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Myasthenia gravis (MG) patients are highly susceptible to community-acquired
pneumonia (CAP) due to the need for immunosuppressive therapies and
aspiration risks, with CAP representing the leading infectious cause of
mortality in this population. The intersection of MG and CAP poses unique
challenges for the management of anti-infective agents and
immunosuppressants. There is currently no systematic literature review
addressing these issues, as previous reviews have been limited to one of these
aspects. This review synthesizes evidence on the pharmacotherapeutic
challenges associated with MG-CAP comorbidity, focusing on three key areas:
avoiding antibiotics that exacerbate neuromuscular junction symptoms,
minimizing drug interactions, and managing infection-adjusted
immunosuppressants. Through a comprehensive synthesis of literature, we
provide recommendations for optimizing antibiotic selection and
immunosuppressants while tailoring immunosuppressive strategies according
to CAP severity grading. This facilitates optimal management of both MG and
infection control, highlighting the need for dynamic, patient-centered
approaches. This clinical decision-making tool serves as a practical reference
for physicians in the absence of established guidelines or expert consensus for
managing this complex patient population.
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1 Background

Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired
neuromuscular junctions, leading to fluctuating muscle weakness in ocular, limb,
bulbar, and respiratory regions (Gilhus et al., 2019; Punga et al., 2022). In recent
decades, the global prevalence of MG has increased substantially, with mortality rates
disproportionately increasing among Chinese adolescent males and elderly individuals,
reflecting persistent challenges in therapeutic management (Jiang et al., 2023; Zhang et al.,
2023). Patients with MG are at increased risk of pneumonia (16%–41.18%), which is
attributable to chronic immunosuppression and susceptibility to aspiration (Sipilä et al.,
2019; Prior et al., 2018; Kassardjian et al., 2020). Pneumonia represents a major contributor
to clinical deterioration andmortality in this population (Wang et al., 2024; Su et al., 2022a).
Community-acquired pneumonia (CAP), a common infectious disease, is a leading cause of
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global morbidity and mortality, particularly in vulnerable groups
such as individuals with comorbidities such as MG (Vaughn et al.,
2024; Berkel et al., 2016).

In patients with MG, antibiotic selection may have a profound
effect on the disease trajectory. Certain antibiotic classes, such as
aminoglycosides and fluoroquinolones, are strongly associated with
the induction of myasthenic crises through interference with
neuromuscular transmission (Berkel et al., 2016). Furthermore,
disease exacerbation and immunosuppressive regimens may
heighten susceptibility to CAP or exacerbate its severity, likely
through respiratory muscle dysfunction and systemic
immunosuppression (Gilhus, 2023). Optimal management of
infections and acute exacerbations in MG is paramount. Timely
initiation of narrow-spectrum antibiotics guided by microbiological
evidence, alongside judicious titration of immunosuppressive
agents, may mitigate the risk of severe complications such as
respiratory failure and improve clinical outcomes, particularly in
CAP-related contexts.

Empiric antibiotics are frequently initiated in emergency or
outpatient settings, increasing the risk of inadvertently
prescribing agents that precipitate myasthenic crisis (MC) (Berkel
et al., 2016). When infection drives clinical deterioration in MG
patients, two critical questions arise: How can antibiotic selection be
optimized to balance microbial coverage and safety? Should
immunosuppressive therapy be maintained or temporarily
withheld on the basis of infection severity? Despite the clinical
urgency, no systematic review has holistically addressed these
interconnected dilemmas, as prior studies have focused narrowly
on isolated aspects of MG management (Berkel et al., 2016; Gilhus,
2023; Muppidi et al., 2020).

In conclusion, the management of patients with comorbid MG
and CAP poses distinct therapeutic challenges, particularly in
optimizing the balance between anti-infective agents and
immunosuppressive protocols. By synthesizing and appraising
contemporary evidence on pharmacotherapeutic strategies for
this population, this review aims to establish evidence-informed
recommendations for clinical decision-making and improve patient
prognosis through targeted pharmacotherapeutic strategies,
including the avoidance of antibiotics implicated in
neuromuscular junction dysfunction, the mitigation of
pharmacokinetic interactions, and the adaptation of
immunosuppressant (IS) regimens according to infection status.
The systematic implementation of these interventions has the
potential to substantially alleviate the compound disease burden
imposed on healthcare systems.

2 Evidence grading methodology

The evidence levels referenced in this article are classified using
the Oxford Centre for Evidence-Based Medicine (CEBM)
2011 Levels of Evidence (Nuffield Department of Primary Care
Health Sciences, 2025), and detailed information is provided in
Supplementary Table S2. This system categorizes study designs
based on their methodological rigor and potential for bias, with
Level 1 representing the strongest evidence and Level 5 the weakest.
This grading applies specifically to the design of the original studies
being cited, rather than to this review itself. The purpose of this

classification is to provide readers with a clear and immediate
understanding of the strength of the evidence supporting each
clinical statement. It enables healthcare professionals to
distinguish between recommendations grounded in robust
research and those derived from less definitive sources, thereby
supporting more informed clinical decision-making.

3 Myasthenia gravis

Myasthenia gravis (MG) is an autoimmune disorder
characterized by fatigable muscle weakness. Effective
management of this disease requires a thorough understanding of
its clinical subtypes, the limitations of existing therapies, and a
critical challenge in treatment: the inherent trade-off between
immunosuppression and the increased risk of infection, which is
particularly relevant in the context of concurrent community-
acquired pneumonia (CAP) (Prior et al., 2018). This section will
review the disease classification, conventional and novel treatment
strategies, and their associated risks.

3.1 Disease classification and
clinical features

MG is clinically stratified into ocular MG and generalized
subtypes, with the latter constituting approximately 85% of cases
and potentially progressing to respiratory muscle weakness or
life-threatening respiratory failure in severe forms (Paz and
Barrantes, 2019). Pathogenic autoantibodies in MG
predominantly target components of the neuromuscular
junction (NMJ), thereby impairing synaptic transmission. The
major subtypes of autoimmune MG are classified on the basis of
the specific antigenic targets of these autoantibodies.
Approximately 85% of patients harbor autoantibodies against
the nicotinic acetylcholine receptor (AChR), while less frequent
targets include muscle-specific kinase (MuSK) and lipoprotein
receptor-related protein 4 (LRP4) (Fichtner et al., 2020). Notably,
approximately 15% of patients may develop MC, a life-
threatening neurological emergency manifesting as acute
respiratory failure (Gilhus et al., 2019).

3.2 Current treatment strategies and
challenges

The traditional treatment for MG encompasses
cholinesterase inhibitors, glucocorticoids (GCs), IS,
intravenous immunoglobulins (IVIg), plasma exchange (PE),
and thymectomy, which collectively achieve symptomatic
control in the majority of patients (Gilhus et al., 2019).
However, immunosuppressive regimens are associated with
substantial long-term adverse drug reactions (ADRs),
particularly during chronic administration, which complicates
clinical management, especially regarding infection risks (as
detailed in Supplementary Table S2) (Level 5) (Malpica and
Moll, 2020). Approximately 15% of patients exhibit limited or
no response to conventional treatments, underscoring the need
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for novel therapeutic strategies. The emergence of molecular
therapies, including monoclonal antibodies, B-cell-depleting
agents, and chimeric antigen receptor T-cell-based therapies,
has the potential to revolutionize the MG treatment landscape
(Iorio, 2024).

3.3 Individual therapies: mechanisms,
limitations, and infection risks

3.3.1 Symptomatic treatment and its limitations
in crisis

Symptomatic treatment with acetylcholinesterase inhibitors
enhances neuromuscular transmission by increasing synaptic
acetylcholine levels. Although this intervention enhances
respiratory muscle strength, dose-dependent side effects such as
excessive airway secretions may impair ventilation and increase
infection risk, especially in patients with preexisting respiratory
weakness (Level 5) (Gilhus, 2023). Current guidelines therefore
recommend withholding these agents during ventilator-
dependent phases of MC (Wiendl et al., 2023).

3.3.2 Immunosuppressive therapies and
novel agents

Although IS and thymectomy improve generalized muscle
weakness, they have no direct therapeutic effect on the
respiratory musculature. Paradoxically, the management of
respiratory insufficiency frequently necessitates escalation of
immunosuppressive therapy to halt disease progression. Novel
immunomodulators, such as complement inhibitors and neonatal
Fc receptor (FcRn) blockers, exhibit high efficacy and favorable
safety profiles in antibody-positive MG patients refractory to
conventional therapies. However, their elevated cost and limited
regulatory approval for severe respiratory subtypes limit their
widespread clinical application (Schett et al., 2024; Howard
et al., 2021).

3.3.3 Rapid-acting interventions and
bridging therapies

Therapeutic PE and IVIg serve as rapid-acting
immunomodulatory interventions in MG, with clinical effects
manifesting within days, and the benefits are only short term
(weeks), which are mainly used in acute exacerbations and as a
“bridging” measure to slower-acting immunotherapies (such as
azathioprine [AZA] or mycophenolate mofetil [MMF]), and may
be considered before thymectomy or other surgical procedures.

4 Summary of infection risk

Except for IVIg, all current MG therapies increase susceptibility
to diverse microbial infections (viral, bacterial, fungal, parasitic), and
ISs are particularly implicated in this risk profile (Level 5) (Chiu and
Chen, 2020). Although immunosuppression effectively controls MG
progression, it concurrently reshapes infection risk profiles,
particularly manifesting as altered pathogen distribution and
atypical therapeutic responses in CAP, a complexity that
demands systematic analysis in subsequent management strategies.

5 Community-acquired pneumonia in
immunocompromised adults

CAP is caused by an infection of the lung parenchyma that
occurs outside of a hospital setting and results from pathogens
infecting the lower respiratory tract. The ensuing infection and
inflammatory response lead to respiratory (e.g., cough, dyspnea) and
systemic (e.g., fever) symptoms and may result in sepsis, acute
respiratory distress syndrome, and death. CAP is one of the leading
causes of death in children, elderly individuals, and
immunocompromised individuals (Level 1) (Vaughn et al., 2024;
Tsoumani et al., 2023). Despite its clinical significance, only 38% of
hospitalized CAP patients achieve microbiological confirmation.
Viral etiologies account for up to 40% of identified cases,
whereas Streptococcus pneumoniae, the predominant bacterial
pathogen, is detected in only 15% of patients (Vaughn et al.,
2024). CAP remains an underrecognized yet prevalent clinical
entity, particularly in immunocompromised hosts. In this
population, classical CAP signs are often attenuated, and patients
may initially present as clinically stable, only to experience rapid
clinical deterioration—a phenomenon strongly associated with
delayed diagnosis (Aliberti et al., 2021; Ramirez et al., 2020). An
estimated 3% of the United States (US) adult population is
immunocompromised, and 20%–30% of CAP-related
hospitalizations occur in this vulnerable subgroup (Level 3) (Di
Pasquale et al., 2019).

Immunocompromised patients exhibit susceptibility to core
respiratory pathogens (e.g., Streptococcus pneumoniae, respiratory
viruses) that commonly cause CAP in immunocompetent
individuals, albeit with heightened severity (Level 5) (Aliberti
et al., 2021). In addition to these pathogens, clinicians must
consider opportunistic and drug-resistant organisms in
immunocompromised hosts, including carbapenem-resistant
Enterobacteriaceae, Mycobacterium species, cytomegalovirus,
Pneumocystis jirovecii, Cryptococcus, Nocardia, etc. Different types
of immunocompromising conditions are predisposed to different
types of etiologic agents (Ramirez et al., 2020; Wu et al., 2023).
Notably, in MG patients, bacterial pathogens account for 90.32% of
pneumonia cases, with carbapenem-resistant strains identified in
42.86% of isolates. Nonfermenting gram-negative bacilli (e.g.,
Pseudomonas aeruginosa) are the most common microorganisms
(Su et al., 2022a).

6 Community-acquired pneumonia in
patients with myasthenia gravis

MG is characterized by three cardinal features: skeletal muscle
weakness, autoimmune-driven pathology, and dependence on
chronic immunosuppressive therapy. These factors can contribute
to susceptibility to respiratory tract infections, increase their severity
and complication risks, and affect the management and prevention
of respiratory infections (Gilhus, 2023). Approximately 70% of
patients with generalized MG exhibit bulbar muscle weakness
and dysphagia, a significant risk factor for aspiration (Su et al.,
2022a). A case‒control study revealed a 3.17-fold elevated
pneumonia risk in MG patients with dysphagia (95% confidence
interval [CI]: 2.07–4.87), increasing to 11.56-fold (95% CI:
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TABLE 1 DDI between anti-infective agents and IS.

Drug interaction
combinations

Risk
rating

Adverse effects or
impacts on

concentration

Monitoring and
management

Comment

GCs + Triazoles C GCsa↑ Steroid-related adverse effects prednisone + itraconazole/
fluconazole: B

GCs + Amphotericin B C The hypokalemic effect of
Amphotericin B ↑

Cardiac function and serum electrolytes
(especially potassium)

—

GCs + Rifamycins C GCsa ↓ Effects of steroid Rifampin + MP/DXM: D

GCs + isoniazid C isoniazida ↓ Effects of isoniazid —

GCs + CIarithromycin C GCsa ↑ Steroid-related adverse effects Avoid this combination for patients
using DXM to treat life-threatening

conditions

GCs + Quinolones C The risk of tendonitis and tendon
rupture ↑

new onset of tendon or joint pain The risk of tendonitis and tendon
rupture may be further increased in
older patients and organ transplant

recipients

MP/DXM + NMV/r C GCsa ↑ Steroid-related adverse effects —

DXM + caspofungin D caspofungina↓ Effects and considering an increased
caspofungin dose of 70 mg daily in adults

Considering 70 mg/m2, up to a
maximum of 70 mg daily in pediatric

patients

CTX + Rifampin/(NMV/r) C the active metabolite(s)a of CTX ↑ CTX toxicities (e.g., mucositis,
neutropenia)

—

CTX + Fluconazole/Itraconazole C CTXa ↑ Serum bilirubin and serum creatinine —

AZA/CTX/MTX + Linezolid C The myelosuppressive effect ↑ Complete blood counts weekly —

AZA + SMZ-TMP C The myelosuppressive effect ↑ Immune function and hematologic status
CIosely

—

AZA + Ribavirin D The potentially myelotoxic
methylated metabolites of AZA ↑

Considering alternative agent(s) when
possible

—

MTX + Sulfonamide Antibiotics D The myelosuppressive effect ↑ Immune function and hematologic status
closely

Avoiding concomitant use of MTX
and therapeutic doses of sulfonamides

MTX/CTX + Penicillins/
Cephalosporins/TetracyCIine

C MTXa ↑ The hypokalemic effect of
Antineoplastic Agents↑(only for

piperacillin)

Toxic effects of MTX, including
neutropenia and hypokalemia

CTX only interacts with piperacillin

MTX + Voriconazole C The photosensitizing effect of
Voriconazole ↑

Photosensitivity reactions and cheilitis When voriconazole is combined with
MTX injection

MTX/CTX + Amphotericin B C The adverse/toxic effects of
Amphotericin B ↑

Possible increases in renal toxicity,
bronchospasm, and hypotension

—

MTX + Pyrimethamine C The adverse/toxic effects of MTX ↑ Increased hematologic toxicities and
folate deficiency

If signs of folate deficiency develop,
pyrimethamine should be

discontinued. Folinic acid should be
administered until normal
hematopoiesis is restored

MTX + Levofloxacin/Ciprofloxacin C MTXa ↑ MTX toxicities or delayed MTX
elimination

—

MMF + Antibiotics C Mycophenolatea ↓ Concentrations and effectiveness of
mycophenolate

MMF + rifampin: D, Not
recommended to be given with

rifampin

MMF + Isavuconazole C Mycophenolatea ↑ Evidence of increased mycophenolate
clinical effects

—

MMF + Ganciclovir/Valganciclovir C The risk for leukopenia or
neutropenia ↑

Ganciclovir, valganciclovir and
mycophenolate toxicities

—

TAC + Rifamycins C TACa ↓ Decreased concentrations and effects,
adjust doses as needed

Rifampin + TAC: D, larger dosages of
TAC may be needed

(Continued on following page)
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3.36–39.77) in those with documented aspiration (Level 4) (Martino
et al., 2005). MG pathogenesis is driven by a dysregulated
immunopathological cascade encompassing T-cell dysfunction,

B-cell hyperactivation, complement system overactivation, and
thymic abnormalities. These perturbations collectively impair
pathogen clearance and immune surveillance, increasing

TABLE 1 (Continued) DDI between anti-infective agents and IS.

Drug interaction
combinations

Risk
rating

Adverse effects or
impacts on

concentration

Monitoring and
management

Comment

TAC + Triazoles D TACa ↑ TAC concentrations CIosely beginning
within 1–3 days of concomitant use and

adjust dose as necessary

Isavuconazole + TAC: C; Reduce
TAC dose to approximately one-third
of the original dose when starting

concurrent voriconazole and
Posaconazole

TAC + NMV/r D TACa↑ Increased TAC concentrations and
toxicities. NIH COVID-19 treatment
guidelines recommend holding TAC

during NMV/r treatment and for at least
2–3 days after completion

Use of alternative COVID-19 therapy
is recommended by the American
Society of Transplantation (AST)

TAC + CIarithromycin D TACa↑ TAC dose reductions and/or
prolongation of the dosing interval will

likely be required

TAC + Remdesivir/Azithromycin/
Ciprofloxacin

C TACa↑ Increased TAC concentrations and
toxicities

Adjust doses as needed

TAC + Amphotericin B/Cidofovir C The nephrotoxic effect of TAC ↑ Renal function —

TAC + Levofloxacin C TACa↑ the QTc-prolonging effect of
Levofloxacin↑

Signs and Symptoms of excessive QTc
interval prolongation and arrhythmia;
TAC concentrations and toxicities

—

CsA + Triazoles D CsAa ↑ CsA concentrations and serum
creatinine

CsA + Fluconazole/Isavuconazole: C;
Reduce CsA dose by 50%–80% when
starting concurrent voriconazole, and
25%–50% when starting concurrent

itraconazole or posaconazole

CsA + amphotericin B/SMZ-TMP/
GanciCIovir-ValganciCIovir/

Ciprofloxacin

C Nephrotoxic effects of CsA ↑ Renal dysfunction, an alternative drug or
an adjustment to CsA dose as needed

Newer amphotericin formulations
(such as lipid complex, liposomal,
cholesteryl sulfate complex) may be

safer options

CsA + Rifamycins/isoniazid/
Sulfadiazine

C CsAa ↓ CsA serum concentrations and effects Rifampin + CsA: D, larger dosages of
CsA may be needed

CsA + pyrazinamide c The myopathic (rhabdomyolysis)
effect of CsA ↑

CsA concentrations and muscle toxicities —

CsA + Caspofungin D CsAa↑ Caspofungina↑ Weigh the potential benefits of
caspofungin therapy against a possible
elevated risk of hepatotoxicity in patients
receiving CsA and monitor liver function

Re-evaluate the potential risks and
benefits of treatment in patients with

abnormal liver function

CsA + Remdesivir C CsAa ↑ Remdesivira ↑ CsA concentrations and toxicities CsA dose adjustments may be needed

CsA + Imipenem and Cilastatin C The neurotoxic effect of CsA ↑ Signs and symptoms of neurotoxicity —

CsA + Linezolid C Linezolida ↑ Linezolid toxicities —

CsA + NMV/r D CsAa ↑ NIH COVID-19 treatment guidelines
recommend a CsA dose adjustment.
Limited evidence supports a CsA dose
reduction of 80%. The timing of CsA
dose increases after NMV/r completion

should be guided by continued
monitoring of CsA levels

Avoid nirmatrelvir/ritonavir in
patients receiving CsA if CIose

monitoring of CsA concentrations is
not possible. Use of alternative

COVID-19 therapy is recommended
by AST.

CsA + Clarithromycin D CsAa ↑ CsA dose reductions and/or
prolongation of the dosing interval will

likely be required

—

CsA + Azithromycin C CsAa ↑ CsA concentrations and toxicities —
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susceptibility to infection (Zhang et al., 2021; Tackenberg et al.,
2018). GCs and therapies that inhibit B-cell or T-cell responses are
the most commonly used therapies, leading to impaired immune
function and infection with various respiratory pathogens (Table 1)
and increasing the risk of respiratory infections by 20%–50% in MG
patients (Di Pasquale et al., 2019; Gilhus et al., 2018).

Respiratory infections act as both triggers and amplifiers of MG
exacerbations (Sansoni et al., 2023). Cohort data indicate that
approximately one-third of MG relapses and severe exacerbations
with respiratory dysfunction are caused by respiratory infections
(Level 4) (Ramsaroop et al., 2023). A retrospective analysis of 86MG
patients revealed that early-onset MG (adjusted OR: 3.079, 95% CI
1.052–9.012) and respiratory infection (adjusted OR: 3.926, 95% CI
1.141–13.510) were independent risk factors for progression to MC,
whereas IVIg treatment (adjusted OR: 0.253, 95% CI 0.087–0.732)
before mechanical ventilation was a protective factor (Level 3)
(Huang et al., 2021). In elderly MG patients, CAP frequently
results in respiratory failure during the summer months,
necessitating intensive care admission for ventilator support. The
main symptom of an impending MC is progressive weakness of the
respiratory and bulbar muscles. Early and immediate hospitalization
with admission to an intensive care unit is necessary (Level 2) (Nelke
et al., 2022).

The management of MG complicated by CAP necessitates
confronting the inherent contradiction between
immunosuppression and infection control. Immunosuppressive
drugs, in combination or at high doses, alleviate MG symptoms
but increase the risk of respiratory infections, particularly those
associated with carbapenem-resistant pathogens and aspiration-
related pneumonia. Clinical practice demands dynamic
prioritization-maintaining baseline immunosuppression to
prevent myasthenic crises while maintaining heightened alertness
for infectious signs (treating even minor infections as emergencies).
Early initiation of antibiotic regimens covering drug-resistant
bacteria and opportunistic pathogens, guided by microbiological
profiles, coupled with real-time adjustments to immunosuppressive
intensity on the basis of inflammatory biomarkers (e.g.,
procalcitonin) and respiratory function monitoring, is critical.
Crucially, even possibly minor infections necessitate aggressive
intervention to avert clinical deterioration, underscoring the need
for a preemptive, risk-stratified approach that harmonizes
immunosuppression optimization with infection containment in
this high-risk cohort.

7 Selection and use of antibiotics

7.1 General principles and high-risk
antibiotic classes

Patients with MG complicated by CAP face increased
susceptibility to diverse pathogens (bacterial, fungal, and viral)
due to combined immunodeficiency from both the disease itself
and chronic immunosuppressive therapies (Ramirez et al., 2023).
Antibiotic selection requires meticulous consideration, as certain
agents may impair neuromuscular transmission through
presynaptic blockade of acetylcholine release or postsynaptic
receptor antagonism, thereby exacerbating MG symptoms (Level

4–5) (Berkel et al., 2016; Sheikh et al., 2021). Concurrently,
pharmacokinetic and pharmacodynamic interactions between ISs
and antimicrobials critically influence therapeutic efficacy and
safety. Optimal antimicrobial therapy in this context must
integrate pathogen susceptibility profiles with rigorous evaluation
of drug interactions affecting IS pharmacokinetics (e.g., cytochrome
P450 modulation) and toxicity thresholds (Level 5) (Kaufman et al.,
2004) (see Table 1) for a comprehensive interaction matrix derived
from Lexicomp® (Lexicomp®, 2025).

International consensus guidelines strongly contraindicate
aminoglycosides, macrolides, and fluoroquinolones in MG
management because of their neuromuscular toxicity
(Narayanaswami et al., 2021). To date, many MG exacerbations
have been reported with systemic exposure to these antibiotics
(Gummi et al., 2019; Harnett et al., 2009; Krenn et al., 2020;
Pham et al., 2021). A retrospective cohort study of adult MG
patients demonstrated that fluoroquinolones posed significantly
greater 15-, 30-, and 90-day hospitalization risks than macrolides
did (Level 3) (Pham et al., 2021). Among macrolides, azithromycin
has been most frequently implicated in medication-triggered
exacerbation. Aminoglycosides are contraindicated in MG
patients because of their neuromuscular toxicity, particularly in
critically ill patients with renal impairment or who are receiving
concurrent neuromuscular blockers (Gummi et al., 2019). However,
tobramycin may be a safer aminoglycoside option when it is
administered at standard antibacterial concentrations (Level 4)
(de Rosayro and Healy, 1978). Given the substantial risk of
myasthenic crises associated with these antibiotic classes,
avoidance is strongly recommended unless no alternatives exist
(Marriott et al., 2023).

7.2 Recommended and alternative
antibacterial agents

Tetracyclines, including doxycycline and minocycline, offer a
viable alternative for CAP management in MG patients. While
competitive AChR antagonism occurs at supratherapeutic doses
(Friedrich et al., 2004),clinical studies confirm its safety within
standard therapeutic ranges (Mihevc et al., 2021; Novitch et al.,
2018) (Level 4) and suggest potential protective effects against
neuromuscular toxicity in preclinical models (Davies et al., 2005).
Importantly, tetracyclines demonstrate minimal pharmacokinetic
interactions with the IS in MG, further confirming their role as first-
line agents for CAP in suspected atypical pathogens (Level 4) (Berkel
et al., 2016).

Although β-lactam antibiotics are generally considered safe for
infections in MG (Level 5) (Sheikh et al., 2021), few reports of MG
exacerbation exist. Recent studies document six cases of MG
symptom worsening following amoxicillin therapy (Vacchiano
et al., 2020) and two ampicillin-induced relapses confirmed by
drug rechallenge (Argov et al., 1986). In contrast, cephalosporins
demonstrate no significant transmission interference in
experimental models, with no documented cases of MG
exacerbation reported in the literature to date (Level 5) (Friedrich
et al., 2004; Deng et al., 2005). Carbapenems are the empirical
therapy of choice for severe pulmonary infections caused by
unidentified or multidrug-resistant pathogens, particularly in
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immunocompromised hosts (Vaughn et al., 2024). To date,
carbapenem-associated MG exacerbations have been documented
only in isolated case reports (Level 4) (Margolin, 2004; O’Riordan
et al., 1994). Given their overall safety profile and broad
antimicrobial activity, β-lactams retain first-line status for MG-
related infections (Level 5). Clinicians must nevertheless remain
vigilant for pharmacokinetic interactions, including penicillin/
cephalosporin-induced methotrexate (MTX) accumulation,
piperacillin-exacerbated hypokalemia with antineoplastics,
imipenem-cilastatin neurotoxicity in cyclosporine (CsA)-treated
patients, and reduced mycophenolate bioavailability with multiple
antibiotics (Crescioli et al., 2023; Zarychanski et al., 2006; Jafari et al.,
2023). Proactive therapeutic drug monitoring and rapid clinical
reassessment are therefore essential during treatment to detect early
signs of MG deterioration or toxicity.

In the existing published studies, no MG exacerbations have
been reported with vancomycin, linezolid, or sulfonamides
(including trimethoprim-sulfamethoxazole [SMZ-TMP]).
Polymyxins are reserved for carbapenem-resistant gram-negative
infections but carry neurotoxic risks mediated by neuronal lipid
interactions (Honore et al., 2013; Zu et al., 2021). The most severe
manifestation is neuromuscular blockade, which presents as
respiratory paralysis with apnea or myasthenia gravis-like
syndromes and typically occurs at supratherapeutic drug levels or
with concomitant neurotoxic agents. Despite these mechanistic
risks, clinically significant events remain exceedingly rare in real-
world practice (Level 5) (Spapen et al., 2011; Özkan et al., 2012).
Concomitant administration of linezolid or SMZ-TMP with
myelosuppressive agents (MTX, cyclophosphamide [CTX], AZA)
potentiates hematologic toxicity, with MTX and SMZ-TMP
combinations at therapeutic doses being strictly contraindicated
owing to synergistic folate antagonism. Concurrent use of SMZ-
TMP and CsA further exacerbates nephrotoxic risks through
competitive impairment of tubular secretion. These interactions
necessitate vigilant monitoring of complete blood counts and
renal function parameters during therapy (Kaufman et al., 2004).

7.3 Antifungal agents in CAP management

Current evidence indicates that no MG exacerbations are
associated with amphotericin B, caspofungin, or nonvoriconazole
triazoles in fungal CAP management. However, voriconazole has
rarely been implicated in MG deterioration (Level 4) (Azzam et al.,
2013; Akcam et al., 2022). Triazole antifungals potently inhibit
cytochrome P450 enzymes (CYP3A4/CYP2C19), significantly
altering the pharmacokinetics of coadministered MG therapies
(Level 4) (Brüggemann et al., 2022). Lexicomp® data
(Lexicomp®, 2025) highlight critical interactions:
CYP3A4 inhibition elevates corticosteroid and calcineurin
inhibitor (CNI) exposure, whereas isavuconazole increases
mycophenolate bioavailability. Therapeutic drug monitoring and
dose titration are thus mandatory, and isavuconazole is superior to
other triazole drugs in terms of efficacy and safety, making it more
suitable for the treatment of pulmonary fungal infections in MG
patients (Level 1) (Domingos et al., 2022; Ullmann et al., 2018).
Concurrent administration of amphotericin B with IS amplifies
amphotericin B-associated toxicities, notably hypokalemia and

dose-dependent nephrotoxicity. However, lipid-based
amphotericin formulations (e.g., liposomal amphotericin B)
significantly reduce renal toxicity while maintaining antifungal
efficacy, positioning them as preferred alternatives in
immunocompromised populations (Level 2) (Qin et al., 2025).
Caspofungin metabolism is accelerated by dexamethasone,
necessitating dose escalation to 70 mg/day in adults (Level 2)
(Sable et al., 2002). Although CsA‒caspofungin combinations
theoretically increase hepatotoxicity, clinical studies in transplant
recipients have revealed minimal hepatic injury, supporting cautious
use with liver function monitoring (Level 4) (Christopeit et al., 2008;
Saner et al., 2006).

7.4 Antiviral agents and special
considerations for tuberculosis

MG exacerbations are associated with diverse viral infections,
including varicella-zoster virus, cytomegalovirus, SARS-CoV-2,
influenza, adenovirus, and respiratory syncytial virus, whereas
certain antiviral therapies may independently worsen disease
severity through neuromuscular or immune mechanisms
(Županić et al., 2021; Cavalcante et al., 2013). Limited studies
suggest that antiviral drugs (e.g., peramivir, oseltamivir, and the
combination of interferon-alpha and ribavirin) may exacerbate or
induce MG through neuromuscular or immune mechanisms, with
evidence for oseltamivir currently limited to animal studies (Level 5)
(Bektas et al., 2007; Fukushima et al., 2015; Hayashi et al., 2015).
Pharmacokinetic interactions between antivirals and ISs
predominantly arise from CYP450 modulation, exemplified by
nirmatrelvir and ritonavir (NMV/r)-induced CYP3A4 inhibition
that markedly elevates tacrolimus [TAC]/CsA levels, necessitating
protocolized CNI dose adjustments (TAC withheld 12 h pre-NMV/
r; CsA reduced to 20% with therapeutic drug monitoring) (Level 5)
(Dewey et al., 2023; Giguère et al., 2023; Devresse et al., 2022). The
additive risk of adverse effects resulting from concomitant use
cannot be overlooked. Coadministration of AZA and ribavirin is
contraindicated due to synergistic myelotoxicity risks (Level 5)
(Sparkes et al., 2019). Other risks include enhanced
myelosuppression with ganciclovir/valganciclovir and
mycophenolate and nephrotoxicity from cidofovir and TAC,
among others (Level 4–5) (Kotton et al., 2024; Rerolle et al.,
2007). Risk mitigation requires vigilant drug monitoring, dose
titration, selection of safer alternatives, and multidisciplinary
oversight, as detailed in Table 1.

A 300-patient MG cohort study revealed elevated latent
tuberculosis (TB) infection incidence, particularly among elderly
individuals, who demonstrated significantly increased risk (OR =
1.91, 95%CI 1.18–3.09) (Chen et al., 2023). First-line anti-TB agents,
including isoniazid, rifamycins, pyrazinamide, and ethambutol, may
precipitate MG exacerbations through two mechanisms: direct
neuromuscular toxicity and pharmacokinetic interactions (Level
5) (Kuang et al., 2022). Current evidence is limited to isolated
case reports, which describe MG flares and myasthenic crises
following the initiation of these drugs, with symptom onset
occurring within weeks and positive rechallenge evidence
(Litovsky et al., 2021). Rifampicin, a potent CYP450 inducer,
may reduce pyridostigmine bioavailability or IS efficacy (Level 5)
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(Asaumi et al., 2018), worsening MG control. As shown in Table 1,
rifampicin exhibits multiple Grade D pharmacokinetic interactions
(defined as necessitating therapy modification or dose adjustment)
with essential MG ISs, including TAC, CsA, MMF, and GCs such as
methylprednisolone and dexamethasone (Level 5) (Sparkes et al.,
2019). Prednisone has relatively few interaction risks and may be the
preferred option for corticosteroids in MG patients with concurrent
TB infection. Comparative analyses in living donor liver transplant
recipients revealed that rifabutin, a rifamycin derivative with
attenuated CYP450 induction capacity, maintains antituberculosis
efficacy while exhibiting substantially reduced drug‒drug
interaction (DDI) potential compared with rifampicin (Level 3)
(Wang et al., 2021).

7.5 Conclusion

Clinicians must maintain heightened vigilance toward antibiotic
classes with documented neuromuscular blocking effects, the
potential for inducing myasthenic exacerbations, and significant
drug interaction risks with MG therapies. These iatrogenic risks
synergistically impair neuromuscular transmission, predisposing
patients to life-threatening clinical deterioration.

1. This table delineates the clinically significant
pharmacodynamic and pharmacokinetic interactions that
occur among three key therapeutic classes (glucocorticoids,
conventional immunosuppressants, and calcineurin
inhibitors) and various antimicrobial agents. It is organized
by these three immunosuppressant categories and provides
detailed risk classifications, mechanistic summaries, and
corresponding clinical monitoring and management guidance.

2. The symbol “a” denotes serum drug concentration. An upward
arrow (↑) indicates an increase, and a downward arrow (↓) a
decrease, in serum concentration or therapeutic efficacy. DXM:
dexamethasone; MP: methylprednisolone; NIH: National
Institutes of Health; AST: American Society of
Transplantation.

3. Risk Rating Definition: This classification system assesses the
clinical severity of drug interactions and the supporting
evidence level. Ratings are defined as follows: A (No known
interaction); B (No action needed); C (Monitor therapy); D
(Consider therapy modification). This aids clinicians in
evaluating the risk-benefit ratio and determining
appropriate management.

8 Administration of
immunosuppressive drugs

8.1 Balancing immunosuppression and
infection risk

While preceding sections have addressed general principles of
antibiotic selection and their potential interactions with
immunosuppressive agents, this section provides a dedicated and
systematic examination of the risk-benefit calculus in modifying

established immunosuppressive regimens during active CAP
episodes. Specifically, we synthesize evidence to address three
critical dimensions not previously explored in depth: the
infection risks inherent to specific immunosuppressive drug
classes in the context of CAP, evidence-based strategies for dose
adjustment or temporary suspension of these therapies stratified by
CAP severity and the management of disease relapse risk following
immunosuppression modulation. The central focus is therefore not
on drug interactions per se, but on the overarching clinical strategy
for immunosuppression management during a concurrent
respiratory infection.

Immunosuppressive therapy constitutes a cornerstone of MG
management, yet its association with increased infection risk
necessitates careful risk‒benefit evaluation. A population-based
cohort study revealed a twofold increase in severe infection rates
among MG patients receiving immunosuppression compared with
matched controls (Level 2) (Kassardjian et al., 2020). Multivariate
analyses identified PE, MMF use, and high-dose corticosteroids as
independent predictors of infectious complications (Prior et al.,
2018). Infections associated with immunosuppressive therapies are
not pathognomonic of MG. Critical findings from a worldwide CAP
investigation demonstrated that prolonged steroid administration, a
main therapeutic approach for MG, constituted 45% of significant
infection risk factors (Level 3) (Di Pasquale et al., 2019). This
evidence underscores the quintessential therapeutic challenge in
MG: achieving optimal disease control through immunosuppression
while minimizing its inherent infection risk. Current clinical
strategies, particularly regarding corticosteroid dosing paradigms,
remain inadequately supported by high-level evidence.

8.2 Management of corticosteroids in MG
patients with CAP

A retrospective study of 125 MG patients who achieved steroid-
induced remission identified accelerated steroid tapering
(<11.5 months) as a strong predictor of relapse (hazard ratio
[HR] = 27.80), with bulbar-onset disease independently
predicting postwithdrawal recurrence (adjusted HR = 3.59).
These findings advocate prolonged tapering protocols and
sustained immunosuppression for bulbar-involved patients (Level
3) (Su et al., 2022b). In a cohort of 93 MG patients with COVID-19,
unsatisfactory conditions with lower forced vital capacity (FVC) and
previous long-term GC treatment, especially at higher doses,
advanced age, the presence of cancer, and recent rituximab
treatment, were identified as the most important predictors of
severe COVID-19 infection. This study specifically cautions
against GC escalation during COVID-19-related MG
exacerbations and recommends IVIg as the preferred rescue
therapy (Level 3) (Jakubíková et al., 2021). High-dose GC
initiation in MG carries a 50% risk of transient symptom
exacerbation, necessitating restrictions to hospitalized patients
receiving PE/IVIg for MC management (Level 3)
(Narayanaswami et al., 2021).

Dose-dependent infection risks are further evidenced by
rheumatoid arthritis studies showing adjusted relative risks
escalating from 1.10 (<5 mg/day prednisolone) to 1.85 (>20 mg/
day) (Level 3) (Dixon et al., 2011). Prednisone doses exceeding
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10 mg/day are similarly correlated with elevated serious infection
rates (Level 2) (Mena-Vázquez et al., 2024). However, current
evidence-based guidelines strongly recommend the adjunctive use
of GCs in hospitalized patients with severe CAP (Level 5). Owing to
insufficient evidence, no specific recommendations can be provided
for dosage and treatment duration (Chaudhuri et al., 2024). A meta-
analysis revealed that hydrocortisone, but not other corticosteroids,
was associated with reduced mortality and improved outcomes in
severe CAP patients (Level 1) (See et al., 2024). In summary, GC
management in MG-CAP requires stepwise tapering to prevent
relapse, judicious high-dose GC use limited to hospitalized settings,
preferential hydrocortisone selection in severe CAP, early IVIg/PE
adoption for high-risk patients, and multiparameter monitoring
(respiratory function, infection biomarkers, MG symptoms) to
harmonize neuromuscular and infectious outcomes.

8.3 Considerations for non-corticosteroid
immunosuppressive agents

Maintenance therapy for MG remission typically involves
gradual corticosteroid tapering combined with steroid-sparing IS,
such as AZA, CNI, MMF, and occasionally CTX (Level 5)
(Narayanaswami et al., 2021). There is a paucity of systematic
studies addressing IS modification in MG patients with
respiratory infections, while existing research predominantly
focuses on treatment cessation due to drug intolerance or adverse
events (Lascano and Lalive, 2021). Prospective cohort data reveal the
distinct toxicity profile of azathioprine: abnormal liver function
occurs in 23% of users, driving a significantly higher
discontinuation rate than that of MMF and MTX (Level 2)
(Dodd et al., 2024). In contrast, TAC has comparable MG
efficacy to that of cyclosporine but superior safety, exhibiting
minimal hepatotoxicity and reduced nephrotoxicity (Fan et al.,
2023). Several factors can affect relapse risk in MG patients
following IS withdrawal, such as the rate of dose reduction,
duration of therapy, combination treatments, and patient-specific
characteristics, including disease severity and antibody titers (Level
3–4) (Zhang et al., 2020; Sanders et al., 2006). A Rapid TAC
reduction ≥0.76 mg/year elevates relapse odds 5.66-fold (Level 4)
(Bi et al., 2022). Notably, GC-TAC combination therapy achieves
superior relapse prevention and therapeutic durability in generalized
MG (Level 3) (Zhang et al., 2020).

8.4 Risk-stratified adjustment of
immunosuppression during infection

Multiple studies investigating COVID-19 outcomes in MG
patients have demonstrated that conventional ISs (AZA, MMF,
CsA, and TAC) have no statistically significant impact on
COVID-19 progression, indicating that these agents have not
been proven to increase complication risks, alter the disease
course, or adversely affect clinical outcomes in COVID-19
patients with MG (Level 3–4) (Jakubíková et al., 2021; Camelo-
Filho et al., 2020). This observation aligns with findings from smaller
cohorts demonstrating favorable outcomes in patients maintained
on low-dose prednisone combined with immunosuppressive

regimens (Level 4) (Anand et al., 2020; Ramaswamy and
Govindarajan, 2020). Clinical studies indicate that TAC may
exert protective effects against SARS-CoV-2 infection by
suppressing hyperactive immune responses that mediate
inflammatory cytokine storms and clinical deterioration and the
use of TAC was associated with a better survival thus encouraging
clinicians to keep TAC at the usual dose (Level 2) (Belli et al., 2021;
Li et al., 2020). However, among the 11 MG patients diagnosed with
or suspected of having COVID-19, three required ventilator
support, and two elderly patients died due to COVID-19-related
respiratory failure. This underscores the importance of close
monitoring and proactive management during acute viral
infections (Level 3) (Businaro et al., 2021).

Current practices of immunosuppression management during
infections exhibit significant variability between US and European
transplant centers. While immunosuppressive dose tapering during
active infections remains a common yet evidence-limited practice,
few rigorous studies have investigated protocolized adjustment of
immunomodulatory regimens and clinical management in solid-
organ transplant recipients, which predominantly relies on
empirical experience (Shepshelovich et al., 2019; Roberts and
Fishman, 2021) A COVID-19-era systematic review of kidney
transplant recipients revealed disease severity-stratified
approaches (Level 1): watchful waiting predominated in
asymptomatic/mild cases versus aggressive modification in
symptomatic patients, including antimetabolite suspension
(75.3%). CNI management strategies differ significantly by
disease severity: maintenance (48.4%) or dose reduction (19.7%)
in mild cases versus complete withdrawal (31.9%) in severe
infections. Graft function preservation was observed in 76.2% of
the recipients, with parallel stability in renal function (76.17%)
throughout the observation period (Angelico et al., 2021).
Complete IS withdrawal, although reserved for ventilator-
dependent critically ill patients, was correlated with increased
sepsis-related mortality (OR 2.11, p < 0.01) (Level 3) (Kim
et al., 2024).

Consequently, CAP severity may constitute the primary
determinant for immunosuppression discontinuation in MG
patients. Those receiving immunomodulatory therapies require
rigorous infection surveillance, particularly given that
lymphopenia (OR 0.88, 95% CI 0.75–0.96) and
hyperglobulinemia (OR 1.16, 95% CI 1.02–1.35) independently
predict ventilatory requirements (p < 0.05) (Level 4) (Su et al.,
2022a). These hematological parameters demonstrate prognostic
utility for CAP severity stratification, guiding personalized
therapeutic strategies.

8.5 Conclusion and future perspectives

By integrating cumulative evidence, the management of
immunosuppression in MG patients with CAP should adopt a risk-
stratified approach to balance disease control against infection-related
mortality (Figure 1). The development of precision immunosuppressive
regimens, incorporating clinical variables such as age, MG phenotype
(ocular/generalized), autoantibody profile (AChR/MuSK/LRP4), and
comorbidity burden, warrants rigorous investigation, particularly
regarding optimization strategies during concurrent respiratory
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infections. Multidisciplinary care coordination coupled with serial
immunological monitoring has emerged as a crucial strategy for
maintaining the delicate equilibrium between therapeutic
immunosuppression and infection prevention.

To complement the risk-stratified management algorithm in
Figure 1, we provide a Supplementary Table S3 offering practical,
evidence-based guidance on key clinical dilemmas in managing

immunosuppression for MG patients with CAP. It addresses common
questions regarding drug prioritization for reduction, the role of bridging
therapies, and high-risk patient identification, with corresponding
recommendations, supporting evidence, and reference levels.

Tailoring immunosuppressive strategies according to CAP severity
grading facilitates optimal management of both MG and infection
control. This algorithm provides a structured framework for the initial

FIGURE 1
A risk-stratified approach for MG patients with CAP (Gilhus et al., 2019; Su et al., 2022a; Su et al., 2022b; Jakubíková et al., 2021; Dixon et al., 2011;
Mena-Vázquez et al., 2024; Chaudhuri et al., 2024; See et al., 2024; Lascano and Lalive, 2021; Dodd et al., 2024; Fan et al., 2023; Zhang et al., 2020;
Sanders et al., 2006; Bi et al., 2022; Camelo-Filho et al., 2020; Anand et al., 2020; Ramaswamy and Govindarajan, 2020; Belli et al., 2021; Li et al., 2020;
Businaro et al., 2021; Shepshelovich et al., 2019; Roberts and Fishman, 2021; Angelico et al., 2021; Kim et al., 2024).
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assessment and management of MG patients with CAP, based on
disease severity stratification. Key components include.

1. Initial assessment: Foundation based on clinical and diagnostic
evaluation to stratify CAP severity into Mild, Moderate, Severe,
and Critical/Mechanical Ventilation categories. 2. Severity-
Specific Management:

1. Mild CAP: Maintain current immunosuppression with
pathogen-directed antibiotics and multiparameter
monitoring (FVC, inflammatory markers, MG symptoms).

2. Moderate CAP: Taper corticosteroids (>10 mg/day
prednisone-equivalent), consider pausing antimetabolites,
maintain calcineurin inhibitors, and initiate intravenous
antibiotics with close monitoring.

3. Severe CAP: Emergency hospitalization with temporary
suspension of high-dose steroids and antimetabolites,
reduction or maintenance of CNI dose, and
consideration of IVIg/PE.

4. Critical CAP/Mechanical ventilation: ICU admission with
discontinuation of immunosuppressants if life-threatening,
empiric broad-spectrum antimicrobial therapy, and
preferential use of IVIg/PE for myasthenic crisis management.

2. Therapeutic response evaluation:

1. Improving: Stepwise reintroduction of
immunosuppressants with prolonged corticosteroid
tapering (>12 months) and enhanced surveillance for
bulbar-onset cases.

2. Worsening: Reassessment of antimicrobial coverage,
screening for opportunistic pathogens, preparation for
mechanical ventilation, and consideration of infectious
disease consultation or ICU transfer.

9 Vaccination for myasthenia
gravis patients

Streptococcus pneumoniae and respiratory viruses such as
influenza and SARS-CoV-2 are core respiratory pathogens for
immunocompromised patients that can trigger or exacerbate MG
(Prior et al., 2018; Aliberti et al., 2021). Consequently, vaccinations
to protect against infections are an important part of the clinical
management of these diseases. According to the literature, vaccines
may induce similar immune cross-reactivity to what they are meant
to prevent (Tayebi et al., 2023; Stübgen, 2010). However, no clear
link between vaccination and myasthenia gravis has been
demonstrated in the literature and no quantifiable excess risk of
myasthenia gravis was identified following SARS-CoV-
2 vaccination) (Level 5) (Willison et al., 2024).

9.1 Safety of SARS-CoV-2 vaccines

During the COVID-19 pandemic, study by assessed the safety
of SARS-CoV-2 vaccines in a large cohort of MG patients,

emphasizing the importance of vaccination given the high risk
of severe COVID-19 in this population) (Level 4) (Farina et al.,
2022). Similarly, an observational study investigated mRNA
COVID-19 vaccines in patients with well-controlled MG,
finding that vaccination was generally safe and well-tolerated
in this group) (Level 3) (Gamez et al., 2022). A single-center case
series study reported that the inactivated COVID-19 vaccines
might be harmless in patients with MG with Myasthenia gravis
Foundation of America (MGFA) score classification I to II,
demonstrating the recommendation to promote vaccination
for MG patients during the still expanding COVID-19
pandemic) (Level 4) (Ruan et al., 2021).

9.2 Safety of influenza and
pneumococcal vaccines

Influenza vaccines, have been assessed for their safety in MG
patients, and no association was found between the administration
of influenza vaccines and the hospitalization of MG patients (Zhou
et al., 2021; Auriel et al., 2011; Zinman et al., 2009) In 2017, a Korean
study used a recall-based self-report questionnaire to demonstrate
that the risk of MG symptom exacerbation following seasonal
influenza vaccination was very low (1.5%), while the occurrence
of influenza-like illness (ILI) was significantly associated with
exacerbation of MG symptoms (40%) (Level 3) (Seok et al.,
2017). These studies did not include patients with severe or
unstable MG; Data on pneumococcal vaccination in MG patients
are notably scarce. MTX treatment at the time of vaccination and
increasing age were identified as predictors of poor vaccination
outcome in multiple logistic regression analysis (Level 3)
(Rasmussen et al., 2020).

9.3 Risk-benefit assessment and
unmet needs

Though previously mentioned research on vaccination in MG
patients is scarce and mainly about influenza vaccines, nearly all the
evidence supports vaccine-related worsening of MG is rare (Level
1–4) (Auriel et al., 2011; Zinman et al., 2009; Seok et al., 2017;
Strijbos et al., 2019). Study evaluating the cause of death in Swedish
MG patients reveals influenza/pneumonia is a striking contributor
(Westerberg and Punga, 2020). A 10-year longitudinal study found a
significant 48% reduction in mortality and a 27% reduction in
hospital admissions after influenza vaccination in autoimmune
and autoinflammatory diseases (AIID) patients (Glück and
Müller-Ladner, 2008).

Studies and guidelines in rheumatic diseases indicate that most
live vaccines are contraindicated in patients with IS, while
inactivated vaccines generally exhibit a similar safety pattern in
immunosuppressed and immunocompetent patients, although the
immune response to vaccination can be impaired or even absent
with regards to magnitude, breadth, and persistence (Level 5) (Bijl
et al., 2012; Rubin et al., 2013). However, data on the efficacy of
vaccines in MG remains scarce, antibody titre testing to monitor
responses can be considered where appropriate (Level 5)
(Winkelmann et al., 2022).
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9.4 Clinical recommendations and
guidelines

Thus, most MG specialists believe the benefits of vaccination
outweigh any small risks in possible transient MG symptoms
exacerbation and For patients on IST, inactivated vaccines are
recommended (MGFA Vaccinations, 2025). Guidelines also
recommend influenza and pneumococcal vaccine for AIID
patients, which preferably be administered during quiescent
disease If possible, vaccinations should be administered prior to
immunosuppressive drugs, but necessary treatment should never be
postponed (Level 5) (Furer et al., 2020). Meanwhile, Alexander
emphasizes that vaccinations must be avoided during relapses or
exacerbations of neuroimmunological diseases (Level 5)
(Winkelmann et al., 2022).

10 Conclusion

This systematic review advances the current understanding by
comprehensively evaluating antimicrobial strategies for CAP in MG
patients, encompassing evidence-based selection from empirical
regimens to targeted therapies against multidrug-resistant
pathogens, fungal coinfections, and viral complications.
Clinicians managing CAP in MG patients must address three
critical considerations when selecting antimicrobial agents:
prevention of neuromuscular exacerbations, avoidance of
clinically significant drug interactions with immunosuppressive
therapies, and minimization of overlapping toxicity profiles.
Effective clinical management requires proactive surveillance for
adverse drug events, rigorous therapeutic drug monitoring, and
individualized dose optimization on the basis of pharmacokinetic/
pharmacodynamic principles.

Concurrent immunomodulator adjustment, guided by infection
severity and evidence-based risk stratification, is essential to balance
disease control with infection-related mortality risk. Through a
systematic synthesis of extant evidence, we propose a risk-
stratified algorithm for immunosuppressive management in MG
patients with CAP. This decision-support framework addresses a
critical evidence‒practice gap, providing interim guidance until
formal consensus guidelines are established. Future
implementation requires multidisciplinary collaboration,
integrating neurology, pulmonology, and infectious disease
expertise to optimize therapeutic outcomes.

Furthermore, this review underscores the critical role of
preventive strategies, particularly vaccination against influenza,
SARS-CoV-2, and Streptococcus pneumoniae. Proactive
immunization significantly mitigates infection risk in this
vulnerable population, forming an essential pillar of
comprehensive MG management alongside antimicrobial therapy
and immunomodulator adjustment.

Several limitations inherent in this work must be acknowledged.
Although a comprehensive literature review was conducted, the
generalized and heterogeneous nature of the available evidence
constrained the granularity of our analysis. Crucially, we could
not adequately account for critical variables such as MG
autoantibody subtype (AChR, MuSK, LRP4), patient age, and

specific immunosuppressive regimens-all of which are known to
influence infection risks and therapeutic responses (Gilhus et al.,
2018; Nelke et al., 2022). As a result, our findings and
recommendations remain necessarily broad. To address these
gaps, future research should prioritize large-scale, prospective
studies specifically designed to delineate how these factors
modulate infection risk and treatment outcomes. Such efforts are
essential to establishing personalized, evidence-based management
strategies for this vulnerable patient population.
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Glossary
MG Myasthenia gravis

CAP Community-acquired pneumonia

MC Myasthenic crisis

IS Immunosuppressant

NMJ Neuromuscular junction

AchR acetylcholine receptor

MuSK Muscle-specific kinase

LRP4 lipoprotein receptor-related protein 4

GCs Glucocorticoids

IVIg Intravenous immunoglobulins

PE Plasma exchange

ADRs Adverse drug reactions

FcRn Neonatal Fc receptor

AZA Azathioprine

MMF Mycophenolate Mofetil

US United States

AST American Society of Transplantation

MP Methylprednisolone

MTX Methotrexate

HR Hazard ratio

CI Confidence interval

NIH National Institutes of Health

CNI Calcineurin Inhibitor

NMV/r Nirmatrelvir and Ritonavir

CsA Cyclosporine

FVC Forced vital capacity

CTX Cyclophosphamide

SMZ-TMP Sulfamethoxazole and Trimethoprim

CYP450 Cytochrome P450

TAC Tacrolimus

DDI Drug‒Drug interaction

TB Tuberculosis

DXM Dexamethasone

NIH National Institutes of Health

MGFA Myasthenia gravis Foundation of America

ILI Influenza-like illness

AIID Autoimmune and autoinflammatory diseases
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