 1.471

Acetylcholine 0.747 0.004 2.765
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3.5 Metabolite changes associated with
treatment response

For metabolites that exhibited significant longitudinal
changes from baseline (T1) to post-treatment time points
(T2 or T3), we further examined their average change across
different response groups (pCR, pPR, pSD). As shown in
Figure 6, these selected metabolites displayed increasing or
decreasing trends in mean change values from pCR to pSD.
Although the differences between groups were not statistically
significant, these gradient patterns may indicate potential

metabolic signatures associated with treatment response. After
three cycles of NAC (T2), three metabolites showed decreasing
levels. O-acetyl-serine and 1-oleoyl-sn-glycero-3-
phosphocholine (LysoPC(18:1)) observed the largest
reductions in the pCR group (strongest responders), followed
by pPR and the smallest changes in pSD. In contrast,
glycochenodeoxycholate exhibited an inverse pattern, with the
most pronounced reduction in pSD (weakest responders),
moderate reduction in pPR, and minimal change in pCR.

As illustrated in Figures 6D–J, cysteine exhibited a progressively
greater increase from the pCR group to the pSD group after six

FIGURE 6
Bar graphs showing the magnitude of metabolite changes at T2 (A–C) and T3 (D–J) time points compared to baseline (T1) in the three efficacy
groups of patients. Positive values indicate upregulation, negative values indicate downregulation, bar heights represent within-group samplemeans, and
error bars are means ±1 standard deviation. pCR: pathological complete remission; pPR: pathological partial remission; pSD: pathological stable disease;
T1: baseline; T2: after 3 cycles; T3: after 6 cycles.
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cycles of NAC (T3). Epinephrine was also elevated across all groups,
with the highest mean change in the pCR group and the lowest in
pSD. Conversely, adenosine and glycochenodeoxycholate showed
reduced levels post-treatment, with larger average decreases in pSD
compared to pPR and pCR. Inosine 5′-diphosphate (IDP) also
showed a downward trend, with the extent of decline appearing
greater in pCR than in pPR or pSD. Additionally, 2-keto-gluconic

acid decreased in pCR patients but increased in pPR and pSD
groups, while ursodeoxycholic acid showed an opposite trend,
increasing in pCR and decreasing in non-pCR patients. The
relative intensity changes of these metabolites across the three
time points (T1, T2, T3) for each efficacy group are shown in
Supplementary Figure S1. The mean relative abundance of all
1,147 detected metabolites in each group, together with the fold

TABLE 6 Comparison of predictive performance indicators for efficacy-related metabolites.

Metabolite AUC 95%CI Sensitivity Specificity

Ursodeoxycholic acid 0.76 0.47–0.94 1.00 0.64

Cysteine 0.73 0.46–0.95 0.56 0.91

Glycochenodeoxycholate 0.65 0.40–0.86 0.89 0.46

Adenosine 0.63 0.36–0.88 0.56 0.82

1-Oleoyl-sn-glycero-3-phosphocholine (LysoPC(18:1)) 0.62 0.33–0.86 0.78 0.55

2-Keto-gluconic-acid 0.56 0.27–0.82 0.89 0.55

Epinephrine 0.56 0.27–0.83 0.56 0.82

Inosine-5-diphosphate 0.47 0.21–0.77 0.56 0.64

O-acetyl-serine 0.45 0.18–0.72 0.67 0.45

Combineda 0.86 0.68–0.98 0.89 0.73

Abbreviations: AUC, area under the curve; CI, confidence interval.
aCombined: Combined predictive model of ursodeoxycholic acid and cysteine.

FIGURE 7
Comparison of ROC curves for ursodeoxycholic acid, cysteine and combined models.
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changes between groups and the corresponding P values, are
presented in the Supplementary Table S1.

3.6 ROC analysis and joint prediction of
efficacy-related metabolites

The predictive ability of efficacy-related metabolites was
evaluated using receiver operating characteristic (ROC) curves.
Treatment response was classified into responders (pCR and pPR)
and non-responders (pSD). Among these metabolites,
ursodeoxycholic acid (AUC = 0.76 [0.53–0.95]) showed the
highest predictive value, followed by cysteine (AUC =
0.73 [0.44–0.93]) (Table 6). When combined in a joint
prediction model, the AUC increased to 0.86 (95% CI:
0.68–0.98), with a sensitivity of 0.89 and a specificity of
0.73 (Figure 7).

4 Discussion

Our metabolomics analysis revealed distinct temporal and
efficacy-associated metabolic changes in HER2-breast cancer
patients undergoing TEC NAC. To minimize inter-individual
variability and more accurately capture treatment-induced
alterations, we analyzed dynamic metabolite changes within each
patient at three time points: pre-treatment (T1, before NAC), mid-
treatment (T2, after 3 cycles of NAC), and post-treatment (T3,
before surgery after 6 cycles of NAC). These changes reflect adaptive
metabolic reprogramming in response to chemotherapy that could
be related with tumor suppression.

Previous metabolomics studies have consistently indicated that
amino acid and bile acid metabolism are closely associated with the
efficacy of neoadjuvant chemotherapy (NAC) in breast cancer (Wei
et al., 2013; Díaz et al., 2022; Yamada et al., 2024). Recent evidence
has further validated these findings, showing that the biosynthesis
pathway of leucine, valine, and isoleucine is significantly enriched in
chemotherapy responders (Fang et al., 2025). Another study
focusing on HER2-positive patients also revealed that taurine and
bile acid–related metabolites were closely correlated with
therapeutic efficacy (Zhang et al., 2024). Consistent with these
reports, our study likewise observed significant alterations in
leucine, valine, and multiple bile acid derivatives, suggesting that
these metabolic features represent reproducible and consensus
biomarkers of chemotherapy response.

During the early phase of NAC (T1 to T2), pathways related to
nucleotide biosynthesis and tumor proliferation were significantly
downregulated. Meanwhile, elevations in metabolites associated
with vitamins and coenzymes may reflect shifts in cellular
metabolic demands or stress adaptation. The later phase (T2 to
T3) was characterized by the upregulation of energy and lipid
metabolism, potentially supporting tumor cell survival under
sustained therapeutic pressure.

Metabolism of branched-chain amino acids (BCAAs),
glycerophosphocholine, and bile acids showed marked
alterations during NAC treatment. Leucine and valine, two
representative BCAAs, are essential nutrients for cancer growth,
participating in biosynthetic processes and serving as energy

substrates for tumor cells (DeBerardinis and Chandel, 2016).
Elevated BCAAs concentrations have been reported in both
plasma and tumor tissues of breast cancer patients, with
increased expression of BCAAs catabolic enzymes in tumors
compared to adjacent normal tissues, suggesting active
utilization of these amino acids (Xu et al., 2023; Zhang and
Han, 2017). In our study, leucine levels decreased while valine
levels increased after NAC. Research shows that leucine promotes
tumor proliferation by activating the mTOR signaling pathway
and enhancing mitochondrial biogenesis and function (Chen et al.,
2024). In contrast, elevated valine levels have shown a strong
inverse association with breast cancer relapse, suggesting potential
protective effects (Yang et al., 2024).

LysoPC(18:1) is a glycerophosphocholine (GPC), which has
been found to be elevated in breast cancer tissues compared to
benign tissues (Gribbestad et al., 1999). Elevated plasma
lysophosphatidylcholine levels have been reported in murine
models of metastatic breast cancer (Kus et al., 2018).
Lysophosphatidylcholine binds to G protein-coupled receptors
(G2A/GPR4), activating signaling pathways that promote cancer
cell proliferation, migration, and survival, thereby enhancing tumor
invasiveness and metastasis (Xu, 2002). Its conversion into other
lysophospholipids further contributes to tumor progression (Xu,
2002). In our study, GPC levels showed a decreasing trend following
NAC. Changes in LysoPC(18:1) were associated with tumor
pathological response. LysoPC(18:1) levels showed the greatest
decrease in pCR patients after three cycles of NAC, while only
minimal changes were observed in the pSD group. Similarly, Cao
et al. reported that patients showing a decline in GPC levels after
NAC tended to have longer survival and were more likely to achieve
partial tumor response (Cao et al., 2012). The reduction of pro-
metastatic LysoPC(18:1) in pCR patients may signal attenuated
tumor invasiveness, consistent with its role in driving
metastatic pathways.

Bile acid metabolism also demonstrated strong associations with
treatment efficacy. Breast cancer patients often exhibit elevated
circulating bile acid levels compared to healthy individuals and
those with benign breast conditions (Li et al., 2020; Anh et al., 2024).
In our study, three bile acids—glycochenodeoxycholate,
glycodeoxycholate, and ursodeoxycholate—were significantly
reduced during NAC. Notably, pCR patients showed smaller
reductions in glycochenodeoxycholate and increased levels of
ursodeoxycholate, suggesting that preserved bile acid metabolism
may be linked to better chemotherapy response. Previous studies
also supported this finding, which reporting higher baseline levels of
glycine-conjugated bile acids in NAC-sensitive TNBC patients and
accumulation of glycochenodeoxycholate in Luminal A breast
cancers with favorable prognosis (Díaz et al., 2022; Ta et al.,
2019). Transcriptomic data showing that enhanced bile acid
metabolism correlates with reduced proliferation and
invasiveness, while its suppression is linked to more aggressive
tumor phenotypes (Wu et al., 2022). These results suggest that
greater decreases in bile acid levels during NAC may indicate poor
therapeutic response.

Regarding the temporal trends observed in Supplementary
Figure S1, the levels of LysoPC(18:1) and
glycochenodeoxycholate markedly decreased from T1 to T2 and
then stabilized or slightly increased from T2 to T3. This biphasic
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pattern may reflect two sequential processes. During the early
phase of chemotherapy, acute metabolic disturbances in both
tumor and host—such as rapid alterations in membrane
phospholipid and bile acid metabolism—lead to the initial
decline. As treatment continues, compensatory metabolic
reprogramming, including hepatic functional recovery,
restoration of lipoprotein metabolism, and reconstruction of the
gut microbiota, may contribute to the subsequent stabilization or
partial rebound of these metabolites. In our study,
glycochenodeoxycholate levels in the pCR group showed a
pronounced decrease from T1 to T2 followed by stabilization or
mild rebound, whereas in the pPR and pSD groups, they continued
to decline throughout the treatment period. This suggests distinct
metabolic recovery trajectories across different response groups,
with the pCR group exhibiting early metabolic perturbation
followed by restoration of metabolic equilibrium, while
persistent metabolic suppression in the pPR and pSD groups
may indicate ongoing tumor burden and systemic stress.

Cysteine was most elevated in pSD patients during NAC. As a key
precursor of glutathione, elevated cysteine may help neutralize
chemotherapy-induced reactive oxygen species and enhance
antioxidant capacity, thereby promoting tumor cell survival under
treatment pressure (Bansal and Simon, 2018). In vitro studies have
also shown that exogenous cysteine can stimulate breast cancer cell
growth (Gu Y. et al., 2015). Furthermore, cysteine-derived hydrogen
sulfide (H2S) supports cancer energy metabolism by modulating
mitochondrial function (Serpa, 2020). These findings suggest that
changes in cysteine levels during NAC may serve as a potential
predictive biomarker for therapeutic response.

Ursodeoxycholic acid and cysteine demonstrated the highest
predictive value in distinguishing responders from non-responders
based on their changes from baseline after three cycles of NAC. A
combined model incorporating both metabolites achieved an AUC
of 0.86 (95%CI: 0.68–0.98), highlighting their potential utility as
early indicators for treatment monitoring in breast cancer patients
undergoing NAC.

Addtionally, neuroactive signaling molecules play the complex
roles in breast cancer progression and treatment response. In our
study, both acetylcholine (ACh) and epinephrine showed
significant alterations during neoadjuvant chemotherapy (NAC).
Plasma ACh levels were significantly decreased after three cycles of
NAC (T2) and remained significantly lower at the end of six cycles
(T3). ACh and its receptors have been implicated in tumor
initiation and progression. In breast cancer, overexpression of
ACh receptor subtypes such as α7-nAChR and α9-nAChR has
been associated with enhanced proliferation, angiogenesis, and
epithelial-mesenchymal transition (Lee et al., 2010; Chen et al.,
2006). Tumor cells have been shown to autonomously synthesize
ACh, establishing autocrine or paracrine loops that activate
cholinergic receptors and promote malignancy (Wang et al.,
2016; Song et al., 2003). The reduction in ACh levels may
indicate that chemotherapy disrupts cholinergic signaling
pathways involved in tumor progression. In contrast,
epinephrine levels were significantly increased during the later
phase of NAC (T2 to T3), with the most pronounced elevation
observed in pCR patients and minimal changes in pSD patients.
This observation appears to contrast with previous studies, which
have reported that epinephrine promotes breast cancer

progression and treatment resistance by activating adrenergic
receptors and downstream signaling pathways (Zhou et al.,
2020). This discrepancy may be attributed to the fact that
plasma epinephrine levels do not fully reflect local adrenergic
signaling activity within the tumor microenvironment. It is
possible that elevated circulating epinephrine during
chemotherapy represents a systemic stress response rather than
a direct promoter of tumor progression. Further research is needed
to elucidate the role of neurotransmitter in modulating
chemotherapy response in breast cancer.

Taken together, our findings provide a comprehensive
overview of the temporal metabolic reprogramming during
NAC in HER2-negative breast cancer. The observed metabolic
alterations may reflect adaptive mechanisms of tumor cells and
systemic host responses under chemotherapeutic stress. In
particular, the dynamic changes in cysteine and branched-
chain amino acids suggest that redox balance and amino acid
metabolism are closely associated with chemosensitivity, possibly
through the regulation of glutathione synthesis and oxidative
stress defense. Meanwhile, the involvement of bile acid
metabolism implies potential crosstalk between hepatic
detoxification and tumor metabolic adaptation. These findings
collectively indicate that redox homeostasis and metabolic
plasticity play central roles in determining treatment response.
Mechanistic or functional validation was not performed in the
present study. Future work will include extended clinical cohorts
and in vitro models to further verify these findings and elucidate
the causal roles of the identified metabolites and pathways in
mediating NAC efficacy.

Despite offering valuable insights, our study has certain
limitations. The limited sample size precluded stratified analyses
based on molecular subtypes. Future research should validate these
findings in larger cohorts and integrate multi-omics approaches to
strengthen their clinical utility for personalized treatment
strategies.

In conclusion, we conducted a longitudinal metabolomics study
using UHPLC-HRMS in HER2-breast cancer patients receiving the
TEC NAC regimen. Our findings revealed key metabolic pathways
and specific plasma metabolites associated with NAC response.
Branched-chain amino acid metabolism, choline-related
substance metabolism, and bile acid metabolism were
significantly altered during NAC. Notably, we identified
response-associated metabolic signatures, with specific plasma
metabolites demonstrating differential patterns across pCR, pPR,
and pSD groups. Particularly, a predictive model incorporating
ursodeoxycholic acid and cysteine changes from baseline to mid-
treatment (T1-T2) demonstrated promising potential for
distinguishing responders from non-responders. These findings
provide a potential non-invasive approach for predicting NAC
sensitivity and identifying patients most likely to benefit from
this regimen.
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