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Many innovative traditional Chinese medicines (TCMs) play a significant role in
cardioprotection against cardiac diseases by addressing the basic causes of heart
attack, which presents as a dual deficiency of qi and yang. Network
pharmacology, offering a multi-dimensional perspective, can elucidate the
specific mechanisms of the active components of TCM via a system
pharmacology strategy. The methodology of network pharmacology is highly
consistent with the modernization of TCM and provides a new perspective and
theoretical basis for both basic research and its supplementary clinical research
on cardiac diseases. This review summarizes the steps, databases, and software
used in network pharmacology systematically. It also discusses the current
achievements in applying network pharmacology to understand the
mechanisms of some important TCMs (Huangqi, Renshen, and Danshen) and
their active components in the context of cardioprotection against cardiac
diseases based on a comprehensive literature search on PubMed. Anti-
inflammation, anti-oxidation, anti-apoptosis, anti-pyroptosis, and regulation of
the PI3K–AKT–mammalian target of the rapamycin (mTOR) signaling pathway
were identified as the main mechanisms through which these TCMs exert
cardioprotective effects. In addition, this approach provides new ideas for the
cure of cancer-induced cardiac injury through network pharmacology.

KEYWORDS

network pharmacology, traditional Chinese medicine, cardioprotection, cardiac
diseases, mechanisms

Introduction

Cardiac diseases are the leading causes of morbidity and mortality worldwide
(Mahmood et al., 2014). The World Health Organization estimates that cardiac diseases
account for 17.9 million deaths per year (World Health Organization, 2023). Studies have
demonstrated that traditional Chinese medicine (TCM) has potential protective effects in
treating various cardiac diseases. Although TCM is criticized or even dismissed by some
Western scientists because of its complex composition and unclear therapeutic
mechanisms, many randomized controlled trials (RCTs) have spurred its modernization
in China (Hao et al., 2017). TCM is now proven to exhibit significant therapeutic efficacy,
relatively low toxicity, and favorable cost-effectiveness (Lan et al., 2024; Wang et al., 2024;
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Wang et al., 2017). However, the modernization of TCM still faces
challenges because of its inherent concept of multi-component,
multi-target, and multi-pathway properties, especially making the
elucidation of its molecular mechanisms challenging. Hence,
investigating the molecular mechanisms in basic research plays a
crucial role in addressing the challenges in improving TCM
modernization, filling the gaps in clinical research.

Network pharmacology (NP) is a comprehensive discipline,
integrating systems biology, bioinformatics, pharmacology, and
computer science (Friboulet and Thomas, 2005). It establishes a
data analysis database, extracts relevant information, and uses
relevant software to analyze data to construct a multi-
dimensional “drug–target–disease” interaction network (Zhang
et al., 2023). Network pharmacology can elucidate the
interconnected relationships between syndromes, diseases, and
TCM components, focusing on multi-component, multi-channel,
and multi-target synergy (Hopkins, 2008). Thereby, it contributes to
addressing the challenges in improving TCM modernization from
the perspective of basic research and its supplementary
clinical research.

Astragali Radix (Huangqi), Ginseng Radix (Renshen), and
Salviae Miltiorrhiza Radix (Danshen) are common but key TCMs
reported in many treatments for cardiac diseases (Wang et al., 2023).
The components of these TCMs are of great significance, and a
network pharmacology strategy is required to elucidate the

underlying mechanisms. This review summarizes the
achievements of applying network pharmacology in these TCMs
for treating cardiac diseases based on a comprehensive literature
search on PubMed. It aims to create a reference for TCM in treating
cardiac diseases through applying network pharmacology and
provides new ideas for the cure of cancer-induced cardiac injury
through network pharmacology.

Overview of network pharmacology

Network pharmacology steps

Network pharmacology follows a standardized workflow
(Figure 1). First, the active monomers of drugs are screened, and
then their corresponding targets are identified by predicting their
potential targets. Second, disease-associated targets are collected
from a specialized database. Subsequently, the intersection of drug-
predicted targets and disease-associated targets is obtained. Next, the
overlapping genes are used to construct a protein–protein
interaction (PPI) network to identify key proteins, and the
network is used for functional enrichment analyses to understand
their biological roles. An “active ingredient–target–pathway”
network is mapped utilizing the obtained information. The hub
genes and the corresponding drug compounds are screened.

FIGURE 1
Standardized workflow of network pharmacology.
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Molecular docking is conducted between the screened hub genes
and the corresponding high-degree drug monomers identified
through topology analysis, and the binding energies are recorded.
Finally, validation of experimental results is done through in vitro or
in vivo studies. The websites of the database and tools are
listed (Table 1).

Databases for TCM

Some important databases that provide information on
monomers and their reported targets include DrugBank,
Traditional Chinese Medicine Systematic Pharmacology
(TCMSP) (Liu et al., 2022), Traditional Chinese Medicine
Integrated Database (TCMID), Integrative Pharmacology-based
Research Platform of Traditional Chinese Medicine (TCMIP),
Herbal Ingredients’ Targets (HIT), a high-throughput
experiment- and reference-guided database of TCM (HERB),
TCMGeneDIT, ChEMBL, Traditional Chinese Medicine on
Immuno-Oncology (TCMIO), and Integrated Traditional Chinese
Medicine (iCTM). Some databases focus on the interactions between
drugs, their components, and their predicted targets such as
Bioinformatics Analysis Tool for Molecular Mechanism of
Traditional Chinese Medicine (BATMAN-TCM), Encyclopedia of
Traditional Chinese Medicine (ETCM), PharmMapper, SuperPred,
SwissTargetPrediction, Similarity Ensemble Approach (SEA), TCM
Database@Taiwan, and Natural Product Activity and Species Source
(NPASS) database (Gong et al., 2023).

TCM databases with reported targets

TCMSP is a unique system pharmacology platform of
Chinese herbal medicines (Wu, et al., 2022) that offers
information about the components of Chinese herbal
medicines from the Chinese Pharmacopoeia, disease details
targeted by each active component, and absorption,
distribution, metabolism, and excretion (ADEM) properties of
drugs, such as oral bio-availability (OB), drug-likeness (DL), and
half-life (HL). The screening criteria are usually OB ≥ 30% and
DL ≥ 0.18, which ensures the pharmacological validity and bio-
safety profile of the selected components. OB is a novel chemo-
metric method for the prediction of human oral bio-availability,
which represents the amount of the component that enters the
systemic circulation. DL is the similarity between a known
monomer and a certified drug structure. HL estimates the
component metabolic stability. Additionally, it provides the
two-dimensional (2D) structures of the components in
mol2 file format and visualization of the
herb–component–target–disease network (Ru et al., 2014). The
TCMSP database primarily integrates information on TCM
formulas, herbs, compounds, and targets. However, it is not
suitable for Western drugs because of the relatively slow speed
of database updates. It is mainly applicable for studying the
mechanisms of TCM formulas, TCM monomers, or herbal
compounds (Ru et al., 2014). DrugBank is a comprehensive,
freely available web resource supplying detailed drug
information, drug target, drug interaction, and drug action

information (Wishart, 2008). These targets have been
experimentally validated and are continuously updated. In
addition, the TCMSP platform can be directly linked to
DrugBank. The TCMID, TCMIP, HERB, TCMGeneDIT,
ChEMBL, HIT, and NPASS databases also provide reported
targets of the drugs (Zeng et al., 2018).

TCM databases with predicted targets

BATMAN-TCM is the first online bioinformatics analysis
database specifically designed for studying molecular mechanisms
of TCM (Liu et al., 2016). It enables the investigation of holistic
mechanisms of TCM formulas/herbs. The platform can predict
potential targets through setting a cutoff score and adjusted
p-value. A cutoff score is a confidence threshold for filtering
target prediction results. An adjusted p-value is a statistical
adjustment tool that can reduce the risk of false positives. It can
also conduct a comprehensive analysis of enriched biological
pathways (BP) and Gene Ontology (GO) functional terms for the
targets. It visualizes “drug–target–pathway/disease” interaction
networks and supports comparative analysis of multiple
TCM formulas.

SwissTargetPrediction is a web-based platform designed to
accurately predict potential targets for small molecules by
analyzing the 2D and three-dimensional (3D) molecular
structural similarity (Gfeller et al., 2014). Users can input
molecules through SMILES or the Marvin JS molecular editor to
obtain the corresponding targets. The SwissTargetPrediction
platform integrates ligand- and target-based similarity methods,
resulting in high accuracy for target prediction. However, its
functionality is singular, as it only performs target prediction and
does not include subsequent network construction and analysis
functions. Therefore, its predictions require experimental
validation (Daina et al., 2019).

PharmMapper and SuperPred also provide the prediction
targets of the drugs. PharmMapper identifies potential drug
targets for small-molecule compounds (e.g., drugs and natural
products) through pharmacophore mapping. Users can upload a
molecular 3D structure file in mol2 format to the PharmMapper
server. Optional parameters may be configured, or default settings
can be used. Results are accessed by entering tracking JOB ID on the
output page (Liu et al., 2010).

SuperPred has three input methods: First, enter the PubChem
compound name of the target structure; second, enter/upload the
SMILES number of the molecule; third, use the built-in drawing
tools to draw or edit the molecular structure, and start the
calculation by clicking the button; the output results can be
obtained as anatomical therapeutic chemical (ATC) code
prediction and target prediction. The ATC code prediction is
classified according to the color. Green represents high
confidence, yellow represents medium confidence, and red
represents low confidence. Target prediction is reported in the
form of a table, which provides the target name, ChEMBL ID,
UniProt ID, Protein Data Bank (PDB) visualization link, TTDID,
binding probability, and model accuracy (Gallo et al., 2022).

SEA predicts drug targets by submitting the compound’s
SMILES notation to a search server (Liu Z. et al., 2023).
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TABLE 1 Websites of the database and tools in network pharmacology.

Name Website Function

DrugBank https://go.drugbank.com/ TCM databases with reported targets

Traditional Chinese Medicine Systematic Pharmacology (TCMSP) https://www.tcmsp-e.com/load_intro.
php?id=43

TCM databases with reported targets

Traditional Chinese Medicine Integrated Database (TCMID) http://www.megabionet.org/tcmid/ TCM databases with reported targets

Integrative Pharmacology-based Research Platform of Traditional
Chinese Medicine (TCMIP)

http://www.tcmip.cn/ TCM databases with reported targets

Herbal Ingredients’ Targets (HIT) http://www.badd-cao.net:2345/ TCM databases with reported targets

A high-throughput experiment and reference-guided database of
TCM (HERB)

http://herb.ac.cn/ TCM databases with reported targets

TCMGeneDIT — TCM databases with reported targets

Natural Product Activity and Species Source (NPASS) http://bidd2.nus.edu.sg/NPASS/ TCM databases with reported targets

ChEMBL https://www.ebi.ac.uk/chembl/ TCM databases with reported targets

The Encyclopedia of Traditional Chinese Medicine (ETCM) http://www.tcmip.cn/ETCM/ TCM databases with predicted targets

BATMAN-TCM https://www.bohrium.com/apps/
batmantcm

TCM databases with predicted targets

Swiss Target Prediction https://swisstargetprediction.ch/ TCM databases with predicted targets

Pharm Mapper https://www.lilab-ecust.cn/
pharmmapper/index.html

TCM databases with predicted targets

SuperPred https://prediction.charite.de/ TCM databases with predicted targets

Similarity Ensemble Approach (SEA) https://sea.bkslab.org/ TCM databases with predicted targets

DisGeNET http://www.disgenet.org/ Databases for disease targets

Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/ Databases for disease targets

MalaCards https://www.malacards.org/ Databases for disease targets

The Human Phenotype Ontology (HPO) https://hpo.jax.org/ Databases for disease targets

The Pharmacogenomics Knowledge Base (PharmGKB) https://www.pharmgkb.org/about Databases for disease targets

Therapeutic Target Database (TTD) https://db.idrblab.net/ttd/ Databases for disease targets

GeneCards https://www.genecards.org/ Databases for disease targets

Online Mendelian Inheritance in Man (OMIM) https://www.omim.org/ Databases for disease targets

Venny https://bioinfogp.cnb.csic.es/tools/venny/ Drug–disease common targets

DAVID https://davidbioinformatics.nih.gov/ Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes enrichment analyses

Metascape http://www.bioinformatics.com.cn/ Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes enrichment analyses

STRING https://cn.string-db.org/ Protein–protein interaction analysis

Cytoscape — Protein–protein interaction analysis

PubChem https://pubchem.ncbi.nlm.nih.gov/ Chemical data of database

Protein Data Bank (PDB) https://www.rcsb.org/ Protein structures of database

AutoDock Vina http://vina.scripps.edu/ Molecular docking

Discovery Studio (DS) — Molecular docking

Schrödinger — Molecular docking
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Databases for disease targets

The disease-associated targets are derived from databases such as
Gene Expression Omnibus (GEO), DisGeNET, Pharmacogenomics
Knowledge Base (pharmGKB), Therapeutic Target Database (TTD),
GeneCards, Online Mendelian Inheritance in Man (OMIM), Human
Phenotype Ontology (HPO), andMalaCards database (ZhaoM. et al.,
2024). GEO distributes micro-array, next-generation sequencing
(NGS), and other forms of high-throughput functional genomics
data (Barrett et al., 2013). DisGeNET is a knowledge management
platform that covers the full spectrum of human diseases and normal
and abnormal traits (Piñero et al., 2020). The DisGeNET platform
integrates multiple public databases. However, the reliability of these
data varies by source, requiring users to exercise discretion when
interpreting them (Piñero et al., 2020). The PharmGKB website
provides a diverse array of pharmacogenomics (PGx) information
(Barbarino et al., 2018). TTD provides comprehensive information to
evaluate durability characteristics of the targets (Zhou et al., 2024).
GeneCards is a comprehensive and authoritative compendium that
provides annotative information on human genes, containing concise
genome, transcriptome, proteome, and function data of all known and
predicted human genes (Safran et al., 2010). OMIM is the primary
repository that provides comprehensive and curated information on
genes, genetic phenotypes, and the relationships between them. Its
structure is organized into distinct gene and phenotype entries, which
provides external links to target-related information. Each gene is
assigned a unique six-digit OMIM identifier for classification. Gene
entries include protein-coding genes, regulatory elements, and non-
coding RNAs, whereas phenotype entries focus on single-gene-
mediated disorders. The database facilitates genomics coordinate
searches through their gene maps with precise localization of genes
and phenotypes within the human genome (Amberger et al., 2015).
The UniProt database is used to standardize all the collected protein
names by converting them into their corresponding official
abbreviations (Shang et al., 2023).

Platform for the intersection of disease
targets and drug targets

Using the Venny 2.1.0 online platform, overlapping genes can be
identified to generate a Venn diagram of disease genes and drug
targets. These intersecting genes represent the potential therapeutic
targets for drug treatment of the disease (He et al., 2023).

Platform for Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
enrichment analyses

The DAVID website or Metascape database can be used to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses on potential
therapeutic targets screened by TCM and disease databases
(Shang et al., 2023). GO enrichment analysis covers biological
process (BP), molecular function (MF), and cell composition (CC).
GO enrichment analysis enables researchers to understand
biological functions, pathways, and locations of gene

enrichment in the cells. KEGG enrichment predicts the
signaling pathways of diseases cured by drugs. The visualization
program of the bioinformatics mapping website creates bubble
maps and bar charts. In the chart, fold enrichment represents the
ratio of the enrichment level of a target event observed in an
experimental group relative to the control group. The p-value is a
statistical measure used to evaluate the probability that the
observed data align with the null hypothesis.

Tools for protein–protein
interaction analysis

The STRING platform is a comprehensive online resource that
systematically collects and integrates PPI data. It employs
confidence scores to quantitatively assess interactions, in which
higher scores indicate a greater likelihood of functional
association between proteins. It can perform cluster analysis
among proteins. The clustering algorithms used in STRING
include Monte Carlo localization (MCL) and K-means
(Szklarczyk et al., 2021). The MCL algorithm exhibits stronger
robustness to noise, making it particularly suitable for filtering
false positives in PPI networks. The K-means algorithm is more
suitable for identifying gene modules with similar expression
patterns in PPI networks (Ren et al., 2024). The STRING
database integrates PPI data from experimental, database,
literature, and computational predictions; however, it primarily
focuses on protein interactions and does not directly handle
compounds (Zhao and Sahni, 2019).

Cytoscape is a software platform for visualizing complex
biological and social networks (Otasek et al., 2019). It covers
many plugins such as NetworkAnalyzer, CytoNCA, MCODE,
and CytoHubba, which are used for network analysis.
NetworkAnalyzer is the preliminary screening tool for
understanding the basic characteristics of a newly constructed
network (such as a PPI network and co-expression network),
verifying whether the network conforms to common topological
characteristics of biological networks (such as scale-free), and
quickly calculating the number of node connections. The
important parameters calculated by NetworkAnalyzer include
betweenness centrality (BC), closeness centrality (CC), and
degree centrality (DC). BC represents the number of shortest
paths passing through a node. CC represents the average distance
between the node and other nodes in the network. DC is used to
calculate the edges linked to each node, which indicates the
significance of the nodes in the network. The first screening
usually selects genes with BC, CC, and DC values greater than
the mean or selects genes based on some specific standard (Arjmand
et al., 2022).

Then, the deep screening for hub genes uses CytoNCA,
MCODE, or CytoHubba. CytoNCA also calculates BC, CC, and
DC values that deeply explore the importance, influence, and control
of nodes in the network, particularly identifying core nodes in the
network. The selection for hub genes is based on BC, CC, and DC
values given by CytoNCA that are greater than the median (Fan
et al., 2023); MCODE performs a cluster analysis for hub genes and
identifies potential protein complexes or functional modules by
analyzing the density of nodes and edges in the network. The
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selection for hub genes is based on the scores given by MCODE for
the genes (Shang et al., 2023); CytoHubba performs network
topology analysis and node centrality analysis through assigning
values to each gene and ranking them based on the attributes of
nodes in the network. The important topology analysis method in
CytoHubba includes maximum clique centrality (MCC), maximum
neighborhood component centrality (MNC), edge percolated
component (EPC), and degree. MCC identifies the nodes with
centrality in the largest group. MNC evaluates the centrality of a
node in its neighboring components. EPC finds key nodes in the
network that are still connected after removing a small number of
edges. Degree calculates the degree of a node, which is the number of
edges directly connected to the node. The hub genes are usually
selected based on the intersection of the top screening genes through
four topology analyses (Bisht et al., 2024). In addition, each version
of Cytoscape introduces new plugins and improved features (Saito
et al., 2012). The Cytoscape platform has numerous plugins (such as
CytoHubba and MCODE) for pathway enrichment and network
topology analysis, and it can produce high-quality network
diagrams. However, it does not provide its own data. The users
must import data from other databases to construct networks
(Shannon et al., 2003).

Tools for molecular docking

PubChem is a key chemical information resource, which offers
chemical informatics, chemical biology, medicinal chemistry, and
drug discovery for biomedical research communities (Kim et al.,
2019). PubChem allows users to download 2D and 3D structures
and obtain the SMILES of bioactive compounds.

PDB is the single worldwide archive of structural data of
biological macromolecules (Berman et al., 2000). The crystal
structures of core protein targets can be downloaded from the
PDB. The angstrom (Å) refers to the resolution of proteins, which
is a critical parameter for evaluating structural precision. Lower
values indicate higher structural precision. Protein structures are
primarily determined through three experimental methods: X-ray
crystal structure determination, NMR, and 3D electron
microscopy (3DEM) (Burley et al., 2017). X-ray crystal
structure determination involves irradiating protein crystals
with X-rays and analyzing the diffraction patterns to infer
atomic positions. NMR determines inter-atomic distances and
angles by analyzing the nuclear magnetic resonance signals of
proteins in a solution. 3DEM rapidly freezes protein samples and
reconstructs 3D structures by capturing multi-angle images via
electron microscopy.

AutoDock Vina is a popular program for molecular docking and
virtual screening (Trott and Olson, 2010). The binding energy result
is visualized in PyMOL and Python. A value less than −5 kcal/mol
indicates good docking. AutoDockTools is used to dehydrate and
hydrogenate the proteins. Discovery Studio (DS) supports both
protein pre-processing and direct execution of molecular
docking. Schrödinger can also perform molecular docking
directly (Liu X. et al., 2023).

In summary, each platform has its own focus, advantages, and
disadvantages. In practical applications, utilizing multiple platforms
is the most common approach.

Key TCM against cardiac diseases by
network pharmacology

All the herbs, active compounds, hub genes, and pathways for
TCM against different cardiac diseases by NP are listed (Table 2).

Myocardial infarction

Myocardial infarction (MI) represents myocardial necrosis due to
persistent ischemia and hypoxia due to coronary artery occlusion.
SwissTargetPrediction, HERB, TargetNet, GeneCards, OMIM,
DisGeNET, and TTD were used to predict the potential targets of
salvianolic acid A. PPI networks were constructed using the STRING
database, and the CytoHubba plugin within Cytoscape was utilized to
identify the hub genes. Functional enrichment analysis of these hub
genes was performed using the clusterProfiler software package.
Experiments confirmed that salvianolic acid A regulates the
expression of these hub genes, thereby demonstrating its therapeutic
efficacy against MI, especially via inhibiting the PI3K–AKT signaling
pathway (Huang et al., 2022). The bioactive components and their
protein targets were screened from Salvia miltiorrhiza Bunge using the
TCMSP database. MI targets were obtained from the OMIM and
GeneCards databases. GO and KEGG pathway enrichment analyses
were performed to analyze the intersection of drug targets and disease
targets using the Metascape database. Molecular docking results
between active components and hub genes prioritized tanshinone
IIA binding with vascular endothelial growth factor A (VEGFA).
The experimental validation revealed that Salvia miltiorrhiza Bunge
treats MI by promoting VEGF signaling pathway expression (Huang
et al., 2023). The components of blood-entering Danshen Yin (DSY)
were analyzed through UHPLC-Q-TOF-MS/MS. The SMILES
structures of these components were retrieved via PubChem and
input into the SwissTargetPrediction database for predicting
potential targets. The DAVID database was utilized for KEGG
pathway and GO enrichment analyses. Finally, integrating
experimental findings, DSY may prevent myocardial fibrosis in vivo
following MI by modulating transforming growth factor-β (TGF-β)-
mediated PI3K–AKT, MAPK, and Smad signaling pathways (Gao X.
et al., 2025). The active components of Ginseng and their targets were
identified via the TCMSP database. The targets of MI and pyroptosis
were collected from the GeneCards database. PPI, GO, and KEGG
analyses of the intersection of drug targets and disease targets were
carried out using STRING, Cytoscape, and DAVID databases. The
molecular docking results between the active components and hub
genes were obtained fromAutoDockVina and visualized using PyMOL
software. Combined with experimental validation, the findings revealed
that ginsenoside Rh2 reduced MI-induced cardiomyocyte pyroptosis
via downregulating NOD-like receptor thermal protein domain-
associated protein 3 (NLRP3), ASC, caspase-1, gasdermin-D
(GSDMD-N), interleukin-18 (IL-18), and interleukin-1β (1L-1β) in
vivo and in vitro (Li et al., 2025).

Myocardial ischemia–reperfusion injury

Myocardial ischemia–reperfusion injury (MI/RI) is a
pathological state caused by an initial low supply of blood to a
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TABLE 2 Summary of the data from network pharmacology in different cardiac diseases.

Herb/formula Active compound Hub gene Pathways Evidence type

— Salvianolic acid A SRC, CTNNB1, PIK3CA, AKT1,
RELA, EGFR, FYN, ITGB1,
MAPK8, and NFKB1

Lipid and atherosclerosis, Fluid
shear stress and atherosclerosis,
Focal adhesion, AGE–RAGE
signaling pathway in diabetic
complications, PI3K–AKT
signaling pathway, sphingolipid
signaling pathway, HIF-1 signaling
pathway, TNF signaling pathway,
and IL-17 signaling pathway

Myocardial infarction

Salvia miltiorrhiza Bunge Luteolin, tanshinone IIA, and 1,2,5,6-
tetrahydrotanshinone

IL-6, TNF, AKT1, and VEGFA Blood vessel endothelial cell,
migration, membrane raft, and
cytokine receptor binding

Myocardial infarction

Danshen Yin Salvianonol, dihydroisotanshinone II,
cryptotanshinone, tanshinone IIB,
caffeic acid, rosmarinic acid,
salvianolic acid A, dihydrotanshinone
I, danshenxinkun A, and lithospermic
acid

ERK, JNK, AKT, and SMAD3 Extracellular matrix organization,
focal adhesion, ECM–receptor
interaction, and TGF-β-mediated
signaling pathways

Myocardial infarction

Ginseng Ginsenoside Rh2 IL1B, CASP3, RELA, CASP8,
MAPK14, CASP1, and GSTP1

Lipid and atherosclerosis, TNF
signaling pathway, AGE–RAGE
signaling, and NOD-like receptor
signaling pathway

Myocardial infarction

QishenYiqi dripping pill Quercetin, isotanshinone Ⅰ,
terfenadine, luteolin, and salvilenone

AKT1, BCL-2, CASP1, GSK-3B,
and P53

PI3K–AKT signaling pathway,
autophagy in animals, mitophagy
in animals, mTOR signaling
pathway, p53 signaling pathway,
and NOD-like receptor signaling
pathway

Myocardial
ischemia–reperfusion injury

Cinnamon Oleic acid, palmitic acid, β-sitosterol,
eugenol, taxifolin, and
cinnamaldehyde

PTGS2, GSK-3B, and MAPK14 Lipid and atherosclerosis,
PI3K–AKT signaling pathway,
MAPK signaling pathway, IL-17
signaling pathway, and HIF-1
signaling pathway

Myocardial
ischemia–reperfusion injury

Shuxin decoction Quercetin, β-sitosterol, and
kaempferol

IL-6, IL1B, TNF, VEGFA,
MMP9, CXCL8, STAT3, PTGS2,
CASP3, JUN, PPARG, HIF-1A,
IL-10, ICAM1, NOS3, HMOX1,
FOS, MYC, IFNG, EDN1,
CASP8, MAPK8, VCAM1,
CCND1, SERPINE1, MAPK14,
STAT1, ESR1, MPO, NOS2,
CASP1, SPP1, IL1A, SELE,
NFE2L2, CASP9, PPARA, KDR,
CXCL10, and CD40LG

AGE–RAGE signaling pathway in
diabetic complications, lipids and
atherosclerosis signaling pathway,
apoptosis, LDL, AGEs, and RAGE

Myocardial
ischemia–reperfusion injury

— Salvianolic acid B ALB, CASP3, ANXA5, NOS1,
SRC, NOS3, MAPK14, MAPK8,
MAPK1, and PPARG

Cell death-related signaling
pathway, inflammation reaction-
related signaling pathway, and
oxidative stress reaction-related
signaling pathways

Myocardial
ischemia–reperfusion injury

Panax ginseng C.A. Mey Ginsenoside Rh4, ginsenoside Rk3,
ginsenoside Rk1, ginsenoside Rg5,
and ginsenoside CK

EGFR, AKT1, ERBB2, STAT3,
TNF, ESR1, mTOR, HRAS,
MMP9, and PIK3CA

PI3K–AKT signaling, TNF
signaling pathway, and mTOR
signaling pathway

Heart failure

Astragalus membranaceus Isorhamnetin, quercetin, calycosin,
formononetin, and kaempferol

APOE, TNF, BCL-2, MYC,
MMP9, TLR4, ESR1, HIF-1A,
VCAM1, and CDH1

Organic hydroxyl compounds and
other metabolic processes, cell
apoptosis, adhesion ability, and
inflammatory response
(upregulated); secondary
metabolism, the regulation of
vascular diameter, steroid
hormone response, and cell growth
and senescence (downregulated)

Heart failure

(Continued on following page)
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specific area (ischemia), followed by the restoration of perfusion and
re-oxygenation (reperfusion). The metabolites from the compounds
of all ingredients in QishenYiqi (QSYQ) dripping pills were obtained
from TCM and TCMIO. ChEMBL and TCMIO were used to
identify the metabolite targets. An R-studio network was
constructed to build a metabolite–target–pathway network.
Molecular docking was performed between hub genes and the

components of QSYQ. Finally, QSYQ was experimentally proven
to alleviate MI/RI by regulating autophagy-related proteins and the
PI3K–AKT–mammalian target of the rapamycin (mTOR) signaling
pathway. QSYQ significantly suppressed pyroptosis via inhibiting
the activation and assembly of NLRP3 inflammasome (Li et al.,
2022). The components and their protein targets were screened from
cinnamon and predicted using the TCMSP database and

TABLE 2 (Continued) Summary of the data from network pharmacology in different cardiac diseases.

Herb/formula Active compound Hub gene Pathways Evidence type

Ginseng Ginsenoside Rg1 and ginsenoside Rb3 FN1 and PRKAA2 Hypertrophic cardiomyopathy,
starch and sucrose metabolism,
tyrosine metabolism, PI3K–AKT
signaling pathway, and AMPK
signaling pathway

Heart failure

Tonifying kidney and
activating blood

Quercetin, luteolin, kaempferol,
tanshinone IIA, and baicalein

TNF, AKT1, STAT3, RELA,
NFKBIA, and MAPK14

Lipid and atherosclerosis, TNF
signaling, PI3K–AKT signaling,
and pathways in cancer

Heart failure

Ginseng Kaempferol, β-sitosterol, and
fumarine

CCNA2, STAT1, and ICAM1 AGE–RAGE signaling pathway in
diabetic complications, fluid shear
stress and atherosclerosis pathway,
and TNF signaling pathway

Drug-induced cardiotoxicity

Salvia miltiorrhiza Danshensu CAT, SOD, GPX, IL-6, TNF,
BAX, BCL-2, and CASP3

Oxidative stress, apoptosis,
inflammation, heart development,
negative regulation of cell growth,
cell aging, negative regulation of
autophagy, ubiquitin protein ligase
binding, NF-κB binding,
antioxidant activity, and tumor
necrosis factor-activated receptor
activity

Drug-induced cardiotoxicity

Danshen injection Chrysophanol, luteolin, tanshinone
IIA, and isoimperatorin

CA12, NOS3, and POLH Neuroactive ligand–receptor
interaction, apoptosis, and
nitrogen metabolism and calcium
signaling pathways

Drug-induced cardiotoxicity

Huangqi–Danshen
compound

Salvianolic acid B, rosmarinic acid,
astragaloside IV, tanshinones, and
tanshinins

SOD, CASP3, BCL-2, EDN1,
NRF2, AMPK, mTOR, and
PGC1A

FoxO signaling pathway, insulin
signaling pathway, Ras signaling
pathway, HIF-1 signaling pathway,
estrogen signaling pathway, insulin
resistance, PPAR signaling
pathway, VEGF signaling pathway,
PI3K–AKT signaling pathway,
ErbB signaling pathway,
complement and coagulation
cascades, adipocytokine signaling
pathway, metabolic pathways,
AMPK signaling pathway, TNF
signaling pathway, mTOR
signaling pathway, glucagon
signaling pathway, MAPK
signaling pathway, and the Toll-
like receptor signaling pathway

Diabetic cardiomyopathy

Cadherin-associated protein b 1(CTNNB1), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA), protein kinase B (AKT1), recombinant V-Rel reticuloendotheliosis viral oncogene

homolog A (RELA), epidermal growth factor receptor (EGFR), integrin subunit beta 1 (ITGB1), mitogen-activated protein kinase 8 (MAPK8), nuclear factor κβ subunit 1 (NFKB1), interleukin-6
(IL-6), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), B-cell lymphoma-2 (BCL-2), glycogen synthase kinase-3β (GSK-3B), hypoxia-inducible factor 1 (HIF-1),

prostaglandin-endoperoxide synthase 2 (PTGS2), C–X–C motif chemokine ligand 8 (CXCL8), caspase-3 (CASP3), tumor protein P53 (P53), Jun proto-oncogene, AP-1 transcription factor

subunit (JUN), interleukin-10 (IL-10), nitric oxide synthase 3 (NOS3), heme oxygenase 1 (HMOX1), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), MYC proto-oncogene, BHLH

transcription factor (MYC), interferon gamma (IFNG), endothelin 1 (EDN1), serpin family E member 1 (SERPINE1), mitogen-activated protein kinase 14 (MAPK14), signal transducer and

activator of transcription 1 (STAT1), myeloperoxidase (MPO), nitric oxide synthase 2 (NOS2), caspase-1 (CASP1), secreted phosphoprotein 1 (SPP1), interleukin-1α (IL1A), selectin E (SELE),

nuclear factor, erythroid 2-like 2 (NFE2L2), caspase 9 (CASP9), peroxisome proliferator-activated receptor α (PPARA), kinase insert domain receptor (KDR), C–X–Cmotif chemokine ligand 10

(CXCL10), CD40 ligand (CD40LG), albumin (ALB), annexin A5 (ANXA5), epidermal growth factor receptor-binding protein 2 (ERBB2), signal transducer and activator of transcription 3

(STAT3), estrogen receptor a1 (ESR1), Harvey rat sarcoma viral oncogene homolog (HRAS), matrix metalloproteinase-9 (MMP9), mammalian target of rapamycin (mTOR), apolipoprotein E

(APOE), Toll-like receptor 4 (TLR4), vascular cell adhesion molecule 1 (VCAM1), cadherin-1 (CDH1), nuclear factor κβ subunit inhibitor α (NFKBIA), fibronectin 1 (FN1), protein kinase

AMP-activated catalytic subunit alpha 2 (PRKAA2), adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), cyclin A2 (CCNA2), signal transducer and activator of

transcription 1 (STAT1), intercellular adhesion molecule 1 (ICAM1), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), carbonic anhydrase 12 (CA12), DNA

polymerase eta (POLH), advanced glycation end products (AGE), the receptor for AGEs (RAGE), nuclear factor-E2-related factor 2 (NRF2), peroxisome proliferator-activated receptor γ
(PPARG), PPARγ coactivator 1α (PGC1A).
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HyperAttentionDTI. A PPI network was constructed using the
STRING database. For molecular docking, the homology
modeling method was used to generate structures for proteins
lacking unavailable structures, whereas AlphaFold2 predicted
their 3D conformations. Blind docking was performed using
QuickVina-W, and AutoDockTools defined the global docking
box. Finally, experimental validation in a zebrafish model
demonstrated that taxifolin exhibited potential protective effects
against MI/RI via regulating PTGS2 (Xue et al., 2023). The
components were screened from Shuxin decoction (SXT) via the
TCMSP database. The diabetes-related targets or MI/RI-related
targets were searched via the DisGeNET, GeneCards, DrugBank,
OMIM, and PharmGKB databases. The key subnetworks and
therapeutic targets were identified by the MCODE plugin in
Cytoscape, and the CytoNCA plugin was further used to screen
for core genes. KEGG and GO analyses were carried out through the
DAVID database. Finally, combined with experimental validation, it
was shown that SXT could significantly improve cardiac function in
diabetic MI/RI by downregulating apoptosis-related proteins such as
Bcl-2-associated X protein (Bax) and cleaved caspase-3 and
upregulating Bcl-2 (Yang et al., 2023). Salvianolic acid B (Sal-B)
targets were identified through screening databases and
SwissTargetPrediction. The targets related to MI/RI were
obtained by screening DisGeNET. The STRING database was
used to construct a PPI network among the intersection between
the targets of Sal-B and MI/RI. The network topology, GO, and
KEGG were analyzed using Cytoscape and DAVID databases.
Experimental results demonstrated that Sal-B may increase
SIRT1 activity, inhibit the phosphorylation of c-Jun N-terminal
kinase (JNK) and p38 mitogen-activated protein kinase (p38),
reduce reactive oxygen species (ROS) release, and inhibit
apoptosis (by increasing the ratio of Bcl-2/Bax and inhibiting
caspase-3 activation) through the SIRT1–MAPK pathway (Mao
et al., 2024).

Heart failure

Heart failure (HF) is a chronic, progressive medical condition
characterized by the heart’s inability to pump sufficient blood to
meet the body’s metabolic needs or to do so only at elevated filling
pressures. UPLC-QE-Orbitrap MS metabolite profiling identified
40 ginsenosides from the processed Panax ginseng C.A. Mey. [sun-
dried ginseng (DG), red ginseng (RG), and black ginseng (BG)].
SwissTargetPrediction predicted potential ginseng targets, whereas
OMIM, DisGeNET, and DrugBank provided HF targets. PPI
network analysis identified the top hub genes using STRING and
NetworkAnalyzer (BC, CC, and DC). Metascape GO/KEGG
enrichment highlighted key pathways involved in treating HF.
Molecular docking revealed that ginsenosides had the strongest
binding force with mTOR in the treatment of HF (Dai et al.,
2023). A total of 15 active components were identified from
Astragalus membranaceus (HQ) using TCMSP. NPASS/PubChem
were used to predict HQ targets. The overlapping downregulated
and upregulated genes and their function between HQ targets and
HF differentially expressed genes (DEGs) were yielded through GEO
analysis. KEGGMapper was exploited to perform signaling pathway
enrichment annotation. PPI network analysis using STRING and

CytoHubba’s MCC method in Cytoscape identified the top hub
genes. ESR1 bound all key HQ components, as confirmed by
AutoDockTools for molecular docking. HQ alleviated HF via
ESR1-mediated pathways, inflammation, apoptosis, and vascular
homeostasis (Chen et al., 2024). The components of ginseng and its
protein targets were obtained and predicted through HERB, iTCM,
and Comparative Toxicogenomics Database (CTD). The disease
targets related to “HF” were retrieved from GeneCards, OMIM,
DisGeNET, TTD, HPO, and MalaCards databases. The potential
targets were collected from the intersection between drugs and
disease targets and DEGs from the GEO database for enrichment
analysis and PPI network. The hub genes were screened using
Cytoscape. GO and KEGG enrichment analyses were performed
on the hub genes using the clusterProfiler (version 4.10.1) package.
Finally, the key components ginsenoside Rg1 and ginsenoside
Rb3 were identified as the potential components in ginseng
binding with fibronectin 1 (FN1) and protein kinase AMP-
activated catalytic subunit alpha 2 (PRKAA2) involved in the
PI3K–AKT and AMPK pathways through AutoDock Vina and
in vitro and in vivo experiments (Gao K. et al., 2025). Active
components of tonifying kidney and activating blood (KTBA)
and its protein targets were screened and predicted from the
TCMSP, SwissTargetPrediction, and PharmMapper databases.
Chronic HF targets were extracted from GeneCards and
DisGeNET databases. PPI network analysis of shared targets was
performed using the STRING database and visualized in Cytoscape.
The hub genes were identified via CytoNCA. GO and KEGG
enrichment analyses via Metascape highlighted the key pathways.
Molecular docking predicted that tanshinone IIA binds I-κBα/NF-
κB pathway targets, suggesting that KTBA modulated chronic HF
through multi-component interactions with inflammation/fibrosis-
associated targets such as p38MAPK/NF-κB axis and epithelial
barrier proteins including aquaporin-4 (AQP4)/zonula occludens-
1 (ZO-1)/occludin (Xu et al., 2025).

Drug-induced cardiotoxicity

Drug-induced cardiotoxicity (DIC) refers to the adverse
cardiac effects caused by treatment with drugs, which may
manifest as functional abnormalities. The active ginseng
components and the corresponding targets were extracted from
the TCMSP, HERB, and, ETCM databases. The DIC targets were
identified as the overlapping targets of the DEGs from the GEO
database. The core active components were screened using
NetworkAnalyzer. PPI analysis was carried out through the
STRING database and visualized in Cytoscape. The hub genes
were identified through CytoNCA. GO and KEGG enrichment
analyses identified the significant pathways using the
“clusterProfiler” package, which were visualized in SangerBox.
Molecular docking demonstrated that the core components bind
with the hub genes, which was confirmed by cellular thermal shift
assay (CETSA) and molecular dynamics (MD). Overall, the study
revealed that kaempferol binds with STAT1 to protect against DIC
(Xie et al., 2024). The DIC targets were identified through CTD
and GeneCards. GO and KEGG enrichment analyses via the
DAVID database elucidated the critical pathway. A PPI
network was constructed using the STRING database and
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analyzed in Cytoscape to extract the hub genes. The animal
experiments demonstrated that Danshensu (DSS), an active
ingredient in Salvia miltiorrhiza, conferred cardioprotection by
regulating the Kelch-like ECH-associated protein 1 (Keap1)/
nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/NAD(P)H
quinone oxidoreductase 1 (NQO1) pathway, exerting
synergistic antioxidant, anti-inflammatory, and anti-apoptotic
effects (Qi et al., 2022). The Danshen injection (DSI)-
associated targets were obtained from the TCMSP, HERB,
ETCM, TCMID, and iTCM databases. The shared targets were
subjected to PPI analysis through the STRING database, and the
hub genes were analyzed in Cytoscape. GO and KEGG
enrichment analyses identified the enriched pathways via the
DAVID database, and the results were visualized in SangerBox.
The transcriptome analysis validated the hub genes. Molecular
docking was generated using the online software CB-Dock2 and
demonstrated the high affinity of active compounds binding to the
related targets. Overall, the study suggested that DSI conferred
cardioprotection against AIC through inhibition of carbonic
anhydrase 12 (CA12), nitric oxide synthase 3 (NOS3), and
DNA polymerase eta (POLH), coupled with modulation of
calcium signaling pathways (Xie et al., 2024).

Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is a distinct myocardial
disorder caused by long-term diabetes, and it is characterized
by structural and functional abnormalities. The active
components of Hedysarum multijugum Maxim-Radix Salviae
compound (Huangqi–Danshen compound, HDC), containing
Hedysarum multijugum and Salvia miltiorrhiza, were screened
using TCM Database@Taiwan, TCMSP, and TCMID. Potential
targets were predicted via PharmMapper using compound
structures. After standardization in UniProtKB, the HDC
targets were identified. DCM-related genes were extracted from
GeneCards and OMIM databases. PPI analysis was performed
using STRING with the network visualized in Cytoscape. GO and
KEGG enrichment analyses via DAVID identified the key
signaling pathways. Rat experiments showed that HDC reduced
the levels of fasting plasma glucose (FPG), hemoglobin A1c
(HbA1c), and malondialdehyde (MDA) and increased the
levels of SOD and glutathione peroxidase (GSH-Px). The
immunohistochemistry results showed that HDC could
regulate the protein expression of apoptosis-related signaling
pathways (increased Bcl-2 and decreased Bax) in DCM. The

FIGURE 2
Schematic of shared signaling pathways treated by TCMs. MI, myocardial infarction; MI/RI, myocardial ischemia–reperfusion injury; HF, heart failure;
DIC, drug-induced cardiotoxicity; DCM, diabetic cardiomyopathy. Sal-A, salvianolic acid A; Sal-B, salvianolic acid B; QSYQ, QishenYiqi dripping pill; SXT,
Shuxin decoction; KTBA, tonifying kidney and activating blood; DSI, Danshen injection; HDC, Huangqi–Danshen compound; Salvia, Danshen; Astragalus,
Huangqi; Ginseng, Renshen. This figure was created using BioRender, and its use has been authorized by the platform.
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findings suggested that HDC could reduce oxidative stress and
delay myocardial hypertrophy by inhibiting the AMPK–mTOR
pathway, thereby improving myocardial damage (Zhang
et al., 2020).

Conclusion and perspectives

TCM and its main ingredients exert cardioprotective effects
through key regulatory pathways against pathological conditions.
Heart diseases include MI, MI/RI, HF, DIC, and DCM. The key
herbs treat cardiac diseases primarily through the following
mechanisms. First, it exerts anti-inflammatory and antioxidant
effects by suppressing interleukin (IL) and TNF signaling
pathways via NF-κB and decreasing the levels of ROS via
balancing redox enzyme function. Second, it regulates the
PI3K–AKT pathway and its pivotal downstream AKT–mTOR
signaling pathway. PI3K–AKT–mTOR is widely involved in
autophagy, cell growth, protein synthesis, energy metabolism,
mitochondria biogenesis, and sensing and integration of
upstream signaling pathways of growth factors and amino
acids (Fan et al., 2025; Fan et al., 2022; Zhao T. et al., 2024).
Third, it protects against pyroptosis through downregulating the
assembly of NLRP3 inflammasome, inducing the release of
caspase-1-dependent pro-inflammatory cytokines IL-1β and
IL-18, along with gasdermin-D. Fourth, it directly influences
apoptosis via upregulating Bcl-2 and downregulating p38, JNK,
Bax, and caspase-3. Fifth, it promotes angiogenesis via enhancing
VEGF signaling. Sixth, it maintains the calcium homeostasis via
reinforcing NOS3 (Figure 2). The herbs share similar
mechanisms through which they induce protective effects
against MI and MI/RI, such as alleviating inflammation and
pyroptosis, suppressing apoptosis, and inhibiting
PI3K–AKT–mTOR to attenuate autophagy. In HF, TCM
activates PI3K–AKT–mTOR to improve the energy
metabolism, whereas it inhibits AMPK–mTOR to decrease
hypertrophy via protein synthesis in DCM. Moreover, the
herbs also protect against DIC and DCM both via anti-
oxidation and anti-apoptosis.

Although NP has provided new insights into the treatment of
cancer-induced cardiac injury, it has several limitations when used
alone. (i) Much of the information in NP relies on computational
predictions. Invalidated data concerning targets, pathway
networks, and PPI inevitably lead to a high rate of false
positives. For instance, molecular docking results can vary
across different computational platforms. Therefore,
experimental validation remains essential for confirming these
predictions (Wu et al., 2022). (ii) NP prediction methods
cannot accurately assess the efficacy and toxicological profile of
TCM formulas. The chemical composition of some herbal
ingredients changes during decoction processes. Consequently,
the overall therapeutic effect of a herbal formula cannot be
regarded as the simple combined effects of its individual
compounds predicted in silico. For example, heating processes
such as roasting and steaming can convert polar ginsenosides in
raw ginseng into a variety of less polar ginsenosides (Li et al., 2018).
(iii) Using only a few parameters such as OB and DL to represent
the complex ADME process is an oversimplification. Many “active

components” identified through NP may be present in very low
concentrations in the raw herb or in biological fluids, potentially
failing to reach effective therapeutic levels. Thus, the reliability of
ADME-based screening for identifying truly active components
remains questionable (Wu et al., 2022). These limitations also
make translating the findings of NP to clinical application
challenging.

Cancer-induced cardiac injury refers to cardiac dysfunction
and wasting syndrome in cancer patients caused by the tumor
itself, characterized by cardiac atrophy, cardiac fibrosis, and
contractile dysfunction, with a dramatic impact on a patient’s
quality of life and survival. Its pathogenesis primarily involves
inflammatory responses, oxidative stress, protein degradation, and
abnormal metabolism. TCM possesses anti-inflammatory and
antioxidant effects and activates the AKT–mTOR pathway,
especially attributing to protein synthesis and normal
metabolism. These suggest that it may help improve cardiac
injury. However, its effects on cancer-induced cardiac injury
specifically have not yet been reported. Therefore, this
represents a promising area for in-depth exploration. In
addition, the approach to study the detailed mechanisms is also
necessary. Hence, NP may be a useful and prospective method to
investigate the new mechanisms. In therapy, understanding the
specific mechanisms of the TCM and its active monomers holds
important clinical implications. In future studies, we plan to use
NP to identify potential therapeutic targets of key herbs, including
Astragalus membranaceus (Huangqi), Salvia miltiorrhiza
(Danshen), and Ginseng Radix (Renshen), for cancer-induced
cardiac injury and validate these findings through in vitro and
in vivo experiments.
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