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Protein serine/threonine kinases (STKs) regulate critical signaling pathways
involved in cell growth, proliferation, metabolism, and apoptosis. Aberrant
kinase activity is implicated in diverse human diseases, including cancer,
neurodegeneration, and inflammatory disorders. Structure-based drug
discovery, utilizing molecular docking and molecular dynamics (MD)
simulations, has become a central strategy for identifying and optimizing STK
inhibitors. In this review, we summarize recent advances and challenges in
applying these in silico approaches to STK drug discovery. We discuss the
principles, performance, and limitations of docking and MD approaches, as
well as their integration with binding free-energy estimation methods. We
emphasize recent methodological progress, including automated MD
workflows, machine learning-driven interaction fingerprinting frameworks, and
the growing adoption of hybrid docking-MD pipelines that enhance throughput
and reproducibility. The review also highlights emerging directions such as
computational design of heterobifunctional degraders (PROTACs) and
allosteric modulators, which extend the scope of kinase targeting beyond
ATP-competitive inhibitors. Quantitative examples of computational resource
requirements and hit-validation rates from representative studies are
summarized to contextualize the predictive power and practical feasibility of
these approaches. Together, these developments demonstrate how the synergy
of physics-based simulations, enhanced sampling, and machine learning is
transforming MD from a purely descriptive technique into a scalable,
quantitative component of modern kinase drug discovery.
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1 Introduction

Protein kinases represent one of the most extensive and most
biologically important enzyme families in the human genome (Koch
and Bajorath, 2025). They exert their regulatory functions in various
cellular processes, including proliferation, differentiation, apoptosis,
metabolism, and responses to environmental stress, by catalyzing
the transfer of phosphate groups from ATP to the hydroxyl groups
of specific amino acid residues in substrate proteins (Mencalha et al.,
2014). Of these, serine/threonine kinases (STKs) constitute the most
abundant class, accounting for over 70% of the kinome (Johnson
et al., 2023). STKs act as molecular switches that fine-tune signaling
cascades to regulate cell fate (Jin and Pawson, 2012). STKs are
functionally important with well-known families, such as the
mitogen-activated protein kinases (MAPKs), which mediate the
effects of growth factors and cytokines (Moens et al, 2013);
(CDKs),
progression (Malumbres et al., 2009); Akt and the mammalian

cyclin-dependent  kinases which control cell-cycle
target of rapamycin (mTOR), which integrate nutrient and
energy signals affecting survival and growth (Castedo et al,
2002); AMP-activated protein kinase (AMPK), which acts as a
metabolic sensor for restoring energy homeostasis (Sharma et al.,
2023); and glycogen synthase kinase-33 (GSK3p) or cyclin-
dependent kinase 5 (Cdk5), which have central roles in neuronal
physiology and in neurodegenerative diseases (Yu H. et al., 2023).
This broad functional repertoire underlines why STKSs are frequently
dysregulated in diverse pathologies, including cancer (Maoz et al.,
2019), 2023), and

neurodegenerative diseases (Kawahata and Fukunaga, 2023).

metabolic  disorders (Rawat et al,

The clinical relevance of STKs is not restricted to human
biology. Certain pathogenic bacteria also harbor eukaryotic-like
STKs that contribute to stress responses, virulence, and antibiotic
tolerance, as seen in Klebsiella pneumoniae (Hu et al., 2021; O’Boyle
et al., 2025). KpnK kinase of K. pneumoniae promotes oxidative
and HipA
tolerance via
HipA
(Srinivasan et al.,, 2014). While kinase research often focuses on

stress resistance and beta-lactam susceptibility,

homologues mediate ciprofloxacin

autophosphorylation mechanisms similar to E. coli
human targets, recent findings suggest that STKs function as dual-
function molecules, playing a central role in both human disease
regulation and bacterial pathogenicity, thereby broadening their
applicability from oncology and neurology to the fields of
infectious disease and antimicrobial resistance (Li et al.,, 2022).
The drug targetability of kinases has been further demonstrated
by the impressive number of clinically successful kinase inhibitors
(Attwood et al., 2021a). To date, the United States Food and Drug
Administration (FDA) has approved over seventy small-molecule
kinase inhibitors since 2001, with many now targeting STKs in
addition to the more traditional tyrosine kinases (Ayala-Aguilera
et al,, 2022). Palbociclib and other CDK4/6 inhibitors, for example,
are now standard treatments for breast cancer (Liu et al., 2018), and
everolimus and temsirolimus, mTOR inhibitors, are used clinically
in oncology and tuberous sclerosis complex (Palavra et al., 2017).
The increasing number of kinase inhibitors that have entered the
clinic with demonstrated efficacy or safety finds high translational
relevance in STK research (Attwood et al., 2021a). It emphasizes the
urgency for new approaches to overcome long-standing hurdles in
STK drug discovery.
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There have been many successes, but kinase drug discovery
continues to face challenges (Cohen et al., 2021). Selectivity is the
most significant challenge, as the ATP-binding site, the canonical
target for the majority of inhibitors, is highly conserved across
kinases, leading to off-target binding risk and dose-limiting toxicity
(Ferguson and Gray, 2018). Resistance, especially in cancer, is
another major limitation, with members in the kinase domain
sometimes mutated such that they do not bind inhibitors as well,
leading to relapse (Cohen et al,, 2021). Additionally, the intrinsic
conformational flexibility of kinases poses a challenge for inhibitor
development because these enzymes can exist in many different and
distinct states, for example, active versus inactive conformations or
aspartate-phenylalanine-glycine (DFG)-in versus DFG-out states of
the activation loop (Schwartz and Murray, 2011). The identification
and targeting of allosteric binding sites away from the ATP pocket
provide one solution, but this approach does require very high-
resolution structural information (Govindaraj et al., 2022).

Although traditional kinomics, led by experimental high-
throughput screening drug discovery pipelines, have vyielded
numerous leads, they readily incur high costs, are time-
consuming, and lack the diversity of the chemical space they can
access (Pollastri, 2011). Within this context, computational methods
have developed into complementary and more rapid alternatives to
experimental strategies (Khan et al., 2025). In particular, molecular
docking and molecular dynamics (MD) simulations have become
essential resources in kinase-targeted drug discovery (Naqvi et al.,
2018). Docking is primarily used to predict the binding poses of
small molecules to kinases (or similar structures) and their binding
affinities, facilitating the virtual screening of large chemical libraries
and the rational design of structure-activity relationships (Sousa
et al,, 2006). In contrast, MD simulations move beyond static
docking models and consider the time-resolved flexibility of
kinases and their complexes (Pikkemaat et al, 2002). Loop
motions, activation states, solvent effects, and resistance-
associated mutations that are poorly sampled in validated rigid
docking models can also be explored (Shukla and Tripathi, 2020).

Docking and MD have been particularly useful in the initial
stages of drug discovery against serine/threonine kinases (Roy et al.,
20205 Ali et al., 2024; Khan et al., 2025). Docking can rapidly predict
plausible binding modes of ligands while MD can refine those
binding modes, assess their stability, and calculate the binding
free-energy computed (e.g, via MM-PBSA or free-energy
perturbation) (Vilar et al, 2008). Overall, this integrated
workflow addresses the challenges of STKs, including difficulties
in targeting essentially conserved ATP pockets, predicting the effects
of resistance mutations, and characterizing potential allosteric sites
that may not be readily apparent from static crystal structures (Lu
etal,, 2020). Such computational approaches are also valuable in the
study of infectious diseases, as underexplored bacterial STKs
represent promising targets for anti-virulence strategies and
antibiotic-adjuvant therapies (Li et al., 2022).

In this respect, the current review exemplifies the role of
molecular docking and MD simulations as a discovery tool in the
search for drugs against STKs. Here, we begin with an account of the
structural and functional characteristics of the STKs, before
proceeding to the specifics of the docking techniques and MD
simulations, and how they can be integrated into drug discovery
pipelines. We then discussed the main unresolved challenges,
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including selective mutagenesis, conformational heterogeneity, and
computational cost and scoring, followed by future perspectives on
machine learning (ML)-augmented simulations, hybrid quantum
mechanical methods, and experimental structural biology methods
such as cryo-electron microscopy. Through integration of recent
case studies with methodological advancements, this article aims to
deliver a unified narrative of how computational approaches are
transforming therapeutic discovery against STKs in human and
microbiome-related systems.

2 Structural and therapeutic _
significance of serine/threonine kinases

STKs occupy a central role in cellular signaling because they
phosphorylate serine or threonine residues on substrate proteins,
thereby regulating downstream pathways that govern proliferation,
differentiation, apoptosis, stress responses, and metabolism
(Johnson et al.,, 2023). STKs contain a highly conserved bilobal
catalytic domain characteristic of the kinase superfamily (Hardie,
1999). The smaller N-terminal lobe is predominantly -sheet,
containing the glycine-rich loop that stabilizes ATP-binding and
the highly conserved lysine responsible for interaction with the
phosphate groups of ATP (Roskoski, 2010). The C-terminal lobe,
which is mainly a-helical, is substantially larger than the N-terminal
lobe and forms the peptide substrate-binding interface. Within this
conserved fold, multiple motifs are essential for catalysis and are also
hot spots for anti-protein kinase drug design. It contains the hinge
region, which binds ATP by hydrogen bonds and is a common
binding position for inhibitors. Conformational changes in the
activation loop switch kinases on and off (Gizzio et al., 2022).
They are the primary determinants of the general state of kinase
conformation and control the orientation of the magnesium ion
necessary for catalysis, as seen in the DFG motif (Kung and Jura,
2016). Finally, the catalytic lysine in the 3 strand and a conserved
aC-helix ATP for
phosphotransfer. Such structural signatures both mediate kinase

glutamate in the together  position
function and underpin the development of rational inhibitors.
STKs are pivotal nodes in signaling networks, and thus, they are
involved in various human diseases (Capra et al., 2006). The
aberrant signaling through kinases like CDKs, MAPKs, Akt, and
mTOR in cancer is a major contributor to driving uncontrolled
proliferation, genomic instability, angiogenesis, and evasion of
apoptosis (Stefani et al, 2021). As is well-known, CDK4/
6 inhibitors like palbociclib have changed the treatment
landscape for hormone receptor-positive breast cancer (Liu et al.,
2018). In contrast, mTOR inhibitors such as everolimus have
approvals in breast cancer, renal cell carcinoma, and tuberous
sclerosis (Palavra et al, 2017). The MAPK pathway kinases,
particularly the ERK subfamily, remain among the most
extensively studied targets in the field of oncology (Braicu et al.,
2019). In tauopathies, non-receptor kinases such as GSK3P and
Cdk5 play crucial roles in tau hyperphosphorylation, synaptic
failure, and neuronal demise, making them attractive therapeutic
targets for Alzheimer’s disease, Parkinson’s disease, and related
disorders (Yu H. et al, 2023). AMPK is a cellular energy sensor
that modulates ATP levels by inducing catabolic pathways, making
it a well-studied therapeutic target for the treatment of obesity, type
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2 diabetes, and metabolic syndrome-related diseases (Cao et al.,
2025). In addition, STKs also
cardiovascular signalling, and immune reactions, expanding their

influence inflammation,
clinical relevance (Mazzaschi et al., 2021).

The significance of STKs extends beyond human diseases and is
equally intriguing in bacterial systems (O'Boyle et al, 2025).
Eukaryotic-like STKs play roles in antibiotic resistance and
virulence in some bacteria, including K. pneumoniae (Srinivasan
et al., 2014). For example, KpnK modulates stress adaptation and
increases P-lactam resistance, and a HipA homologue has been
shown to confer a biphasic response to ciprofloxacin via
autophosphorylation (Li et al., 2022). These kinases are potential
new antimicrobial targets that may lead to the selective attenuation
of virulence or even the potentiation of currently used and inefficient
antibiotics by targeting bacterial STKs (Li et al., 2022). The action of
STKs as both therapeutic in human cells and anti-virulence in
pathogenic organisms positions them at the unique intersection
of oncology, neurology, metabolism, and infectious disease.
Although STKs are attractive drug targets, the high selectivity
and potency of STK inhibitors pose a challenge in drug
discovery. The primary challenge among these is the extreme
conservation of their ATP-binding sites, which poses a challenge
for designing molecules to selectively target closely related kinases
without compromising their selectivity versus others (Serafim et al.,
2022). As a consequence, there is often off-target toxicity due to this
lack of selectivity. Another key problem is the development of
resistance, especially in the field of oncology, where missense
mutations in the kinase domain may decrease the affinity of
inhibitors (Lu et al., 2020). These resistance mutations frequently
target the gatekeeper residue, the activation loop, or the DFG motif,
reshaping the kinase conformational landscape.

The intrinsic plasticity of these enzymes is another complicating
factor, as kinases can exist in several different conformations
following ligand binding or phospho-acceptor binding events
(Hudmon and Schulman, 2002). Such conformational plasticity
not only makes inhibitor design challenging but also complicates
the computational prediction of efficacy, as static crystal structures
typically do not represent the entire breadth of kinase states. STKs
are characterized by their bilobal catalytic architecture, as well as
their ATP-binding cleft and hinge region (Hardie, 1999). Conserved
motifs, including the glycine-rich loop, the DFG sequence, and the
activation loop, control nucleotide binding and catalysis, while the
hinge provides a key hydrogen-bonding platform for inhibitor
recognition. The conservation across kinases is extensive, and
many ATP-competitive inhibitors target the same hinge
interactions, making selective targeting challenging. However,
variable and transient regions such as cryptic, allosteric pockets
on kinase surfaces also provide attractive opportunities for targeting
specificity. As shown in Figure 1, these architectural features are
prominent in CDK2 and include numerous conserved hinge
contacts and possible allosteric opportunities adjacent to the
ATP-binding site (PDB: 1HCK).

Although allosteric sites provide windows for selectivity, these
sites are rarely constitutive and are often difficult to identify without
the use of sophisticated structural or computational techniques (Lu
et al., 2014). When viewed collectively, STKs offer both significant
opportunities and challenges to drug discovery. Although their
them as excellent

centrality in disease biology validates
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Glycine-rich loop

FIGURE 1

A

Hinge region

Structural architecture of serine/threonine kinases (STKs). (A) Representative STK catalytic domain (Cyclin-dependent kinase 2 (CDK2), PDB 1HCK)
showing the conserved N-lobe (cyan), C-lobe (light orange), ATP-binding cleft and hinge (yellow), glycine-rich loop (purple), DFG motif (dark green), and
activation loop (green). The bound ligand (magenta) illustrates canonical ATP-site engagement. (B) Close-up of hinge interactions highlighting the
characteristic hydrogen-bond network that mediates broad ATP-competitive inhibitor binding. (C) Surface view of CDK2 reveals potential allosteric
regions adjacent to the ATP pocket, highlighting the existence of cryptic binding sites that can be exploited for selectivity beyond the highly conserved
ATP cleft. Structures were generated through PyMOL (DelLano, 2002) from the Protein Data Bank (Burley et al., 2022) entry 1HCK.

TABLE 1 Major families of protein serine/threonine kinases (STKs), representative members, their biological functions, and associated disease relevance.

Representative
I ENES

Biological role

Disease relevance/

Therapeutic area

Remarks/Inhibitor examples

AGC family PKA, PKB/Akt, PKC, Cell survival, metabolism, and Cancer, metabolic disorders, Everolimus, Temsirolimus (mTOR);
mTOR growth signaling tuberous sclerosis Perifosine (Akt)

CAMK CaMKII, AMPK, DAPK Calcium signaling, energy sensing, | Neurodegeneration, type 2 diabetes, =~ Metformin (indirect AMPK activator);

family and apoptosis regulation stroke experimental DAPK inhibitors

CMGC CDKs, MAPKs, GSK3, CLK | Cell cycle control, stress response, Cancer, inflammation, Alzheimer’s, = Palbociclib (CDK4/6), Trametinib (MAPK/

family neuronal regulation Parkinson’s disease MEK), Tideglusib (GSK3, experimental)

STE family MAPKKK kinases Regulation of MAPK cascades Cancer, immune, and inflammatory | Indirectly targeted via MAPK/ERK pathway

signaling inhibitors

TKL family MLK, MLKL Developmental pathways, Inflammatory diseases, Necrostatin-1 (RIPK1 inhibitor, experimental)
necroptosis neurodegeneration

RGC family Guanylate cyclase kinases c¢GMP-dependent signal Cardiovascular disease, metabolic Few selective inhibitors; potential in vascular
transduction disorders biology

Bacterial HipA, KpnK (K. Stress response, virulence, and Antimicrobial target; drug resistance = Novel target class; inhibitors under preclinical

STKs pneumoniae) antibiotic tolerance modulation exploration

Approved and investigational inhibitors are also highlighted, emphasizing the broad therapeutic spectrum of STKs, in oncology, neurology, metabolism, and infectious disease.

therapeutic targets, the structural conservation of their catalytic
domains, their conformational heterogeneity, and their propensity
for resistance mutations will require novel strategies. Methods that

take advantage of computational approaches, including molecular
docking and MD simulations, are increasingly bridging this gap by
providing insights of kinase specificity, conformational flexibility,
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and inhibitor optimization that cannot be easily achieved through
experiments (Naqvi et al, 2018). To highlight the richness and
potential therapeutic relevance of STKs, Table 1 summarizes the
major families of STKs, their representative members, biological
functions, and provides

examples of both approved and

investigational inhibitors.

3 Molecular docking approaches in STK
inhibitor discovery

3.1 Principles of docking

Molecular docking is a structure-based computational method
that predicts the binding mode and affinity of small molecules in
the active site or allosteric site of proteins (Vilar et al., 2008). In the
case of kinases and especially STKs, most docking studies have
concentrated on the ATP-binding pocket, which is the most
conserved and pharmaceutically targetable site in kinases
(TIkram et al., 2019). Docking involves two main steps: (i)
sampling, which generates possible ligand poses, and (ii)
scoring, which evaluates these poses using scoring functions
(Trott and Olson, 2010). In general, sampling algorithms aim to
consider all possible orientations and/or conformations of a ligand
with respect to the protein binding site. In contrast to rigid
docking, flexible docking allows for partial rearrangements of
side chains or backbone elements, simulating the features of the
induced fit (Mohanty and Mohanty, 2023). However, this inherent
flexibility of kinases could be dealt with better in advanced
ensemble docking approaches that include multiple receptor
conformations, typically obtained from crystallographic or MD
simulation studies. Scoring functions estimate binding affinities to
rank binding poses generated from docking calculations (Hassan
et al,, 2017). They can be empirical, knowledge-based, or derived
and evaluate the
bulk
interactions, electrostatics, and van der Waals packing (Trott

from molecular mechanics force fields,
contributions

of hydrogen bonding, hydrophobic
and Olson, 2010). While scoring functions are useful, they are
approximate and may not accurately recapitulate experimental
binding energies. To address these limitations, consensus scoring
(combining multiple scoring functions) or post-docking
refinement (using MM-PBSA calculations, for instance) is

widely employed (Wang et al., 2019).

3.2 Docking applications in STKs

Docking plays a pivotal role at multiple stages of STK inhibitor
discovery (Zhong et al., 2022). Virtual screening is one of the most
common applications, where thousands of chemical libraries are
docked into the binding pocket of a kinase to identify useful scaffold
hits (Mohammad et al., 2020b). Such a strategy minimizes the
number of candidates to be validated experimentally, saving time
and cost (Alrouji et al., 2025). Docking also supports binding mode
prediction, enabling the visualization of inhibitor binding to
important kinase motifs, including the hinge region, the
conserved catalytic lysine, or the DFG motif. Such information is
useful for understanding structure-activity relationships and aiding
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the next steps in medicinal chemistry. A further obvious application
is selectivity profiling, where candidate inhibitors are docked against
panels of related kinases (Zhong and Almahmoud, 2023). Selectivity
is a major challenge in kinase drug design, as the ATP-binding site is
highly conserved across the kinome, making docking-based
profiling a valuable first step towards predicting off-target
interactions that can be subsequently tested experimentally. In
the case of specifically in STKs, docking has been used to
develop inhibitors that capitalize on minor variations in shape
and electrostatics of the binding pocket.

Docking analyses have guided the identification of compounds
that specifically bind CDK4/6 relative to other CDK isoforms and
have also revealed key interactions in the hydrophobic pocket next
to the hinge region in mTOR inhibitors (Najmi, 2025). Docking is
also increasingly applied to drug repurposing, where existing FDA-
approved drugs are screened against STK targets to find new
possible therapeutic uses. This strategy is particularly attractive,
as the pharmacokinetic and safety profiles of repurposed drugs have
already been determined, allowing for a more rapid translation to
the clinic.

3.3 Docking success stories in kinase
drug discovery

Several landmark examples highlight the importance of docking
in drug discovery for kinases (Attwood et al., 2021a). Imatinib, such
a targeted agent, is actually a pan-tyrosine kinase inhibitor and
serves as a paradigm for future STK inhibitor development (Di Vito
et al, 2023). BCR-ABL is in the autophosphorylated state, and
docking studies have shown that imatinib stabilizes the inactive
conformation by forming hydrogen bonds with the hinge region and
binding in the hydrophobic back pocket exposed in the DFG-out
state (Rocha et al., 2021). The success of this was translated to STKs,
where inhibitors were similarly optimized to exploit conformational
states. For example, docking-guided structure-activity relationship
studies were instrumental in identifying and optimizing hinge-
binding motifs that imparted isoform selectivity in the case of
CDK inhibitors, such as palbociclib and ribociclib (Braal et al.,
2021). In recent years, however, docking-based drug repurposing
has found surprising interactions of approved drugs on STKs (Wang
et al., 2024).

Recently, antidiabetic drugs that activate AMPK have been
repurposed, and several anticancer agents have been
experimentally validated as mTOR inhibitors (Khan et al., 2024).
Such success stories highlight both the power (to generate structural
hypotheses) and the weaknesses of docking. Docking predictions
were often refined with MD simulations and/or validated using
crystallography and biochemical assays (Huang and Hu, 2025).
However, docking remains the initial step in the computational
pipeline for discovering kinase inhibitors, providing a rapid screen
of vast chemical spaces, insight into binding interactions, and aiding
in the rational design of more potent and selective inhibitors. Several
software platforms are available for performing docking studies of
kinases, each with its own merits and demerits, and therefore
preferred for specific applications. An overview of the docking
programs frequently used for various types of proteins, including
STKs, is given in Table 2.
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TABLE 2 Widely used molecular docking software platforms for kinase inhibitor discovery, including open-source and commercial tools.

Software

Sampling
method

Scoring
function

Strengths

Limitations

Applications in
kinase studies

InstaDock Open-access Flexible ligand, semi-rigid | Vina scoring User-friendly GUI; batch | Limited receptor Virtual screening of large
(GUI for receptor screening; accessible to flexibility; less libraries; kinase-focused
QuickVina-W) non-programmers customizable repurposing screens

AutoDock/ Open-source Lamarckian genetic Empirical free Widely used; flexible Scoring function Broad kinase inhibitor

AutoDock Vina

algorithm (AutoDock);
gradient optimization
(Vina)

energy scoring

ligand; semi-rigid
receptor; good
community support

relatively simple; limited
allosteric handling

screening; hinge-binding
motif analysis

DOCK Open-source Grid-based matching Force-field Early and efficient tool; Older interface; less Used in early MAPK and
based handles large libraries advanced handling of CDK docking campaigns
well protein flexibility
Glide Commercial Systematic search with GlideScore High accuracy; multiple | Proprietary; requires Benchmark kinase inhibitor
(Schrédinger) grid-based potentials precision modes (HTVS, | license; high cost design; hinge region SAR
SP, XP) optimization
GOLD Commercial Genetic algorithm ChemScore, Robust handling of ligand | Proprietary; Selectivity profiling across
ASP, GoldScore  flexibility; reliable for performance depends on | kinase families (e.g., CDKs,
kinases the scoring function MAPKs)
CDOCKER Commercial CHARMm-based MD Force-field Explicit receptor Limited to the Discovery = Applied to mTOR and CDK
(Discovery docking based flexibility; MD Studio platform; license | inhibitor optimization
Studio) refinement of docking required
RosettaLigand Open-source Monte Carlo + Rosetta energy | Good induced-fit Complex workflow; Allosteric site exploration in

minimization

function

handling; flexible docking

steeper learning curve

STKs; flexible loop docking

Each entry summarizes the sampling method, scoring function, strengths, and limitations, with representative applications in serine/threonine kinase (STK) research.

3.4 Choosing docking strategies for
orthosteric vs. allosteric/cryptic pockets

For STKs, the ATP (orthosteric) site is well-defined and
generally well-handled by grid-based and standard flexible ligand
docking approaches that assume limited receptor rearrangement.
Tools such as AutoDock Vina and Glide (HTVS/SP) are efficient for
large-scale orthosteric virtual screening and hinge-motif SAR
exploration (Trott and Olson, 2010). In contrast, allosteric and
cryptic pockets typically require explicit receptor flexibility or
ensemble approaches. Methods such as induced-fit methods (e.g.,
RosettaLigand, GOLD with flexible sidechains, Glide Induced-Fit),
MD-derived ensemble docking, or MD-refined docking (e.g.,
CDOCKER with MD refinement) are more suitable (DelLuca
et al,, 2015; Wu and Brooks III, 2021). For cryptic pockets that
open transiently, generating receptor conformations by enhanced
sampling MD (metadynamics, GaMD, replica-exchange) or by
short, targeted MD, then using ensemble docking across those
conformations is recommended (Kuzmanic et al., 2020b). Finally,
consensus and rescoring strategies, e.g., docking, short MD, MM-
GBSA rescoring, often perform best when seeking selective allosteric
modulators.

4 Molecular dynamics simulations in
STK inhibitor design

4.1 Fundamental role of MD in kinase studies
Molecular docking provides a quick perception of potential

ligand binding orientations within protein active sites. However,
docking assumes a relatively static protein structure and fails to
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capture the full dynamic range of kinases. STKs are highly flexible
enzymes, like other members of their superfamily; the transition
between different conformations is an essential part of their function
(O’Boyle et al., 2025). This includes changes in the conformation of
the activation loop, the glycine-rich P-loop, and the DFG motif,
which can result in rapid and sometimes large alterations of ligand
accessibility to the binding pocket and/or the binding affinity of the
ligand to the target (Schwartz and Murray, 2011). MD simulations
overcome these limitations by solving Newton’s equations of motion
for systems of atoms and by offering time-resolved, atomic-time
trajectories of protein-ligand complexes (Fu et al., 2022). MD
simulations allow exploration of broader aspects of protein
flexibility, solvation, ion coordination, and inter-residue water-
mediated interactions that are seldom present during docking
studies. MD allows the user to observe how a kinase toggles
between these states, how an inhibitor stabilizes or destabilizes
those states, and whether water molecules play a role in essential
hydrogen bonding networks in the binding site. Crucially, MD tests
docking-derived poses for stability under physiological conditions,
which ensures that such interpretations of binding modes are not
merely artifacts of rigid docking algorithms.

4.2 Key applications

There has been a growing application of MD to STK drug
discovery in recent years, and multiple different roles have emerged
(Attwood et al., 2021b). One important application is docking pose
validation (Alzain et al., 2025). MD simulations in an explicit solvent
can also be used to relax the protein-ligand complex and explore
whether the interactions remain stable over nanosecond to
microsecond time scales after a successful docking experiment,
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suggesting potential inhibitors (Roy et al., 2020). Stable trajectories
imply real predictions of docking, rapid dissociation of the ligand, or
significant rearrangements of the complex indicate a false positive.
MD is also fundamental to the crystallographic analysis of the
conformational flexibility of STKs (Gizzio et al,, 2022). Kinases
frequently toggle between DFG-in and DFG-out configurations, as
well as open and closed states of the activation loop or inward- and
outward-facing conformations of the aC-helix. They help determine
whether inhibitors can bind to active or inactive conformations, and
as such are crucial to the design of inhibitors. Simulations illustrated
mechanisms at an atomic level, explaining how the inhibitors bias
protein kinases to use the inactive conformation over the active
conformation.

A third key application is the investigation of resistance
mutations (Yu Y. et al., 2023). Mutations that change the
conformational dynamics or steric environment of the binding
pocket often leads to clinical resistance. MD simulations have
been utilized to model these mutations, indicating changes in
hydrogen bonding networks, disruptions in hydrophobic
packing, and alterations in inhibitor-bound state stability
(Mohammad et al., 2020a). While the extensive literature on
resistance mechanisms has targeted tyrosine kinases, such as
EGFR or BCR-ABL, the same paradigms are relevant to STKs,
as resistance mutations can limit the clinical utility of CDK or
mTOR inhibitors (Alves et al., 2021). MD may also be one of the
most valuable tools for the discovery of allostery (Govindaraj
etal., 2022). In contrast to ATP-competitive inhibitors that target
the conserved catalytic pocket, allosteric inhibitors utilize non-
catalytic, often transient sites. Such sites are hard to discern with
static crystallography but are well exposed by long MD
simulations that can reveal opening and closing motions or
expose cryptic pockets. Simulations of mTOR have, for
instance, revealed hydrophobic pockets that lie outside the
ATP-binding
explored for their potential as allosteric regulators (Nunes
Azevedo et al., 2023).

canonical site, which are currently being

4.3 Recent advances

Recent methodological and computational advances have
greatly improved the utility of MD for targeted multi-scale drug
discovery against kinases (Sadybekov and Katritch, 2023).
Meanwhile, GPU acceleration, or the availability of specialized
hardware (such as Anton supercomputers), allowed the extension
of the simulation time window from nanoseconds to microseconds
and even milliseconds (Shaw et al., 2021). Such extended
simulations enhance conformational sampling and capture rare
yet biologically relevant transitions, such as activation loop
unfolding or ligand unbinding events. Moreover, this qualitative
understanding of ligand binding has been coupled with several
binding free-energy methods on MD, and this has allowed for an
increasingly quantitative prediction of inhibitor affinity. Molecular
Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) and
Molecular Mechanics/Generalized Born Surface Area (MM-
GBSA) are post-processing approaches that facilitate fast, albeit
from MD
trajectories (Wang et al, 2019). Therefore, more rigorous

approximate, binding free energy calculations
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alchemical methods, such as free energy perturbation (FEP) and
thermodynamic integration, yield higher accuracy but also at a
significantly larger computational expense (Ruiz-Blanco and
Sanchez-Garcia, 2020).

In practice, MM-PBSA and MM-GBSA are applied as end-point
estimators on snapshots extracted from production MD trajectories
(Genheden and Ryde, 2015). Typical workflows perform energy
decomposition to parse contributions from van der Waals,
electrostatic, polar solvation (using PB or GB), and nonpolar
These methods
relative to alchemical FEP/TT and are therefore widely used to re-

solvation. are computationally inexpensive
rank docking hits and to prioritize analogues for synthesis. However,
MM-PBSA/MM-GBSA accuracy depends strongly on sampling
quality, choice of dielectric and surface tension parameters, and
force-field consistency between MD and ligand parameterization.
For kinases, where solvent networks and flexible loops can
substantially influence binding energetics, it is advisable to
extract energies from multiple independent replicate simulations
to quantify statistical uncertainty, to report the mean and standard
deviation of the calculated AG values, and to validate MM-PBSA/
MM-GBSA results against at least a subset of experimental affinities
before relying on them for decision making. When higher accuracy
is required during lead optimization, alchemical free-energy
methods such as FEP or TI remain the benchmark approaches
despite their greater computational cost.

Other notable advances are enhanced sampling techniques
(Lazim et al., 2020). Kinetic traps frequently constrain standard
MD, as proteins can reside entrapped in local conformations that
may not reflect the complete conformational landscape (Kuzmanic
et al,, 2020a). Now, we have methods such as accelerated MD,
metadynamics, replica-exchange MD, and Gaussian accelerated MD
to bypass these barriers, unveiling hidden conformations and
improving conformational sampling (Wang et al., 2021). The
advantages of these methods have previously helped dissect
activation loop dynamics, pinpoint cryptic allosteric sites, and
study conformational selection during ligand binding in kinases
(Kuzmanic et al., 2020a). Lastly, the trends of MD with structural
biology and artificial intelligence (AI) are future directions in kinase
studies (Agajanian et al., 2023).

Importantly, the last few years have seen tangible improvements
in throughput, automation, and downstream analysis of MD-based
hit refinement. Automated MD pipelines that streamline setup,
execution, and post-processing of many protein-ligand
simulations now exist and have been applied to accelerate hit
prioritization (Brueckner et al., 2024). Examples include Admiral,
an automated docking, MD, and analysis platform that orchestrates
simulation setup, runs, and automated reporting for medicinal
chemistry teams, and recent automated MD workflows that
ML models to
fingerprints and prioritize candidates (Baumgartner and Zhang,
2020).
molecular

integrate generate per-ligand simulation

Complementary to automation, tools
from MD compact
fingerprints have facilitated rapid comparisons and ML-driven

for encoding
interactions trajectories as
analyses. Libraries such as ProLIF enable the extraction of
interaction fingerprints from trajectories and trajectory-derived
ensembles, allowing clustering of ligand binding modes, feature
engineering for ML models, and rapid filtering of MD-derived poses
(Bouysset and Fiorucci, 2021).
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TABLE 3 Major molecular dynamics (MD) software packages employed in kinase simulations.

Software License

Strengths

Limitations Applications in kinase

research

GROMACS Open-source Swift; strong GPU acceleration; widely Limited force-field variety compared to = Validation of docking poses; long-timescale
used in academic labs; large community = AMBER/CHARMM; less intuitive for simulations of MAPKs, CDKs, and mTOR;
support absolute binding free-energy methods widely used for MM-PBSA in kinase-ligand

studies

AMBER Commercial/ Rich library of biomolecular force fields | Slower than GROMACS for extensive = Free-energy calculations for CDKs and Akt

academic licenses (ff14SB, GAFF); strong MM-PBSA/MM- | systems; license restrictions for some inhibitors; QM/MM studies of catalytic
GBSA support; good integration with components residues in STKs
quantum mechanics (QM/MM) tools

NAMD Open-source Highly scalable on large clusters; efficient = Moderate learning curve; less user- Long-timescale simulations of kinase
CHARMM force field support; good for = friendly for beginners conformational changes (e.g., DFG-in/out
extensive systems transitions); ensemble simulations for

inhibitor selectivity

CHARMM Commercial Highly detailed biomolecular modeling; = Complex input and steep learning curve; = Detailed mechanistic studies of ATP binding

(academic version extensive force-field options; strong for | less streamlined than GROMACS/ in kinases; conformational plasticity analysis
available) advanced free-energy methods AMBER of STKs

Desmond Commercial Extremely fast; optimized for GPUs; Proprietary; limited customizability Kinase inhibitor optimization pipelines

(Schrédinger) seamless integration with Glide docking = compared to open-source tools (Glide docking, Desmond MD refinement);
results mTOR and CDK inhibitor refinement

OpenMM Open-source Highly flexible and customizable; strong | Still in development; has a smaller user =~ Al-driven kinase simulations; adaptive

GPU acceleration; Python-based API
makes integration with ML easy

base; fewer validated workflows than
GROMACS/AMBER.

sampling of STK conformations; emerging
tool for integration with ML-enhanced
workflows

The table outlines license type, strengths, limitations, and representative applications in studying serine/threonine kinase (STK) structure, conformational flexibility, and inhibitor binding.

When combined with automated MD workflows and adaptive
sampling, interaction fingerprinting supports scalable, reproducible
post-processing of large MD datasets and enhances the
interpretability of ML models trained on dynamic interaction
patterns. MD simulations have become a staple in providing
dynamic context to structures obtained from experimental
methods such as cryo-electron microscopy, NMR, and X-ray
crystallography (Son et al., 2024). This led to the employment of
ML approaches that utilize large MD datasets to pull out essential
collective variables and expedite the conformational sampling
process (Wang et al., 2020). This, in turn, enhances the reach
and precision of MD, making it a cornerstone in rational STK
inhibitor discovery. There are various MD packages, each with
specific pros and cons that limit their application to kinase
simulations. Conventional MD engines and their applications in
the discovery of STK inhibitors are summarized in Table 3.

5 Integrative docking-MD workflows in
STK drug discovery

5.1 Docking as the first step

Rational drug discovery can greatly benefit from a stepwise
integration of molecular docking and MD simulations, which are
complementary approaches today (Sadybekov and Katritch, 2023).
Docking is typically employed as an initial step due to its speed and
generality in screening large compound libraries against kinase
targets. The ability to effectively explore vast chemical spaces and
identify possible ligand binding poses, ranking them based on
scoring functions, allows docking to help researchers effectively
narrow down chemical spaces to a reasonable subset of
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candidates (Huang and Hu, 2025). This is especially useful for
STKs for which the experimental high-throughput screening is
expensive and inefficient due to the similarity of the conserved
ATP-binding site (Zhang et al., 2022). Docking has the potential to
identify ligands that utilize small differences in hinge regions,
hydrophobic pockets, or allosteric cavities, and to create testable
hypotheses about selectivity and potency, guiding downstream
computational and experimental assays.

Molecular  docking and MD
complementary approaches that, when combined, offer a high-

simulations  constitute
throughput and evidence-driven pipeline for kinase-targeted drug
discovery. Docking acts as a quick initial layer for virtual screening
and pose prediction. In contrast, MD then refines these predictions
in physiologically relevant environments, permitting the inclusion of
protein flexibility, solvent effects, and dynamic stability. Together,
they enable better predictive power for binding depth and more
effective prioritization of candidate inhibitors. Figure 2 provides a
schematic overview of this integrated workflow in the context of
STK inhibitor discovery.

5.2 MD for refinement and validation

MD simulations are used to identify, characterize, and validate
promising compounds through docking under dynamic and
physiologically relevant conditions after all compounds have been
docked (Lazim et al., 2020). While docking usually considers the
protein rigid, MD considers the conformational flexibility of both
ligand and receptor, and also the solvent effects and long-range
electrostatics. In the final stage, the stability of docking poses is
evaluated using molecular dynamics simulations of the protein-
ligand complex in explicit solvent, spanning nanosecond to
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FIGURE 2

Schematic overview of an integrated computational pipeline for serine/threonine kinase (STK) inhibitor discovery. Molecular docking (left) enables

the identification of the binding pocket, virtual screening of chemical libraries, prediction of binding poses, scoring, and prioritization of hits. Molecular
dynamics simulations (middle) refine docking predictions by evaluating ligand-kinase complex stability, conformational flexibility, solvent effects, and
lead optimization. Integration of docking and MD (right) allows free energy calculations (e.g., MM-PBSA, FEP), estimation of binding affinities, and
selection of stable candidate inhibitors for experimental validation. Together, these complementary approaches provide both breadth (docking-based
exploration) and depth (MD-based refinement) in kinase-targeted drug discovery.

microsecond timescales (Fu et al., 2022). If the docking-predicted
pose remains stable, the inhibitor is more likely to be a true binder;
conversely, ligand dissociation or major conformational
rearrangements may indicate a false positive. MD further enables
side chains in flexible kinase motifs, such as the activation loop,
P-loop, or DFG motif, to relax and fit the binding ligand, providing
more realistic perspectives on binding (Shukla and Tripathi, 2020).
The other improvement step is to extract the binding free energies
from MD trajectories. In addition to re-ranking docking hits with
approximate approaches such as MM-PBSA or MM-GBSA,
methods like

predictions (Wang et al.,, 2019; Ruiz-Blanco and Sanchez-Garcia,

alchemical FEP permit quantitative affinity
2020). This is useful in avoiding some of the biases of docking
scoring functions, which are generally poorly or only moderately
related to experimental binding affinities. The combined use of
docked hits and MD-based free energy calculations enables the
generation of a reliable ranking of potential inhibitors, which can
effectively limit the number of compounds to be synthesized and
tested experimentally.

5.3 Example workflows and case studies

The effects of this docking and MD harmony are best seen with
combined workflows (Shaikh et al., 2023). The standard pipeline
starts with docking large libraries of compounds against an STK
target in virtual screening (Al-Fahad et al., 2025). This step reveals
stable ligands that then undergo MD simulations to confirm their
relative stability in the binding pocket. These simulations yield
binding free energies that are used for ranking, and then the
most promising candidates are chosen for experimental testing
(Zhang et al., 2024). Such a two-pronged strategy has proven
successful in discovering inhibitors for multiple STKs (Tarazi
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et al, 2016; Hassan et al, 2023). One recent study focusing on
CDK1 initially used docking to screen commercially available
databases of candidate inhibitors that were refined in ranking
through MD simulations and MM-PBSA calculations (Teotia
et al., 2024). Among the highest-ranked compounds, several were
found to have micromolar inhibitory activity in vitro, thereby
validating the predictions made from computational analysis.
Docking was used to identify compounds that not only bind to
ATP-competitive sites but also to allosteric sites in mTOR
inhibitors; similar strategies have been applied (Dahiya et al,
2019; Gupta et al, 2019; Botelho et al, 2022). While MD
simulations also confirmed the binding stability of these
inhibitors, they revealed dynamic movements of the kinase
domain that were not apparent from static docking results.

An additional illustrative example is the case of salt-inducible
kinases (SIKs), where ensemble docking using MD-derived
conformations improved the correlation between the predicted
docking score and the log of experimental ICs, values (Valdés-
Albuernes et al., 2025). These case studies exemplify how docking
brings breadth-rapid exploration of chemical space, while MD
depth,
optimization. This represents a rational, iterative framework for

contributes dynamic  validation, and energetic
kinase inhibitor discovery encompassing both docking and MD.
Docking creates the first hypotheses regarding binding poses and
possible selectivity. At the same time, MD interrogates and refines
these hypotheses, providing insight into conformational dynamics,
resistance mutations, and solvent-exclusion-mediated interactions
(Tesch et al, 2021). These integrated approaches significantly
enhance the efficiency and fidelity of computational pipelines,
enabling translation of in silico predictions to validated kinase
inhibitors in the lab. Due to the importance of the STKs in
cellular signalling, several recent studies combining docking with

MD simulations have been performed that identified and optimized
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TABLE 4 Representative case studies (2020—2025) of serine/threonine kinase (STK) inhibitor discovery using integrated docking and molecular dynamics
(MD) approaches.

Target Computational #Compounds Experimentally Key Therapeutic  Year References
kinase approach screened validated hits/ outcome/ context
(library/source) Hit rate (%) Findings
CDK1 Docking + MD + MM- = 288,671 (DrugBank, Tested: 10 Identified 3 novel Cancer therapy (cell | 2024 Teotia et al. (2024)
PBSA Selleck, Otava, in- Validated: 3 inhibitors with cycle inhibition)
house) Hit rate: ~30% ICsp < 5 pM; stable
hinge-binding
interactions
validated by MD
JAK1/JAK3 Pharmacophore 28 (Custom library) Tested: 0* Repurposed Autoimmune 2024 Faris et al. (2024)
modeling + Docking PubChem/ZINC Validated: 0% Baricitinib and diseases/
+ MD (extensive database) (2 predicted) Ruxolitinib inflammatory
Hit rate: N/A scaffolds; stable disorders
dynamics
confirmed
FAK (Focal Docking + MD 47 designed analogs of = Tested: 0* Designed 47 new Oncology 2022 Shi et al. (2022)
Adhesion modeling VS-4718 Validated: 0* analogs of VS- (metastasis
Kinase) Hit rate: 0% 4718; predicted inhibition)
improved binding
affinity
SIKs (Salt- Ensemble docking 44 literature SIK Tested: 0* Improved Metabolic and 2025 Valdés-Albuernes
inducible across MD-derived inhibitors Validated: 0* correlation (R* inflammatory et al. (2025)
kinases 1/ conformations Hit rate: N/A ~0.8) between disorders
2/3) docking scores and
experimental
activity
Aurora Docking + long- Pepper TRPV1 ligands = Tested: 3 (in silico) Predicted selective | Cancer therapy 2023 Singh et al. (2023)
Kinase A timescale MD + MM- (PubChem AID Validated: 2 (stable in natural product (mitosis regulation)
GBSA 624919) MD) inhibitors; MD
Hit rate: 67% revealed
conformational
stabilization of the
inactive state
GSK3p Docking + MD + free Virtual tetrazole library =~ Tested: 0* Discovered dual- Neurodegenerative 2025 Joshi and Alavala
energy calculations (size N/A) Validated: 0* target disorders (2025)
Hit rate: N/A neuroprotective (Alzheimer’s,
compounds; MD Parkinson’s)
confirmed stability
and binding mode

Each example highlights the computational strategy, main findings, therapeutic context, and year of publication.

their inhibitors. Hybrid workflows, summarized in Table 4, provide
mechanistic insight and direct experimental validation through
representative case studies.

6 Challenges and limitations in STK
computational drug discovery

Molecular docking and MD simulations have evolved the way
kinase inhibitors are discovered by providing atomistic resolution in
elucidating binding interactions, conformation dynamics, and
resistance mechanisms (Attwood et al., 2021b). Nevertheless,
despite their increasing effectiveness, some limitations still bound
these models to their fullest potential, specifically regarding STKs.
These simulations stem partly from fundamental properties of

kinases  themselves (e.g, structural conservation and
conformational plasticity) and partly from the current
computational and methodological limitations of in silico

approaches. Knowledge of these limitations will be crucial in
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indicates that the study did not report any experimental assay.

developing new solutions that enhance the predictive, cost-
efficient, and translationally relevant aspects of computational
pipelines. The key challenges for docking- and MD-based
discovery of STK inhibitors are further discussed below.

6.1 Selectivity issues

One of the most durable challenges in designing STK inhibitors
has been selectivity. The ATP-binding site, which represents the
most common target among inhibitors, is highly conserved across
the kinome (Li et al, 2021). While subtle differences can be
leveraged in the hinge region, hydrophobic pockets, or
neighboring residues, inhibition is often multi-targeted, resulting
in off-target effects and toxicity, given the high degree of
conservation. Although molecular docking can amplify these
differences to an extent, it often overestimates selectivity owing
to the static nature of the model. Docking scores for related kinases

are often so similar that distinguishing selective from promiscuous
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inhibitors becomes difficult. This situation is mitigated by MD
simulations, which elucidate the subtle conformational dynamics
that may impart preferential binding to one kinase over another;
however, the kinome-overlapping specificity remains a major
challenge that is still unsolved. However, the discovery of
allosteric inhibitors that bind to cryptic or transient sites outside
the ATP pocket is a promising approach; however, identifying these
requires long simulations and complex analysis.

6.2 Computation cost

Another significant bottleneck is the computational cost
with  high-quality Docking
computationally inexpensive and suited for high-throughput

associated simulations. is
screening, whereas MD simulations are resource-intensive. While
nanosecond-scale simulations have become standard, motions
relevant to biology, such as rearrangements of activation loops,
DFG flips, or the unbinding of ligands, often have entropically
unfavorable long timescales on the order of microseconds to
milliseconds. These events mostly require either very long
simulations or enhanced sampling methods (e.g., metadynamics
or accelerated MD), both of which lead to a massive increase in
computational cost. GPU acceleration and specialized hardware
(e.g, Anton supercomputers) have made this idea somewhat
feasible, but these hardware resources are still rare (Shaw et al.,
2021). The same computational barrier prevents MD from utilizing
advanced methodologies in many academic and resource-limited
settings, highlighting the disparity between theoretical potential and
practical applicability.

Quantitatively, these costs vary with system size and hardware,
although large-scale docking remains relatively inexpensive. High-
throughput screening of around 250,000-300,000 compounds
typically requires only a few days on a modest CPU cluster. In
contrast, MD refinement becomes the major computational
expense, where a 100 ns production run for one protein-ligand
complex generally consumes about 20-30 GPU hours on modern
hardware, so studies evaluating multiple candidates or replicates
easily reach hundreds of GPU hours. Ensemble docking, where
multiple receptor conformations are used, increases this cost
proportionally with the number of conformers. At the same time,
MM-PBSA or MM-GBSA rescoring adds only minutes to hours per
complex. More rigorous FEP/TI calculations are even costlier, often
requiring tens to hundreds of GPU hours per ligand pair.
Consequently, researchers are encouraged to report not only the
methods used but also hardware specifications, wall-clock times, and
normalized compute metrics (e.g., GPU-hours or CPU-core-hours)
to improve allow

transparency and realistic comparisons

across studies.

6.3 Scoring inaccuracies

Scoring functions are another crucial open issue (Barradas-
Bautista et al., 2023). Experimental binding affinities are often
but
approximations of docking. Consequently, docking pipelines

poorly correlated with fast, inaccurate, mathematical

frequently yield false positives (predicted binders that are inactive
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in a biochemical assay) and false negatives (true binders that go
undetected). The presence of highly similar hinge-binding motifs
among STKs makes it difficult for scoring functions to resolve small
variations in binding energetics. More accurate predictions
(compared to standard docking approaches) can be obtained
after refinement wusing MD-based binding free-energy
calculations, such as MM-PBSA or alchemical FEP; however, this
added accuracy comes at a cost of a several orders of magnitude
increase in computational resources. Despite this refining, the
predictions still rely heavily on the quality of the underlying
force fields, which is especially true for metal cofactors or
systems with complex solvent interactions.

6.4 Resistance mutations

Resistance mutations pose a significant hurdle to the
development of kinase inhibitors overall and present a greater
challenge in oncology (Lu et al, 2020). While primarily
documented for tyrosine kinases, resistance mutations have also
been described for STKs that affect these drug-binding pockets from
which inhibitors cannot escape. For example, mutations in the
gatekeeper residue, the activation loop, or the DFG motif can
dramatically decrease the binding affinity of the inhibitor due to
steric hindrance to access or destabilization of the inactive
conformations targeted by some drugs (Huang et al, 2015).
Unless mutant models are created, docking methods generally
overlook these effects, and even then, they do not account for the
dynamic consequences of mutations. MD simulations provide
realistic insights into how mutations alter conformational
flexibility and drug-binding landscapes; however, the high
computational cost of simulating multiple mutant variants often
becomes prohibitive. Moreover, because resistance evolution in the
clinic is highly unpredictable, it has limited the development of
enduring therapies based on computational predictions.

6.5 Water molecules and allostery

The correct treatment of water molecules and allosteric effects is
still an unsolved problem. Kinase-ligand interaction is often
mediated with the help of water molecules, which facilitate
hydrogen bonds between inhibitors and protein residues (Zhu
and Hu, 2022). However, explicit waters are either overlooked by
most docking algorithms or treated very simplistically, leading to the
omission of important stabilizing interactions (Samways et al,
2021). Explicit water docking remains computationally intensive
and algorithmically cumbersome. However, MD simulations, which
inherently account for one solvent, can provide general insight into
the functionality of water network-mediated interactions; however,
an unambiguous role of dynamic water networks would still be
difficult to interpret. Allosteric regulation is another such wrinkle, in
the same general class. Many kinases are predicted to contain cryptic
or transient pockets outside the ATP site that can be used for
allosteric inhibition. These types of sites are often not visible in
crystal structures and are difficult to detect by docking studies.
Although sites like these can be seen in long-timescale MD or
enhanced sampling, predicting their druggability and designing
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Challenges and Emerging Solutions in Docking and MD for STK Inhibitor Discovery
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FIGURE 3

Challenges and solutions in applying docking and molecular dynamics (MD) to serine/threonine kinase (STK) inhibitor discovery. Infographic
summary highlighting common challenges (left, red) and emerging solutions (right, green). Key limitations include selectivity issues arising from
conserved ATP-binding pockets, high computational cost, inaccuracies in docking scoring functions, resistance mutations, and difficulties in modeling
solvent and allosteric effects. Corresponding solutions include the development of allosteric inhibitors and machine learning-based selectivity
profiling, as well as GPU-accelerated and cloud-native workflows with enhanced sampling methods. These solutions also incorporate Al-driven scoring
and free-energy calculations, mutant modeling using adaptive MD simulations, and the integration of enhanced sampling with structural biology
approaches. Together, these innovations are helping to overcome current bottlenecks and improve the predictive power of computational kinase drug

discovery pipelines.

inhibitors that exploit them has been an enormous challenge to the
field. The orthosteric and allosteric sites do not act in isolation, as the
dynamic interplay complicates all predicted scenarios, highlighting
the
computational and experimental structural biology. Figure 3

necessity of an integrative approach that combines
provides a short overview of the main challenges in applying
docking and MD to drug discovery against STK, and these

include computational remedies to the challenges.

7 Summary of challenges

All these limitations together shed light on the double-edged
sword of computational kinase drug discovery. Docking and MD, on
the one hand, let us gain unprecedented information on inhibitor
binding, conformational dynamics, and the mechanism of
resistance. On the other hand, issues such as selectivity,
computational expense, scoring accuracy, mutation
unpredictability, and solvent or allosteric complexity still hinder
their development. Further advances will come from ML-enhanced
scoring and force fields, increased availability of high-performance
computing, simulation and

experiment. If these barriers are addressed, computational

and tighter coupling between
approaches will provide a more consistent input into the next-
generation discovery pipeline of STK inhibitors. Docking and MD
are complementary strengths that also overcome some limitations of
each other. MD complements docking along a continuum of breadth
versus depth: docking provides breadth via high-throughput virtual
screening; MD provides depth via refinement of predictions in
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physiologically realistic conditions. Table 5 summarizes the
comparative advantages, limitations, and best use cases of both
approaches in the discovery of STK inhibitors.

8 Emerging directions in STK
drug discovery
Molecular docking and MD simulations
transformed the landscape of kinase inhibitor discovery, but
several of their benefits in the STKs drug discovery pipeline

have already

remain to be unraveled. Emerging technologies now offer
promising integration opportunities that can address many
existing limitations as experimental techniques become
increasingly sophisticated in producing comprehensive structural
data, and computational methods continue to become more
powerful. The next few subsections discuss some of the more
important future directions that will likely impact the application

of drug discovery focused on STK.

8.1 Machine learning and Al integration

The integration of Al in structure-based drug discovery is set to
revolutionize inhibitor development (Nair and Weiskirchen, 2024).
Over the last few years, ML algorithms have been used to enhance
the scoring functions to obtain better estimates of binding affinities
compared to conventional empirical or force-field-based approaches
(Barradas-Bautista et al., 2023). Deep learning models, including
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TABLE 5 Comparative advantages, limitations, and best use cases of molecular docking versus molecular dynamics (MD) simulations in serine/threonine

kinase (STK) drug discovery.

Aspect Molecular docking

Speed and scale Very fast (seconds to minutes per ligand); suitable for

screening millions of compounds

Protein flexibility
partly addresses flexibility

Solvent treatment Often implicit or ignored, explicit water is rarely included

Binding affinity

prediction false positives/negatives

Allosteric site detection | Poor; relies on known crystal structures; limited ability to

identify cryptic pockets

Mostly rigid; limited induced-fit handling; ensemble docking

Approximate; relies on empirical scoring functions; prone to

Molecular dynamics (MD)
Slower (ns-ps simulations take hours-days; us-ms events require HPC/GPUs)
Fully flexible; captures loop motions (activation loop, P-loop, DFG-flip) and
induced fit

Explicit solvent and ions modeled; captures water-mediated hydrogen bonds and
dynamic networks

More accurate (MM-PBSA, MM-GBSA, FEP); force-field dependent but closer to
experimental data

Strong, long simulations and enhanced sampling reveal transient/cryptic allosteric
sites

Resistance mutation
analysis capture dynamic effects
Computational cost

Best use cases High-throughput virtual screening; initial pose generation;

preliminary selectivity profiling

Limited; requires docking into mutant static structures; cannot

Low; runs on modest hardware; scalable to millions of ligands

Strong; reveals impact of mutations on dynamics, binding, and conformational
landscapes

High; requires GPUs or HPC for long timescales and enhanced sampling

Refinement and validation of docking poses; binding free-energy ranking;
mechanistic insights; exploration of conformational heterogeneity

Docking provides rapid, large-scale screening, while MD, refines binding interactions under dynamic and physiologically realistic conditions.

graph neural networks, can directly identify chemical-biological
interaction patterns in larger biological datasets, thereby
providing better candidates for estimating kinase-ligand binding
(Zhou and DiMaio, 2025). From DiffDock to generative chemistry
models, recent innovations demonstrate that Al can accurately
predict binding poses, as well as the genetic and bio-predictive
engineering of new scaffolds optimized for selectivity and potency
(DL et al, 2024). In contrast, scoring driven by ML can aid in
discriminating isoforms, even when their structures are highly
thus
Moreover, the combination of AlphaFold2 and related structure-

conserved for kinases, enhancing kinase selectivity.
prediction tools makes accurate three-dimensional models available
for even those kinases whose experimental structures are not yet
available, greatly increasing the chemical space that can be explored

in silico.

8.2 Enhanced sampling and conformational
exploration

The conformational plasticity of kinases remains a significant
challenge in their study. While conventional MD simulations
provide valuable insights, they may lack the sampling necessary
to fully capture rare but functionally important events that are key to
function (e.g., DFG-flips, activation loop unfolding, transient
opening of cryptic allosteric pockets). To overcome such
limitations, researchers are applying enhanced sampling methods,
such as accelerated MD, metadynamics, replica-exchange MD, and
Gaussian accelerated MD methods, in an ever-increasing fashion
(Wang et al., 2021). Such mapping of the entire conformational
landscape of these important signalling proteins by these techniques
can expose cryptic binding sites as well as resistance-associated
conformations and reveal kinetic information on inhibitor binding.
Future work that combines enhanced sampling with Markov state
models could potentially expand on this point by providing more
clarity on how specific ligands stabilize or destabilize certain states
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for each kinase, and could offer further insight into the overall
mechanism of drug action.

8.3 Hybrid quantum mechanics/molecular
mechanics (QM/MM) approaches

While molecular mechanics is powerful, classical force fields
may lack sufficient accuracy for phenomena such as covalent
inhibitor binding, transition-state stabilization, and metal ion
coordination (Lodola and De Vivo, 2012). Hybrid quantum
mechanics/molecular mechanics (QM/MM) methods fill this void
by allowing for quantum-level treatment of the active site of the
protein while effectively representing the remainder of the protein at
the level of a classical force field (Kulkarni et al., 2022). Although
QM/MM provides unique insight into the binding energetics and
initiation of catalysis across many systems, this approach is
especially well-suited for STKs, where the conserved lysine or the
DFG aspartate plays key roles in phosphotransfer and inhibitor
recognition. As many quantum algorithms are being developed and
computing hardware is improving at a rapid speed, QM/MM will be
gradually adopted not just for niche applications, but as part of the
routine steps in kinase drug discovery pipelines.

8.4 Heterobifunctional degraders
(PROTACs) and targeted protein
degradation

An important emerging modality beyond classic small-molecule
inhibitors is targeted protein degradation using heterobifunctional
molecules (PROTACs) (Yu et al, 2021). PROTACs recruit an
E3 ligase to the kinase, forming a ternary complex that triggers
ubiquitination and degradation; this approach can overcome
limitations such as resistance caused by active-site mutations and
can target non-enzymatic functions (Guardigni et al, 2023).
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Future perspectives in integrating docking and molecular dynamics for serine/threonine kinase (STK) drug discovery. Illustration of the evolving
landscape of computational pipelines. Current strategies (bottom) rely on docking and MD to generate binding hypotheses and refine inhibitor poses.
Emerging innovations (middle) include artificial intelligence/machine learning for improved scoring and generative chemistry, enhanced sampling
techniques to capture conformational heterogeneity, hybrid QM/MM methods for catalytic modeling, and cloud-based platforms enabling high-
throughput simulations. These developments are expected to have future impacts (top), including improved selectivity through allosteric targeting,
prediction and management of resistance mutations, antimicrobial applications against bacterial STKs, and personalized kinase therapies. Collectively,
these advances will shape the next-generation of kinase inhibitor discovery.

Computationally, PROTAC design involves

evaluating ternary complexes (kinase-PROTAC-E3) to predict the

sampling and

cooperativity/stability of the ternary assembly (Jiang et al.,, 2023).
Docking and MD have been adapted to this challenge via stepwise
docking, flexible linker sampling, and MD-based stability and MM-
GBSA estimates for ternary complex energetics. Recent studies have
demonstrated that MD-refined ternary modeling, when combined
with experimental assays, can effectively prioritize PROTACs with
favorable degradation profiles (Kossakowski et al., 2025).

8.5 Cloud computing and high-throughput
simulations

The movement towards more accessible “cloud-based” or
“distributed computing” environments is starting to democratize
access to large-scale simulations (Banegas-Luna et al., 2019). Thanks
to cloud-native workflows, researchers can carry out high-
throughput docking of millions of compounds, followed by MD-
based refinement, all without needing local infrastructure
(Ghanakota et al., 2020). This method is beneficial for kinome-
wide selectivity profiling, which requires evaluating several kinases
simultaneously. Cloud computing has the potential to enable smaller
laboratories to participate in large-scale collaborative efforts for
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STK-targeted discovery, allowing for a more comprehensive
search of chemical space and faster lead identification. In the
future, these types of high-throughput, cloud-enabled approaches
are expected to become increasingly common in computational drug
discovery as costs continue to decrease and infrastructure matures.

8.6 Integration with structural biology

The future of computational kinase drug discovery is a tighter
coupling with structural biology. Recent developments in cryo-
electron microscopy (cryo-EM), nuclear magnetic resonance
(NMR),
unprecedented resolution of kinase conformations in near-native

and  structural proteomics are enabling the
environments (Son et al., 2024). These advances are often
supplemented, and in some cases made even possible, by
progress in computational methods. MD simulations are also
capable of refining cryo-EM structures, testing the stability of
conformations observed in experiments, and exploring transitions
not observable via experiment. Docking can suggest binding
hypotheses, which

experiments or crystallographic

can be confirmed with mutagenesis
This cycle of

computation and experiment will be crucial for STKs to identify
cryptic

validation.

allosteric  sites, gain insights into conformational
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heterogeneity, and validate the structural predictions

computationally.

8.7 Overall outlook

Allin all, these emerging strategies will significantly enhance the
predictive and translational value of computational drug discovery
for STKs. AI will enable more precise scoring and new scaffold
generation. Enhanced sampling will expose buried conformations,
QM/MM will allow quantum-accuracy at the active site, and cloud
computing will scale discovery efforts to the kinome (Kulkarni et al.,
2022). Integration with structural biology will test their predictions
in physiologically relevant contexts. Together, these innovations
represent the next-generation of docking and MD pipelines, which
will not only be used to complement new experimental discovery but
actually drive the discovery of selective, potent, and sustainable
therapeutics against STKs. Figure 4 shows emerging strategies and
their
discovery in STKs.

predicted  translational  implications  for  drug

9 Conclusion and future prospects

STKSs continue to represent the most attractive yet potentially the
most challenging targets for drug discovery and development. Altered
regulation of these STKs contributes to diseases, including cancer,
neurodegeneration, and metabolic disorders in humans, as well as
antimicrobial resistance in the microbial world, making them
therapeutically relevant in diverse systems in both humans and
microbes. Hence, it is essential to identify and validate new classes
of small-molecule inhibitors/modulators against new targets using in
silico and in vitro methodologies. In this review, we highlight how
molecular docking and MD simulations serve as essential platforms to
address these challenges through virtual screening, binding mode
prediction, dynamic validation of inhibitor interactions, and
exploration of conformational plasticity. These computational
approaches hold considerable promise but remain significantly
limited by target selectivity, scoring inaccuracies, computational
costs, and the difficulty in predicting resistance mutations.
However, recent developments, including ML-enhanced scoring
functions, accelerated sampling approaches, hybrid quantum-
classical computations, cloud computing pipelines, and integrative
methods with structural biology, are rapidly expanding their
predictive power and accessibility. Moving forward, we envision
that an integrated docking-MD-AI framework can be employed
in a single discovery pipeline to develop selective, potent, and
stable STK inhibitors. These approaches will not only provide
quicker ways of drug discovery for human diseases by bridging
computational predictions with experimental confirmation but also
help in identifying new pathways using bacterial STKs for developing
antimicrobial therapies. In this manner, computational approaches
are poised to have a significant impact on the future of kinase-based
therapies. However, combining in silico with in vitro validation is
essential to avoid over-reliance on computational predictions. Overall,
the synergy between computational and experimental techniques will
continue to accelerate the rational design of STK-targeted
therapeutics.
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