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Objective: This study aims to elucidate the therapeutic effects of polyphenolic
metabolites from Scutellaria baicalensis Georgi against ischemic stroke. The
findings are expected to provide experimental evidence and novel insights to
guide the future development of these metabolites.
Materials and methods: This review was conducted based on a comprehensive
literature search of the PubMed, NCBI, and Google Scholar databases from their
inception until August 2025. Key search terms included “Scutellaria baicalensis”,
“Scutellaria baicalensis and polyphenols,” “Ischemic stroke,” “cerebral infarction,”
“cerebral ischemia-reperfusion injury,” and “toxicity.” The article first summarizes
the polyphenolic metabolites of S. baicalensis, such as baicalein, baicalin,
wogonin, wogonoside, scutellarin, chrysin, apigenin, chlorogenic acid, and
ferulic acid, and provides an overview of the pathophysiological mechanisms
of ischemic stroke. The primary focus lies on elucidating the pharmacological
mechanisms, potential toxic effects, and strategies for improving the
bioavailability of these polyphenols in the treatment of ischemic stroke.
Results: The polyphenolic metabolites of S. baicalensis significantly alleviate
ischemic brain injury through multiple pharmacological mechanisms, including
anti-inflammatory, antioxidant, and anti-apoptotic effects, as well as regulation of
neurotransmitters, maintenance of the blood-brain barrier, and inhibition of
ferroptosis, thereby demonstrating promising neuroprotective potential.
Furthermore, although nanodelivery systems can effectively enhance the brain
bioavailability of these metabolites, their dose-dependent toxicity requires
careful attention.
Conclusion: The polyphenolic metabolites of S. baicalensis exhibit promising
development prospects due to their synergistic therapeutic effects on ischemic
stroke via multi-targets and multi-pathways. To advance these metabolites
toward clinical application, a strategic focus on the optimization of delivery
systems and comprehensive safety assessment is imperative.
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1 Introduction

Stroke is a cerebrovascular disease characterized by sudden vascular impairment that
leads to neurological deficits (Zhang C. et al., 2025). Due to its severity, unpredictability, and
uncontrollable nature, stroke is known for its high rates of disability and mortality, ranking
as the second leading cause of death and the third leading cause of disability worldwide (Gan
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et al., 2025; He et al., 2024). Clinical studies indicate that stroke
patients often develop various sequelae, including neurological
deficits, hemiplegia, anxiety, and depression (He et al., 2024).
Projections suggest that global stroke-related mortality is
expected to rise by 50% between 2020 and 2050, increasing from
6.6 million to 9.7 million annual deaths (Feigin et al., 2023). Notably,
the global economic burden of stroke exceeds $890 billion USD, with
this impact being particularly pronounced in low- and middle-
income countries (Feigin et al., 2025). Thus, stroke imposes a
substantial burden and significant economic pressure on patients,
their families, and society as a whole.

Pathologically, stroke can be classified into two subtypes:
hemorrhagic stroke and ischemic stroke (Peng et al., 2025).
Ischemic stroke accounts for the majority of all stroke cases
(approximately 80%) (Irisa and Shichita, 2025; Liu Y. et al.,
2025). Its pathological mechanism primarily involves cerebral
vascular occlusion or stenosis, leading to reduced local cerebral
blood perfusion, which subsequently triggers ischemic-hypoxic
necrosis and neurological deficits (Li D. et al., 2025). Currently,
intravenous thrombolysis and endovascular thrombectomy are
established as primary treatment strategies for ischemic stroke
and can effectively reduce the risk of disability (Yu M. et al.,
2025). However, the narrow therapeutic window of these
treatments (0–4.5 h after onset (Hernandez et al., 2025)), means
that many patients arrive too late to benefit from them. Moreover,
even after successful vascular recanalization and restoration of blood
flow, further damage to the tissue and microcirculation may occur,
resulting in cerebral ischemia-reperfusion injury (Yu Y. et al., 2025).
In terms of drug development, several single-target therapeutic
agents, such as natalizumab and nerinetide (NA-1), face
limitations in clinical applicability or offer only modest
improvements in outcomes (Paul and Candelario-Jalil, 2021).
Therefore, there is an urgent need to explore multi-target
synergistic intervention strategies. Developing safer and more
effective therapeutic approaches for ischemic stroke remains a
critical focus of current research.

Chinese herbal medicines (CHMs) contain a variety of bioactive
metabolites and exhibit multi-target characteristics (Pang et al.,
2024), offering unique advantages in the treatment of complex
diseases. Scutellaria baicalensis (SB), the dried root of S.
baicalensis Georgi (Lamiaceae), is widely distributed in northern,
northwestern, and southwestern China, as well as in Japan, Korea,
Russia, Mongolia, and other regions of South Asia (Yang R. et al.,
2024; Arumugam et al., 2025). In traditional Chinese medicine, SB is
typically harvested in spring and autumn, dried, and used directly as
an botanical drug (Dzięcioł et al., 2024), it is known for its functions
in “clearing heat and dampness, detoxifying, stopping bleeding,
relieving diarrhea, and calming the fetus” (Zhao et al., 2024).
Notably, Xiaoxuming Decoction, a classical formula from
Essential Prescriptions for Emergencies used to treat stroke, relies
significantly on the role of SB. Chemical analysis revealed that
metabolites derived from SB account for 21% of the total
metabolites in this formula, suggesting its substantial
contribution to the therapeutic effects against ischemic stroke
(Luo et al., 2019). Modern pharmacological studies have shown
that polyphenolic metabolites from SB, including flavonoids and
phenolic acids, can effectively mitigate ischemic stroke and prevent
post-ischemic neurodegenerative damage (Zhao et al., 2019; Lu

et al., 2011; Duda-Chodak and Tarko, 2023; Lin, 2011). These
effects are mediated through multiple mechanisms such as
antioxidant, anti-apoptotic, and anti-inflammatory activities
(Liang et al., 2017), reflecting a broad spectrum of biological
interventions.

This review focuses on the pharmacological effects of
polyphenolic metabolites derived from SB in the treatment of
ischemic stroke.

2 Polyphenolic metabolites in
Scutellaria baicalensis

SB is one of the most important botanical drug sources of
polyphenols (Jalili et al., 2024). Studies have identified multiple
polyphenolic metabolites in its extracts, including baicalein
(Rahmani et al., 2022), baicalin (Takahashi et al., 2011), wogonin
(Takahashi et al., 2011), wogonoside (Wang et al., 2019), scutellarin
(Ma et al., 2024; Zhou et al., 2022), chrysin (Wang et al., 2019),
apigenin (Costine et al., 2022; Waheed et al., 2023), chlorogenic acid
(Wan et al., 2021) and ferulic acid (Lu et al., 2011; El-Bassossy et al.,
2016) (Figure 1). While metabolites like baicalein possess
polyphenolic hydroxyl structures resembling pan-assay
interference compounds (PAINS) and may cause false-positive
signals in vitro (Bolz et al., 2021; Magalhães et al., 2021),
substantial evidence supports the multi-mechanistic role of SB
polyphenols in ischemic stroke, highlighting their therapeutic
potential. To this end, this review aims to systematically elucidate
the pharmacological mechanisms of SB polyphenols, providing a
clear and reliable theoretical basis for future research.

3 Pharmacokinetics of polyphenolic
metabolites from Scutellaria baicalensis

Studies using Sprague-Dawley (SD) rats as subjects revealed that
the time to maximum plasma concentration (tmax) of orally
administered baicalein was 10.0 ± 0.0 min, whereas that of an
equivalent dose of baicalin was significantly delayed to 395.6 ±
438.8 min (Lai et al., 2003). This discrepancy arises because baicalin
requires hydrolysis by colonic microbiota before absorption, while
baicalein is directly absorbed in the small intestine (Lai et al., 2003).
Furthermore, in Wistar rats, the metabolic transformations of
baicalin and baicalein exhibited marked differences. After oral
administration of baicalin, baicalin itself was detectable in
plasma, whereas free baicalein was nearly absent. Conversely,
following oral administration of baicalein, plasma levels of
baicalein were very low; however, baicalin appeared more rapidly
than after direct baicalin administration (Akao et al., 2000). This
may be attributed to the direct intestinal absorption of baicalein,
followed by rapid metabolism via UDP-glucuronosyltransferase
(UGT) into baicalin. In contrast, baicalin undergoes
enterohepatic circulation: it is metabolized by gut microbiota to
baicalein, which is reabsorbed and reconverted by UGT enzymes
back into baicalin, re-entering systemic circulation (Tong et al.,
2022). Additional studies reported a characteristic double-peak
phenomenon in the plasma concentration-time curve of baicalin
in SD rats due to enterohepatic recycling, with the time of the first
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maximum plasma drug concentration (tmax1) at 0.20 ± 0.07 h and
the second (tmax2) at 5.60 ± 0.89 h (Zhu et al., 2010). The half-life of
wogonin administered orally to SD rats was 27.97 ± 4.73 min, with a
peak concentration of only 0.3 ± 0.08 mg/L and an oral
bioavailability of 1.10% (Talbi et al., 2014). Another study
indicated that the half-lives of wogonin in SD rats were 5.19 ±
0.51 h (oral) and 5.07 ± 0.64 h (intravenous), with an oral
bioavailability of 1.37% ± 0.47% (Jeong et al., 2021). Although
the reported half-lives differ significantly, the consistent low
bioavailability underscores the challenge of oral absorption for
wogonin. In comparison, wogonoside, the glucuronidated
metabolite of wogonin, exhibited a half-life of 7.71 ± 1.55 h in
SD rats and showed a double-peak phenomenon due to
enterohepatic circulation, with tmax1 at 0.17 ± 0.01 h and tmax2 at
5.20 ± 1.80 h (Zhu et al., 2010; Sun et al., 2015). Pharmacokinetic
studies of chrysin in SD rats reported an elimination half-life of
9.17 ± 3.16 h and a tmax of 5.20 ± 1.11 h (Dong et al., 2017). For
scutellarin, the elimination half-life was 8.60 ± 0.90 h, with a tmax of
0.32 ± 0.02 h (Wang X. et al., 2021). In Wistar rats, apigenin had an
elimination half-life of 7.87 ± 0.53 h and reached peak concentration
at 3.60 ± 1.67 h (Kazi et al., 2020). SD rats administered chlorogenic
acid exhibited an elimination half-life of 3.577 ± 0.474 h and a tmax of
0.250 ± 0.028 h (Yang et al., 2022a), while ferulic acid showed a half-
life of 1.64 ± 0.66 h and a tmax of 0.097 ± 0.034 h (Zhu et al., 2020).
Regarding tissue distribution, baicalein can cross the blood-brain
barrier (BBB) and distribute uniformly across various brain regions
(Tsai et al., 2002). Detectable levels of baicalin (Zhang et al., 2015),
wogonin (Zhang et al., 2019), wogonoside (Zhang et al., 2019),

apigenin (Zhang et al., 2019), and scutellarin (Liu X. et al., 2024)
have been reported in the brain, suggesting their potential to
penetrate the BBB and exert pharmacological effects. Ferulic acid
also distributes into the brain, reaching a maximum concentration
(180.354 ng/g) within 5 min, indicating that the brain may be a
target organ for its action (An et al., 2021). In summary, the
pharmacokinetic variability and tissue distribution profiles of
polyphenolic metabolites from SB elucidate their molecular
mechanisms of absorption, distribution, and metabolism. These
findings provide critical insights into bioavailability limitations
and inform targeted delivery strategies. Moreover, their ability to
cross the BBB may underlie the therapeutic potential of SB
polyphenols in the treatment of ischemic stroke.

4 Pharmacological effects of
polyphenolic metabolites from
Scutellaria baicalensis

The polyphenolic metabolites of SB exert neuroprotective effects
through multiple mechanisms. However, their structures suggest
potential PAINS properties, which may lead to false-positive results
in high-throughput screening assays via non-specific mechanisms.
To circumvent such interference and ensure the accuracy of research
conclusions, the studies cited in this review employ multi-tiered
validation strategies to guarantee reliability. This is achieved by
introducing targeted controls in in vitro models to exclude non-
specific effects, using specific pathway inhibitors to confirm the core

FIGURE 1
Chemical Structures of Major Polyphenolic Metabolites in Scutellaria baicalensis. Note: Ferulic acid is depicted as the trans-isomer, as this is the
predominant form in nature and corresponds to the isomer used in the studies reviewed herein.
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pathway-dependency of neuroprotection, and analyzing the activity
of key metabolites in combination with in vivo stroke models.
Ultimately, these approaches verify the authenticity of the
pharmacological activity at a physiologically relevant level,
ensuring the translatable potential of the experimental findings.
This rigorous process not only secures the credibility of the
mechanistic research on SB polyphenols but also lays an
experimental foundation for their subsequent translation from
basic research to clinical application. Extensive research has
revealed that the research on polyphenolic metabolites derived
from SB primarily focuses on baicalein, baicalin, wogonin,
wogonoside, scutellarin, chrysin, apigenin, chlorogenic acid, and
ferulic acid. These metabolites demonstrate neuroprotective effects
against ischemic stroke through multi-target mechanisms, including
anti-inflammatory, antioxidant, anti-apoptotic, regulation of
neurotransmitter systems, maintenance of blood-brain barrier
integrity, and inhibition of ferroptosis (Table 1; Figure 2).

4.1 The anti-inflammatory effects

Inflammation serves as a fundamental pathological process
underlying the damage in ischemic stroke. Pattern recognition
receptors, such as Toll-like receptors (TLRs), are crucial
regulators of the inflammatory response in ischemia/reperfusion
injury (Yang et al., 2021). Under conditions of ischemic/reperfusion
injury, toll-like receptor 4 (TLR4) is activated and facilitates the
recruitment of myeloid differentiation primary response protein 88
(MyD88) (Zhang X. et al., 2017). Interleukin-1 Receptor-Associated
Kinase 4 (IRAK4) interacts directly with MyD88, and activated
IRAK4 is recruited to TNF Receptor Associated Factor 6 (TRAF6).
This subsequently leads to the activation of the Inhibitor of kappaB
Kinase (IKK) signaling cascade via Transforming Growth Factor-β-
Activated Kinase 1 (TAK1), ultimately resulting in the activation of
the Nuclear Factor kappa-B (NF-κB) pathway (Kang et al., 2023), the
activation of NF-κB directly induces the production of pro-
inflammatory cytokines, including Tumor Necrosis Factor
(TNF)-α and Interleukin (IL)-6 (Ciesielska et al., 2021).
Furthermore, TLR4 signaling contributes to the activation of the
NLRP3 inflammasome, promoting the cleavage of pro-IL-1β and
pro-IL-18 by Cysteine-dependent aspartate-directed protease-1
(caspase-1) into their active forms, IL-1β and IL-18 (Ciesielska
et al., 2021; Xu S. et al., 2024). Additionally, the Mitogen-
Activated Protein Kinase (MAPK) pathway, which can be
activated by TAK1, stimulates p38, ERK, and JNK, thereby
fostering the production of pro-inflammatory cytokines such as
TNF-α and IL-6 and mediating the inflammatory response (Zhang
P. et al., 2020). Numerous studies have demonstrated that the
activation of microglia and astrocytes plays a central role in
mediating neuroinflammation (Liu M. et al., 2020). Microglia can
polarize into the pro-inflammatory M1 phenotype, often associated
with increased expression of ionized calcium-binding adapter
molecule 1 (Iba-1), or the anti-inflammatory M2 phenotype
(Jiang et al., 2020; Yu et al., 2022). Similarly, astrocytes can adopt
a neurotoxic A1 phenotype, characterized by elevated expression of
Glial Fibrillary Acidic Protein (GFAP), or a neuroprotective
A2 phenotype (Xu D. et al., 2021; Liang et al., 2023). During the
early stages of ischemic stroke, activated pro-inflammatory

microglia can disrupt gap junctions and enhance the permeability
of connexin 43 (Cx43) hemichannels on astrocytes through the
release of pro-inflammatory factors, conversely, astrocytes can
promote the polarization of microglia towards a pro-
inflammatory phenotype via their Cx43 hemichannels, creating a
vicious cycle that exacerbates the neuroinflammatory cascade and
amplifies damage following ischemic stroke (Liang et al., 2023). It is
noteworthy that pericytes surrounding cerebral microvessels
contribute to the pro-inflammatory response by generating
TLR4 after ischemic stroke (Alsbrook et al., 2023). A1 astrocytes
participate in cerebral ischemia-induced neuroinflammation
through the TLR4/NF-κB signaling pathway (Liu R. et al., 2024).
As primary cellular expressers of TLR4, activated microglia further
induce the infiltration of inflammatory cells and the production of
cytokines, adhesionmolecules, chemokines, and other inflammatory
mediators. This process promotes the accumulation and infiltration
of neutrophils into the ischemic area, ultimately establishing a
persistent vicious cycle of inflammation. Collectively, these
pathological processes lead to the disruption of the BBB and
exacerbate secondary neuronal apoptosis (Liu M. et al., 2020;
Alsbrook et al., 2023).

Anti-inflammatory effects of baicalein in ischemic stroke models
via multiple pathways. Studies have demonstrated that baicalein
exerts anti-inflammatory effects in models of ischemic stroke
through multiple mechanisms. It significantly reduces serum
levels of IL-6, IL-1β, and TNF-α in mouse models of ischemic
stroke, thereby attenuating systemic inflammation post-stroke
(Zhang LK. et al., 2025). Mechanistically, in Middle Cerebral
Artery Occlusion (MCAO) models, baicalein modulates the
TLR4/NF-κB pathway by reducing microglial TLR4 expression,
inhibiting IKBα and p65 phosphorylation, and decreasing
p65 nuclear translocation. Consequently, it downregulates mRNA
expression of the pro-inflammatory marker CD16 while
upregulating the anti-inflammatory marker CD206 (Ran et al.,
2021). Additionally, baicalein significantly suppresses
phosphorylation of JNK, ERK, and P38 proteins via the MAPK
signaling pathway in MCAO rat models, thereby reducing
neuroinflammatory signaling and brain injury induced by
ischemic stroke (Yang et al., 2019). Baicalin also targets the
TLR4/NF-κB signaling pathway to exert anti-inflammatory
effects. In oxygen-glucose deprivation (OGD)-induced PC12 cells,
baicalin specifically targets TLR4, downregulating TLR4 and
MyD88 expression, blocking p65 nuclear translocation, and
thereby inhibiting downstream NF-κB pathway activation. This
leads to reduced release of TNF-α and IL-1β (Li et al., 2012). In
vivo studies further confirmed that in a mouse model of ischemia/
reperfusion (I/R) injury, baicalin significantly decreases
TLR4 expression in the hippocampus and inhibits production of
inflammatory mediators such as TNF-α and IL-1β, supporting its
neuroprotective role via the TLR4/NF-κB pathway (Li et al., 2012).
In Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R)
models, baicalin markedly reduces expression of the pro-
inflammatory microglial marker CD16 and enhances expression
of the anti-inflammatory microglial marker CD206 (Wang et al.,
2024; Zhang S. et al., 2025). Moreover, baicalin inhibits astrocyte
activation, as evidenced by significantly reduced GFAP expression in
astrocytes and decreased release of IL-6, IL-1β, and TNF-α in the
brain tissue of transient Middle Cerebral Artery Occlusion
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TABLE 1 Polyphenolic metabolites from Scutellaria baicalensis in the treatment of ischemic stroke.

Active
metabolite

Method Dose Model Controls Experiment
duration

Targets Actions References

baicalein in vivo 100 mg/kg adult male C57BL/
6J mice

1. Sham: sham operation + equal
volume of CMC-Na
2. MCAO model: MCAO +
equal volume of CMC-Na

72h TLR4
p-IκBα
p-p65
Iba-1
CD16
Arg-1
CD206
TNF-α
IL-1β
IL-6

anti-
inflammatory

Ran et al. (2021)

in vivo 30 mg/kg male Sprague-
Dawley rats

1. Sham: sham operation + equal
volume of normal saline
2. Sham-vehicle: sham operation
+ equal volume of DMSO
3. MCAO model: MCAO +
equal volume of normal saline
4. MCAO-vehicle: MCAO +
equal volume of DMSO

24h 12/15-LOX
p38 MAPK

Antioxidant Cui et al. (2010)

in vivo 300 mg/kg male
ALOX15 knockout
mice
wild-type C57BL/6J
mice
CD-1 mice

MCAO-vehicle: MCAO + equal
volume of DMSO

24h Claudin-5
IgG

maintenance of
blood-brain
barrier integrity

Jin et al. (2008)

in vivo 100 mg/kg male C57BL/6 mice 1. Sham: sham operation
2. MCAO/R model
3. MCAO/R + baicalein + sh-
NC (5 × 108 TU/ml, 2 μL)
4. MCAO/R + baicalein + sh-
SIRT6 (5 × 108 TU/ml, 2 μL)
5. MCAO/R + baicalein + sh-
SIRT6+ ferrostatin-1 (2 mg/kg)

7d SIRT6
SLC7A11
GPX4
GSH
ACSL4
FOXA2

inhibition of
ferroptosis

Fan et al. (2024)

baicalin in vivo 10 mg/kg
50 mg/kg

ICR mice 1. Sham: sham operation
2. I/R + saline: I/R + normal
saline

4h TLR2/4
TNFα
IL-1β
NF-κB p65
MyD88

anti-
inflammatory

Li et al. (2012)

in vitro 5 μM
20 μM
50 μM

SH-SY5Y human
neuroblastoma cells

1. SIN-1 group: SH-SY5Y + SIN-
1 (1.5 mM)
2. ONOO− group: SH-SY5Y +
synthesized ONOO− (50 μM)

24h 3-NT
ONOO−

antioxidant Xu et al. (2013)

in vitro 34.38 μg/mL
8.59 μg/mL

co-culture of
primary neurons
and primary
astrocytes isolated
from Sprague-
Dawley (SD) rats

OGD/R control: OGD/R (no
extra intervention, standard
medium)

221h Bax
caspase-3
caspase-9
Bcl-2

anti-apoptotic Li et al. (2021a)

in vitro 0.1 μmol/L
0.5 μmol/L
1 μmol/L
10 μmol/L
100 μmol/L

primary rat
astrocytes isolated
from the cerebral
cortex of SD rats

1. OGD/R control: OGD/R
2. OGD/R + Malonate: OGD/R
+ Malonate (5 mmol/L)

24h SDH
ROS
GS
Glu
Gln

regulation of
neurotransmitter
systems

Song et al.
(2020)

wogonin in vivo/
in vitro

in vivo:
20 mg/kg
in vitro:
0.1 μg/mL

in vivo:male SD rats
in vitro:HT22 cells

in vivo
1. MCAO model: MCAO
2. Control: No MCAO (normal)
in vitro
1. OGD/R control: OGD/R
2. OGD/R + Compound C:
OGD/R + Compound C (10 μM)

in vivo: 24h
in vitro:12h

TNF-α
IL-1β
IL-6
NLRP3
ASC
cleaved
caspase-1
IL-18

anti-
inflammatory

Cheng et al.
(2024)

wogonoside in vitro 12.5 μM
25 μM
50 μM
100 μM
200 μM

PC12 cells 1. Control: Normal culture (no
OGD/R)
2. OGD/R model: OGD/R

24h HO-1
ROS
SOD
GSH
MDA

antioxidant Xu et al. (2024a)

(Continued on following page)
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TABLE 1 (Continued) Polyphenolic metabolites from Scutellaria baicalensis in the treatment of ischemic stroke.

Active
metabolite

Method Dose Model Controls Experiment
duration

Targets Actions References

in vitro 12.5 μM
25 μM
50 μM
100 μM
200 μM

PC12 cells 1. Control: Normal culture (no
OGD/R)
2. OGD/R model: OGD/R

24h GABA regulation of
neurotransmitter
systems

Xu et al. (2024a)

scutellarin in vivo 40 mg/kg
80 mg/kg

male SD rats 1. Control: No ischemia
(normal)
2. I/R model: I/R

24h p-P38
p-P65

anti-
inflammatory

Zhang et al.
(2022)

in vivo 50 mg/kg
100 mg/kg

male C57BL/6N
mice

1. Sham: Sham operation
2. tMCAO + Vehicle: tMCAO
+0.9% normal saline

72h AR
NOX1
NOX2
NOX4
ROS

antioxidant Deng et al.
(2022)

in vivo 100 mg/kg male SD rats 1. Sham: Sham operation
2. MCAO model: MCAO

72h p-PI3K
p-AKT
Bcl-2
Bax
activated
caspase-3

anti-apoptotic DUAN et al.
(2025)

in vivo 6 mg/kg
12 mg/kg

SD rats 1. Control: No MCAO (normal)
2. MCAO model: MCAO

12h NMDA
EAAT2
GABA
Glu

regulation of
neurotransmitter
systems

Wang et al.
(2023)

in vivo 1.1505 mg/kg male SD rats 1. Sham: Sham operation
2. Cerebral I/Rmodel: Cerebral I/
R injury
3. Positive (Nimodipine):
Cerebral I/R + 0.5 mg/kg
Nimodipine Injection
4. E. breviscapus injection:
Cerebral I/R + 5 mL/kg E
breviscapus injection
5. 3,5-dicaffeoylquinic acid:
Cerebral I/R + 0.2335 mg/kg 3,5-
dicaffeoylquinic acid

24h MMP-9
claudin-5

maintenance of
blood-brain
barrier integrity

Liu et al. (2021a)

chrysin in vitro 1 μM
5 μM
10 μM
20 μM
30 μM

PC12 cells 1. Control: Normal culture (no
OGD/R)
2. OGD/R model: OGD/R

48h PLAU
p-NF-κB
p-IκBα

anti-
inflammatory

Li et al. (2022a)

apigenin in vivo 60 mg/kg male SD rats 1. Sham: Sham operation
2. MCAO model: MCAO
3. APG group: control
+60 mg/kg Apigenin

14d IL-1β
IL-6

anti-
inflammatory

Li et al. (2025b)

in vitro 1 μM
10 μM
20 μM

PC12 cells 1. Control: Normal culture (no
OGD/R)
2. OGD/R model: OGD/R

42h Nrf2
HO-1
ROS
SOD
GSH-
Px CAT

antioxidant Guo et al. (2014)

chlorogenic acid in vivo 5 mg/kg
10 mg/kg
15 mg/kg

Inbredmale Charles
foster albino rats

1. Sham: Sham operation
2. Ischemia model: Ischemia

8h TNF-α
iNOS

anti-
inflammatory

Kumar et al.
(2019)

in vivo 30 mg/kg male SD rats 1. PBS + Sham: Sham operation
+ PBS
2. CGA + Sham: Sham operation
+ Chlorogenic acid
3. PBS + MCAO: MCAO + PBS

24h ROS
MDA
Trx

antioxidant Kang et al.
(2024a)

in vivo 30 mg/kg male Wistar rats 1. Sham: Sham operation
2. IR model: IR

24h miR-27a
Smurf1
TNF-α
Bax
Bcl-2

anti-apoptotic Salimi et al.
(2023)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2025.1700164

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1700164


(tMCAO) mice (Li YF. et al., 2025). Baicalin also suppresses pro-
inflammatory enzymes, including inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2), in MCAO rat models
(Zhang Q. et al., 2017), both of which are strongly associated
with inflammatory responses in ischemic stroke (Li T. et al.,
2022; Li L. et al., 2021). Scutellarin exerts anti-inflammatory
effects by modulating the polarization of microglia and
astrocytes. In vitro, scutellarin significantly reduces protein
expression levels of TNF-α and IL-6 released by LPS
(Lipopolysaccharides)-activated microglia (Ye et al., 2023; Yuan
et al., 2015; Duan et al., 2024). In vivo, scutellarin lowers protein
expression of P-IκBα and P-P65 in astrocytes of the cortex inMCAO
mouse models, inhibiting NF-κB pathway activation and preventing
polarization of astrocytes toward the neurotoxic A1 phenotype (Zou
et al., 2024). Additionally, scutellarin regulates the MAPK/NF-κB in
MCAO rat models, reducing levels of p-P38 and p-P65 in a dose-
dependent manner to protect the brain from ischemic injury (Zhang
et al., 2022). In MCAO rat models, chlorogenic acid exhibits
neuroprotective and anti-inflammatory effects by modulating glial
cell polarization. It downregulates Iba-1 protein expression in the
ischemic cortex, inhibiting microglial activation (Shah et al., 2022a),
and reduces GFAP levels in astrocytes, thereby attenuating astrocyte
activation induced by ischemic injury (Shah et al., 2022a).
Furthermore, in BCCAO (Bilateral Common Carotid Artery
Occlusion) rat models, chlorogenic acid significantly decreases
TNF-α expression in the ischemic cortex, demonstrating anti-
inflammatory efficacy (Kumar et al., 2019). The anti-
inflammatory effects of ferulic acid are time-dependent. In the
early hours of cerebral ischemic injury, infiltrating leukocytes
release pro-inflammatory mediators (Xu Y. et al., 2021), a
process dependent on Intercellular Cell Adhesion Molecule-1
(ICAM-1) for leukocyte recruitment to inflammatory sites (Wang
L. et al., 2021). In MCAO rat models, ferulic acid reduces ICAM-1
expression in the striatum after 2 h of reperfusion, decreasing

leukocyte adhesion. After 24 h of reperfusion, it reduces
myeloperoxidase (MPO)-positive cells and NF-κB activation in
the cortex, thereby interrupting the inflammatory cascade and
mitigating damage (Cheng et al., 2008). Wogonin significantly
inhibits expression of pro-inflammatory cytokines TNF-α, IL-1β,
and IL-6 in MCAO rat models, alleviating neuroinflammation after
ischemia-reperfusion injury (Cheng et al., 2024), in vitro studies
using oxygen-glucose deprivation/reperfusion (OGD/R)-induced
HT22 cells show that wogonin activates the AMPK/
SIRT1 signaling axis, downregulating protein levels of NLRP3,
ASC (Apoptosis-associated speck-like protein containing a
CARD), cleaved caspase-1, and IL-18, thereby inhibiting
inflammasome assembly and activation (Cheng et al., 2024).
Chrysin exerts anti-inflammatory effects in ischemic stroke by
targeting plasminogen activator urokinase (PLAU) and
inactivating the NF-κB pathway. In OGD/R-induced PC12 cells,
chrysin downregulates PLAU expression and suppresses
phosphorylation of NF-κB and IκBα, blocking inflammatory
signaling and attenuating the inflammatory cascade (Li N. et al.,
2022). Additionally, chrysin reduces IL-1β and TNF-α protein levels
in the hippocampus of I/R rat models, mitigating
neuroinflammation and protecting against brain injury (Sarkaki
et al., 2019; Khombi Shooshtari et al., 2021). Apigenin not only
reduces protein levels of IL-1β and IL-6 in the ischemic penumbra of
MCAO rat models but also modulates gut microbiota, contributing
to comprehensive anti-inflammatory effects and maintenance of
intestinal homeostasis, thereby ameliorating cerebral ischemic
injury (Li J. et al., 2025).

4.2 The antioxidant effects

Oxidative stress results from an imbalance between the
sustained generation of reactive oxygen species (ROS) or free

TABLE 1 (Continued) Polyphenolic metabolites from Scutellaria baicalensis in the treatment of ischemic stroke.

Active
metabolite

Method Dose Model Controls Experiment
duration

Targets Actions References

in vitro 10 μM
30 μM
50 μM

HT22 cells 1. Glu group: HT22 + 5 mM Glu
2. CGA group: HT22 + 10/30/
50 μM CGA

24h PP2A
subunit B
Glu

regulation of
neurotransmitter
systems

Kang et al.
(2024b)

ferulic acid in vivo 60 mg/kg
80 mg/kg
100 mg/kg

male SD rats 1. Sham: Sham operation
2. MCAO model: MCAO
3. DFA group: MCAO
+100 mg/kg Ferulic acid
(i.v., 30 min post-MCAO)

24h ICAM-1
MPO
NF-κb p50

anti-
inflammatory

Cheng et al.
(2008)

TLR4: Toll - like receptor 4, p-IκBα: phosphorylated Inhibitor of nuclear factor kappa - B, alpha, p-p65: Phosphorylated nuclear factor kappa-B p65 subunit, Iba-1: Ionized calcium - binding

adapter molecule 1, CD16: Cluster of Differentiation 16, Arg-1: Arginase 1, CD206: Cluster of Differentiation 206, TNF-α: Tumor Necrosis Factor–alpha, IL-1β: Interleukin - 1 beta, IL-6:

Interleukin – 6, 12/15-LOX: 12/15-Lipoxygenase, p38 MAPK: p38 mitogen - activated protein kinase, Claudin-5: Claudin-5, IgG: Immunoglobulin G, SIRT6: Silent Information Regulator 6,

SLC7A11: Solute Carrier Family 7 Member 11, GPX4: Glutathione Peroxidase 4, GSH: glutathione, ACSL4: Long-chain acyl-coenzyme A synthetase family Member 4, FOXA2: Forkhead Box

Protein A2, TLR2: Toll - like receptor 2, NF-κB p65: Nuclear Factor-Kappa B p65 subunit, MyD88: Myeloid differentiation primary response protein 88, 3-NT: 3-Nitrotyrosine, ONOO−:

peroxynitrite, Bax: BCL-2-Associated X protein, caspase-3: Cysteine-dependent aspartate-specific protease-3, caspase-9: Cysteine-dependent aspartate-specific protease-9, Bcl-2: B-cell

lymphoma 2 protein, SDH: succinate dehydrogenase, ROS: reactive oxygen species, GS: glutamine synthetase, Glu: glutamate, Gln: glutamine, NLRP3: Nucleotide-binding oligomerization

domain-like receptor family pyrin domain containing 3, ASC: Apoptosis-associated speck-like protein containing a CARD, cleaved caspase-1: Cleaved Cysteine-dependent aspartate-directed

protease-1, IL-18: Interleukin – 18, HO-1: Heme Oxygenase-1, SOD: superoxide dismutase, MDA: malondialdehyde, GABA: gamma-aminobutyric acid, p-P38: Phosphorylated p38 Mitogen-

Activated Protein Kinase, AR: aldose reductase, NOX1: Nicotinamide Adenine Dinucleotide Phosphate Oxidase 1, NOX2: Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2, NOX4:

Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4, p-PI3K: Phosphorylated Phosphoinositide 3-Kinase, p-AKT: Phosphorylated Protein Kinase B, activated caspase-3: Activated

Cysteine-dependent aspartate-specific protease-3, NMDA: N-methyl-D-aspartate receptor, EAAT2: Excitatory Amino Acid Transporter 2, MMP-9: Matrix Metalloproteinase-9, PLAU:

plasminogen activator, Urokinase, p-NF-κB: Phosphorylated Nuclear Factor-kappa B, Nrf2: Nuclear factor erythroid 2-related factor 2, GSH-Px: Glutathione Peroxidase, CAT: catalase, iNOS:

inducible nitric oxide synthase, Trx: thioredoxin, miR-27a: microRNA-27a, Smurf1: Smad-specific E3 ubiquitin protein ligase 1, PP2A subunit B: Protein Phosphatase 2A Regulatory Subunit B,

ICAM-1: Intercellular Cell Adhesion Molecule-1, MPO: myeloperoxidase, NF-κb p50: Nuclear Factor kappa-light-chain-enhancer of activated B cells 1 p50, CMC-Na: carboxymethylcellulose

sodium solution, DMSO: dimethyl sulfoxide, PBS: phosphate buffered saline, APG: apigenin, CGA: chlorogenic acid, MCAO: middle cerebral artery occlusion, tMCAO: transient Middle

Cerebral Artery Occlusion, OGD/R: oxygen-glucose deprivation/reperfusion.
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radicals and their clearance by antioxidant mechanisms (Pawluk
et al., 2024; Jelinek et al., 2021). ROS are considered byproducts of
energy metabolism during cellular activities (Yang and Lian, 2020).
Under physiological conditions, redox homeostasis is maintained as
ATP synthesis produces ROS and redox enzymes eliminate the
excess (Yang and Lian, 2020; Herb and Schramm, 2021). However,
under pathological conditions, the brain is particularly vulnerable to
oxidative stress owing to its high oxygen consumption, abundance of
polyunsaturated fatty acids (PUFAs) in membrane lipids, and
relatively limited antioxidant defense capacity, neuronal redox
signaling acts as an intrinsic sensor of oxidative stress (Trofin
et al., 2025; Lee et al., 2020). 12/15-Lipoxygenase (12/15-LOX)
plays a critical role in catalyzing the oxidation of PUFAs,
promoting the formation of lipid peroxides (Jiang et al., 2013;
Wang et al., 2025), thereby exacerbating oxidative brain damage.

In ischemic stroke, oxidative stress is closely associated with cerebral
pathological changes. The ischemic brain, characterized by high
aerobic metabolism, perfusion demands, and relatively weak
antioxidant defenses, is highly susceptible to oxidative damage
induced by excessive ROS levels. This is accompanied by the
activation of pro-oxidant enzyme systems such as NADPH
oxidase (NOX), which catalyzes the overproduction of superoxide
anion (O2

−) (Liu M. et al., 2021; Chen et al., 2011). Concurrently,
ischemic stroke leads to elevated levels of lipid peroxidation markers
such as malondialdehyde (MDA), while the activities of antioxidant
enzymes responsible for ROS degradation, including superoxide
dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase
(CAT), are significantly reduced, indicating intensified oxidative
stress (Kamal et al., 2023). Moreover, in ischemic brain tissue, O2

−

reacts with nitric oxide (NO) to form peroxynitrite (ONOO−), a

FIGURE 2
Mechanisms of Ischemic Stroke Injury (Interventional Mechanisms of Scutellaria baicalensis Polyphenolic Metabolites). By Figdraw. Note: LPS:
Lipopolysaccharides, TLR4: Toll-like receptor 4, MyD88: myeloid differentiation primary response protein 88, IκBα: Inhibitor of nuclear factor kappa - B
alpha, p38: p38 Mitogen-Activated Protein Kinase, NF-κB:Nuclear Factor kappa-B, P65: p65 Nuclear Factor Kappa B Subunit, CD16: Cluster of
Differentiation 16, CD206: Cluster of Differentiation 206, AMPK: Adenosine 5′-monophosphate (AMP)-activated protein kinase, SIRT1: Sirtuin 1,
caspase-1: Cysteine-dependent aspartate-directed protease-1, NLRP3: NOD-like receptor pyrin domain-containing protein 3, ASC: Apoptosis-
associated speck-like protein containing a CARD, IL-6: Interleukin 6, IL-1β:Interleukin 1 beta, TNF-α: Tumor Necrosis Factor α, ROS: reactive oxygen
species, 12/15-LOX:12/15-Lipoxygenase, PUFA: polyunsaturated fatty acids, MDA: malondialdehyde, GSH: glutathione, ONOO−: peroxynitrite, O2-:

Superoxide anion radical, NO: Nitric Oxide, 3-NT: 3-nitrotyrosine, Nrf2: Nuclear factor erythroid 2-related factor 2, HO-1: heme oxygenase-1, SOD:
superoxide dismutase, GSH-Px: glutathione peroxidase, CAT: catalase, BDNF: Brain-derived neurotrophic factor, TrkB: tropomyosin receptor kinase B,
p-BAD: Phosphorylated Bcl-2-associated death promoter, 14-3-3:14-3-3 proteins, Cyt (C) cytochrome c, Smurf1: Smad-specific E3 ubiquitin protein
ligase 1, caspase-3: Cysteine-dependent aspartate-specific protease-3, caspase-9: Cysteine-dependent aspartate-specific protease-9, Bax: BCL-2-
Associated X protein, Bcl-2: B-cell lymphoma 2 protein, miR-27a: microRNA-27a, NMDAR: N-methyl-D-aspartate receptor, Ca2+: Calcium ion, EAAT2:
excitatory amino acid transporter 2, Glu: glutamate, Gln: glutamine, GS: glutamine synthetase, GABA: gamma-aminobutyric acid.

Frontiers in Pharmacology frontiersin.org08

Zhang et al. 10.3389/fphar.2025.1700164

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1700164


well-defined cytotoxic agent in ischemic brain injury (Gong et al.,
2015). In summary, oxidative stress contributes to cerebral
pathologies in ischemic stroke, including disruption of cellular
homeostasis, neuronal death, and structural damage to ischemic
brain tissue (Godínez-Rubí et al., 2013).

Numerous studies have demonstrated that baicalein exhibits
significant antioxidant and neuroprotective effects across various
experimental models. Iodoacetic acid (IAA) can mimic hypoxic/
ischemic conditions in neural cells in vitro, leading to increased ROS
levels and subsequent cell death (Zhou et al., 2015). Baicalein, at
concentrations ranging from 2.5 to 10 μM, significantly
counteracted the oxidative stress cascade induced by IAA in
cultured HT22 mouse hippocampal cells, increasing cell viability
by approximately 80% (Lapchak et al., 2007). This antioxidant
property was further validated in an OGD/R-induced HT22 cell
models, where baicalein effectively reduced intracellular ROS and
O2

− levels, mitochondrial superoxide, and malondialdehyde (MDA)
content, while increasing glutathione (GSH) levels (Fan et al., 2024;
Li M. et al., 2022). In MCAOmodels, baicalein not only significantly
reduced the mRNA and protein expression levels of 12/15-
lipoxygenase (12/15-LOX) in the ischemic cortex but also
decreased cell death in glutamate-treated oxidative-stressed
primary cortical neurons (Cui et al., 2010; Van Leyen et al.,
2006). Notably, the inhibitory effect of baicalein on 12/15-LOX
exerted multiple protective benefits, including reduced lactate
dehydrogenase release and protection of human brain endothelial
cells against oxidative damage (Jin et al., 2008). These findings
collectively indicate that baicalein exerts neuroprotective effects by
modulating oxidative stress-related pathways. NADPH oxidase
(NOX), which produces superoxide, plays a critical role in the
pathophysiology of ischemic stroke (Kim et al., 2017). Aldose
reductase (AR), a key enzyme involved in oxidative stress,
regulates NOX isoforms such as NOX2, NOX1, and
NOX4 following ischemic stroke (Deng et al., 2022; Li et al.,
2024). In tMCAO mouse models, scutellarin was shown to
modulate the AR–NOX signaling axis, downregulating both
mRNA and protein expression levels of AR and NOX isoforms
(NOX2, NOX1, and NOX4), thereby reducing the accumulation of
oxidative damage markers (Deng et al., 2022). These results suggest
that scutellarin alleviates ischemic stroke injury by targeting the
AR–NOX signaling axis to regulate oxidative stress. In the SH-SY5Y
cell models, 3-nitrotyrosine (3-NT) serves as a biomarker for
ONOO− formation. Baicalin dose-dependently inhibited 3-NT
generation induced by the ONOO− donor SIN-1, effectively
attenuating both ONOO− mediated cytotoxicity and cell death
caused by OGD/R (Xu et al., 2013). This protective effect was
further confirmed in MCAO/R rat models, where baicalin
reduced ONOO− levels and ameliorated ischemic stroke injury
(Chen et al., 2018). Nuclear factor erythroid 2-related factor 2
(Nrf2) is a key regulator of the endogenous antioxidant response.
Activation of Nrf2 upregulates the expression of various antioxidant
enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO-1),
heme oxygenase-1 (HO-1), superoxide dismutase (SOD), and
glutathione peroxidase (GSH-Px), thereby mitigating cerebral
oxidative stress (Huang et al., 2021). In tMCAO rat models,
baicalin modulated the Nrf2/HO-1 pathway, significantly
upregulating the expression of Nrf2, SOD, GSH-Px, HO-1, and
NQO-1 in the ischemic brain region, this led to suppressed ROS

accumulation and protection against neuronal ischemic injury
(Huang et al., 2021). In OGD/R-induced PC12 cell models,
apigenin significantly reduced ROS levels, upregulated the
expression of SOD, GSH-Px, and catalase (CAT), and markedly
increased both Nrf2 expression and HO-1 mRNA levels, effectively
alleviating oxidative stress injury (Guo et al., 2014). Similarly,
wogonoside enhanced SOD and GSH activity, decreased MDA
levels, and activated the Nrf2/Sirt3 pathway in OGD/R-induced
PC12 cell models. It upregulated the antioxidant enzyme HO-1,
thereby promoting ROS clearance and reducing oxidative damage
(Xu D. et al., 2024). Sirt3, a member of the sirtuin family, contributes
to antioxidant defense. NRF2 acts as a novel regulator of SIRT3 by
directly binding to its promoter and increasing its expression,
ultimately attenuating oxidative stress (Hu et al., 2024; Ge et al.,
2024). Thioredoxin (Trx) and ubiquitin C-terminal hydrolase L1
(UCH-L1) are key antioxidant proteins that play crucial roles in
counteracting oxidative stress and conferring neuroprotection
(Ohmori et al., 2022; Liu et al., 2011). Chlorogenic acid was
found to inhibit the decrease in Trx and UCH-L1 expression in
the ischemic cortex of MCAO rat models, thereby alleviating
oxidative stress damage following ischemic stroke (Kang et al.,
2024a; Shah et al., 2022b). Additionally, chlorogenic acid
significantly reduced ROS and lipid peroxide (LPO) levels in the
MCAO rat models, demonstrating antioxidant efficacy in mitigating
ischemic stroke injury (Shah et al., 2023).

4.3 The anti-apoptotic effects

Apoptosis, a form of programmed cell death, maintains dynamic
equilibrium in brain tissue under physiological conditions by
balancing cell death and proliferation. However, following
ischemic stroke, apoptosis markedly increases and becomes a
major cause of neuronal loss (Xu Z. et al., 2024; Li L. et al.,
2023). Apoptosis is regulated through multiple pathways, among
which the polyphenolic metabolites of SB primarily inhibit neuronal
apoptosis via the Phosphoinositide 3-kinase (PI3K)/AKT signaling
pathway, thereby exerting protective effects against neuronal
damage in ischemic stroke.Under cerebral ischemic stress, the
expression of the anti-apoptotic protein Bcl-2 decreases, while
that of the pro-apoptotic protein Bax increases. This imbalance
leads to activation of the mitochondrial apoptotic cascade, with the
cleavage of Caspase-1 and Caspase-3 playing pivotal roles in the
early phases of ischemia-mediated apoptosis (Liu X. et al., 2022).
Extracellular signals such as ischemia can activate the PI3K/
AKT pathway. Once activated, AKT phosphorylates the pro-
apoptotic protein Bad, facilitating its binding to 14-3-
3 proteins. This interaction increases the availability of free
Bcl-2 or Bcl-xL, promoting cell survival. Additionally, activated
AKT enhances Bcl-2 levels through multiple indirect
mechanisms, contributing directly to the suppression of
apoptosis (Liu T. et al., 2025).

Brain-derived neurotrophic factor (BDNF) is not only produced
in neurons but is also significantly secreted by astrocytes (Hong
et al., 2016). Its pro-survival and neuroprotective functions are
primarily mediated through the PI3K/Akt signaling pathway,
which is activated upon binding to the tropomyosin receptor
kinase B (TrkB) (Liu W. et al., 2020). Studies have shown that
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baicalin promotes BDNF secretion in OGD/R neuron-astrocyte co-
culture models. This leads to activation of the TrkB receptor and its
downstream PI3K/Akt pathway, triggering a signaling cascade that
upregulates Bcl-2 protein expression while suppressing Bax,
caspase-3, and caspase-9 levels, thereby attenuating neuronal
apoptosis (Li C. et al., 2021; Liu W. et al., 2020). In rat models
of I/R injury, apoptotic cells are widely observed in brain tissue.
Scutellarin significantly reduced the number of TUNEL-positive
cells and the percentage of apoptotic cells in the ischemic cortex of
MCAO rat models (Yang C. et al., 2022). This anti-apoptotic effect is
associated with enhanced phosphorylation of PI3K and AKT,
upregulation of Bcl-2, facilitation of PI3K/AKT signaling
transduction, and downregulation of Bax and activated caspase-3
(Duan et al., 2025). Chlorogenic acid exerts anti-apoptotic effects
through multiple mechanisms. First, it activates the PI3K/Akt
pathway, reversing the decreased expression of p-PDK1, p-Akt,
and p-Bad in the cerebral cortex of MCAO rat models. It
promotes the binding of phosphorylated Bad to 14-3-3 protein,
thereby inhibiting Bad’s pro-apoptotic function and preventing
cytochrome c (Cyt c) release from mitochondria, which blocks
the apoptotic cascade (Shah et al., 2022c). Second, chlorogenic
acid modulates apoptosis via the microRNA (miR)-27a/
Smurf1 pathway. miR-27a promotes apoptosis, while Smad-
specific E3 ubiquitin protein ligase 1 (Smurf1) suppresses it (Li
et al., 2019; Fu et al., 2020). As a downstream target of miR-27a,
Smurf1 influences apoptotic activity (Zhao et al., 2020). Chlorogenic
acid significantly downregulates miR-27a expression in the cortex of
common carotid artery occlusion (CCAO) rat models, alleviating its
repression of Smurf1 and restoring Smurf1’s anti-apoptotic
function. Additionally, it reduces the release of the inflammatory
factor TNF-α, thereby inhibiting neuroinflammation-mediated
apoptosis (Salimi et al., 2023). Finally, chlorogenic acid directly
decreases Bax expression, upregulates Bcl-2, lowers the Bax/Bcl-
2 ratio, and directly exerts anti-apoptotic effects (Salimi et al., 2023).

4.4 The regulation of
neurotransmitter action

Neurotransmitters are chemical substances that transmit signals
between neurons or from neurons to effector cells. Over 200 distinct
neurotransmitters have been identified to date (Yang Y. et al., 2024;
Teleanu et al., 2022). Current researches on the neuroprotective
effects of SB polyphenols against ischemic stroke-induced neuronal
injury has primarily focused on their modulation of glutamate and
gamma-aminobutyric acid (GABA). Glutamate is an essential
excitatory neurotransmitter in the nervous system, playing a
critical role in maintaining basic brain functions and contributing
significantly to the development of the central nervous system
(CNS) (Nimgampalle et al., 2023). However, excessive release of
glutamate can lead to excitotoxicity (Nimgampalle et al., 2023). This
excitotoxic effect is largely mediated through the N-methyl-D-
aspartate receptor (NMDAR). Cerebral ischemia triggers a
massive release of glutamate. The excessive activation of
NMDAR, the most calcium-permeable ionotropic glutamate
receptor, induces calcium influx, thereby exacerbating
excitotoxicity and serving as a primary cause of neuronal death
in ischemic stroke (Lai et al., 2014; Zong et al., 2022; Kang et al.,

2022). It is noteworthy that excitatory amino acid transporter 2
(EAAT2), a major glutamate transporter, facilitates the uptake of
glutamate from the synaptic cleft, thereby preventing its abnormal
accumulation and mitigating excitotoxic damage (Das et al., 2025).
GABA serves as the principal inhibitory neurotransmitter in the
CNS, functioning to prevent neuronal overexcitation and coordinate
neuronal activity (Rodrigues et al., 2024; Stragie et al., 2017).
Importantly, GABA counteracts the excitotoxic effects of
glutamate and enhances neuronal tolerance to ischemic
conditions (Liu BH. et al., 2022).

In the OGD/R-induced primary rat astrocyte models, baicalin
suppresses mitochondrial ROS overproduction by inhibiting
succinate dehydrogenase (SDH) activity. Concurrently, it protects
glutamine synthetase (GS) from 20S proteasomal degradation,
thereby preserving GS protein stability and catalytic function,
activated GS utilizes glutamate as a substrate to synthesize
glutamine, which in turn enhances astrocytic uptake of synaptic
glutamate, effectively preventing extracellular glutamate
accumulation and mitigating excitotoxic cascades (Song et al.,
2020). Scutellarin regulates glutamatergic signaling through dual
mechanisms. In the MCAO rat models, it suppresses excessive
activation of NMDARs and upregulates EAAT2 expression in the
ischemic cortex and hippocampus, thereby rebalancing the
concentrations of glutamate, GABA, and phenylalanine and
reducing excitotoxic damage (Wang et al., 2023). Additionally, in
OGD-induced hippocampal neuronal models, scutellarin reduces
intracellular calcium concentrations, attenuating calcium overload
and further protecting neurons from injury (Dang et al., 2019).
Chlorogenic acid exerts neuroprotective effects by targeting protein
phosphatase 2A (PP2A) and calcium homeostasis. In glutamate-
treated HT22 cell models, it reverses the downregulation of the
PP2A subunit B, thereby preventing enhanced excitotoxicity due to
reduced PP2A activity (Kang et al., 2024b). In BCCAO rat models,
chlorogenic acid significantly reduces calcium and glutamate
concentrations in the cerebral cortex, cerebellum, hippocampus,
and cerebrospinal fluid, alleviating excitotoxicity by inhibiting
calcium overload and abnormal glutamate accumulation (Kumar
et al., 2019). Wogonoside significantly restores decreased GABA
levels in OGD/R-induced PC12 cell models to near-normal
physiological conditions, thereby inhibiting neuronal
hyperexcitability and reducing excitotoxicity-related damage (Xu
D. et al., 2024).

4.5 Other effects

BBB disruption is a critical adverse event following ischemic
stroke, often leading to severe malignant cerebral edema (Li Y.
et al., 2023; Qiu et al., 2021). The expression and activity of matrix
metalloproteinase-9 (MMP-9) aremarkedly upregulated within hours
after cerebral ischemia, resulting in reduced endothelial tight
junctions and ultimately BBB breakdown (Ji et al., 2023). Claudin
proteins are key structural metabolites of tight junctions, with claudin-
5 being particularly crucial for maintaining BBB integrity (Greene
et al., 2022). In rat models of I/R injury, Scutellarin was shown to
protect against BBB damage by inhibiting MMP-9 transcription and
synthesis, while upregulating claudin-5 protein expression (Liu G.
et al., 2021). Similarly, baicalein attenuated Claudin-5 degradation in
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the brains of MCAOmouse models, thereby preserving BBB integrity
and reducing leakage and ischemic edema (Jin et al., 2008). Notably,
post-stroke BBB disruption can further perturb iron metabolism and
compromise the antioxidant system (Tian et al., 2024). Ferroptosis, a
key mechanism in ischemic stroke, is primarily driven by iron-
dependent lipid peroxidation. This process involves Fe2+ or
lipoxygenase (LOX)-catalyzed peroxidation of abundantly
expressed PUFAs in cell membranes, ultimately leading to cell
death (Deng et al., 2023). Glutathione peroxidase 4 (GPX4) serves
as a key inhibitor of ferroptosis by utilizing GSH to eliminate lipid
peroxides, thus blocking the execution of ferroptosis (Liu J. et al., 2024;
Zhang et al., 2021). Among the long-chain acyl-coenzyme A
synthetase (ACSL) family, ACSL3 enhances resistance to
ferroptosis, whereas ACSL4 acts as a specific biomarker and driver
of this process (Yang et al., 2022c). Baicalein effectively counteracts
the inhibitory effect of RAS-selective lethal small molecule 3 (RSL3), a
known GPX4 inhibitor (Li S. et al., 2021). In RSL3-stimulated
HT22 cell models, baicalein modulated the GPX4/ACSL4/
ACSL3 axis by upregulating GPX4 and ACSL3 expression while
suppressing ACSL4, thereby inhibiting ferroptosis (Li M. et al.,
2022). Additionally, silent information regulator 6 (SIRT6), an
NAD+-dependent deacetylase, downregulates forkhead box protein
A2 (FOXA2) at both expression and acetylation levels, reducing its
transcriptional activity. This indirectly upregulates solute carrier
family 7 member 11 (SLC7A11), effectively suppressing ferroptosis
(Fan et al., 2024; Zhang W. et al., 2017). In MCAO/R mouse models,
baicalein upregulated SIRT6 expression, inhibited FOXA2-mediated
transcriptional repression, and cooperatively enhanced SLC7A11 and
GPX4 levels. This led to increased GSH biosynthesis and reduced
ACSL4 expression, multi-targetly inhibiting ferroptosis (Fan et al.,
2024). Furthermore, ischemic stroke is often accompanied by a
hypercoagulable state that promotes thrombosis. Baicalin
demonstrated antiplatelet aggregation and pro-circulatory activities
in MCAO rat models, thereby attenuating secondary damage through
its antithrombotic effects (Liu H. et al., 2021).

5 Strategies to enhance the
bioavailability of Scutellaria baicalensis
polyphenols

Polyphenols, as neuroprotective agents, can directly act on CNS
cells and processes to improve brain function. This requires that
sufficient quantities of polyphenols must cross the BBB and reach
brain tissue in their active form (Grabska-Kobyłecka et al., 2023).
However, their therapeutic efficacy is often limited by low selective
permeability across the BBB, poor absorption, rapid metabolism,
and high systemic clearance, all of which reduce their bioavailability
(Pandareesh et al., 2015). To overcome these limitations, nano-
encapsulation technologies have been developed to enhance the
bioavailability of polyphenolic metabolites (Yang et al., 2020).
Various nano-delivery systems, such as polymeric micelles,
liposomes, and polymeric nanoparticles, can effectively
encapsulate polyphenols, improving their stability, absorption,
and targeted delivery to the brain.

Poly (ethylene glycol)-block-poly (D,L-lactide) (PEG-PLA), an
amphiphilic diblock copolymer, can be used to encapsulate baicalein
into micelles. Following intranasal administration in mice, these

micelles significantly enhanced both the bioavailability of baicalein
in plasma and its distribution to the brain (Zhang L. et al., 2020).
Liposomes loaded with baicalin provide sustained and controlled
release in vitro, prolonging its duration of action. Intranasal delivery
bypasses the BBB, allowing direct brain entry and avoidance of first-
pass metabolism. This strategy markedly improved neurological
function, reduced cerebral infarct volume, and alleviated
pathological damage in the CA1 region of the hippocampus in
MCAO rat models (Yu et al., 2023). Additionally, D-α-tocopheryl
polyethylene glycol succinate (TPGS), a water-soluble derivative of
vitamin E and PEG 1000, was used to formulate chlorogenic acid-
loaded liposomes. Oral administration in SD rats resulted in a 1.52-
fold increase in the bioavailability of chlorogenic acid compared to
the unformulated drug (Zhang et al., 2024). Poly (lactic-co-glycolic
acid) (PLGA), a copolymer of lactic acid and glycolic acid, was
employed to prepare scutellarin-loaded PLGA nanoparticles (SCU-
PLGA NPs). Intravenous administration in MCAO rat models
enhanced the stability of scutellarin, improved its penetration
across the BBB, prolonged systemic circulation, and increased its
accumulation in the brains of ischemic rats (Yang C. et al., 2022). In
summary, nano-carrier technology effectively addresses key delivery
challenges, such as BBB penetration and rapid metabolic clearance,
faced by SB-derived polyphenolic neuroprotective agents. These
systems significantly enhance their bioavailability, promote
targeted distribution and retention in the brain, and demonstrate
compelling neuroprotective effects across multiple animal models,
highlighting a highly promising strategy for central nervous system
drug delivery.

6 Toxic effects of Scutellaria baicalensis
polyphenols

While the long-term clinical use of SB in traditional Chinese
medicine attests to its relative safety, modern toxicological studies
reveal that some of its isolated polyphenolic metabolites can exhibit
potential toxicity under specific conditions. These metabolites
display a notable dose-dependent bidirectional effect:
neuroprotective within the therapeutic window, yet toxic upon
supra-threshold exposure (Table 2). For instance, Pudilan anti-
inflammatory oral liquid, which contains baicalin as a primary
active metabolite, demonstrated dose-dependent developmental
toxicity in zebrafish embryos. High-concentration exposure
(0.23–0.29 mg/mL) induced significant embryotoxicity,
manifested as high mortality, specific malformations (particularly
in the tail), and severe inhibition of embryonic viability and
development. It also provoked multi-dimensional developmental
toxicity, including reduced heart rate, shortened body length, and
impaired spontaneous movement (Jingjing et al., 2025). Prenatal
exposure to a high dose (90 mg/kg) of baicalein in female mice
severely affected fertility, resulting in a reduced number of live
fetuses and increased pre- and post-implantation loss (Vaadala et al.,
2019). Administration of a high dose of wogonin (40 mg/kg,
intravenous injection) induced developmental toxicity in
pregnant rats and their fetuses, characterized by significantly
suppressed maternal weight gain, increased absorption rate,
decreased live fetus rate, and abnormal fetal skeletal development
(Zhao et al., 2011). Furthermore, long-term high-dose wogonin
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(120 mg/kg, intravenous injection) caused cardiac injury in rats,
including lesions such as myocardial fibrosis (Qi et al., 2009). The
median lethal dose (LD50) of chrysin was determined to be
4350 mg/kg. After 90 days of oral administration at 1,000 mg/kg,
rats exhibited toxic effects such as abnormal biochemical indices in
the liver and kidneys, altered hematological parameters, and
histopathological damage (Yao et al., 2021). In summary,
baicalin, baicalein, wogonin, and chrysin demonstrate a higher
propensity for inducing in vivo systemic toxicities, including
developmental toxicity and organ damage. In contrast, ferulic
acid’s toxicity was observed in vitro at a high concentration
(40 mg/L), where it suppressed the viability of L929 fibroblasts
and hindered wound healing (Truzzi et al., 2020; Talbott et al.,
2022). A comparison of toxic dose thresholds reveals that chrysin
has the highest in vivo toxicity threshold, whereas wogonin possesses
the lowest. This indicates that the dose control of wogonin mandates
prioritized attention during the clinical translation of SB
polyphenols to prevent toxicity resulting from improper dosing.
Furthermore, as these polyphenols are often intended for long-term
management of chronic conditions, special populations such as
pregnant and lactating women, who are more susceptible to drug
toxicity, require precise definition of the therapeutic window to
ensure clinical safety.

7 Discussion

Ischemic stroke is characterized by the sudden occlusion of
cerebral arteries, leading to a significant reduction in regional
cerebral blood flow. This triggers neuronal energy metabolism
failure and ultimately results in irreversible neuronal damage.

Survivors often experience long-term functional impairments,
imposing a substantial economic burden on society (Feng et al.,
2025). Although reperfusion therapy remains the cornerstone of
ischemic stroke management, its application is limited by a narrow
therapeutic time window, the risk of reperfusion injury, and the
shortcomings of single-target pharmacological agents. Therefore,
there is a pressing need to explore alternative therapeutic strategies.
This review provides a comprehensive analysis of the
pharmacological effects of major polyphenolic metabolites
derived from SB in the treatment of ischemic stroke. The
therapeutic potential of these polyphenols is demonstrated
through multiple mechanisms, including anti-inflammatory,
antioxidant, and anti-apoptotic effects, modulation of
neurotransmitters, preservation of BBB integrity, and inhibition
of ferroptosis. Notably, baicalein, baicalin, and scutellarin exhibit
significant neuroprotective properties, contributing to multi-target
synergistic modulation of the pathological cascade in
ischemic stroke.

The neuroprotective mechanisms of SB polyphenols are
multifaceted. Research indicates that baicalein, baicalin, and
scutellarin alleviate neuroinflammation following ischemic stroke.
Their action primarily involves targeting and inhibiting the TLR4/
NF-κB and MAPK signaling pathways, thereby synergistically
promoting microglial polarization toward an anti-inflammatory
phenotype, suppressing aberrant activation of astrocytes,
facilitating a beneficial shift in the inflammatory
microenvironment, and downregulating levels of pro-
inflammatory cytokines. Consequently, they effectively inhibit the
post-ischemic neuroinflammatory cascade. In terms of antioxidant
activity, these polyphenols not only directly reduce levels of ROS and
MDA while elevating GSH, but also inhibit 12/15-LOX and NOX to

TABLE 2 Summary of key toxicological data of polyphenolic metabolites from Scutellaria baicalensis.

Active
metabolite

Toxic dose Experimental
model

Observed toxicity References

baicalin High-concentration exposure
(0.23–0.29 mg/mL)

Zebrafish embryos 1. Embryotoxicity: Elevated mortality, tail malformation
2. Developmental toxicity: Decreased heart rate, shortened body
length, compromised spontaneous locomotion

Jingjing et al.
(2025)

Baicalein 90 mg/kg adult female Wistar mice Fertility impairment: Reduced number of live fetuses, increased
pre- and post-implantation loss

Vaadala et al.
(2019)

wogonin 40 mg/kg SD rats Developmental toxicity: Reduced maternal weight gain, increased
fetal resorption rate, decreased live fetus rate, fetal skeletal
dysplasia
2. Cardiac toxicity: Myocardial fibrosis

Zhao et al. (2011)

Wogonin 120 mg/kg SD rats Cardiac toxicity: Myocardial fibrosis Qi et al. (2009)

Chrysin 1000 mg/kg SD rats 1. Hepatorenal toxicity: Altered hepatic (ALT, AST, GGT
significantly increased) and renal (Cr significantly increased)
biochemical parameters
2. Hematological abnormalities: levels of MCH and MCHC were
significantly decreased
3. Histopathological damage: Visible lesions in liver and kidney
tissues

Yao et al. (2021)

ferulic acid 40 mg/L L929 mouse fibroblasts 1. Cytotoxicity: Markedly decreased viability of fibroblasts
2. Wound healing inhibition: Suppressed fibroblast migration and
wound closure efficiency

Truzzi et al.
(2020)

ALT: alanine aminotransferase, AST: aspartate aminotransferase, GGT: gamma glutamyl transferase, Cr: Creatinine, MCH: mean corpuscular hemoglobin, MCHC: mean corpuscular

hemoglobin concentration.
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mitigate oxidative stress damage. Furthermore, they activate the
Nrf2 pathway and upregulate the expression of downstream
antioxidant enzymes, thereby enhancing cellular antioxidant
capacity. Regarding anti-apoptotic effects, SB polyphenols
counteract the apoptotic cascade through multi-target actions,
including activation of the PI3K/Akt survival signaling pathway,
upregulation of the anti-apoptotic protein Bcl-2, downregulation of
the pro-apoptotic protein Bax, and enhancement of neuronal
survival via modulation of the BDNF-TrkB signaling axis. In
neurotransmitter regulation, various polyphenolic metabolites
from SB modulate glutamate and GABA levels, ameliorating
excitotoxicity and exerting neuroprotective effects. Additionally,
these metabolites protect BBB integrity, reduce leakage, and
alleviate cerebral edema. Notably, baicalein precisely targets
multiple key nodes within the ferroptosis pathway in ischemic
stroke, achieving synergistic inhibition via a dual mechanism. On
one hand, it modulates the balance of the GPX4/ACSL axis by
upregulating GPX4 and ACSL3 expression while suppressing
ACSL4 activity. On the other hand, it activates the SIRT6-
FOXA2-SLC7A11 pathway to enhance GSH synthesis and
downregulate ACSL4 expression. Consequently, baicalein blocks
the execution of ferroptosis concurrently by facilitating the
clearance of lipid peroxides and reducing the production of pro-
ferroptotic substrates.

The polyphenolic metabolites from SB demonstrate
considerable therapeutic promise for ischemic stroke due to their
well-defined neuroprotective activities. However, their clinical
translation faces two major obstacles: insufficient bioavailability
that hinders achieving effective therapeutic concentrations in the
brain, and dose-dependent toxicity that narrows the safe therapeutic
window. To address these delivery challenges, various nanodelivery
systems have been developed to enhance brain targeting and delivery
efficiency through distinct mechanisms. For example, intranasal
administration of PEG-PLA micelles and liposomes shortens the
drug’s pathway to the brain while reducing systemic metabolism.
TPGS-modified liposomes significantly improve oral bioavailability,
making them suitable for long-term management of chronic
neurological disorders, whereas PLGA nanoparticles enhance the
stability of intravenous formulations and promote blood-brain
barrier penetration. Collectively, nanocarrier technology provides
a crucial foundation for translating the in vitro efficacy of these
polyphenols into in vivo outcomes through optimized delivery
routes and functional carrier design. Furthermore, modern
toxicological studies reveal that these metabolites exhibit dose-
dependent bidirectional effects with significant variations in
target organs, toxicity thresholds, and susceptibility across
populations. This evidence demands rigorous clinical safety
measures, emphasizing the need for precision dosing strategies to
prevent acute and chronic toxicity. Special consideration should be
given to vulnerable populations, and integrated pharmacokinetic-
toxicological studies are essential to establish a safe
therapeutic window.

A critical consideration in advancing the clinical translation of
SB polyphenols is the strategic integration of delivery efficiency
enhancement with toxicity risk management. It is imperative to
avoid disproportionately focusing on delivery optimization at the
expense of altering toxicity thresholds, or conversely, allowing
toxicity concerns to unduly restrict the application of effective

delivery strategies. A key step involves systematically evaluating
whether nanocarriers, while increasing drug concentrations, cause a
shift in the toxicity threshold, thereby preventing the convergence of
therapeutic and toxic doses. Furthermore, individualized dosing
regimens should be developed based on the distinct
pharmacokinetic profiles of various administration routes (oral,
intranasal, intravenous). For special populations such as pregnant
women or patients with hepatic/renal impairment, population
pharmacokinetic studies are needed to establish dose adjustment
factors. Long-term medication scenarios necessitate thorough drug
accumulation toxicity assessments. Currently, most relevant studies
rely on animal models (e.g., mice, rats, zebrafish), whose results have
inherent limitations for clinical extrapolation. Consequently,
subsequent research should progressively incorporate human
pharmacokinetic pilot trials and early-phase clinical safety
evaluations to generate more instructive evidence for translation.
Therefore, systematically resolving these delivery and toxicity issues
is a fundamental prerequisite for transitioning these polyphenols
from basic research into safe and effective clinical therapies.

Furthermore, it is crucial to extend focus to the potential PAINS
properties of SB polyphenols in in vitro activity screening. Although
the studies cited in this review employed multi-tiered experimental
designs to verify specificity, the in vitro activity evaluation system
requires continuous refinement in future research to further
minimize interference risks. This can be achieved by employing
more target-specific cellular reporter systems, integrating chemical
biology probe technologies, or performing structural optimization of
lead metabolites to mitigate PAINS liabilities. These strategies will
help elucidate the genuine pharmacological mechanisms of these
polyphenols, enhance their translational value as ischemic stroke
therapeutics, and provide a reliable basis for subsequent candidate
drug development.

8 Conclusion

The polyphenolic metabolites of SB demonstrate significant
potential for ischemic stroke treatment, operating through multi-
target and multi-pathway neuroprotective mechanisms. However,
their development is hampered by poor bioavailability, rapid
metabolism, limited brain distribution, and dose-dependent
organotoxicity or developmental toxicity associated with certain
metabolites. While nanodelivery systems offer a viable strategy to
enhance brain targeting and bioavailability, their clinical translation
presents challenges that require systematic evaluation of the safety
window, delivery efficiency, and toxicity thresholds. Future research
should integrate multi-tiered validation strategies, refine in vitro
activity assessment models, and advance preclinical and clinical
studies. This approach aims to enable their effective integration with
existing therapies, potentially providing a novel strategy to delay the
progression of neurological deficits following ischemic stroke.
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