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Background: Tigecycline (TGC), while effective against multidrug-resistant
infections, is limited by hepatotoxicity and coagulation disorders, yet lacks
robust predictive tools.

Methods: We developed an online dynamic nomogram to assess these
adverse events using retrospective data from 2,553 TGC-treated patients
(2020-2025). Seventy-seven clinical features were analyzed using Boruta
and the Least Absolute Shrinkage and Selection Operator (LASSO) for
feature selection. Seven machine learning (ML) models were evaluated
via ten-fold cross-validation, as well as Receiver Operating Characteristic
(ROC) curve and calibration curves, with SHapley Additive exPlanations
(SHAP) analysis for interpretability and an online dynamic nomogram for
clinical translation.

Results: Logistic regression (LR) outperformed other algorithms, achieving Area
Under the ROC Curve (AUC) values of 0.800 (95% ClI: 0.727-0.874) for
hepatotoxicity and 0.755 (95% Cl: 0.665-0.845) for coagulation dysfunction.
Independent risk factors for liver injury included prolonged treatment duration,
high dosage, ICU admission, hepatitis B virus (HBV) infection, and elevated
baseline levels of lactate dehydrogenase (LDH) and gamma-glutamyl
transferase (GGT). Risk factors for coagulation dysfunction included extended
treatment duration, ICU admission, elevated baseline creatinine (Cr), sepsis, and
septic shock. Notably, co-administration of meloxicillin and higher baseline red
blood cell (RBC) levels appeared to be protective.

Conclusion: This study constructed an online dynamic nomogram with good
discrimination and calibration, which can help to identify high-risk patients
and assist clinicians in early risk stratification and individualized treatment
planning.
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1 Introduction

Tigecycline (TGC), a novel glycylcycline-class antimicrobial
agent, has demonstrated considerable clinical potential due to its
broad-spectrum activity (Korczak et al., 2024), low resistance rate
(Fan et al., 2024), and high efficacy against multidrug-resistant
pathogens (Xiong et al, 2023). It is primarily indicated for
the treatment of complicated intra-abdominal infections, skin
and soft tissue infections, and community-acquired pneumonia
(Constance and Suzanne, 2012). However, its widespread use has
been accompanied by a notable rise in adverse events, particularly
hepatotoxicity and coagulation dysfunction, which have emerged
as major barriers to its long-term standardized application.
Epidemiological studies have reported that the incidence of
TGC-related liver injury ranges from 1.6% to 28.9%, with
severe cases potentially progressing to liver failure or death (Shi
et al., 2021; Shi et al., 2022; Liu Y. X. et al., 2021; Chen and Shi,
2018). In parallel, numerous reports have demonstrated that TGC
impairs coagulation function—manifested by reduced fibrinogen
(FIB) levels—thereby increasing the risk of hemorrhage and severe
complications (Zhang et al., 2023; Leng et al., 2019; Ma et al., 2024;
Guo et al., 2022).

Furthermore, considerable interindividual variability in TGC
pharmacokinetics and pharmacodynamics leads to significant
differences in therapeutic outcomes and susceptibility to adverse
events, complicating its clinical management (Dorn et al,, 2018; Ruiz
et al., 2020). Thus, balancing the safety and efficacy of TGC has
become a critical clinical challenge. Identifying risk factors for
adverse outcomes remains a cornerstone of clinical practice and
public health (Boukhlal et al, 2024). Previous studies have
implicated variables such as baseline alanine aminotransferase
(ALT) and albumin abnormalities, ICU admission, and treatment
duration as independent risk factors for TGC-related liver injury
(Jiang T. et al,, 2022; Yu et al., 2022). Zhang et al. further highlighted
that patients receiving voriconazole, those with cancer, intra-
abdominal infections, or septic shock were at significantly higher
risk (Zhang et al, 2025). Similarly, Liu et al. found that age,
treatment duration, and baseline FIB levels were associated with
hypofibrinogenemia, particularly in patients with hematologic
malignancies (Guo et al, 2024; Liu J. et al, 2021). The
relationship between high TGC doses and adverse events,
however, remains contentious (Geng et al, 2018; Gong et al,
2019). Traditional statistical models used in these studies often
overlook individual heterogeneity and the complexity of
multifactorial interactions, thereby limiting predictive accuracy
and adaptability. In contrast, machine learning (ML) techniques
offer distinct advantages in risk prediction by effectively handling
high-dimensional datasets and capturing complex, non-linear
relationships (Das et al., 2024; Wu et al., 2020).

Globally, ML algorithms have been successfully applied to
predict adverse reactions to anticancer and antiviral agents,
identify key biomarkers, and optimize therapeutic strategies
(Arab et al, 2024; Saoud et al, 2024). Additionally, ML has
demonstrated value in enhancing drug safety surveillance (Eujin
et al,, 2023), forecasting pharmacological updates (Watanabe et al.,
2024), and
pharmacovigilance systems. Despite these advancements, studies

addressing limitations inherent in traditional

applying ML to predict TGC-related adverse events remain scarce.
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To address this gap, our study constructed and validated a risk
prediction model for TGC-related hepatotoxicity and coagulation
dysfunction using 7 ML algorithms. We further applied the SHapley
Additive exPlanations (SHAP) method to interpret the model
output as a means of identifying key predictive features.
Ultimately, we developed an online prediction webpage that was
able to predict both whether an adverse reaction would occur with
the use of TGC and, separately, whether TGC would cause liver
injury or coagulation dysfunction. This study provides a visual and
interpretable basis for clinical decision-making and strongly
supports the advancement of personalized TGC dosing strategies.

2 Methods
2.1 Study population and subgroups

This work was approved by the Ethics Committee of the
Affiliated Hospital of Putian University (Approval ID: 2025141),
and the research flowchart is shown in Supplementary Figure S1.
This study included hospitalized patients treated with TGC at the
Affiliated Hospital of Putian University between January 2020 and
January 2025. Data from January 2020 to December 2023 were used
for model development, while data from January 2024 to January
2025 were used for external validation. The inclusion criteria were as
follows: (1) age >18 years; (2) TGC therapy duration >3 days; and
(3) availability of complete laboratory data. The exclusion criteria
were as follows: (1) incomplete medical records; (2) pre-existing
liver injury or coagulation disorders; and (3) pregnancy. Eligible
patients were classified into two cohorts: the liver injury risk cohort
and the coagulation dysfunction risk cohort. We followed up with
patients receiving TGC for 3 months to avoid missing positive
events. Each cohort was randomly divided in a 7:3 ratio into training
and test sets. Patient demographics and baseline characteristics were
collected for further evaluation.

2.2 Definition of study outcomes

Drug-induced liver injury (DILI) related to TGC was defined
according to established criteria (Edmond et al.,, 2023), meeting at
least one of the following: (1) ALT >5xULN; (2) alkaline
phosphatase (ALP) > 2xULN (especially when accompanied by
elevated gamma-glutamyl transferase (GGT) and after exclusion of
bone pathology); (3) ALT >3xULN and total bilirubin (TBIL) >
2xULN. Liver injury was further subclassified into hepatocellular,
cholestatic, or mixed types and graded for severity (levels 1-4)
according to international guidelines (Yu et al., 2017). The Roussel
Uclaf Causality Assessment Method (RUCAM) was employed to
evaluate the causal relationship between TGC and liver injury, with a
score >6 considered indicative (Supplementary Table S1) (Ciricillo
et al.,, 2024).

Coagulation dysfunction was diagnosed during TGC treatment
if any of the following criteria were met: (1) FIB <2 g/L; (2)
international normalized ratio (INR) outside the standard range
(0.8-1.2); (3) prothrombin time (PT) prolonged by > 3 s beyond the
standard range (9-13 s); (4) activated partial thromboplastin time
(APTT) prolonged by > 10 s beyond standard range (20-40 s); (5)
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platelet count (PLT) outside the standard range (125 x 10° L"'-350 x
10° LY.

Additionally, the clinical efficacy of TGC treatment was
categorized as cured, improved, or ineffective. Detailed diagnostic
criteria are available in the Supplementary File.

2.3 Feature selection

To ensure robust variable selection, a combined approach
Absolute
(LASSO) regression and the Boruta algorithm was adopted.

using Least Shrinkage and Selection Operator
Initially, univariate analyses were conducted on the training set
to establish a preliminary feature pool, incorporating clinically
relevant variables reported in prior literature to be associated with
TGC-related hepatotoxicity and coagulation abnormalities.
Variables were then categorized into categorical or continuous
variables based on clinical features. Categorical variables were
coded as dummy variables, whereas continuous variables were
standardized using a Z-score with a mean of 0 and a standard
deviation of 1. Multicollinearity was assessed by variance inflation
factor (VIF) analysis, and features exceeding a VIF >5 were
excluded from subsequent analyses. LASSO regression was then
applied with a binomial family specification and alpha set to 1 to
enforce pure LASSO regularization. The penalty parameter A was
optimized through ten-fold cross-validation, and variable selection
was based on both lambda. min and lambda.1se to retain the most
informative features (Liu et al., 2023). Simultaneously, the Boruta
algorithm was employed to assess feature importance by
comparing original variables against randomized “shadow”
features across 500 iterations or until stability was achieved
(Sun et al., 2024). The intersection of both methods yielded a
high-confidence feature subset, which was used to construct robust
ML models. Analysis was conducted using R programming
(version 4.4.0).

2.4 Model development, evaluation and
interpretation

Seven ML algorithms were used for model construction: Logistic
Regression (LR), Decision Tree (DT), K-Nearest Neighbors (KNN),
Extreme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (LightGBM), Random Forest (RF), and Gaussian Naive
Bayes (GNB). Ten-fold cross-validation was performed for model
training and optimization. Hyperparameters for each algorithm
were fine-tuned using a grid search strategy.

Model performance was assessed using multiple evaluation
metrics, including the Receiver Operating Characteristic (ROC)
curve and Brier score. A lower Brier score indicates superior
model calibration and discrimination (Angraal et al., 2020). To
enhance model interpretability, SHAP was used to quantify the
contribution of each feature at both global and individual levels
(Jiang C. et al, 2022). Additionally, a dynamic nomogram was
developed to provide a user-friendly visualization of individual risk
predictions and facilitate clinical decision-making. Specific model
parameters are detailed in the Supplementary Parameters. Analyses
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were conducted using R programming (version 4.4.0) and
Python (version 3.7).

2.5 Validation and updating of a risk
prediction model

The Kolmogorov-Smirnov (K-S) test was used to verify the
distributional consistency of key features between the development
and validation datasets. After confirming compatibility, the
validation dataset was applied to the original model for external
validation. Model performance was further evaluated using the
area under the ROC curve (AUC) and calibration plots. To update
the model, the development and validation datasets were merged
and used to retrain the model. The Wilcoxon rank-sum test was
then applied to compare predictive outputs from the original and
updated models. A p-value >0.05 indicated no significant
difference, suggesting the original model remained adequate,
whereas a p-value <0.05 suggested that model adjustment
was warranted.

2.6 Statistical analysis

Missing values (<20% for all variables; Supplementary Tables S2,
3) were addressed using multiple imputation in SPSS (version 27.0).
Imputation was performed using the MICE procedure with
predictive mean matching, set to 5 imputations and a maximum
of 50 iterations. The K-S test was used to assess normality of
continuous variables. Normally distributed data were expressed
as mean + standard deviation, while skewed data were reported
as medians with interquartile ranges. Between-group comparisons
were conducted using Student’s t-test for normally distributed data
and Mann-Whitney U test for non-normally distributed data.
Categorical variables were presented as counts and percentages,
and compared using the chi-square test. A p-value <0.05 was
considered statistically significant.

3 Results

3.1 Baseline characteristics of the study
population

During the model development phase, we initially screened
2,006 hospitalized patients who received TGC, collecting data on
77 clinical variables, including demographics, laboratory tests, and
medication records (e.g., age, gender, ICU admission, treatment
duration, concomitant medications, and inflammatory markers).
Detailed metrics are shown in Supplementary Tables S4. Based on
predefined inclusion and exclusion criteria, 1,073 cases were
included in the liver injury risk cohort and 612 in the
coagulation dysfunction cohort. Each cohort was randomly
divided into training and test sets in a 7:3 ratio, with no
significant differences in baseline characteristics between the
groups (Supplementary Tables S5, 6; all P > 0.05). For external
validation, 547 patients were screened, of whom 380 were retained

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1697929

Wu et al.

10.3389/fphar.2025.1697929

[ Cure B 80
Improvement
W Ineffective 60
@
= 40
58.8% 5
4 22.6% z
18.5%
24 24 24 23 21 20 20 18 15 12 9 5 3 1 0
%‘_ -
e -
8
%
z <
: WH-H-H
=
£ 2 Ik
s o [|
g . I!
2 :
<7 :
= _ .
T T T T
-8 -7 -6 3
F Log(»)
15+ =
g 104 "
5 T
5 TrT T !
2 k4 1 1
S 5 6. TTT I ...
E T T T A .- .-.I 1 :
- . A
RSRPASEEST | S uS Y b
0+ -...! PR é Lo
Lit*i000* o o
PLrL L] 11l T 17T T
LRI I I IR
Attributes

FIGURE 1

60—

40—

Patients

A & N
N3 ' X N
K 8“} 5 & Qéb
@0
E
24 21 20 18 9 1

=4

-

wn
Z <=7
]
2
< =3
g 37
s
[ S

T

S

T

T T T T T T
-8 =7 -6 -5 —4 -3
Log Lambda
G

Feature Selection by Boruta and Lasso

MVA ‘Baumannii

Polymyxim b

Clinical outcomes of TGC-related Liver Injury and feature selection using the LASSO and boruta algorithm. (A) Clinical efficacy outcomes of TGC
treatment. (B) Types of liver injury caused by TGC. (C) Severity grading of TGC-related liver injury. (D) Feature selection using the LASSO regression model.
(E) Coefficient trajectories of variables in the LASSO regression model. (F) Important predictors identified by the Boruta algorithm. (G) Overlapping

predictors identified by both LASSO and Boruta algorithms.

for liver injury risk analysis and 114 for coagulation dysfunction
assessment after eligibility filtering.

3.2 Feature selection and clinical profiling of
TGC-Induced hepatotoxicity

Among patients with TGC-related liver injury (Supplementary
Tables S7), 89.9% had a highly probable causality rating according to
the RUCAM scale, with an overall incidence of 8.30%. Liver function
test abnormalities were common: 43.1% exhibited elevated ALP
levels, and 35.5% had increased direct bilirubin (DBIL), indicating
notable hepatic involvement. While TGC treatment led to clinical

Frontiers in Pharmacology

improvement in 58.8% of affected patients, the cure rate was only
18.5%, and 22.6% experienced no improvement (Figure 1A). Most
liver injuries were classified as mild and cholestatic in nature.
fatal 1B,C),
underscoring the importance of vigilant liver function monitoring
during TGC therapy.

To identify predictors of TGC-related hepatotoxicity, univariate

However, one case was recorded (Figures

analysis was conducted on the training set (Supplementary Tables
S8), identifying 14 variables with potential associations (P < 0.1),
including treatment duration and maintenance dose. These were
combined with 24 clinically relevant features, such as sex and ALT
levels, previously reported in the literature (Alraish et al., 2020; Fan
et al., 2020; Shi et al., 2021), and subjected to LASSO regression for
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FIGURE 2 (Continued)
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model; (H) DCA curve of the LR model in the test set; (I) Learning curve of the LR model; (J) SHAP summary plot (dendrogram) showing feature
importance in the LR model; (K) SHAP-based interpretability analysis for two independent samples, illustrating each feature’s contribution to risk

prediction.

dimensionality reduction. Ten-fold cross-validation identified the
optimal penalty parameter (A = 0.0099) (Figure 1D). At this A value,
13 features had non-zero coefficients (Figure 1E), indicating their
relevance to the model. In parallel, the Boruta algorithm identified
12 important predictors (Figure 1F). The VIF values for all features
were below the threshold of 5, indicating no substantial
multicollinearity among the variables (Supplementary Figures
S2A,B; Supplementary Tables S9). By integrating the outputs
from both LASSO and Boruta, key features were finalized for
model construction, including treatment duration, maintenance
dose, hepatitis B virus (HBV) infection status, ICU admission,
GGT, and lactate dehydrogenase (LDH) (Figure 1G).

3.3 Performance and interpretability of
hepatotoxicity prediction models

Seven ML algorithms were applied to the liver injury risk dataset
using ten-fold cross-validation. Model performance was evaluated
through ROC and PR curves, AUC, accuracy, precision, sensitivity,
and positive predictive value. Among them, the LR model
consistently outperformed others across key evaluation metrics
(Figures 2A-D; Supplementary Figure 3).

The LR model demonstrated strong discriminatory power,
achieving an average AUC of 0.803 (95% CI: 0.743-0.863) on the
training set and 0.770 (95% CI: 0.679-0.862) on the test set. A Brier
score of 0.072 (95% CI: 0.050-0.096) reflected good calibration and
predictive accuracy. Decision curve analysis confirmed the clinical
utility of the model, showing a net benefit over both treat-all and
treat-none strategies across threshold probabilities from 18% to
97%. Learning curves demonstrated stable model performance with
increasing sample size, with no evidence of overfitting or
underfitting, indicating successful model training and
generalizability (Figures 2E-I; see Supplementary Tables S10 for
the LR equation).

To explore model interpretability, SHAP analysis was performed
to identify and rank key predictors of TGC-related hepatotoxicity.
The most influential features included treatment duration, ICU
admission, maintenance dose, baseline GGT, LDH, and HBV
infection, as visualized by sample SHAP values (Figure 2J).
Figure 2K presents two representative patient cases, highlighting
the contribution of each feature to the model’s predictions. Red bars
indicate features that increase risk, while blue bars indicate

protective factors.

3.4 Feature selection and clinical profiling of
TGC-Induced coagulation disorder

Among the 612 TGC-treated patients, 317 (51.8%) developed
coagulopathy. Efficacy analysis revealed symptom improvement in

Frontiers in Pharmacology

40.7% of cases, a cure rate of 33.8%, and a non-response rate of
25.5%. Coagulation dysfunction primarily manifested as
abnormalities in PLT, INR, and FIB levels. TGC treatment
resulted in prolonged PT and APTT, elevated INR, and
decreased PLT and FIB levels (Figures 3A-C).

Univariate analysis identified 27 significant predictors of
coagulation dysfunction, including body mass index (BMI) and
HBV status (Supplementary Tables S11). These, along with
33 additional indicators such as gender and baseline ALB
reported in previous studies (Firat et al., 2024; Hu et al., 2020;
Ma et al, 2024), were included in the LASSO regression for
dimensionality reduction. The optimal model performance was
achieved at A = 0.0444, yielding 13 features with non-zero
coefficients (Figures 3D,E). The Boruta algorithm identified
10 key predictors (Figure 3F). The VIF values for all features
were below the threshold of 5, indicating no substantial
multicollinearity among the variables (Supplementary Figures
S2C,D, Supplementary Tables S12). By comparing the LASSO
and Boruta results, a common subset of features was selected for
model construction, including treatment regimen, ICU admission,
septic shock, sepsis, co-administration of meloxicillin-sulbactam,
Cr, red blood cell (RBC) count, and BMI (Figure 3G).

3.5 Performance and interpretability of
coagulation disorders models

Seven ML algorithms were systematically evaluated for
risk of TGC-related Model
performance was assessed using ROC and calibration curves,

predicting the coagulopathy.
AUC forest plots, and evaluation metrics such as PR curves,
accuracy, and precision (Figures 4A-Dj Supplementary Figure 4).
Among all models, LR demonstrated the best overall performance.

In the LR model, moderate discriminative ability was observed,
with an average AUC 0f 0.718 (95% CI: 0.668-0.769) for the training
set and 0.673 (95% CI: 0.595-0.750) for the test set. A Brier score of
0230 (95% CI: 0.206-0.254)
improvement in prediction accuracy. Decision curve analysis
(DCA) indicated a clear net benefit of the model over both treat-
all and treat-none strategies across a threshold probability range of
38%-90%, demonstrating its clinical applicability. Learning curves

suggested room for further

confirmed progressive and stable model performance with

increasing data volume, without signs of overfitting or
underfitting, thereby validating the model’s robustness (Figures
4E-I; LR equation is provided in Supplementary Tables S13).

To interpret the model’s predictions, key predictors of TGC-
associated coagulopathy were evaluated using SHAP values. As
shown in Figure 4], features were ranked by importance, with
red indicating a higher feature value and blue a lower one. The
most influential risk factors, in descending order, included ICU

admission, treatment duration, and others, while baseline RBC levels

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1697929

Wu et al.

10.3389/fphar.2025.1697929

A B 20 C 300
—C ED Before medication
ure . .
" Improvement BB After medication H
W Ineffective 200 50%
0, » 150
33.8% A E 304
=
& 100
‘ 40.7% 104 i
< : 50 |
14
25.5% 0 T T T 0-
&
g L & E S Vo & F§
S Y R QY RS o
N o4 &
< Q\)
D E
33 33 33 33 33 32 29 26 26 24 24 21 17 10 4 2 33 32 26 24 10 0
g n_|
£ s
'E )
z =
8 3 =2
E E <
: 8
£ w
2 Es
<
T T T T T T T
-7 -6 - -4 -3 -2
Log Lambda

e

10
3 8
Y
) 4]
E. 2 T T 0
=
. il!lll!
0_ s £ xy
| I
_2_ X
E £
é Attributes

FIGURE 3

Feature Selection by Boruta and Lasso
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Clinical outcomes of TGC-induced coagulation disorders and feature selection via LASSO-Boruta Algorithm. (A) Clinical efficacy of TGC treatment;

(B) Types of coagulation dysfunction associated with TGC; (C) Changes in coagulation indices before and after TGC administration; (D) Feature selection
using the LASSO regression model; (E) Variable coefficient trajectories in the LASSO regression model; (F) Key predictors identified by the Boruta
algorithm; (G) Overlapping predictors identified by both LASSO and Boruta methods.

and co-administration of meloxicillin-sulbactam were identified as
Additionally, SHAP-based interpretability
analysis of two representative patient samples (Figure 4K)
illustrated how individual features contributed to the predicted

protective factors.

risk scores.

3.6 Periodic validation and updating of risk
prediction models

In the time-series validation of the liver injury prediction model
(n = 380), the new test set demonstrated strong discriminative
ability, with an AUC of 0.800 (95% CI: 0.727-0.874) and a Brier
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score of 0.069, indicating excellent alignment between predicted and
actual outcomes. The model provided a higher net clinical benefit
compared to both full intervention and no intervention strategies
within a threshold probability range of 18%-70% (Figures 5A-C).
Overall, the model’s robust. After
reconstruction using the combined training and validation

performance remained

datasets, no significant difference was observed between the
0.243). Consequently, the
updated model was adopted, and a dynamic nomogram was

original and updated models (p =

generated for clinical implementation (Figure 5G). Similarly, in
the temporal validation of the coagulation dysfunction prediction
model (n = 114), the new test set demonstrated improved predictive
performance, with an AUC of 0.755 and a lower Brier score of 0.198,
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indicating enhanced predictive accuracy and clinical utility within

4 Discussion

the 38%-90% threshold probability range (Figures 5D-F). Similar to

the liver injury model, no significant performance difference was
found between the original and updated versions (p = 0.757), leading
to the adoption of the revised model for the final clinically applicable
version (Figure 5H). The URL for the prediction model is https://

tigecyclineriskprediction.shinyapps.io/Shiny/.

Frontiers in Pharmacology

The present study systematically identified six independent risk
factors for TGC-related hepatotoxicity, not only validating
established risk parameters but also introducing novel predictors,
thereby advancing the current understanding of TGC safety profiles.

Notably, a maintenance dose exceeding 100 mg/day was associated
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with a 2.6-fold increased risk of liver injury (95% CI: 2.391-5.546,
p < 0.001), corroborating previous findings that highlighted the
heightened risk associated with high-dose TGC regimens (Bai et al.,
2023; Ruiz et al,, 2020). A potential mechanism may involve TGC-
related inhibition of mitochondrial respiratory chain complex II,
leading to impaired ATP synthesis in hepatocytes (Chen et al., 2024),
although the precise dose-response relationship
controversial (Falagas et al., 2014; Yu et al,, 2022).

In addition to dosage, treatment duration emerged as a critical

remains

determinant of hepatotoxicity risk. Our analysis identified TGC
administration for >12 days as an independent risk factor, consistent
with prior studies that reported risk thresholds at >8 days (Jiang T.
et al, 2022), and >14 days (Shi et al, 2021). The underlying
pathophysiology  may TGC-related  mitochondrial
stress, activation of nuclear

involve

oxidative factor-kB  signaling
pathways, and upregulation of pro-inflammatory cytokines (IL-
1B, IL-6, TNF-a), which exacerbate hepatocellular injury (Koch
2023). These

monitoring and regular benefit-risk reassessment for patients

et al, findings support enhanced hepatic
receiving TGC beyond 7 days to guide treatment decisions. The
establishment of dose- and duration-dependent risk thresholds
provides actionable guidance to optimize TGC therapy while
mitigating hepatotoxicity.

Beyond pharmacological parameters, our study identifies HBV
TGC-related

hepatotoxicity—a finding that warrants further mechanistic

infection as a significant risk factor for
investigation. Earlier investigations, while acknowledging the
potential role of pre-existing liver conditions, failed to establish a
clear link with HBYV, possibly because relevant studies were
underpowered or examined heterogeneous liver diseases as a
collective entity. Our findings resolve this ambiguity by
pinpointing HBV infection as an independent risk factor through
robust multivariate analysis in a sizable cohort. In HBV-infected
individuals, the pre-existing state of immune activation and
persistent hepatic inflammation is hypothesized to lower the
threshold for drug-induced liver injury. This could create a
synergistic effect, whereby the baseline inflammatory milieu
exacerbates TGC-induced hepatotoxicity. However, the precise
immunopathological interplay underlying this potential synergy
remains unclear and requires direct validation through
future studies.

Consistent with previous reports, a patient’s status as critically
ill, necessitating ICU admission, was significantly associated with
hepatotoxicity. This association is likely not attributable to the ICU
setting itself, but rather serves as a marker of heightened risk due to
the severe underlying pathophysiology. The collective burden of
systemic  inflammation, hepatic  hypoperfusion, frequent
polypharmacy with potential drug interactions, and associated
metabolic disturbances in critically ill patients may synergistically
impair liver function and drug clearance, thereby increasing
susceptibility to TGC-related liver injury (Yu et al., 2022).

To our knowledge, this study is the first to propose that elevated
baseline GGT and LDH levels may serve as early warning
biomarkers TGC-related hepatotoxicity. GGT, a well-
established of has
demonstrated prognostic value in DILI, particularly in isoniazid
toxicity (Balkrishna et al., 2024). Similarly, LDH has proven valuable

in pharmacotoxicology, where elevated serum levels correlate with

for

marker hepatobiliary  dysfunction,
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hepatocellular damage in acetaminophen overdose (Liu et al., 2022)
and sepsis severity (Akin et al., 2025). Although the association
between GGT/LDH and TGC-related hepatotoxicity remains to be
fully elucidated, TGC is known to cause hepatocellular injury via
mitochondrial dysfunction and oxidative stress (Tan et al., 2017).
We hypothesize that elevated baseline GGT reflects compromised
oxidative stress defenses, rendering hepatocytes more vulnerable to
TGC toxicity, while increased LDH may indicate disruptions in
energy metabolism that amplify mitochondrial damage. These
insights open new research avenues for early biomarkers and
mechanisms of TGC hepatotoxicity. Large-scale clinical studies
are essential to validate the predictive utility of GGT and LDH
and to define clinically meaningful thresholds.

While hepatotoxicity is a major concern, our findings also
emphasize the risk of TGC-related coagulation disorders. First,
prolonged treatment duration was a significant risk factor for
coagulopathy. Previous studies have shown that extended TGC
use impairs vitamin K epoxide reductase activity, thereby
reducing synthesis of coagulation factors and contributing to
hypofibrinogenemia. Second, the status of patients admitted to
the ICU was significantly associated with coagulation disorders.
We believe that this association stems primarily from the critical
pathophysiologic state signified by ICU admission, where inherent
risk factors (e.g., sepsis, shock, and systemic inflammation) are the
primary drivers of coagulation disorders.

We further identified, for the first time, that a BMI >21.98 kg/m?
is an independent risk factor for TGC-related coagulopathy (OR =
1.125, 95% CI: 0.958-1.324). This may be attributed to obesity-
associated chronic inflammation, which promotes activation of the
coagulation system, increases hepatic metabolic burden, and
disrupts gut microbiota, potentially
K-dependent coagulation factor activation (Zhang et al, 2021).

impairing  vitamin

Additionally, elevated baseline serum Cr levels in patients with
TGC-related coagulopathy suggest impaired renal function leads
to reduced TGC clearance, drug accumulation, and greater
anticoagulant effects. These findings underscore the importance
of intensive coagulation monitoring in patients with renal
insufficiency receiving TGC.

We also discovered that systemic inflammatory conditions
significantly increase the risk of coagulation. Specifically, septic
shock (OR = 3.065) and sepsis (OR = 3.015) were identified as
strong independent predictors of TGC-related coagulopathy. These
conditions are typically associated with multi-organ dysfunction and
robust inflammatory responses. Pathogen-associated molecular
patterns stimulate monocytes and macrophages to release tissue
factor, triggering the extrinsic coagulation cascade. Simultaneously,
inflammation inhibits anticoagulant pathways, increasing thrombin
generation, fibrin deposition, and microthrombus formation, all of
which contribute to coagulopathy. Thus, close monitoring of
coagulation parameters is crucial in patients with septic shock or
sepsis receiving TGC.

Moreover, our study revealed that co-administration of TGC
with meloxicillin was associated with a significantly reduced risk of
coagulation dysfunction (OR = 0.630, 95% CI: 0.520-0.780). An
alternative explanation for this protective effect, beyond direct
pharmacological antagonism of TGC toxicity, is that meloxicillin,
by effectively controlling the primary infection, reduces sepsis
severity—a key driver of coagulation dysfunction. This indirect
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mechanism is supported by known synergism between TGC and f3-
lactams against resistant pathogens such as MRSA (Aktas, 2021),
which enhances bacterial clearance. Concurrently, meloxicillin’s
spectrum of activity may help preserve gut microbiota and
vitamin K production, further protecting against coagulopathy.
Thus, the net benefit likely stems from combined antimicrobial
efficacy and microbiome preservation, underscoring the clinical
utility of this regimen.

Concurrently, we identified elevated baseline RBC levels as a
protective factor against TGC-related coagulopathy. This may be due
to improved hemorheology, enhanced microcirculatory perfusion,
balanced coagulation-fibrinolysis activity, and better oxidative stress
resistance (Nasralddin et al.,, 2025). These findings suggest the need
for careful coagulation monitoring in anemic patients receiving TGC
and highlight the potential for exploring erythrocyte-mediated
protective mechanisms in drug-related coagulopathies.

While the discriminative performance of our hepatotoxicity
model (AUC: 0.800) is consistent with prior work by Zhang et al.
(AUC: 0.800-0.820), the present study provides several crucial
advancements. Our research benefits from a substantially larger
sample size (n = 2,553 vs. n = 357), lending greater robustness to the
identified risk factors. Furthermore, we expanded the predictive
landscape by identifying baseline GGT and LDH as novel
biomarkers and, for the first time, developed a dedicated
predictive model for TGC-associated coagulation dysfunction,
thereby addressing significant gaps in the existing evidence base.
Collectively, these findings provide a more comprehensive safety
framework for TGC use, enabling improved risk stratification and
personalized patient monitoring in clinical practice.

Also, this study had some limitations needed to further explorer.
First, the model was developed from a hospital sample of 2,553 TGC-
treated patients over a 5-year period, but its generalizability might be
influenced by the unique local patient demographics and prescribing
culture. Second, as our model has not yet been validated in large
external cohorts, further multicenter studies will be required to verify
its broader applicability and accuracy.

5 Conclusion

We developed and validated an interpretable ML model to
identify risk and protective factors associated with TGC-related
liver injury and coagulation dysfunction. A comprehensive
comparison of 7 ML algorithms revealed that the LR model
achieved the best performance in both training and test datasets
(liver injury model test set AUC: 0.801, Brier score: 0.075;
coagulation dysfunction model test set AUC: 0.755, Brier score:
0.198. Key risk factors were identified, and model interpretability
was enhanced using SHAP analysis. The resulting dynamic
nomograms offer direct support for clinical decision-making and
represent a valuable tool for individualized TGC dosing strategies.
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