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Jiaotong University, Beijing, China, “State Key Laboratory of Traditional Chinese Medicine Syndrome,
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Introduction: In recent years, the increasing complexity and volume of data in
traditional Chinese medicine (TCM) research have rendered the conventional
experimental methods inadequate for modern TCM development. The analysis of
intricate TCM data demands proficiency in multiple programming languages,
artificial intelligence (Al) techniques, and bioinformatics, posing significant
challenges for researchers lacking such expertise. Thus, there is an urgent
need to develop user-friendly software tools that encompass various aspects
of TCM data analysis.

Methods: We developed a comprehensive web-based computing platform,
SZBC-AI4TCM, a comprehensive web-based computing platform for
traditional Chinese medicine that embodies the “ShuzZhiBenCao” (Digital
Herbal) concept through artificial intelligence, designed to accelerate TCM
research and reduce costs by integrating advanced Al algorithms and
bioinformatics tools.

Results: Leveraging machine learning, deep learning, and big data analytics, the
platform enables end-to-end analysis, from TCM formulation and mechanism
elucidation to drug screening. Featuring an intuitive visual interface and
hardware—software acceleration, SZBC-AI4TCM allows researchers without
computational backgrounds to conduct comprehensive and accurate analyses
efficiently. By using the TCM research in Alzheimer's disease as an example, we
showcase its functionalities, operational methods, and analytical capabilities.
Discussion: SZBC-AI4TCM not only provides robust computational support for
TCM research but also significantly enhances efficiency and reduces costs. It
offers novel approaches for studying complex TCM systems, thereby advancing
the modernization of TCM. As interdisciplinary collaboration and cloud
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computing continue to evolve, SZBC-AI4TCM is poised to play a strong role in TCM
research and foster its growth in addition to contributing to global health. SZBC-
AI4TCM is publicly for access at https://ai.tasly.com/ui/\#/frontend/login.

traditional Chinese medicine, artificial intelligence, deep learning, bioinformatics, web-
based computing platform, Alzheimer's disease

1 Introduction

Traditional Chinese medicine (TCM) is a valued aspect of
Chinese heritage, with a long history and widespread use. It
encompasses substances and approaches used for the prevention,
diagnosis, and treatment of diseases, as well as rehabilitation and
health maintenance. The substances are derived primarily from
natural sources, such as plants, animals, minerals, and some
chemical and biological products, with plant-derived products
being predominant. Its pharmacological theories, such as “four
natures and five flavors®, “ascending-descending-floating-
sinking”, “meridian tropism”, “toxicity”, “compatibility”, and
“contraindications”, are applied in clinical practice through the
“syndrome differentiation and treatment” approach. Unlike
Western medicine, which often targets single component or
pathway, TCM operates through a multi-components, multi-
target paradigm, which presents unique challenges in research,
such as complex compositions, unclear mechanisms, and quality
control issues. Although traditional experimental methods have
contributed to the development of TCM, their time and resource
requirements can be prohibitive.

Recent advances in bioinformatics, computational biology, and
artificial intelligence (AI) have opened new avenues for TCM
research. These techniques can improve efficiency and success
rates across the entire research and drug development pipelines,
from initial discovery to clinical trials (Zhang et al., 2024; Wu et al.,
2024a; Zhang et al., 2022; Li and Zhang, 2023; Chu et al., 2020; Song
etal., 2024). For example, AlphaFold3 can accurately predict the 3D
structures of biological molecules (e.g., proteins, DNA, and RNA)
and their interactions, offering immense potential for disease
research and drug delivery innovation (Abramson et al, 2024).
The AutoDock suite enables efficient virtual screening of molecular
docking and can facilitate structure-based drug design within
approximately 5 hours (Forli et al., 2016; Eberhardt et al., 2021;
Trott and Olson, 2010). Song et al.’s compositional message passing
neural network predicts the absorption, distribution, metabolism,
excretion, and toxicity properties of molecules, which can increase
drug development success rates while reduce costs (Song
et al., 2020).

Despite these advancements, computational applications in
TCM face significant hurdles. First, the complexity and diversity
of TCM data pose challenges related to data collection and
standardization. Second, the generalizability of AI models and
bioinformatics tools in the TCM context is often constrained by
the unique characteristics of TCM data, a factor that has spurred the
proliferation of specialized tools. These challenges demand
significant efforts from researchers to gather and deploy
resources, including high-performance GPUs and other costly
hardware. Finally, many tools are difficult to deploy and lack
user-friendliness due to their reliance on advanced programming
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and server maintenance skills, which further impedes the efficiency
and modernization of TCM research.

To address these challenges, we developed SZBC-AI4TCM, a
comprehensive web-based platform that integrates cutting-edge Al
algorithms and bioinformatics tools to streamline TCM research.
The platform combines a user-friendly and interactive visualization
framework with hardware acceleration and leverages server and
high-performance computing resources to expedite data analysis.
Designed for accessibility, it caters particularly to wet-lab
researchers and those without programming expertise. To
demonstrate its utility, we present the TCM research related to
Alzheimer’s disease (AD) as an example, showcasing its capabilities
in data mining, drug screening, and mechanism analysis based on
network pharmacology and molecular docking.

2 Materials and methods
2.1 Web-based framework design

The platform utilizes the WeMol computational framework
(https://wemol.wecomput.com),  developed by  Wecomput
Technology Co., Ltd,, to manage and maintain the analytical
WeMol state-of-the-art
architecture, data standardizing capability, modules, workflows,

modules. incorporates streaming
and tasks into its computational processes. This allows users to
efficiently manage data, AI tools, workflows, and computational jobs
(Figure 1). The framework includes integrated plugins for molecule
editing and visualization, such as WeDraw (small molecule editing),
WeView WeSeq

(macromolecular (gene

visualization),
and WeVec

(molecular structure

sequence editing),

sequence editing).

2.2 SZBC-AI4TCM platform and features

As Figure 2 shows, SZBC-AI4TCM has a web-based user
interface, which allows users to use it easily and interactively.
The platform currently comprises 67 analytical modules, mainly
categorized into five functional groups: TCM analysis (5 modules),
protein analysis (7 modules), small-molecule analysis (15 modules),
network analysis (10 modules), and databases (9 modules). Other
functions are scattered or still in development (total of 21 such
modules). These modules relate to TCM formulation analysis,
mechanism  elucidation, and drug screening (Figure 2;
Supplementary Table S1). Three example workflows are provided:
Network Pharmacology Analysis Workflow, Network Framework
for Drug Re-purposing Workflow, and Knowledge Graph Analysis
Workflow. The platform is hosted on a Dell PowerEdge R730XD

server featuring an Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30 GHz
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(80 threads), 250 GB of memory, and an NVIDIA GeForce RTX
2080 Ti GPU. The operating system is CentOS Linux 8. As an
illustration, the Network Pharmacology Analysis Workflow requires
approximately 6 min to process a query for “diabetes” with the listed
botanical drugs (salvia miltiorrhiza, panax notoginseng and borneol
in chinese input), delivering the core network gene set, enrichment
analysis, and visualization. Similarly, the Molecular Docking module
completes an analysis of a receptor (LSTP . pdb) against 100 ligands
(demo_100_3D.sdf) under a rigid model in roughly 8 min. This

performance markedly enhances analytical throughput and
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accelerates research development. Users can customize workflows
but may need additional modules for integration. For intelligent
querying, the platform incorporates Max Knowledge Base (https://
github.com/1Panel-dev/MaxKB), an open-source quality assurance
system based on large language models (LLMs) and retrieval-
augmented generation powered by the Qwen-72B LLM. This
feature offers real-time support, helping users resolve queries and
understand tools/methods with minimal learning effort. Due to
computational and security constraints, this feature is currently
limited to intranet access.
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Analysis of 399 formulations related to Alzheimer's disease using the SZBC-AI4TCM platform. (A) Frequency of simple botanical drug. (B) Frequency
of combination of two or more botanical drugs. (C) Scatter plot showing the distribution of botanical drugs in the formulations. (D) Scatter plot for
61 association rules. (E) Visualization of items in the left-hand side groups of the association rules. The size of the dot represents support value, and the

color represents the lift valuer.
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3 Results

3.1 Statistical depiction and analysis of TCM
formulations

The SZBC-AI4TCM platform provides system analysis modules
related to TCM, including retrieval of disease-related formulations
from the TCM prescription database, analysis of the association
rules of formulations, and analysis of formulations similarity. On
this platform, we named the prescription database as the
“Syndrome-Prescription Database”, which contains a total of
3,716 formulations. To illustrate our research and the application
of the platform’s modules, we take Alzheimer’s disease (AD) as an
example. First, we conducted a search using “Alzheimer’s disease” as
the keyword. This search retrieved 399 AD-related formulations
(Supplementary Tables S1,S2), all of which represent potential
therapeutic or interventional strategies for AD.

Using the “Association Rules Analysis” module, we performed a
frequency analysis of the individual botanical drugs and botanical
drug combinations mentioned in the 399 retrieved formulations
(Supplementary Tables S1,52). The results revealed the top 10 most
frequently used botanical drugs (Figure 3A), including Yuan Zhi
(Polygalae Radix), Ren Shen (Ginseng Radix Et Rhizoma), Fu Ling
(Poria), Shi Chang Pu (Acori Tatarinowii Rhizoma), Dang Gui
(Angelicae Sinensis Radix), Fu Shen (Poria cum radix pini.), Gan
Cao (Glycyrrhizae Radix Et Rhizoma), Mai Dong (Ophiopogonis
Radix), Shu Di Huang (Rehmanniae Radix Praeparata), and Suan
Zao Ren (Ziziphi Spinosae Semen). Numerous studies have reported
the therapeutic potential of the aforementioned botanical drugs for
AD. For example, in Liu et al.’s study, Polygalae Radix (Yuan Zhi)
was shown to alleviate cognitive decline in AD mouse models by
mitigating -amyloid toxicity and targeting the extracellular signal-
regulated kinase pathway (Li et al, 2024). Multiple therapeutic
mechanisms of ginseng-derived ginsenosides against AD have
been reported. For example, Rbl modulates synaptic plasticity,
reduces inflammation, and inhibits apoptosis; Rb targets the tau
protein in APP transgenic mice; and Rgl demonstrates anti-
apoptotic and antioxidant effects in APP/PS1 mice (Mook-Jung
etal., 2001; Wang et al.,, 2018; Yang et al., 2020; Zhang et al., 2021; Li
et al,, 2021). Other botanical drugs, such as Fu Ling, Shi Chang Pu,
Dang Gui, Shu Di Huang, and Suan Zao Ren have also been
extensively studied for AD treatment (Chen et al, 2013; Song
etal., 2018; Trott and Olson, 2010; Wang et al., 2022; Su et al., 2023).

The frequency analysis of botanical drugs revealed synergistic
relationships between botanical drug pairs. Notably, Ren Shen and
Yuan Zhi co-occurred in 116 of 399 (29%) formulations, and Ren
Shen with Fu Ling (25%) and Yuan Zhi with Fu Ling (23%) also
exhibited high co-occurrence frequencies (Figure 3B; Supplementary
Tables S1,52). Using the “Association Rules Analysis” module that
employs the apriori algorithm, we systematically mined botanical
drug combinations from the 399 formulations associated with AD
(Figure 3C) (Hahsler et al, 2005). With the parameter settings of
0.05 and confidence threshold = 0.8,
61 statistically significant botanical drug association rules were
identified (Figures 3D,E; Supplementary Tables S2,S3). In the Apriori
algorithm, lift quantifies the enhancement effect of the antecedent

support threshold =

occurrence on the consequent occurrence. A lift value >1 indicates
that the antecedent increases the likelihood of the consequent; =1
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implies independence between them; and <1 suggests the antecedent
reduces the consequent’s probability (Hahsler et al., 2005). After sorting
the rules in descending order by the lift value, the association rules “{Ren
Shen, Fu Ling, Fang Feng (Saposhnikoviae Radix) = > Rou Gui}*,
“{Yuan Zhi, Fang Feng = >Rou Gui (Cinnamomi Cortex)}“, and
“{Ren Shen, Yuan Zhi, Fang Feng = > Rou Gui}” had the lift values of
4.21, 4.18, and 4.12, respectively (i.e., all substantially exceeding 1;
refer to Figures 3D,E). This demonstrates that the co-occurrence of
the botanical drug combinations, “Ren Shen - Fu Ling - Fang Feng”,
“Yuan Zhi - Fang Feng” or “Ren Shen - Yuan Zhi - Fang Feng”
significantly increased the probability of Rou Gui appearing
consequently. All three rules have high confidence levels (>0.8).
These specific combinations may exert synergistic therapeutic
effects on AD-related cognitive improvement, which provides
insights into the formulation principles of traditional herbal
formulations.

For formulation similarity analysis, pairwise comparisons of the
399 AD-related formulations were conducted using the “Formula
Similarity” module (Supplementary Tables S2-S4). The results
exhibited high
similarity in botanical drug composition, suggesting they may

demonstrated that some formulation pairs
originate from the same theoretical system (e.g., TCM syndrome
differentiation principles) or shared clinical empirical knowledge,
with potential common therapeutic mechanisms against AD.
Based on the association rules analysis results (Supplementary
Tables 52,53), we ranked the 61 filtered botanical drug combinations
by their support value and selected seven key botanical drugs from the
top four rules for AD targeted formulation screening. These botanical
drugs were Fu Ling, Rou Gui, Ren Shen, Fang Feng, Yuan Zhi, Mai
Dong, and Shu Di Huang. All of these had high-frequency occurrence
and robust association rules. Therefore, formulations containing all
seven botanical drugs were hypothesized to possess good therapeutic
efficacy. Among the 399 formulations, only three contain all these seven
botanical drugs (Table 1). The taxonomic and medicinal details of
botanical drugs in the three formulations are detailed in Supplementary
Tables S2-S5. One of them is a formulation named “Shuyu Wan”,
which has been previously associated with AD treatment (Zhou, 2022;
Cheng et al, 2021; Ma et al, 2022; Qiu, 2020). In the subsequent
sections, we use the Shuyu Wan as a representative example of a
formulation to demonstrate our platform’s functional modules.

3.2 Comprehensive analysis at the
disease level

For disease-related analysis, the SZBC-AI4TCM platform offers
a suite of powerful analytical modules to facilitate in-depth
exploration of the disease mechanisms. Using AD as a case
study, we demonstrate the integrated application of five core
modules: 1) “Disease Target”; 2) “Protein-Protein Interaction
(STRING)”; 3) “Hub Genes Identification” 4) “Largest
Connected Component”; and 5) “Gene Enrichment (DAVID)”.

3.2.1 Disease Target module

This module enables rapid screening of disease associated genes
across multiple integrated databases. The platform consolidates data
from DisGeNET (Pifiero et al., 2016), eDGAR (Babbi et al., 2017),
GWAS (Hindorff et al, 2009), Pharos (Kelleher et al, 2022),
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TABLE 1 Details of three formulations selected based on the botanical drug frequency and association rules.

Indication Formulation name Composition

Alzheimer’s disease = Baifuling Sanfang

Fu Ling, Yuan Zhi, Zhi Gan Cao, Rou Gui, Ren Shen, Bai Shao, Fang Feng, Shu Di Huang, Tie Fen, Huang Qi, Mai Dong

Alzheimer’s disease = Changpu Wan Shi Chang Pu, Du Zhong, Shu Di Huang, Fu Ling, Ren Shen, Dan Shen, Fang Feng, Bai Zi Ren, Bai Bu, Yuan Zhi, Wu Wei
Zi, Shan Yao, Mai Dong, Rou Gui
Alzheimer’s disease = Shuyu Wan Shan Yao, Yuan Zhi, Shu Di Huang, Tian Dong, Fu Shen, Long Chi, Di Gu Pi, Fang Feng, Fu Ling, Mai Dong, Ren Shen, Rou
Gui, Wu Wei Zi, Che Qian Zi
( A) (B) 0.14
w0 _
- 0.12
zscore = 5.461
g 0.10 pvalue = 0.000
3 o 8 LCC(obs.) = 2650
- & o.08
o~ o O
(= 3
© o
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FIGURE 4

Analysis of Alzheimer's disease—associated genes using the SZBC-AI4TCM platform. (A) Top 20 prioritized genes associated with Alzheimer's
disease by the PageRank algorithm deployed on the platform. (B) Analysis of the largest connected components for genes associated with Alzheimer's

disease. (C) GO enrichment analysis. (D) KEGG enrichment analysis.

MalaCards (Rappaport et al,, 2013), and 23 sub-databases under the
Open Targets Platform (Koscielny et al., 2016). We queried it with the
keyword “Alzheimer’s disease”. For this study, we selected the
DisGeNET database as a representative source. After filtering the
entries without valid gene IDs, 3,384 AD-related genes were identified
(Supplementary Tables S1-53), including well-established pathogenic
genes such as APP, PSEN1, and PSEN2. This module can substantially
increase researchers’ in

efficiency aggregating  disease-gene

associations from heterogeneous databases.

3.2.2 Protein—protein interaction (STRING) module

This module integrates the functional components from the
STRING database to enable direct protein-protein interaction (PPI)
network analysis of disease related genes (Mering et al., 2003).
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Inputting the 3,384 AD-related genes into this module with a
confidence threshold set to 0.9 (ie., retaining only the highest
confidence interactions) yielded 11,268 PPI pairs involving
2,778 disease-associated genes (Supplementary Tables S2,53).

3.2.3 Hub Genes Identification module

Hub genes in a disease gene network play pivotal roles in
determining the modular characteristics of the network. In a
disease gene network, hub genes tend to be involved in
regulating biological processes or pathological states. The
identification of hub genes aims to pinpoint key regulators within
complex gene networks that critically influence biological functions
or disease progression, thus providing essential insights into
pathogenesis, therapeutic target discovery, and drug development.
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The SZBC-AI4TCM platform employs the PageRank algorithm
for hub gene prioritization (Page et al., 1999). This algorithm assigns
importance scores to genes based on their topological positions
within the PPI network, where in higher scores indicate greater
functional significance and network centrality. The AD-associated
PPI network comprised 2,778 gene nodes and 11,268 interactions
(Supplementary Tables S2,S3). This module generated quantified the
score for each node. Subsequently, ranking the genes by descending
scores enabled systematic identification of disease-relevant hub
genes (Supplementary Tables S3-3). The top 20 highest-scoring
genes are visualized in Figure 4A.

3.2.4 Largest connected component module
Numerous studies indicate that disease-associated genes are not
randomly distributed in PPI networks but tend to form
interconnected sub networks, existing as cohesive “communities”
within the global network (Goh et al., 2007). Largest connected
component (LCC) analysis identifies the largest and most densely
interconnected sub network (“community”) in disease gene
networks. This approach enables the extraction of the maximally
connected disease sub-network while facilitating, through
comparison with randomly sampled networks, an accuracy
assessment of the identified disease genes-ones that can represent
the disease to a certain extent. Using the SZBC-AI4TCM platform,
we performed LCC analysis on the 2,778 AD-related genes. The
resultant LCC contained 2,650 genes with 32,686 interactions
S3,54). with

1,000 randomly sampled networks (matched in gene number)

(Supplementary Tables Comparative analysis
demonstrated that AD-associated genes exhibited significantly
higher connectivity (permutation test, Zscore =5.461) and

formed a cohesive disease-network (Figure 4B).

3.2.5 Gene Enrichment (DAVID) module

This module enables Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
of disease-associated genes. Using the top 100 AD related hub genes
prioritized by the PageRank scores (Supplementary Tables $2,53),
we performed functional enrichment analysis to identify the
significantly overrepresented biological processes and pathways.
The GO analysis revealed enrichment in critical AD-related
processes, including inflammatory response (GO:0006954,
FDR =4.56 x 107°), response to oxidative stress (GO:0006979,
FDR = 4.56 x 10™), and positive regulation of canonical NF-«xB
Signaling (GO:0043123, FDR = 4.56 x 107°) (Figure 4C). KEGG
pathway analysis highlighted pathways of neuro-degeneration
(KEGG: hsa05022, FDR = 1.44 x 107%), MAPK signaling (KEGG:
hsa04010, FDR = 1.49 x 107°), and AGE-RAGE signaling pathway
in diabetic complications (KEGG: hsa04933, FDR = 3.71 x 107%) as
key mechanisms (Figure 4D). These results indicated the modular
functional architecture of AD-associated hub genes and their
convergence on core pathological pathways.

3.3 Network pharmacology and
molecular docking

The SZBC-AI4TCM platform enables systematic network
pharmacology analysis relating to TCM through the following

Frontiers in Pharmacology

10.3389/fphar.2025.1698202

workflow: 1) Herbal metabolite extraction (“TCM Ingredient
Target” module); 2) Target retrieval (“TCM Ingredient Target”
module); 3) Target-gene comparative analysis (“Venn Diagram”
module); 4) Network proximity analysis (“Network Proximity”
module); 5) Molecular docking (“Molecular Docking” module).
Using the formulation, Shuyu Wan, which is an AD targeting
formulation identified in the previous analysis as a representative
case, we demonstrate the integrated application of this
analytical framework.

Using the “TCM Ingredient Target” module of the SZBC-
AI4TCM platform, we analyzed data from the HIT2 database.
After
143 bioactive metabolites derived from 14 botanical drugs in
Shuyu Wan 2,083

approximately 14 metabolite

filtering out the entries lacking wvalid gene IDs,

were mapped to genes, averaging
genes  per (Figure  5A;
Supplementary Tables S1-S4). Removing duplication yielded
745 unique genes, indicating that multiple metabolites might
target same genes. The CASP3 gene exhibited the highest
metabolite association (36 metabolites), followed by 14 genes
each linked to >15 metabolites (Figure 5B; Supplementary Tables
S1-54). For drug-disease gene comparison, the top 150 AD-related
hub genes (ranked by PageRank scores in Supplementary Tables
S3-3) were selected as the AD gene set. Venn diagram analysis using
the “Venn Diagram” module revealed 60 overlapping genes between
the 745 drug target gene set and the AD gene set (Figure 5C;
Supplementary Tables S2-S4). Functional enrichment analysis via
the “Gene Enrichment (DAVID)” module demonstrated that these
shared genes were significantly enriched in GO terms related to
transcriptional regulation, apoptotic process, and inflammatory
response (Figure 5D). KEGG pathway analysis highlighted key
AD associated pathways, such as the PI3K-Akt signaling pathway
(KEGG: hsa04151, FDR = 6.16 x 107!?), MAPK signaling pathway
(KEGG:hsa04010, FDR = 3.41 x 107), thyroid hormone signaling
pathway (KEGG: hsa04919, FDR = 3.28 x 107°), sphingo lipid
signaling pathway (KEGG: hsa04071, FDR = 2.45 x 107°), and
neuro-trophin  signaling  pathway  (KEGG:  hsa04722,
FDR =226 x107°) (Figure 5E). These pathways exhibited
significant associations with AD pathogenesis, particularly in
neuronal survival and neuro-inflammation regulation.

Using the “Network Proximity” module, we systematically
assessed the therapeutic potential of Shuyu Wan against AD at
both the botanical drug and metabolite levels. In the botanical
drug-level analysis, target sets for each botanical drug were
constructed by aggregating the non-redundant targets and all
their metabolites. Network proximity analysis between the
14 botanical drugs and the AD gene set revealed that all
botanical drugs exhibited negative Zscores. Lower values of the
Zscore may indicate stronger therapeutic relevance. Notably,
11 out of 14 botanical drugs had Zscore < -3, indicating
strong AD-targeting efficacy (Figure 5F; Supplementary Tables
S$3-S4). In the analysis of herbal metabolites, out of
143 metabolites, 79 had a Zscore of <—1, 54 had a Zscore of
< —2,and 21 had a Zscore of < - 3. (Supplementary Tables S4-4).
These findings robustly validate Shuyu Wan’s multi-scale
therapeutic effects against AD through synergistic interactions
among botanical drugs and metabolites.

We also validated bioactive metabolites using the platform’s
functionality. We employed the “Molecular Docking” module to
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predict binding modes and interactions and obtained binding
energy and affinity data. Target selection was performed based on
the metabolite-target list (Supplementary Tables S1-S4), where
24 targets associated with more than 10 metabolites were
prioritized, including ACHE
PPARG (peroxisome proliferator activated receptor gamma)
(Supplementary  Tables S4-S5). ACHE was linked to
15 metabolites: chlorogenic acid, ethanol, bisphenol A, caffeic

(acetyl-cholinesterase) and
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acid, ginsenoside Rgl, a-linolenic acid, resveratrol, vitexin,
cinnamic acid, ferulic acid, forsythiaside, gallic acid, ursolic

acid, nodakenin, and psoralen. PPARG interacted with
12 metabolites: chlorogenic acid, citral, rutin, ethanol,
bisphenol A, kaempferol, mannose, oleic acid, resveratrol,

vanillin, abscisic acid, and ursolic acid. Five metabolites were
shared between both targets. These metabolites were employed as
ligand molecules and subjected to molecular docking against
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their respective receptor proteins (ACHE and PPARG). In this
process, the SDF files of ligands (except ginsenoside Rgl) were
retrieved from PubChem and processed (merging and
hydrogenation) using Open Babel (v3.1.1) (O’Boyle et al,
2011). Crystal structures of ACHE (PDB:604W) and PPARG
(PDB: 6FZG) were obtained from the RCSB PDB database
(https://www.rcsb.org/).
were removed, followed by hydrogenation with the PyMOL

Non-essential molecules and water

software (Schrodinger and DeLano, 2020). Rigid docking was
performed using AutoDock deployed on the SZBCAI4TCM
platform, with the binding pockets defined by co-crystallized
ligands. All ligand-receptor pairs exhibited binding energies < —
2 kcal/mol, except urs olic acid with PPARG (1.28 kcal/mol),
indicating strong binding capabilities (Supplementary Tables
$4-56). Notably, 57% of the ACHE-ligand complexes and 67%
of the PPARG-ligand complexes showed energies < — 5 kcal/mol
(Figure 6). These results demonstrated strong binding capacity
and enhanced molecular interactions between the analyzed
receptor proteins and ligand molecules while also validating
the accuracy of our target identification for the metabolites
within the TCM formulation.
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3.4 Drug screening

We retrieved RNA-seq raw count data (GSE159699) from the
Gene Expression Omnibus (GEO) database, comprising 30 temporal
lobe samples (12 AD cases and 18 controls) (Supplementary Tables
S1-85) (Nativio et al,, 2020). Using the “Differentially Expressed
Genes” module with the thresholds of FDR <0.05 and |log2FC| >1,
we identified 459 AD associated differentially expressed genes
(284 upregulated and 175 downregulated) (Figure 7A;
Supplementary Tables S2-S5). Functional enrichment analysis via
the Gene Enrichment (DAVID) revealed significant GO terms related
to AD pathogenesis, including cell-cell signaling (GO:0007267,
pvalue = 5.13 x 107), (GO:0030593,
pvalue = 3.23 x 107°), inflammatory response  (GO:0006954,
pvalue = 0.002), and chemical synaptic transmission (GO:0007268,
pvalue = 0.002) (Figure 7B; Supplementary Tables S3-S5).

The “Gene Signature” module was employed to identify
potential therapeutics for AD using the LINCS (Library of
Integrated Network based Cellular Signatures) L1000 and ITCM
(Integrated Medicine)
(Supplementary Tables module calculates a

neutrophil ~ chemotaxis

Chinese databases

S4-S5). This

Traditional
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pert_id pert_iname RGES cell_id pert_time pert_dose
BRD-K72414522 AZD-5438 -1.25971 MCF10A 6h 2 UM
BRD-A92439610 triamcinolone -1.24233  A549 6 h 10 uM
BRD-K15409150 penfluridol -1.21881  VCAP 6 h 10 uM
BRD-K66788707 fludarabine -1.20245 PC3 24 h 10 uM
BRD-M30523314  vinorelbine -1.19223  A375 6 h 10 uM
BRD-A34806832 proscillaridin -~ -1.19121  A375 6h 10 uM
BRD-K83289131 CAY-10618 -1.18814  SW620 6h 10 uM
BRD-A74975734 homatropine -1.18098  A549 6 h 10 uM
BRD-K63230271 SA-427730 -1.17894 MCF7 6 h 3.3223 uyM
BRD-A13188892 doxazosin -1.17689 PC3 6 h 10 pM
(D) Top 10 of drugs drug Screening based on ITCM database
pert_id pert_iname RGES cell_id pert_time pert_dose
Herb278 Isorhamnetin -1.25971 MCF-7 12h 10 uM
Herb277 Demethoxycurcumin -1.24233 MCF-7 12h 10 uM
Herb280 3,6'-Disinapoyl Sucrose  -1.21881 MCF-7 12 h 10 pM
Herb283 Typhaneoside -1.20245 MCF-7 12h 10 pM
Herb275 Daidzin -1.19223 MCF-7 12h 10 uM
Herb273 Schisantherin A -1.19121 MCF-7 12h 10 uMm
Herb274 Barlerin -1.18814 MCF-7 12h 10 uM
Isorhamnetin-3-0-

Herb2a2 neohespeidoside 115038 MCF-7  12h 10 uM
Herb284 Loganin -1.17894 MCF-7 12h 10 uMm
Herb282 Ethyl caffeate -1.17689 MCF-7 12h 10 uM

FIGURE 7

Drug screening using the SZBC-AI4TCM platform. (A) Volcano plot showing gene expression changes between cases and controlsfor Alzheimer's
disease (GSE159699). (B) GO enrichment analysis of the differential expression genes. (C) Top 10 drugs from the drug screening based on the LINCS
L1000 database. (D) Top 10 drugs from the drug screening based on the ITCM database.

disease-reversion score by quantifying the ability of compounds to
reverse disease-specific gene expression patterns. Negative scores
of AD-associated
potential), and positive score suggest synergy with disease
mechanisms (therapeutic risk). The top 10 ranked small
molecules (LINCS) and natural products (ITCM) are shown in

indicate reversal expression  (therapeutic
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Figures 7C,D. Notably, six out of the top 10 LINCS small molecules
(including penfluridol, fludarabine, vinorelbine, and doxazosin)
have been previously reported to exhibit anti-AD effects in peer-
reviewed studies (Nativio et al., 2020; Chiba et al., 1997; Lehrer and
Rheinstein, 2017; Shamsi et al., 2024; Rahman et al., 2020; Rathi
et al., 2025), corroborating the validity of our screening approach.
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4 Discussion

Traditional Chinese Medicine (TCM) constitutes a precious
cultural heritage of the Chinese nation, embodying millennia of
accumulated clinical theories and practical experience in disease
prevention and treatment. It has long demonstrated unique
advantages in disease prevention and treatment, and it is
the
community in recent years. The remarkable advancements in AI

garnering increasing attention from global scientific
and bioinformatics have exerted profound and transformative
impacts on TCM research and development. The digitization of
biomedical research and intelligent computing have become robust
trends in the field (Zhou et al., 2024; Xu, 2024; Buller et al., 2025).
However, several challenges persist in TCM research, such as: 1) The
inherently complex nature of TCM data, posing difficulties in
collection and standardization; 2) Limited generalizability of the
existing computational tools/methods for drug development; and 3)
Technical barriers in tool deployment and utilization. These factors
have significantly constrained the progress of TCM research.

To address these challenges, we developed SZBC-AI4TCM, a
comprehensive web-based computational platform that integrates
state-of-the-art AI algorithms, bioinformatics tools, and TCM
databases. This one-stop solution provides robust computational
support, enabling researchers to obtain analytical results more
efficiently and thereby enhancing the productivity and success
rate of TCM research. The platform supports multilingual inputs
for specific analysis modules. For example, the TCM Targets Search
BATMAN module accepts inputs in Pinyin, Chinese, English, and
Latin. However, other modules, such as the Herbs Database,
currently only support Chinese. This is because many underlying
TCM databases are primarily in Chinese, and integrating
comprehensive  multilingual ~ support requires  substantial
translation and curation efforts. We acknowledge that this
limitation can impair the user experience and potentially affect
analytical accuracy, and therefore, its resolution is a key focus for our
next development phase. Meanwhile, We have noted that some
TCM names (including formulas, medicinal materials and
ingredients) often exhibit significant variation across realworld
data sources. For example, the same entity might appear as
“Shuyu Pill”, “Shuyu Wan”, “Shu  Yu Wan”. Such

inconsistencies stem from multiple factors, including differences

or

in Pinyin transliteration, word segmentation conventions, and
database design. This lack of standardization can lead to
incomplete information retrieval and compromise analytical
accuracy. While our current platform does not include dedicated
modules to address these variations, we are actively developing a
comprehensive TCM synonym dictionary. Furthermore, we plan to
leverage large language model (LLM)-based Retrieval-Augmented
Generation (RAG) technology for automated name normalization
and are designing standardized preprocessing workflows specifically
for TCM texts to significantly enhance data consistency and
analytical precision in future work.

Using the TCM research in Alzheimer’s disease as an example,
we demonstrated the platform’s capabilities in multiple research
domains, including TCM formulation data mining, drug screening,
mechanism analysis based on network pharmacology analysis and
molecular docking. This platform significantly reduces reliance on
traditional trial-and-error approaches, while also drastically
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lowering the time, labor, and financial costs associated with the
development of TCM. In addition, based on the modules of this
platform, we have also applied them in other studies. For instance,
relying on the network proximity module, Yang et al. conducted an
analysis of network proximity between vascular calcification
associated genes and the targets of Compound Danshen Dripping
Pills (CDDP) in their research on the treatment of vascular
calcification using this drug (Yang et al., 2024). This analysis was
used to evaluate the potential therapeutic effect of the drug on
vascular calcification. Meanwhile, Wang et al. applied network
proximity to identify the potential pathological mechanisms of
Alzheimer’s disease (AD) associated with YangXue QingNao
Wan (YXQNW) by integrating the drug-target network (Wang
et al, 2024). In the study by Zhao et al, based on the
Bibliometrics module on the SZBC-AI4TCM platform, the
research focused on exploring the research hotspots and trends
in Tourette Syndrome (TS), as well as the roles and potential
mechanisms of the botanical drug pairs related to Shaoma
Zhijing Granules and their main metabolites in the treatment of
TS (Zhao et al., 2024). This work laid a foundation for analyzing the
therapeutic mechanism of Shaoma Zhijing Granules in TS and
provided evidence support for its clinical application.
SZBCA-I4TCM features a user-friendly web interface with

intuitive operation. Integrated with the MaxKB question
answering system, the platform facilitates rapid comprehension
of each analytical module’s operational procedures and

underlying principles, which considerably lowers the learning
curve for researchers. Moreover, the analytical modules and
workflow in the platform will be regularly optimized and
iteratively upgraded. The development and deployment of
cutting-edge technical modules, particularly the “Knowledge
Graph” module group the “Large Language Model
Application” module group, will substantially enhance the

and

platform’s technical support capabilities. The integration of the
existing innovative technical modules not only provides users
with a systematic and professional toolkit for TCM research but
also offers unique methodological value in critical research
scenarios, such as drug interaction analysis and prescription
compatibility pattern mining. Of particular note is the platform’s
independently developed “Prescriptions Tree” module (Lang et al.,
2025), which employs phylogenetic tree construction algorithms to
propose innovative solutions for research directions in TCM
formulations and TCM formulations’ classification. Through the
ongoing development of such analytical tools, a distinctive
methodological framework addressing key scientific questions in
TCM research will gradually take shape, offering new technical
pathways to overcome industry research bottlenecks. However,
some limitations of SZBC-AI4TCM warrant acknowledgment: 1)
The quality and completeness of the foundational data require
continuous updates and supplementation. 2) The currently
implemented tools and methodologies may not encompass all
computational requirements, necessitating periodic expansion,
updates, and optimization of the analytical modules. 3) The
intelligent Q&A functionality remains under development and
would benefit from integration with additional LLMs, such as
ChatGPT (Vaswani et al., 2023) and DeepSeek-AlI et al. (2025a);
Wu et al.,, 2024b; DeepSeek-Al et al., 2025b). 4) While designed with
user friend lines in mind, the platform’s advanced features still
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present a non-trivial learning curve that may require targeted
training for certain user groups. 5) Exponential growth in
computational resource demands is anticipated with increasing
module deployment and user adoption, mandating systematic
resource scaling.

It is worth noting that although the databases integrated into the
platform were initialized with the most recent versions available at
the time of development, they are not currently synchronized in
real-time with their official sources due to the substantial resource
and cost implications involved. The primary objective of the first
phase of the SZBC-AI4TCM project is to establish a comprehensive
suite of analytical functions for traditional Chinese medicine
research. To this end, we have localized several publicly available
databases and tools to support users in conducting various analyses.
Currently, the platform does not perform in-depth integration or
comprehensive evaluation of the results generated by these tools/
databases, and each analysis is performed independently. Therefore,
the outputs should be regarded as preliminary references, and we
strongly reiterate and encourage users to perform further evaluation
and experimental validation, such as in vitro assays, animal models,
or clinical trials, to remain essential to confirm their biological
relevance (Magalhdes et al., 2021; Bolz et al., 2021). A key part of our
ongoing development strategy includes periodic updates to these
underlying databases. Our current plan is to perform updates on a
quarterly basis, or more frequently based on significant user demand
and newly available data.

In summary, SZBC-AI4TCM represents a significant milestone
in the integration of TCM with modern computational technologies.
By providing a comprehensive, scalable, and accessible platform for
TCM research, we anticipate this tool will substantially enhance the
efficiency and effectiveness of TCM-based drug discovery and
development. Future efforts will focus on three key directions: 1)
Enhancing the platform through functional upgrades; 2) Expanding
the analytical tools, algorithms, and databases; and 3) Fostering
global collaboration within the TCM research community to
advance the modernization and internationalization of TCM.

5 Conclusion

SZBC-AI4ATCM is a comprehensive web-based computational
platform specifically designed for TCM research and development.
The platform integrates an extensive collection of cutting-edge Al
algorithms, bioinformatics tools, and specialized TCM databases,
collectively offering robust computational solutions that can
significantly reduce research costs and dramatically enhance
development efficiency from a computational perspective. We
that SZBC-AI4TCM will
computational backbone for both TCM research and clinical

envision serve as a powerful
applications. Its continued development and implementation are
expected to make substantial contributions to the advancement,

modernization, and globalization of TCM.
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