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Background: Nettle (Urtica cannabina L.) is a promising traditional food source
with great potential in the expanding functional foods market; however, the
bioactive potential of its polysaccharides, a major component, remains
underexplored as a functional food ingredient. This study evaluated the effects
of U. cannabina polysaccharides (UP) on gut microbiota modulation and systemic
antioxidant activity in healthy mice.

Methods: Mice were fed a basal diet or diets supplemented with low (300 mg/kg)
(UPL) and high (600 mg/kg) (UPH) doses of UP for 28 days.

Results: Our findings revealed that UP supplementation, particularly at low doses,
significantly improved growth performance (P < 0.05), serum lipid profiles (P <
0.05), and hepatic and serum antioxidant capacity without inducing liver damage.
Notably, UPL treatment reduced malondialdehyde (MDA) levels (P < 0.01) and
enhanced the activities of superoxide dismutase (SOD), glutathione peroxidase
(GSH-PX), catalase (CAT), and total antioxidant capacity (T-AOC) (P < 0.05).
Sequencing of 16S rRNA indicated that UP supplementation altered gut
microbiota composition, particularly by increasing the relative abundance of
beneficial genera such as Parabacteroides (P = 0.0973) and Dubosiella (P =
0.0648) in the UPL group, which were positively correlated with antioxidant
biomarkers. Moreover, UPL treatment elevated levels of short-chain fatty acids
(SCFAs), especially acetate and butyrate (P < 0.05). Untargeted metabolomics
demonstrated that UPL treatment influenced serum metabolic profiles and
enriched the bile acid (BA) secretion pathway, with notable increases in
deoxycholic and taurocholic acid, suggesting a potential link between gut
microbiota, BA metabolism, and host antioxidant status.

Conclusion: These findings indicate that UP could serve as a safe and effective
functional dietary supplement capable of improving antioxidant function through
gut microbiota modulation and gut-liver axis signaling.

Urtica cannabina L., polysaccharides, antioxidant, gut—liver axis, gut microbiota, serum
metabolites
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Introduction

The global demand for functional foods, which offer health
benefits beyond basic nutrition, continues to accelerate, driven by
increasing consumer awareness of the connection between diet and
health (Ataei Nukabadi et al., 2022; Wojcik et al., 2021). This trend
has sparked growing interest in plant sources rich in bioactive
constituents that are sustainable, multifunctional, and compatible
with modern dietary preferences (Kozlowska et al, 2019
Hernandez-Pérez et al,, 2022; Timm et al,, 2023). Among these,
medicinal plants stand out due to their diverse phytochemical
profiles and long histories of traditional use, offering valuable
opportunities for innovation in food and health applications
(Bel$¢ak-Cyvitanovi¢ et al., 2015).

Nettle Urtica cannabina L., a wild perennial herb of the
Urticaceae family, stands out for its rich phytochemical
composition and diverse ethnomedicinal uses across continents
(Purovi¢ et al.,, 2020; Kutlu et al, 2020). Traditionally used to
manage inflammatory conditions, anemia, and rheumatism,
its antioxidant,

nettle has attracted scientific attention for

antimicrobial, anti-inflammatory, and nutritional properties,
which are linked to its abundance of flavonoids, phenolic acids,
amino acids, vitamins, and minerals (Bagheri et al., 2021; Fiol et al.,
2016). Beyond its pharmacological uses, the aerial parts of nettle play
a historical role in traditional diet in both Chinese cuisine and
European cooking as a steamed vegetable and as an ingredient in
preparations such as soups, omelets, pastas, and cheese making
(Marchetti et al., 2018; Mohammadian et al., 2024; Rawat et al,,
2020). These applications highlight the dual role of nettle as a dietary
and medicinal resource.

While most studies have focused on phenolics and flavonoids
(Fattahi et al., 2014; Salim et al., 2020), polysaccharides are in fact the
most abundant macromolecular component of nettle. Existing
research on nettle polysaccharides is very limited compared to
other

polysaccharides has demonstrated that they can influence gut

components. Evidence from other plant-derived
microbiota, support immune and antioxidant functions, and
promote metabolic health. These effects are largely mediated
through fermentation by gut microbes, which produce short-
chain fatty acids (SCFAs) such as acetate, propionate, and
butyrate.
intestinal integrity, and systemic homeostasis (Chassaing et al.,
2015; Flint et al, 2012; Kovatcheva-Datchary et al, 2015;

Veronese et al, 2018). These findings suggest that nettle

These metabolites contribute to energy balance,

polysaccharides may exert similar health-promoting effects.
Despite these advances, the biological activity of nettle
polysaccharides remains poorly understood. Most research on
Urtica species has been conducted in pathological or sub-healthy
models (Haghshenas et al., 2023; Tlhan et al., 2019), while the effects
nettle polysaccharides have as a novel dietary supplement in healthy
individuals have not been systematically investigated. Given the
critical role of the gut-liver axis in regulating host antioxidant
function and metabolic health (Pabst et al., 2023), it is necessary
to explore whether UP can beneficially modulate these pathways
under physiological conditions.

Hence, we aimed to explore whether the consumption of nettle
polysaccharides by healthy subjects has a beneficial effect on the
body. In the present study, we hypothesized that alternations in gut
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microbiota were relevant to the effects on U. cannabina
polysaccharides (UP) on the host metabolism. Specifically, we
assessed how different doses influence gut microbiota
composition, SCFA profiles, blood metabolites, and metabolic
phenotypes in healthy mice. By linking microbial shifts to
systemic metabolic responses, our research not only addresses the
knowledge gap regarding the biological role of UP but also provides
mechanistic insights into its health-promoting potential in the
functional ~ foods and

development  of next-generation

nutraceuticals.

Materials and methods

Urtica cannabina polysaccharide
preparation

The fresh aboveground parts of U. cannabina were cultivated
and collected in August 2023 at Hohhot, Inner Mongolia, China.
The aerial parts of plant samples were air-dried at room temperature
and then pulverized into powder with a grinder to pass through a 60-
mesh sieve. The preparation procedure of UP was carried out
according to Zhang et al. (2013) with slight modifications. The
dried plant powder was first treated with petroleum ether to
eliminate some small molecular compounds. Then, 200 g of U.
cannabina powder was extracted with hot water (1:15 w/v) at 60 °C
for 4 h. The aqueous extract was collected by filtration with a 0.45-
um filter and concentrated by a rotary evaporator. The concentrated
supernatants were precipitated with anhydrous ethanol (ratio 1:4, v/
v) for 48 h at 4 °C. The floating precipitation above the ethanol was
collected by centrifugation and redissolved in ultrapure water. Then
the polysaccharide solution was deproteinated twice with Sevag
reagent, decolorized by D101 macroporous resin, and dialyzed
and lyophilized by a vacuum evaporator to obtain UP. The total
carbohydrate and uronic acid contents of UP were 57.8% and 6.2%,
respectively. It is important to note that due to equipment
limitations, detailed structural characterization of the UP was not
performed. Future studies will aim to include these analyses to
provide a more comprehensive physicochemical profile.

Animal experiment

The animal experiments complied with the National Standard
Guideline for Ethical Review of Animal Welfare (GB/T 35892-2018)
and were approved by the Committee on Experimental Animal
Management of the Chinese Academy of Agricultural Sciences
39/15.07.2023). We
30 Kunming mice (specific pathogen-free grade, 3-week-old

(Beijing)  (reference  No. purchased
male) from the Experimental Animal Center of the Inner
Mongolia Medical University (Hohhot, China). After a week of
acclimatization, the mice were randomly allocated into three groups
(n = 10 per group), and each group was fed an experimental diet: a
basal diet containing (1) no additive (CK), (2) low-dose (300 mg/kg)
UP (UPL), and (3) high-dose (600 mg/kg) UP (UPH) for 28 days.
The diet’s composition and nutrient levels are shown in
Supplementary Table S1. Each mouse was housed individually in
separate ventilated cages under constant conditions (12-h light/dark
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cycle, 23 °C £ 1 °C). The body weight, feed intake, and diet residue of
each mouse were monitored daily. Average daily body weight gain
(ADG), average daily feed intake (ADFI), and the ratio of feed to
gain (F/G) were calculated. By the end of the trial, the mice were
starved for 12 h and then euthanized for blood collection and other
tissue sampling. Serum samples was separated by centrifugation at
3,000 g for 15 min and stored at —80 °C until analysis. The levels of
alanine aminotransferase (ALT), aspartate aminotransferase (AST),
high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), triglyceride (TG), and total
cholesterol (TC) in the serum were measured by automatic
analyzer (HITACHI 747, Tokyo, Japan).

Analysis of antioxidant indices in serum
and liver

The frozen liver tissue was minced and homogenized (10% w/v)
in normal saline, and then the grinding liquid was centrifuged at
3,000 g for 10 min at 4 °C. The supernatant and serum thus obtained
were used to measure the level of total antioxidant capacity
(T-AOC), catalase (CAT), superoxide dismutase (SOD),
glutathione peroxidase (GSH-PX), and malondialdehyde (MDA).
Antioxidant indices and protein were assessed by commercially
available kits from the Jiancheng Bioengineering Institute
(Nanjing, China) in with
instructions.

accordance the manufacturer’s

Histopathological examination

Fresh liver and colon samples were resected, rinsed with saline,
and fixed in 4% paraformaldehyde. The tissues were then embedded
in paraffin, sectioned, and subjected to hematoxylin and eosin
(H&E) staining. Representative stained sections were selected,
and histological images were captured by microscope (Olympus
BX51, Japan).

16s rRNA gene sequencing and
SCFA analysis

Genomic DNA was extracted from colon contents using the
EZNA®Soil NDA Kit (Omega Bio-Tek, Inc., USA) following kit
protocols. The quality of isolated DNA was measured using a
NanoDrop NC2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA) and 1% agarose gel electrophoresis. The
DNA obtained was amplified with specific bacterial primers
targeting the V3-V4 region of the bacterial 16S rRNA gene
using the forward (5'-ACTCCTACGGGAGGCAGCA-3') and
reverse primers (5'-GGACTACHVGGGTWTCTAAT-3'), and
amplicon sequencing using paired-end sequencing (Novaseq-
PE250) on the Illumina platform were performed at Gene
Denovo Biotechnology Co. (Guangzhou, China). The PCR
reaction program and analyses of alpha (Chaol, ACE,
Shannon, Simpson, and Pielou) and beta bacterial diversities
referred to our previous research (Jize et al., 2022). PICRUSt2
analysis was employed to predict functional shifts in the
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microbiota across different samples. This prediction was
based on the level 2 pathways within the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database. Further details
regarding the PICRUSt2 methodology can be found at https://
github.com/picrust/picrust2. We dissolved 200 mg colon
contents in 1 mL of ultrapure water and vortexed it, then the
SCFA profiles of colon content homogenates were determined
using gas chromatography (Agilent 6850, Agilent Technologies
Inc., Santa Clara, CA, USA) (Liang et al., 2023).

Untargeted metabolomics of serum samples

Frozen serum samples (—80 °C) were thawed and vortexed. A
50-uL aliquot was mixed with 300 pL of extraction reagent
(acetonitrile: methanol, 1:4 v/v) containing internal standards,
vortexed for 3 min, and centrifuged (4 °C, 10 min, 21,380 g).
The supernatant was chilled (-20 °C, 30 min), recentrifuged, and
filtered (0.22-um membrane) prior to LC-MS analysis. LC-MS
analysis was performed using an Agilent 1,290 Infinity IT LC
system coupled with an Agilent 6550 QTOF mass spectrometer.
Analytes were eluted on a Waters ACQITY UPLC HSS
T3 C18 column (1.8 pum, 2.1 mm x 100 mm) with a mobile
phrase of water (A) and acetonitrile (B), both with 0.1% formic
acid, using the following gradient: 0-11 min, 95%-10%,
11-12 min, 10% A; 12-12.1 min, 10%-95% A; 12.1-14 min,
95% A. The column temperature was 40 °C, flow rate 0.40 mL/
min, and injection volume 2 pL. Mass spectrometry parameters
included ion source voltages of 2.5 kV (positive) and 1.5 kV
(negative); gas flow, 8 L/min; fragmentation voltage, 0.135 kV;
gas temperature, 325 °C; sheath temperature, 325 °C; sheath flow,
11 L/min; nebulizer, 40 V. Raw MS data was converted to mzXML
format (ProteoWizard) and processed with XCMS for retention
time correction, peak extraction, and alignment. Principal
component analysis (PCA), supervised orthogonal partial least-
squares discriminant analysis (OPLS-DA), and hierarchical cluster
analysis (HCA) were performed using MetaboAnalyst 6.0 online
these
multivariate analyses, variables underwent normalization by

software  (https://www.metaboanalyst.ca). Prior to
constant sum, Log;, transformation, and autoscaling. Tentative
feature identification was achieved by matching accurate mass
(mass tolerance <0.01 Da) and MS/MS data (mass tolerance <0.
02 Da) against databases (HMDB, MassBank, and the in-house
metabolite standard library of Shanghai Bioprofile Biotechnology
Co., Ltd.). Only features with fully matched MS/MS information in

the database were reported.

Statistical analysis

Data were expressed as means + standard deviation (SD). Data
analysis was performed using SPSS 20.0 (SPSS, Chicago, IL, USA).
The two-tailed Student’s t-test was employed for comparisons
between two groups, while one-way analysis of variance
(ANOVA) followed by Duncan’s post hoc test was used for
comparisons among three groups. Statistical significance was set
at P < 0.05. The correlation between gut microbiota and antioxidant
function was assessed using Pearson’s correlation analysis.

frontiersin.org


https://github.com/picrust/picrust2
https://github.com/picrust/picrust2
https://www.metaboanalyst.ca
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1692189

Zhang et al.

10.3389/fphar.2025.1692189

A B C D
-~ CK
504 = UPL 1.1 * 5 607 8- ke
= E) *k
3404 g
c E o> 74
S = £554 °
bt - 3 z
£ £ 0.9 & 8
= S 2 % 64
= § 3 5.0 o
5 0.8 ) 2
E 3 5
E
10 T T T T 0.7 T T T 4.5 T T T T T T
0 7 14 21 28 cK UPL  UPH CcK UPL  UPH cK UPL  UPH
Time (d)
E F G H
ALT AST HDL-C LDL-C
100 220 1.6 0.5+
%%k
90 200 144 0.4 .
80 180 0.3
= = Z 121 2
=] =] [ £
70 160 0.2
=
60 140 0.1
50 T T T 120 T T T 0.8 T T T 0.0 T T T
cK UPL  UPH cK UPL  UPH cK UPL  UPH cK UPL  UPH
| J
TG TC
2.0 5
*K *
4
1.5 sk kK
= =,
: | == 1
R =<
] ==
0.5 T T T 1 T T T
cK UPL  UPH cK UPL  UPH
FIGURE 1

Effects of Urtica cannabina polysaccharide (UP) supplementation on growth performance and serum biochemical parameters in mice. (A) Body
weight of mice (n = 10). (B) Average daily gain (ADG) of mice (n = 10). (C) Average daily feed intake (ADFI) of mice (n = 10.; (D) Ratio of feed to gain (F/G) of
mice (n = 10). (E=F) Liver function (n = 6). (G=J) Lipid metabolism (n = 6). *P < 0.05, **P < 0.01. CK, control; UPL, low dose of U. cannabina polysaccharide;
UPH, high dose of U. cannabina polysaccharide; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol.

Results

Effects of UP on growth performance and
serum biochemical profiles

Over the 4-week feeding period, all treatments resulted in a
notable increase in the body weight of mice (Figure 1A). Specifically,
there were significant differences in body weight on the second week
and by the end of the experiment between CK and UPL
supplemented groups (P < 0.05). Furthermore, as shown in
Figures 1B ,D, UPL treatment significantly improved ADG and
F/G. However, the effect of UP on the ADFI was not detected (P >
0.05) (Figure 1C). The effect of UP on the severity of liver injury or
liver disease was evaluated by determining AST and ALT activities in
serum. As shown in Figures 1E ,F, AST and ALT did not exhibit
significant differences among groups, which indicated that the liver
metabolic function was relatively favorable and belonged to a health
state. Moreover, the serum levels of TG, TC, and LDL-C were
significantly decreased (P < 0.05) after UP administration compared
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with those in the CK group (Figures 1H-J). There were no
differences in HDL-C levels among the three groups (Figure 1G).

Effects of UP on antioxidant activities in the
serum and liver

In serum, the level of MDA was notably decreased in mice
supplied with low-dose UP (300 mg/kg) in comparison to the CK
group (Figure 2D). Meanwhile, low-dose UP supplementation
significantly increased the activities of SOD, GSH-PX, CAT, and
T-AOC (P < 0.05) (Figures 2A-C,E). However, high-dose UP had
almost no significant improvement on serum antioxidant capacity
compared to the CK group, except for CAT activity. The activities of
antioxidant enzymes in liver are shown in Figures 2F-]. Compared
to those of the CK group, the SOD, GSH-PX, and T-AOC activities
of both UP treatments were enhanced, and MDA content was
reduced due to UP supplementation (P < 0.05). However,
significant upregulated CAT activity was only observed in the
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FIGURE 2
Effects of Urtica cannabina polysaccharide (UP) supplementation on serum (A—D) and liver (F-J) antioxidative activities (n = 6). *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001 CK, control; UPL, low dose of U. cannabina polysaccharide; UPH, high dose of U. cannabina polysaccharide; SOD,
superoxide dismutase; GSH-PX, glutathione peroxidase; CAT, catalase; MDA, malondialdehyde; T-AOC, total antioxidant capacity.

UPL

FIGURE 3
Effects of Urtica cannabina polysaccharide (UP) supplementation on the histological structure of liver and colon (n = 4). Representative images were
captured by a microscope at 40x. CK, control; UPL, low dose of U. cannabina polysaccharide; UPH, high dose of U. cannabina polysaccharide.
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FIGURE 4

Effects of Urtica cannabina polysaccharide (UP) supplementation on the structure and function of colon contents microbial community (n = 6). (A)
a-diversity, including richness index (Chaol and ACE), bacterial diversity index (Shannon and Simpson), and evenness index (Pielou). (B) Principal
coordinate analysis (PCoA) of the overall colon contents microbiota in mice based on unweighted UniFrac distance. (C—E) Comparisons of gut bacterial
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FIGURE 4 (Continued)
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communities in mice under different dietary treatments. The microbiota composition at the phylum (C), family (D), and genus (E) levels. (F) Heatmap

of top 20 bacterial genera of all groups. (G) Heatmap of top 20 gene families based on PICRUSt2 function prediction from gut microbiota. (H) Metabolic
pathways with significant differences between CK and UPL groups. (I) Metabolic pathways with significant differences between UPL and UPH groups. CK,
control; UPL, low dose of U. cannabina polysaccharide; UPH, high dose of U. cannabina polysaccharide.
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Data are presented as means + SD (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. CK, control; UPL, low dose of U. cannabina

polysaccharide; UPH, high dose of U. cannabina polysaccharide.

UPL group (P < 0.05). These results reveal that low doses of UP
addition in mice exhibited optimal antioxidant capacity in
comparison to the high-dose UP treatment.

Histopathological analysis

We then investigated the effects of UP treatments on liver and colon
histology. As shown in Figure 3, UP treatments caused no adverse
impact on the liver microstructure. Hepatocytes in all groups remained
radially organized around the central vein, displaying clear cell
boundaries and no visible lipid droplets. Likewise, H&E staining of
the colon revealed well-organized tissue architecture in both the CK and
UP-intervention groups, with an intact mucosal epithelium and no
signs of inflammatory cell infiltration.

Effects of UP on the composition and
function of gut microbiota

As shown in Figure 4A, except for the Shannon index, most a-
diversity indices exhibited no significant differences between groups,
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suggesting that UP administration may have a limited effect on the
diversity and richness of the murine gut microbiota. Furthermore,
we assessed whether UP intervention altered the overall gut
microbial community structure using p-diversity analysis. The
results revealed that UP diet caused a significant separation of
gut microbiota between the CK and UPL supplementation
groups, but not the UPH group (Figure 4B).

Reflecting the (-diversity variations, UP impacted the relative
abundance of bacteria across different taxonomic levels. The bacterial
communities at the phylum level in all groups were primarily
Proteobacteria, Bacteroidetes, and
Deferribacteres, which together constituted over 86% (Figure 4C). At
the family level, in primary microbiota (relative abundance >1%), UP

represented by  Firmicutes,

administration remarkably decreased the abundance of Lachnospiraceae
(Figure 4D). Lower relative abundance of Desulfovibrionaceae was only
observed in the UPL group compared to the CK group. In contrast, the
UP groups exhibited a higher relative abundance of Ruminococcaceae
than the CK group. At the genus level, the top ranked bacterial genera of
all groups were compared (Figure 4E), and bacterial genera with relative
abundances below 0.1% were classified as others. We found that UP
supplementation reduced the relative abundance of Lachnospiraceae_
NK4A136_group. Compared to the CK group, low doses of UP
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significantly decreased the abundance of Mycoplasma (Supplementary
Figure S1), while high doses of UP significantly increased the abundance
of Roseburia (Supplementary Figure SI). Moreover, the relative
abundances of Parabacteroides (P = 0.0973) and Dubosiella (P =
0.0648) tended to increase in the UPL treatment group
(Supplementary Figure S1). To visualize the distribution of microbial
communities among three groups, the relative abundance of 20 genera
are displayed using a heatmap (Figure 4F). Some bacterial genera
exhibited remarkable differences in relative abundances between
groups. For example, Alistipes, Lactobacillus, Intestinimonas,
Odoribacter, Candidatus_Saccharimonas, Bacteroides, Mucispirillum,
UBA 1819, and Roseburia enriched in the UPH
group. However, low doses of UP increased the abundance of
Parabacteroides, Dubosiella, Parasutterella, and Alloprevotella. These
results imply that UPL and UPH treatments modulate the gut
microbiota in distinct ways. In summary, low doses of UP seem to
induce a potentially favorable gut microbiota profile and enhance the
relative abundance of probiotic bacteria.

Furthermore, a heatmap depicting the distribution of the top
20 predicted functional metabolic pathways is shown in Figure 4G.
Consistent with the distribution of microbial communities, the
functional metabolic pathways also exhibited distinct variation among
the three groups. Specifically, signal transduction and xenobiotics

were
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biodegradation and metabolism were enriched in the UPL group
compared with the CK and UPH groups (P < 0.05) (Figures 4H,I).

Effects of UP on SCFAs

The SCFA concentrations in colon contents are presented in
Figure 5. Acetate, propionate, and butyrate as primary SCFA
components were detected in all groups. As shown in Figures
5A-F, the UPL group exhibited significantly elevated total SCFA
levels compared to the CK group. Inter-group analysis revealed that
UP selectively increased acetate concentration in colon contents (P <
0.05) relative to the CK group, irrespective of the administrated dose
(Figure 5A). The mean acetate levels in the CK, UPL, and UPH
groups were 2,584, 3,130, and 3,028 pg/g, respectively. In colon
contents, no significant differences were observed between the CK
and UPH groups for all SACFs other than acetate.

Effects of UP on serum metabolites
Functioning as phenotype regulators, metabolites were profiled

via untargeted metabolism in mouse serum to explore alternations
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in host metabolism between the CK and UPL groups. Across all
serum samples, a total of 1907 metabolites were detected (908 in
positive and 999 in negative ion modes) (Supplementary Table S2),
which were then subjected to multivariate statistical analyses. The
PCA analysis of these metabolites (Figure 6A) clearly separated
serum samples from the CK and UPL groups into distinct clusters. A
similar distinct separation was observed in the OPLS-DA score
scatter plot (Figure 6B). OPLS-DA, a supervised discriminant
analysis statistical method, more effectively highlights inter-
sample differences than PCA. Differentially expressed metabolites
were identified using OPLS-DA-model-derived variable importance
projection (VIP) scores >1.0, P < 0.05 in Student’s t-test as well as
fold change (FC) values >1.5 or <1/1.5. This analysis revealed
291 metabolites (167 upregulated and 124 downregulated) with
significant abundance differences between the CK and UPL
groups (Figures 6CD). The
classifications were lipids and lipid-like molecules (50.45%),

most abundant metabolite
organoheterocyclic compounds (13.74%), organic acids and
derivatives (13.13%), benzenoids (8.96%), and phenylpropanoids
and polyketides (5.37%). The top 30 enriched KEGG pathways
based on these differential metabolites are presented in

Figure 6E, with arachidonic acid metabolism, bile secretion,
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neuroactive ligand-receptor interaction (NLRI), and serotonergic
synapse exhibiting the highest number of associated metabolites
(over five metabolites). Figure 7 further details the abundance of bile
secretion pathway-related metabolites across the two groups. These
metabolites are closely related to hepatic function, with four being
downregulated and five upregulated.

Analysis of the correlations between gut
microbiota and antioxidant function

To determine whether UP-induced changes in the hepatic
antioxidant function were associated with the effects on gut
microbiota, we performed Pearson’s correlation coefficient (r)
analysis (Figure 8). UPL-induced shifts in Parabacteroides were
positively linked to T-AOC activity and negatively associated
with MDA level. Dubosiella enriched in the UPL supplemented
mice showed positive correlation with SOD activity. Candidatus_
Saccharimonas, a genus with higher abundance in the UPH group,
was positively associated with SOD activity. Additionally, we found
that higher abundances of Intestinimonas and Bacteroides had
negative correlations with SOD and CAT activities, respectively.
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Discussion

Polysaccharides are primary bioactive constituents of Urtica
studies have highlighted the
metabolic benefits of other key bioactive constituents from Urtica

cannabina. While numerous
species, such as phenolics and flavonoids, in ameliorating oxidative
and inflammatory states associated with metabolic syndrome
(Bhusal et al, 2022; Carvalho et al, 2017), the physiological
effects of its polysaccharides are less documented. Furthermore,
most research on the bioactive constituents of U. cannabina has
focused on interventions in sub-healthy or diseased individuals
(Samakar et al., 2022), with limited information available on
their impact on healthy subjects. This study aimed to fill this gap
by investigating how different doses of UP affect metabolic
phenotypes, serum metabolites, gut microbiota compositions, and
SCFA profiles in healthy mice, thereby exploring the associations
between host metabolism and the gut microbiome.

Our results demonstrated that UP supplementation, particularly
at a low dose of 300 mg/kg, enhanced growth performance, as
evidenced by improved ADG and F/G. This finding aligns with
previous research demonstrating that plant polysaccharides from
Artemisia argyi and A. ordosica L. improved growth performance in
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broilers and rats, respectively (Xing et al., 2020; Zhang J et al., 2016),
reinforcing the growth-promoting potential of polysaccharide as a
major bioactive component in plant aqueous extracts. Beyond
growth, UP administration in the current study also significantly
influenced serum lipid profiles by reducing TC, TG, and LDL-C.
Hyperlipidemia, a lipid metabolism disorder characterized by
elevated TC, TG or LDL-C, or reduced HDL-C, is a major risk
factor associated with atherosclerosis (Chai et al., 2022) and often
co-occurs with other cardiovascular risks like diabetes and
hypertension (Bragg and Walling, 2015). Our observations are
consistent with prior in vivo studies where aqueous extracts of
nettle demonstrated combined hypoglycemic and hypolipidemic
(Mehran et al, 2015).
hypolipidemic effect of nettle aqueous extract (150 mg/kg/day)
was reported in rats on a high-fat diet, manifested as a decrease
in serum TC and LDL-C levels and in the LDL-C/HDL-C ratio
(Daher et al., 2006).

Many chronic diseases, such as obesity, diabetes, and

activities Specifically, a noticeable

cardiovascular diseases, are strongly linked to in vivo oxidative
stress resulting from the overproduction of reactive oxygen
species (ROS) (Zhang P et al, 2016). Natural polysaccharides
exhibit broad these
conditions, primarily due to their potent antioxidant properties

therapeutic applications in treating
mediated by the regulation of signal transduction pathways,
activating enzymes, and scavenging free radicals (Wang et al,
2017; Xing et al, 2020). In this study, UP supplementation,
particularly at low doses (UPL), enhanced both hepatic and
serum antioxidant capacity, evidenced by reduced MDA levels
and concurrently elevated activities of SOD, GSH-PX, CAT, and
T-AOC. H&E staining revealed no significant histological changes in
the liver following UP treatments, indicating that UP preserved
normal hepatocyte function. This was consistent with the lack of
significant differences in serum ALT and AST levels between the CK
and UP groups, as these are commonly used indicators of
liver function.

Given the established role of the gut microbiome as a critical
modulator of system metabolism (Flint et al.,, 2012), we further
investigated its potential contribution to these potent antioxidant
effects. We hypothesized that the benefits observed in the liver and
serum were possibly mediated through the gut-liver axis, a crucial
pathway of bidirectional communication, where gut microbial
metabolites influence liver function and bile acids (BAs), in turn
shaping the microbial community (Foley et al., 2019; Wang et al,,
2025a). The results obtained support this hypothesis, revealing that
UP supplementation significantly modulated the gut microbiota
composition. Specifically, the abundances of Parabacteroides and
Dubosiella were enriched in the UPL group, showing a significant
positive correlation with hepatic antioxidant capability in mice.
the

gastrointestinal tract of humans and animals, is known for

Parabacteroides, a potential probiotic prevalent in
producing secondary BAs and acetate (Lei et al, 2021; Wu,
2023). Dietary Parabacteroides intervention has been proven to
enhance antioxidant capacity and reduce oxidative stress-induced
tissue damage by activating the Nrf2 antioxidant response pathway
in piglets (Wu et al., 2024). Similarly, Dubosiella has demonstrated
to the ability to boost secondary BA metabolism in mice following
probiotic intervention, leading to ameliorated inflammation and

improved intestinal barrier function (Liu et al., 2025). Extensive
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literature also supports the crucial role of Dubosiella in reducing
oxidative stress and tissue inflammation, primarily by increasing
SCFA production—particularly butyrate (Wei et al., 2023; Ye et al,,
2023). Further evidence for increased microbial metabolic activity in
the UPL group was provided by the KEGG function prediction using
PICRUSt2 analysis (Figures 5H,I), which predicted an enrichment of
pathways involved in signal transduction and xenobiotic
biodegradation and metabolism. These findings indicate a greater
potential for the gut microbiota to modify compounds such as
primary BAs and generate signaling molecules that interact with the
host through the gut-liver axis.

Consistent with the enrichment of these microbes, UPL
treatment significantly increased the concentrations of total and
individual SCFAs in gut contents, an effect not observed with the
UPH treatment. These SCFAs can traverse the gut-liver axis and
exert beneficial effects on hepatic functions (Wang et al., 2025b).
Furthermore, SCFAs produced by gut microbiota contribute to
numerous health benefits, including maintaining gut barrier
function, supplying intestinal energy, regulating immunity, and
exhibiting antioxidant, anti-inflammatory, and anti-tumor
properties (Dalile et al, 2019). SCFAs modulate host redox
homeostasis by either activating the Nrf2 signaling pathway,
which increases the expression of antioxidant enzymes (SOD and
CAT), or by inhibiting NADPH oxidase 2 (NOX2) activity, thereby
reducing ROS production (Wang et al., 2025a). Collectively, these
findings indicate that UP supplementation positively affects host

antioxidant function, likely mediated by its modulation of the gut
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microbiome and subsequently production of beneficial metabolites
like SCFAs and secondary BAs.

Hence, we performed untargeted serum metabolomics to
identify differential metabolites that may be responsible for the
antioxidant benefits of UP intervention. A clear separation between
CK and UPL groups was observed both in the PCA and OPLS-DA
analyses, indicating an effective influence on the metabolism of mice
due to UP supplementation. Pathway enrichment analysis of the
identified serum metabolites revealed a significant involvement in
bile secretion. In addition to their role in emulsifying of dietary fats,
BAs act as signaling molecules with important regulatory effects on
metabolic homeostasis (Ahmad and Haeusler, 2019; Garruti et al.,
2017). Primary and secondary BAs can regulate host immunological
and antioxidative processes through the activation of either the
nuclear farnesoid X receptor (FXR) or the cell-surface G protein-
coupled bile acid receptor 1 (GPBARL) (Punzo et al., 2024). Notably,
deoxycholic acid (DCA), a predominant constituent of secondary
BA, and taurocholic acid (TCA), a conjugated primary BA, were
significantly enriched in the UPL treatment (Figure 7). DCA is
known to act as a signaling molecule to activate the FXR (Xiang
et al., 2021). Previous studies have demonstrated that FXR agonists
activate the Nrf2 signaling, thereby decreasing the production of
ROS and MDA levels and concurrently upregulating the expression
of CAT, glutathione S-transferase (GST), and SOD in a diabetic mice
model (Li et al., 2020). TCA was demonstrated to have a positive
correlation with the expression of BA receptors, especially FXR
signaling (Xu et al, 2022). Due to its higher polarity and water
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solubility, TCA was reported to pass through the cell membrane and
exert intracellular antioxidant and anti-inflammatory effects (Ge
etal,, 2023). Importantly, TCA serves as a substrate for gut microbes
to produce DCA by converting taurine and cholic aid (Ridlon et al.,
2016). This interaction highlights the crucial role of BAs in the
enterohepatic circulation, where they interact dynamically with gut
microbiota. The microbiota actively participate in BAs metabolism
through processes like oxidation, fermentation, reduction, and
transformation. Certain gut microbes modify BAs through
hydrolysis or deoxygenation, resulting in the formation of
secondary BAs, which possess distinct metabolic pathways and
biological functions that may influence liver health.

Therefore, we speculate that UPL may improve host antioxidant
function through a mechanism involving the gut-liver axis.
Specifically, UPL treatment enriches for beneficial gut microbes,
including Parabacteroides and Dubosiella, which in turn increases
the production of SCFAs and modulates BA metabolism, leading to
elevated levels of signaling molecules like DCA. These microbial
metabolites then possibly active hepatic antioxidant pathways, such
as FXR/Nrf2, to protect against oxidative stress (Figure 9). However,
the current study is still limited by the lack of direct validation of key
signaling proteins, inflammatory markers, and portal metabolite
flux. The findings were further constrained using healthy animals
and the lack of a positive control group, which limits the assessment
of therapeutic relevance and comparative efficacy. Future work
should confirm pathway activation, clarify the role of specific
DCA,
pathological models using advanced molecular profiling and

metabolites such as and evaluate the efficacy in

portal venous sampling to establish causal mechanisms.

Conclusion

In the search for novel ingredients to meet the growing demand
for functional foods, this study identifies UP as a highly promising
candidate. Our findings demonstrate that low-dose UP acts as a
potent metabolic modulator, enhancing growth, improving lipid
profiles, and promoting systemic antioxidant defenses in healthy
mice. We propose a novel mechanism operating through the
gut-liver axis whereby UP selectively enriches beneficial gut
microbes, such as Parabacteroides and Dubosiella, leading to an
increased production of SCFAs and secondary BAs like DCA. These
microbial metabolites then likely stimulate hepatic antioxidant
pathways. By providing mechanistic insights into the pathway
from ingestion to systemic health benefit, our findings strongly
support the development of UP as a high-value functional food
ingredient for maintaining host metabolic homeostasis and
promoting overall wellbeing.
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