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Avenanthramide C mitigates
cisplatin-induced hippocampal
neurotoxicity and cognitive
Impairment in rats via suppression
of neuroinflammation and
neuronal apoptosis

Maha Abdulrahman Aldubayan*

Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi
Arabia

Introduction: Cisplatin (CP)-induced cognitive impairment, commonly referred
to as chemobrain, affects a substantial proportion of patients with cancer and
currently lacks an effective pharmacological treatment. This condition is closely
linked to neuroinflammation. Avenanthramide C (AVN-C), a bioactive compound
uniquely found in oats, is known for its anti-inflammatory, anti-apoptotic, and
neuroprotective properties. However, the precise mechanisms underlying its
broader protective effects remain incompletely understood. This study aimed
to investigate the potential of AVN-C to mitigate or prevent hippocampal damage
in rats.

Methods: Forty male Wistar rats were randomly divided into four groups (n =
10 per group): Control (5%DMSO/Saline), CP (8 mg/kg), AVN-C (6 mg/kg), and CP
+ AVN-C. AVN-C was administered orally once daily, while CP was delivered
intraperitoneally on days 1, 4, and 7. Body weight and survival were monitored
daily. Cognitive performance was assessed through behavioral tests, followed by
biochemical analyses of hippocampal tissue. Inflammatory markers, NF-xB, TNF-
a, IL-6, and IL-1pB, and apoptotic markers (caspase-3 and BAX) were quantified.
Results: CP administration resulted in significant reductions in body weight and
survival. In contrast, co-treatment with AVN-C ameliorated these effects,
markedly reducing hippocampal levels of NF-kB, TNF-a, IL-6, IL-1B, caspase-
3, and BAX. Histopathologically, hippocampal tissues treated with CP + AVN-C
were less damaged than tissues treated with the CP group. In conclusion, AVN-C
significantly improved spatial learning and working memory in CP-treated rats
and attenuated neuroinflammatory and apoptotic signaling.

Discussion: These findings support the potential of AVN-C as a therapeutic agent
for mitigating CP-induced neurotoxicity and cognitive dysfunction.

avenanthramide C, cisplatin, neuroinflammation, apoptosis, cognitive impairment,
neurotoxicity
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GRAPHICAL ABSTRACT

1 Introduction

Cognitive impairment is a notable adverse effect experienced
by patients with cancer undergoing chemotherapy, affecting up to
75% of individuals during treatment and persisting for several

months post-therapy (Alotayk et al., 2023; Alhowail, 2025;

Janelsins et al, 2014). Several chemotherapeutic agents,
including doxorubicin, methotrexate, cisplatin (CP),
cyclophosphamide, 5-fluorouracil, and paclitaxel, have been

implicated in chemotherapy-associated cognitive dysfunction
(Alotayk et al., 2023; Aldubayan et al., 2024; Alsikhan et al,,
2023). CP, a platinum-based anticancer agent, is widely used in
the treatment of pediatric and adult cancers (Romani, 2022).
Despite its clinical efficacy, its therapeutic utility is limited by
severe adverse effects and toxicities affecting normal tissues (Qi

et al, 2019). CP is particularly associated with learning and
memory deficits, as demonstrated in both clinical and
experimental studies (Mahmoud et al, 2023). Preclinical

evidence indicates that CP increases peripheral inflammatory
cytokines the blood-brain barrier,
subsequently triggering the release of central pro-inflammatory

capable of crossing
mediators and amplifying neuroinflammatory responses (Jaiswara
and Shukla, 2023; Wardill et al., 2016). Systemic inflammation
induced by CP also compromises mitochondrial function
(Alhowail, 2024), promoting the release of pro-apoptotic factors
such as cytochrome c following mitochondrial DNA damage
(Yang et al., 2014). This cascade activates caspases, ultimately
leading to apoptotic cell death (Yang et al., 2014).
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Although the mechanisms underlying CP-induced cognitive

impairment remain incompletely understood, accumulating
evidence suggests parallels with accelerated brain aging (Umfress
et al., 2021). The hippocampus, a key region involved in attention,
2018), is

especially vulnerable to CP-induced toxicity. Dysregulation of

learning, and memory (Alhowail, 2025; Huo et al,

hippocampal function has been linked to mild cognitive
impairment and neurodegenerative diseases such as dementia
(Park et al., 2024; Hanseeuw et al., 2016).

CP-induced
neuroinflammation

with
Neuroinflammation

neurotoxicity is associated
(Alhowail, 2025).
commonly arises in response to tissue injury or toxic insult
(Khan and McLean, 2012). CP induces the expression of various
pro-inflammatory cytokines and chemokines, including the
nuclear translocation of the redox-sensitive transcription
factor nuclear factor kappa B (NF-«kB) (Ramesh and Reeves,
2002).

pathogenesis of neurodegenerative disorders through multiple

Chronic inflammation plays a central role in the

converging pathways (Adamu et al., 2024). CP has been shown
to elevate levels of tumor necrosis factor a (TNF-a) and
interleukins (ILs) (Jang et al., 2021), particularly IL-6, both
of which are critical mediators of CP-induced neurotoxicity
(Hassan et al., 2024). Furthermore, TNF-a upregulates NF-xB
activity, thereby amplifying neuroinflammation and promoting
neuronal damage (Lawrence, 2009). CP accumulation in
hippocampal cells also leads to mitochondrial dysfunction,
increased lipid peroxidation, and excessive generation of
reactive oxygen species (Abdel-Wahab and Moussa, 2019),
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contributing to redox imbalance, apoptotic signaling, and
impaired cellular survival (Lomeli et al., 2017; Huang et al,,
2024). CP further initiates the mitochondrial apoptotic cascade
by modulating the expression of genes such as p53, Bcl-2, Bax,
and various caspases (Li et al., 2024). Current clinical
approaches to mitigate CP-induced neurotoxicity have shown
limited efficacy (Alsaud et al., 2023), underscoring the need for
effective neuroprotective interventions.

(AVNs) are
phenolic compounds derived from Avena sativa L. (oat grain)

Avenanthramides low molecular weight
and are recognized for their potent antioxidant (Martinez-
Villaluenga and Pefias, 2017; Aldubayan et al., 2019) and
anti-inflammatory activities (Aldubayan et al., 2019; Wang
and Eskiw, 2019; Peterson et al, 2002). Among these,
avenanthramide-C (AVN-C)
exhibits the highest biological activity (Peterson et al., 2002;
Perrelli et al., 2018; Xie et al., 2024). AVN-C suppresses the
expression of pro-inflammatory cytokine genes in response to

is the most abundant and

oxidative stress (e.g., H,O,) or TNF-a exposure (Wang and
Eskiw, 2019), and has been shown to inhibit TNF-a signaling
(Amir et al., 2019). Oat extracts enriched in AVNs reduce IL-6
and IL-8 release from endothelial cells stimulated with IL-1p (de
Bruijn et al., 2019). Moreover, AVN-C attenuates oxidative
stress, inflammation, and apoptosis in human skin fibroblasts
(Wang and Eskiw, 2019; Pellegrini et al., 2016) and protects
against CP-induced nephrotoxicity in vivo (Amir et al., 2019).
Oral administration of AVN-C in a mouse model of Alzheimer’s
disease improved cognitive performance and reduced
neuroinflammation (Nathan et al., 2025). AVN-C exerts its
anti-inflammatory effects through dual modulation of the
NF-kB and Nrf2 signaling pathways. By inhibiting NF-xB
activation and enhancing antioxidant defenses via Nrf2,
AVN-C suppresses the expression of key pro-inflammatory
(e.g., TNF-a, IL-6, IL-1p), thereby reducing
neuroinflammation and neuronal apoptosis (Wang and
Eskiw, 2019; Zhang et al., 2020). Notably, AVN-C crosses the
blood-brain

and reduces

cytokines

barrier, restores long-term  potentiation,

hippocampal  neuroinflammation  and
apoptosis (Ramasamy et al, 2019; Lee et al, 2021; Chen
et al., 2007).

Given the central role of the hippocampus in cognition and its
high susceptibility to chemotherapeutic agents (Huo et al., 2018),
no established treatment has effectively mitigated CP-induced
cognitive deficits to date. Therefore, the present study aimed to
evaluate the neuroprotective potential of AVN-C against cisplatin-
induced cognitive dysfunction in rats. We conducted an
assessment of behavioral changes utilizing the Y-maze and
Novel Object Recognition (NOR) Additionally, we
quantified hippocampal levels of key inflammatory markers,
including NF-xB, IL-6, TNF-a, and IL-1f, as well as apoptotic
markers such as BAX and caspase-3, through enzyme-linked

test.

immunosorbent assay (ELISA). Furthermore, histopathological
staining of the hippocampus was performed to evaluate tissue
structure and damage. In this proof-of-concept study, initial
evidence is presented that highlights AVN-C as a promising
therapeutic candidate for addressing chemotherapy-induced
cognitive impairment, commonly referred to as “chemobrain,”
by focusing on early molecular and behavioral changes. The
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findings may inform the development of novel, oat-derived
neuroprotective strategies to combat chemotherapy-associated
cognitive impairment. This study provides preliminary, yet
novel, insight into the early effects of AVN-C in a rodent
model of chemotherapy-induced cognitive impairment,
offering a foundation for future long-term and mechanistic

investigations.

2 Materials and methods

This study was designed to explore the early neuroprotective
effects of AVN-C in a rat model of cisplatin-induced cognitive
impairment. Behavioral assessments were conducted to detect
cognitive and locomotor alterations, and hippocampal tissue was
collected to evaluate neuroinflammatory and apoptotic responses at
level. The
histopathological staining.

the molecular tissues were subjected to

2.1 Drugs

Cisplatin (1 mg/mL) was obtained from EBEWE Pharma
Ges. m.b.H., Nfg. KG (Austria). AVN-C methyl ester (CAS No.
955382-52-2; Catalog No. CAY10011336-1) was procured from
Cayman Chemical (Ann Arbor, MI, United States). AVN-C was
dissolved in dimethyl sulfoxide (5% DMSO/Saline) before
administration.

2.2 Animals

Forty male Wistar rats (200-250 g) were obtained from
the College of Pharmacy, Qassim University. Upon arrival,
animals were housed in standard polypropylene cages (4 rats per
cage) with autoclaved wood chip bedding. Environmental
conditions were maintained at a temperature of 25 °C + 2 °C,
relative humidity of 50-60%, and a 12-h light/dark cycle.
Animals had free access to standard pellet chow and filtered tap
water throughout the study. All animals were allowed to acclimatize
to the housing conditions for 7 days before the start of experimental
procedures. Survival rate was assessed daily, and body weight was
recorded every other day to monitor general health status and
treatment-related effects. All experimental procedures were
reviewed and approved by the Animal Care and Use Committee
of the Deanship for Scientific Research, Qassim University
(Reference No. 23-67-07), and were conducted in strict
accordance with institutional and national ethical guidelines for
animal research.

2.3 Experimental design and drug
administration

Animals were randomly divided into four groups (n = 10 per
group). The control group received 5%DMSO/saline by oral
gavage. The CP group received cisplatin (8 mg/kg,
intraperitoneally) on days 1, 4, and 7 (Alhowail, 2025). The
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SCHEME 1
Schematic representation of the experimental design and results.

AVN-C group received AVN-C (6 mg/kg/day, orally via gavage)
(Nathan et al., 2025). The CP + AVN-C group received cisplatin
(8 mg/kg, intraperitoneally) on days 1, 4, and 7, in combination
with AVN-C (6 mg/kg/day, orally) throughout the study.
Cognitive function was assessed on days 10 and 11 using
behavioral tests. Seven animals per group were evaluated,
taking into account any mortality. Following behavioral
assessments, hippocampal tissues were collected for enzyme-
linked immunosorbent assay (ELISA)-based quantification of
pro-inflammatory and apoptotic biomarkers (Scheme 1).

2.4 Survival rate and body weight

Survival was monitored daily, and deceased animals were
promptly removed. Body weight was recorded every 3 days to
track general health status and detect any adverse treatment-
related effects.

2.5 Behavioral tests

2.5.1 Y-maze

The Y-maze test was used to evaluate spatial learning and
memory. The apparatus consisted of three wooden arms
(50 cm x 10 cm X 18 cm), arranged at 120° angles. One arm was
designated as the novel arm by occlusion during the training phase.
Each rat was placed in the starting arm and allowed to explore the
starting and familiar arms for 10 min. After a 3-h inter-trial interval,
the test session was conducted, during which all three arms were
accessible for 5 min. The rat was reintroduced to the start arm, and
the time spent in the novel versus familiar arms, as well as the
number of entries, was recorded. An entry was defined as the
placement of all four paws within an arm (Alolayan and
Alhowail, 2025) (Scheme 2).
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2.5.2 Novel object recognition (NOR)

Recognition memory was assessed using the novel object
recognition test. The testing arena consisted of a wooden box
(40 x 40 x 40 cm). During the training phase, two identical
black cans were placed in opposite corners of the arena,
equidistant from the walls to minimize location bias. Each rat
was placed gently in the center of the box and allowed to explore
the objects for 10 min. After a 3-h retention interval, one familiar
object was replaced with a novel object—a white-painted reagent
bottle—positioned in the same corner that the replaced object
had previously occupied. The rat was then allowed to explore for
5 min. The total interaction time with the novel and familiar
objects was recorded and analyzed via video tracking software
by an observer blinded to the experimental groups. To
prevent olfactory cues from influencing behavior, the arena
and objects were cleaned thoroughly with 70% ethanol and
allowed to dry between trials (Alhowail and Aldubayan, 2023)
(Scheme 3).

2.6 Hippocampal tissue collection for
biochemical analysis

Rats were euthanized with CO, in a glass chamber (Alhowail,
2025). Immediately after decapitation, the skull was carefully opened
using surgical scissors, and the whole brain was rapidly removed and
placed on an ice-cold glass plate. Under proper lighting and with the
aid of anatomical landmarks, the hippocampus was carefully
dissected from each hemisphere by gently removing the overlying
cortical tissue. The isolated hippocampi were then homogenized
using a Qsonica homogenizer (30 Hz, Newtown, CT, United States)
in conjunction with N-PER lysis buffer (Thermo Scientific,
Madison, WI, United States) and centrifuged at 12,000 rpm for
10 min. The resulting supernatants were collected and stored
at —80 °C for subsequent analysis.
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2.7 Enzyme-linked immunosorbent assay

Inflammatory and apoptotic markers in the hippocampal tissue
supernatants were quantified using ELISA. The following rat-specific
ELISA kits (ABclonal Technology, Woburn, MA, United States) were
used: IL-1B (Cat. No. RK00009), IL-6 (Cat. No. RK00020), NF-kB
(Cat. No. RK08775), TNF-a (Cat. No. RK00029), BAX (Cat. No.
RK03522), and caspase-3 (Cat. No. RK03549). Absorbance was
measured at 450 nm using a microplate reader (BioTek
Instruments, United States) (Rana and Soni, 2008).

2.8 Histopathological evaluation of
hippocampal tissue

Brains were rapidly removed and placed on an ice-cold
dissection plate. The hippocampal region was carefully excised

Frontiers in Pharmacology

under a stereomicroscope, guided by anatomical landmarks.
Tissue samples were immediately fixed in 10% neutral-buffered
formalin for 24-48 h and embedded in paraffin wax. Coronal
sections (5 um) were cut using a rotary microtome and mounted
on glass slides. Sections were stained with hematoxylin and eosin
(H&E) for light microscopic examination. Histopathological
changes, including neuronal degeneration, vacuolation, and
nuclear pyknosis, were evaluated under x40 magnification.

2.9 Statistical analysis

Data were analyzed using GraphPad Prism 9 (GraphPad Software,
La Jolla, CA, United States). One-way analysis of variance (ANOVA)
followed by Tukey-Kramer post hoc testing was performed for multiple
comparisons. A p-value <0.05 was considered statistically significant.
Data are presented as mean * standard error of the mean (SEM).
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FIGURE 1
Survival rate of rats following cisplatin (CP) treatment, with or
without avenanthramide C (AVN-C) co-administration.
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FIGURE 2

Effect of CP and AVN-C on body weight. Statistical analysis was
performed using one-way ANOVA with Tukey—Kramer post hoc test.
CP ***p < 0.001 vs. control or CP + AVN-C group.

3 Results
3.1 Effect of CP on survival

Cisplatin treatment resulted in 30% mortality by day 10, whereas
the co-administration of AVN-C reduced mortality to 10%,
compared to 0% in the control group (Figure 1).

3.2 Effect of CP on body weight

Body weight was recorded on days 0, 3, 6, and 9. CP-treated rats
exhibited a significant reduction in body weight on days 6 and
9 compared to both the control and CP + AVN-C groups (Figure 2).

3.3 Effect of CP and AVN-C on Y-maze
performance

In the Y-maze test, control rats demonstrated a higher number
of entries into the novel arm compared to all other groups. CP-
treated rats exhibited the lowest number of novel arm entries
(Figure 3A), indicating impaired spatial working memory.
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AVN-C treatment significantly increased both the number of
entries and the time spent in the novel arm relative to CP alone
(Figure 3B), suggesting improved cognitive performance.

3.4 Effect of CP and AVN-C on the NOR test

CP-treated rats spent significantly less time exploring the novel
object compared to controls (Figure 4), indicating memory
impairment, and with  AVN-C significantly
increased novel object exploration time, reflecting improved
recognition memory and a reversal of CP-induced deficits.

co-treatment

3.5 Effect of CP and AVN-C on inflammatory
markers in the hippocampus

CP-treated rats presented significantly elevated hippocampal
levels of IL-1B, IL-6, TNF-a, and NF-kB compared to controls
(Figures 5A-D). Co-administration with AVN-C markedly
reduced the expression of all four inflammatory markers,
indicating an anti-inflammatory effect in the hippocampus.

3.6 Effect of CP and AVN-C on apoptotic
markers in the hippocampus

Hippocampal levels of caspase-3 and BAX were significantly
elevated in CP-treated rats relative to controls (Figures 6A,B). AVN-
C co-treatment significantly reduced the expression of both
apoptotic markers, suggesting an anti-apoptotic effect.

3.7 Histological staining

Hippocampal neuron sections were examined by light
microscopy, and it was observed that the control exhibited a
normal hippocampal neuronal architecture with intact cell
density. The AVN-C-treated group showed a neuronal structure
preserved, comparable to the control (Figures 7A,B). However, the
CP group exhibited marked neuronal degeneration, cell shrinkage,
vacuolation, and pyknotic nuclei (arrows) (Figure 7C). In contrast,
the CP + AVN-C treatment exhibited partial preservation of
neurons, reduced degeneration compared to cisplatin alone
(arrows indicate mild neuronal loss) (Figure 7D).

4 Discussion

This study was conducted to assess whether AVN-C, a natural
antioxidant derived from oats, can mitigate early cognitive and
molecular changes induced by cisplatin treatment in rats. Our
findings demonstrate that AVN-C alleviated behavioral deficits
and significantly reduced hippocampal inflammation and
apoptosis markers, supporting its potential as a neuroprotective
candidate in the context of chemotherapy (CP)-induced cognitive
To establish a chemobrain model, CP was
administered and its effects evaluated through behavioral tests.

dysfunction.
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FIGURE 4
Effect of AVN-C on CP-induced cognitive deficits in the novel

object recognition (NOR) test. AVN-C mitigated CP-induced
reductions in exploration time of the novel object. Data are presented
as mean + SEM (n = 7). Statistical significance was determined
using one-way ANOVA followed by Tukey—Kramer post hoc test. *p <
0.05, **p < 0.01 vs. control or CP groups.

In the Y-maze test, CP treatment impaired spatial memory, as
evidenced by a reduced number of entries into novel arms. In
contrast, co-administration of AVN-C increased both the number
of entries and the time spent in the novel arm, indicating preserved
spatial memory (Liet et al., 2015).

Similarly, in NOR test, CP-treated rats exhibited diminished
discrimination between familiar and novel objects, consistent with

Frontiers in Pharmacology

earlier reports of CP-induced deficits in working memory
(Alhowail, 2025). Co-treatment with AVN-C significantly
increased exploration time of the novel object, suggesting that
AVN-C
impairments. The protective effect of AVN-C may be attributed

counteracted ~ CP-induced recognition memory
to early and sustained administration, which limits microglial
overactivation and preserves microglial phagocytic function.
This effect aligns with previous findings demonstrating that
AVN-C improves recognition memory and prevents synaptic
plasticity impairment in amyloid P-treated animals (Nathan
et al., 2025; Ramasamy et al., 2019).

In addition to cognitive outcomes, CP administration resulted in
a significant reduction in final body weight compared to the control
group. This finding is consistent with previous studies showing
persistent growth impairment in CP-treated rats despite resumption
of weight gain after treatment cessation (Mokhtar et al., 2021). CP-
induced weight loss is commonly attributed to its emetogenic
properties, which lead to reduced appetite, gastrointestinal
toxicity, and diarrhea (He et al, 2023). AVN-C administration
alleviated weight loss, likely due to its anti-inflammatory and
anti-apoptotic actions.

Mechanistically, AVN-C exerted its protective effects by
modulating neuroinflammatory and apoptotic pathways. CP
administration significantly upregulated NF-kB and increased
hippocampal levels of TNF-a, IL-1f, and IL-6, indicating robust
neuroinflammation. These results are consistent with evidence
implicating NF-kB-dependent signaling in the pathogenesis of
chemobrain (Bagnall-Moreau et al., 2019). AVN-C co-treatment
significantly reduced NF-kB expression and suppressed the
associated  proinflammatory cytokines,
neuroinflammation. These findings align with reports that AVN-

thereby attenuating

C preserves cognitive function by inhibiting NF-kB-mediated

cytokine release, a mechanism also relevant to Alzheimer’s
disease pathology (Nathan et al., 2025).
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***k*p < 0.0001 vs. control or CP group.

Apoptosis also plays a key role in CP-induced neurotoxicity
(Lomeli et al,, 2017). In this study, AVN-C reduced hippocampal
expression of the apoptotic markers caspase-3 and BAX, indicating
protection against CP-induced neuronal apoptosis.

In addition, the histopathological evaluation of the hippocampus
further supports the neuroprotective effect of AVN-C against CP-
induced neuronal injury. In the control and AVN-C alone groups,
neurons exhibited preserved architecture with no evidence of
degeneration (score 0). In contrast, the CP group demonstrated
severe neuronal damage, of normal
cytoarchitecture, vacuolation, and neuronal shrinkage (score 3),

characterized by loss

consistent with previous reports of CP-induced neurotoxicity
(Kandeil et al, 2020). Importantly, co-treatment with AVN-C
significantly attenuated these pathological alterations, as reflected
by reduced neuronal degeneration and preservation of
hippocampal organization (score 1-2). These findings suggest that
AVN-C confers structural neuroprotection, likely by mitigating

inflammation and apoptotic signaling pathways triggered by CP.

Frontiers in Pharmacology

The partial rescue of hippocampal neurons by AVN-C aligns with
the behavioral and biochemical data, highlighting its therapeutic
potential in preserving cognitive function during CP chemotherapy.

This study has several strengths, including the consistent use of
rat strain, age, and sex, as well as the novelty of assessing both
inflammatory and apoptotic markers in the hippocampus following
AVN-C + CP treatment. To date, no previous studies have
specifically investigated the neuroprotective effects of AVN-C
against CP-induced toxicity. A limitation of the study, despite the
novel findings presented, this study has several limitations. First, the
experimental timeframe was relatively short, with behavioral and
molecular assessments conducted within 10-11 days post-treatment
with CP. This limits our ability to evaluate the long-term persistence
of cognitive deficits and the sustained neuroprotective effects of
AVN-C. Second, although we assessed key inflammatory and
apoptotic markers at the molecular level, protein-level validation
(e.g, via Western blot or immunohistochemistry) was not
performed. Additionally,

a limitation is the omission of
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FIGURE 6

Effect of AVN-C on CP-induced alterations in hippocampal apoptotic markers. (A) Caspase-3, (B) BAX. Data are presented as mean + SEM (n = 7).
Statistical analysis was performed using one-way ANOVA followed by Tukey—Kramer post hoc test. ***p < 0.001, ****p < 0.0001 vs. control or CP group.

FIGURE 7
Histopathological evaluation of hippocampal neurons (H&E, 50 pm). (A) The control group shows standard neuronal architecture (score 0, normal).

(B) The AVN-C group displays a preserved neuronal structure similar to that of the control (score 0, normal). (C) The cisplatin group exhibits severe
neuronal degeneration and vacuolation (score 3, severe damage). (D) Cisplatin + AVN-C group demonstrates partial neuronal protection with reduced
degeneration (score 1-2, mild to moderate damage).
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spontaneous alternation percentage in the Y-maze, which is a more
sensitive indicator of working memory. Finally, while AVN-C
showed promising effects, its mechanism of action remains
incompletely understood and requires further investigation using
more targeted molecular and cellular assays.

In summary, this study demonstrates that CP induces
cognitive deficits associated with increased hippocampal levels
of inflammatory markers (IL-1p, IL-6, NF-«kB, and TNF-a) and

BAX). AVN-C
these effects, as

apoptotic  markers

supplementation

(caspase-3  and
significantly mitigated
evidenced by improved performance in behavioral tests,
enhanced spatial learning and working memory, and
reductions in neuroinflammatory and apoptotic signaling.
Histopathologically, hippocampal tissues treated with CP +
AVN-C were less damaged than tissues treated with the CP
group. Collectively, these findings highlight the therapeutic
potential of AVN-C as a protective strategy against CP-

induced neurotoxicity and cognitive impairment.
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