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Background: Patients diagnosed with malignant tumors exhibit a markedly
elevated risk of venous thromboembolism (VTE), which has a negative impact
on their prognosis. Currently, there is no reliable predictive model specifically for
thrombosis risk in lymphoma patients. This study aims to develop and validate a
machine learning model leveraging real-world data, offering a dependable risk
assessment tool for the early identification of VTE in lymphoma patients.
Methods: We retrospectively analyzed 605 hospitalized patients with lymphoma
between January 2019 and June 2024. Candidate predictors included
demographic characteristics, comorbidities and medical history, tumor-related
factors, treatment-related factors, and laboratory parameters. The primary
endpoint was the occurrence of VTE within 6 months after hospitalization for
confirmed lymphoma. Model development incorporated three imputation
methods, three sampling strategies, three feature selection approaches, and
nine machine learning algorithms. Predictive performance was compared
across all models.
Results: Combining different imputation, sampling, and feature selection
strategies yielded 27 datasets, which were trained across nine algorithms to
generate 243 models. The optimal model—Simp-SMOTE_rf_GBM, constructed
using random forest imputation, SMOTE oversampling, and gradient boosting
machine—achieved the highest predictive performance (AUC = 0.954). SHAP-
based model interpretation identified nine key predictors ranked by importance:
anticoagulant use, D-dimer, lactate dehydrogenase, central venous
catheterization, carcinoembryonic antigen (CEA), Eastern Cooperative
Oncology Group (ECOG) score, serum total protein (TP), total cholesterol
(TC), and infectious disease.
Conclusion: This study established and validated a machine learning model for
predicting VTE risk in lymphoma patients, with the optimal model demonstrating
excellent discriminatory ability (AUC = 0.954). The model provides evidence to
guide the timing and strategy of anticoagulation, supporting early VTE screening
and risk stratification in clinical practice. Its implementation has important
implications for improving patient outcomes and advancing public health.
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Introduction

Cancer is one of the leading causes of global disease burden,
accounting for approximately one-sixth of all deaths worldwide
(Bray et al., 2021; 2024). Beyond its impact on health, cancer
imposes a substantial economic burden and has become a major
global public health concern (Chen et al., 2023). Within the
spectrum of hematological malignancies, lymphoma exhibits the
highest incidence globally (Ying X. H et al., 2024). Lymphoma
comprises a heterogeneous group of malignancies arising from the
lymphoid system and the potential to involve multiple anatomical
sites, including lymph nodes, tonsils, spleen, and bone marrow
(Bobillo et al., 2022). Recent epidemiological trends reveal a
concerning 5% annual increase in lymphoma incidence
worldwide (Meng, 2019). The 2020 Global Cancer Statistics
Report documented approximately 630,000 incident lymphoma
cases globally, with projections suggesting this burden will
escalate to 910,000 cases by 2040 (Sung et al., 2021). In China,
the incidence of lymphoma is also growing rapidly, ranking eighth
among all cancer types (National Cancer Center, 2025).

VTE, comprising deep vein thrombosis (DVT) and pulmonary
embolism (PE), is a common complication and a leading cause of
mortality among hospitalized patients (Khan et al., 2013).
Epidemiological data indicate that adult cancer patients face a
4 to 6.5-fold higher risk of VTE compared with noncancer
populations (Kekre and Connors, 2019). Hematologic
malignancies confer an even greater thrombotic risk than solid
tumors (Blom et al., 2005), with lymphoma patients particularly
predisposed to VTE, a risk that continues to rise annually (Wan,
2024). Reported incidence rates of VTE in lymphoma range from 5%
to 17% (Sanfilippo et al., 2016). Notably, non-Hodgkin lymphoma
(NHL) carries a higher thrombotic risk than Hodgkin lymphoma
(HL). Mohren et al. reported a VTE incidence of 10.6% among
patients with high-grade NHL, compared with 7.65% in HL and
5.8% in low-grade NHL (Mohren et al., 2005). A meta-analysis by
Caruso et al. further confirmed this difference, with a thrombosis
incidence rate of 6.5% in NHL patients and only 4.7% in HL patients
(P < 0.001) (Caruso et al., 2010). Within NHL subtypes, difference
persists: in a U.S. single-center retrospective study, the 1- and 5-year
incidence of VTE in follicular lymphoma was 2.4% and 3.8%,
respectively, markedly lower than 10.8% and 16.3% observed in
patients with diffuse large B-cell lymphoma (DLBCL)
(Dharmavaram et al., 2020). The occurrence of VTE not only
leads to limb pain, impaired mobility, and reduced quality of life
but also disrupts chemotherapy and is associated with inferior
survival outcomes.

Although prophylactic anticoagulation can effectively prevent
VTE and recurrence, it also increases the risk of bleeding. In contrast
to solid malignancies, lymphoma exhibits greater bone marrow
invasiveness, frequently resulting in thrombocytopenia and
consequent bleeding diathesis, further exacerbating the economic
and clinical burden (Shang et al., 2023). Consequently, achieving
optimal risk-benefit equilibrium with prophylactic anticoagulation
remains a pressing clinical dilemma and therapeutic challenge.
International guidelines emphasize the need for accurate and
efficient VTE risk assessment tools to identify high-risk patients
and to inform tailored prevention and management strategies
(Streiff et al., 2021).

Methods

Study population

We performed a retrospective cohort analysis of 605 lymphoma
patients admitted to Sichuan Provincial People’s Hospital between
January 2019 and June 2024. Inclusion criteria comprised: (1)
Age ≥18 years; (2) Histopathologically confirmed lymphoma
diagnosis according to the 2022 WHO Classification of
Hematopoietic and Lymphoid Tumors (WHO-HAEM5) criteria.
Exclusion criteria included: (1) Prior anticancer therapy at external
institutions; (2) Secondary lymphoma or concurrent multiple
primary malignancies; (3) VTE events diagnosed before
lymphoma confirmation; (4) Incomplete hospitalization records;
(5) Insufficient follow-up (<6 months) for VTE assessment. VTE
occurrence within 6 months was ascertained through
comprehensive review of electronic medical records (EMR),
including inpatient documentation, outpatient visits, and
confirmatory imaging studies (e.g., compression
ultrasonography). The study protocol received approval from the
Institutional Review Board of Sichuan Provincial People’s Hospital
[Ethics Review (Research) No. 526 of 2024].

Data collection

Potential VTE-associated predictors were identified through a
systematic literature review and expert consultation. Clinical data
were extracted retrospectively from the hospital’s EMR system. (1)
Demographics: age, height, weight, Body mass index (BMI), sex,
smoking status, chronic alcohol use (>5 years), and Eastern
Cooperative Oncology Group (ECOG) score. (2) Comorbidities
and medical history: hypertension, diabetes mellitus, active
infections, hepatic disorders, electrolyte disturbances, pulmonary
comorbidities, and prior transfusion history; (3) Tumor-related
factors: tumor histological subtype, tumor stage, recurrence or
refractory lymphoma, extranodal involvement, mediastinal
involvement, bone marrow involvement, central nervous system
involvement, splenic involvement, B symptoms, large mass
(>10 cm); (4) Treatment-related factors: platinum-based drugs,
anthracycline-based drugs, rituximab, erythropoietin/granulocyte
colony-stimulating factor, etc.; (5) Laboratory parameters:
D-dimer, Prothrombin time (PT), activated partial
thromboplastin time (aPTT), fibrinogen, white blood cell count
(WBC), platelets, hemoglobin, neutrophils, monocytes,
hypersensitive C-reactive protein (hs-CRP), erythrocyte
sedimentation rate (ESR), etc. For patients with multiple
admissions, only baseline data from the index hospitalization
were analyzed. All patient identifiers were anonymized and
replaced with unique study identification codes.

Data preprocessing

Because of missing data, class imbalance, and the high
dimensionality of candidate predictors, data preprocessing
included imputation, resampling, and feature selection to reduce
the risk of overfitting and the “curse of dimensionality.”
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Comprehensive data preprocessing was through three key
approaches: (1) Data imputation: K-nearest neighbors (KNN),
random forest, and predictive mean matching; (2) Data sampling:
random oversampling, SMOTE (Synthetic Minority Over-sampling
Technique), and Borderline-SMOTE; (3) Feature selection: LASSO
(Least Absolute Shrinkage and Selection Operator), ridge, and elastic
net regression. Through a full factorial combination of these
methods, we generated 27 distinct processed datasets for
subsequent model development. Data cleaning methods and
algorithm ID assignments are shown in Supplementary Table S1.

Model development and evaluation

Datasets were randomly split into training (80%) and test (20%)
sets with stratified sampling to maintain outcome distribution. The
training set facilitated model development using nine distinct
machine learning (ML) algorithms, with the test set reserved for
independent performance evaluation. The ML algorithms include
logistic regression (LR), decision trees (DT), random forests (RF),
support vector machines (SVM), naive Bayes (NB), KNN, gradient
boosting machine (GBM), extreme gradient boosting (XGBoost),
and adaptive boosting (AdaBoost). We employed the training set for
model construction and utilized a 10-fold cross-validation approach
coupled with a grid search strategy to optimize the parameters of the
top-performing machine learning algorithm on the training set.
Subsequently, feature selection was conducted using all available
variables, followed by model rebuilding. Next, simplify the model by
reducing the number of feature variables. The top nine ranked
predictors were then used to rebuild simplified models with the five
highest-performing algorithms, followed by hyperparameter
optimization. This step assessed the trade-off between parsimony
and predictive performance.

A comprehensive evaluation framework was employed to assess
model performance across three critical dimensions: discrimination,
calibration, and clinical utility. Discrimination was quantified using
multiple metrics: accuracy, specificity, sensitivity (recall), positive
predictive values (PPV), negative predictive values (NPV), F1-score,
and area under the curve (AUC). The calculation formulas for
evaluation metrics are provided in Supplementary Table S2.
Clinical net benefit was rigorously evaluated through decision
curve analysis (DCA) across clinically relevant probability
thresholds. Model interpretability was achieved using Shapley
Additive exPlanations (SHAP) analysis implemented in R
(version 4.2.1). Feature importance was systematically ranked
based on mean absolute SHAP values to identify the most
influential predictors.

Statistical analysis

To ensure data integrity, dual independent data entry with cross-
verification was performed by trained research assistants, followed
by systematic quality control checks. Variables exceeding 80%
missing data or exhibiting extreme outliers were excluded during
preprocessing. Initial univariate analyses compared baseline
characteristics between VTE and non-VTE cohorts to identify
potential associations. Normally distributed continuous variables

were expressed as mean ± standard deviation and compared using
t-tests. Quantitative variables that did not follow a normal
distribution were expressed as median and interquartile range
and analyzed using the Kruskal–Wallis test. Categorical variables
were presented as counts (percentages) and analyzed using
Pearson’s χ2 or Fisher’s exact tests, as appropriate for expected
cell frequencies. A two-sided α level of 0.05 defined statistical
significance for all analyses. All data were analyzed using SPSS
Statistics 26.0 software and R statistical software (version 4.0.3;
https://www.r-project.org).

Result

Patient population characteristics

A total of 2,734 hospitalization records of patients with
lymphoma were retrieved from the EMR system. After de-
duplication, 1,171 valid records remained. The final analytic
cohort comprised 605 eligible patients meeting all inclusion
criteria. The cohort included 61 VTE cases (incidence 10.1%)
and 544 matched controls. Figure 1 presents the patient
selection process.

The final cohort comprised 605 patients (277 female [45.8%];
328 male [54.2%]) with a mean age of 55.5 ± 14.5 years. Regarding
histological classification: Aggressive NHL predominated (n = 410,
67.8%), followed by indolent NHL (n = 159, 26.3%) and HL (n = 25,
4.1%). Of patients with documented staging (n = 564), most
presented with advanced disease (n = 367, 65.1%). Central
venous access was utilized in 38.8% (n = 235) of cases. Complete
baseline characteristics are summarized in Table 1.

Of the 61 patients with lymphoma complicated by VTE,
83.6% (n = 51) had aggressive histology. The VTE incidence
peaked at 45.9% (28/61) by 30 days post-diagnosis, with
subsequent rates of 27.9% at 90 days and 26.2% at 180 days.
Advanced-stage disease (III-IV) conferred a higher VTE risk
(70.5% vs. 18.0% in early-stage). VTE manifestations included:
lower extremity DVT (49.2%, n = 30), upper extremity DVT
(18.0%, n = 11), cervical venous thrombosis (9.8%, n = 6), PE
(8.2%, n = 5), portal vein thrombosis (3.3%, n = 2), multisite
thrombosis (11.5%, n = 7). Comprehensive VTE characteristics
and comparative analyses are detailed in Supplementary Table S3
from the supplementary material.

Differences between patient groups

Univariate analysis demonstrated statistically significant
differences (P < 0.05) between the two groups in baseline
characteristics (age, ECOG score), comorbidities (diabetes,
infectious diseases, electrolyte disturbances), tumor features
[histological subtype, staging, central nervous system involvement
(CNS)], treatment-related factors (transfusion history, EPO/G-CSF
usage, central venous access, anticoagulant use), and laboratory
parameters [D-dimer, fibrin degradation products (FDP), hs-
CRP, LDH, red blood cell count, hematocrit, albumin, TP, serum
calcium]. Detailed data are presented in Supplementary Table S4
from supplementary material.
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Feature selection results

From an initial 63 candidate variables, feature selection was
performed to reduce redundancy. Since the feature dimension was
still redundant after screening, the study only presented the top
15 most important variables in the performance-optimal model
constructed based on all variables, with the aim of improving
analysis efficiency to meet actual analysis needs. Figure 2
illustrates the feature importance ranking. The weights of these
features are ranked from highest to lowest as follows: anticoagulant
drugs, D-dimer, lactate dehydrogenase levels, use of intravenous
catheters, CEA, ECOG score, TP, TC, infectious diseases, β2-
microglobulin, calcium, erythropoiesis-stimulating/granulocyte
colony-stimulating factors (ESAs/G-CSFs), hemoglobin
concentration, presence of mediastinal involvement, and presence
of central involvement.

Model construction and evaluation results

We ultimately constructed 243 models. In the training set, the
five best models achieved AUCs of 0.987, 0.992, 0.993, 0.991, and
0.987, respectively (Figure 3). Performance was subsequently
evaluated in the test set, with evaluation metrics for the top five
models reported in Table 2 (See Supplementary Table S5 for the
evaluationmetrics of the other models) and their ROC curves shown
in Figure 4. The optimal model combined k-nearest neighbors
imputation, Synthetic Minority Over-sampling Technique
(SMOTE), elastic-net–based feature selection, and a gradient
boosting machine (GBM). In the test set, it achieved an AUC of

0.953 [95% confidence interval (CI): 0.932-0.974], accuracy of 0.903
(95% CI: 0.872-0.934), recall of 0.908 (95% CI: 0.864-0.952), and F1-
score of 0.894 (95% CI: 0.853-0.935), significantly outperforming
other approaches (P < 0.01). Feature-importance analysis identified
the top nine predictors as venous catheterization, D-dimer,
anticoagulant drugs, LDH, TP, β2-microglobulin, erythropoiesis
or granulopoiesis-stimulating drugs, CEA, and ECOG score.

DCA of the top five prediction models following comprehensive
feature selection is presented in Figure 5. As demonstrated in
Figure 5, model_1 shows superior net benefit compared to the
“treat-all” and “treat-none” reference lines across the 0%–85%
probability threshold range. Similarly, when the threshold is
within the 0%–75% probability range, model_5 has high clinical
application value. Notably, models 2, 3, and four maintain clinical
validity throughout the entire threshold spectrum (0%–100%), with
models two and four consistently outperforming model three in
terms of net benefit.

We employed SHAP analysis to quantify the relative
contribution of each predictive feature in the model. Figure 6
presents the SHAP summary plot for the optimal model,
displaying feature importance rankings derived from
comprehensive feature selection. Global interpretation revealed
the mean absolute SHAP values for each feature, ranked in
descending order of contribution to model predictions. Venous
catheterization emerged as the most influential predictor.
Subsequent predictors included: D-dimer, anticoagulant drugs,
LDH, TP, etc.

Figure 7 presents the SHAP beeswarm plot of the optimal model
derived from comprehensive feature selection, illustrating feature
importance and effect directions across the entire test cohort.

FIGURE 1
Patient screening flowchart.
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TABLE 1 Baseline characteristics of patients.

Variable name Subclassification Count Proportion (%)

Sex

Female 277 45.8%

Male 328 54.2%

Ethnicity

Han Chinese 580 95.9%

Ethnic Minority 25 4.1%

Smoking History

Yes 167 27.6%

No 438 72.4%

Chronic Alcohol Use

Yes 85 14.0%

No 520 86.0%

ECOG score

<2 74 12.2%

≥2 257 42.5%

Not Specified 274 45.3%

Atherosclerosis

Yes 49 8.1%

No 556 91.9%

Hypertension

Yes 115 19.0%

No 490 81.0%

Diabetes Mellitus

Yes 72 11.9%

No 533 88.1%

Atrial Fibrillation

Yes 9 1.5%

No 596 98.5%

Cardiac Insufficiency

Yes 21 3.5%

No 584 96.5%

Cerebral/Myocardial Infarction

Yes 30 5.0%

No 575 95.0%

Hyperlipidemia

Yes 17 2.8%

No 588 97.2%

(Continued on following page)
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TABLE 1 (Continued) Baseline characteristics of patients.

Variable name Subclassification Count Proportion (%)

Hyperuricemia

Yes 53 8.8%

No 552 91.2%

Infectious Diseases

Yes 185 30.6%

No 420 69.4%

Autoimmune Diseases

Yes 11 1.8%

No 594 98.2%

Hepatic Disorders

Yes 181 29.9%

No 424 70.1%

Renal Disorders

Yes 33 5.5%

No 572 94.5%

Electrolyte Imbalance

Yes 113 18.7%

No 492 81.3%

Acute Intoxication

Yes 9 1.5%

No 596 98.5%

Pulmonary Diseases

Yes 81 13.4%

No 524 86.6%

Hemorrhage

Yes 26 4.3%

No 579 95.7%

Transfusion History

Yes 69 11.4%

No 536 88.6%

Recent Surgery/Trauma (≤1 month)

Yes 14 2.3%

No 591 97.7%

VTE History

Yes 5 0.8%

No 600 99.2%

(Continued on following page)
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TABLE 1 (Continued) Baseline characteristics of patients.

Variable name Subclassification Count Proportion (%)

Histological Subtype

Hodgkin Lymphoma 25 4.1%

Aggressive Lymphoma 410 67.8%

Indolent Lymphoma 159 26.3%

Not Specified 11 1.8%

Ann Arbor Stage

Stage I-II 197 32.6%

Stage III-IV 367 60.7%

Not Specified 41 6.7%

Relapsed/Refractory Lymphoma

Yes 24 4.0%

No 581 96.0%

Extranodal Involvement

Present 413 68.3%

Absent 157 26.0%

Not Specified 35 5.8%

Mediastinal Involvement

Present 177 29.3%

Absent 396 65.5%

Not Specified 32 5.3%

Bone Marrow Involvement

Present 166 27.4%

Absent 385 63.6%

Not Specified 54 8.9%

CNS Involvement

Present 23 3.8%

Absent 581 96.0%

Not Specified 1 0.2%

Splenic Involvement

Present 140 23.1%

Absent 448 74.1%

Not Specified 17 2.8%

Bulky Disease (>10 cm)

Present 89 14.7%

Absent 504 83.3%

Not Specified 12 2.0%

(Continued on following page)
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TABLE 1 (Continued) Baseline characteristics of patients.

Variable name Subclassification Count Proportion (%)

B Symptoms

Present 190 31.4%

Absent 394 65.1%

Not Specified 21 3.5%

Platinum-based Agents

Received 75 12.4%

Not Received 530 87.6%

Glucocorticoids

Received 586 96.9%

Not Received 19 3.1%

Gemcitabine

Received 49 8.1%

Not Received 556 91.9%

Thalidomide/Lenalidomide

Received 30 5.0%

Not Received 575 95.0%

Anthracyclines

Received 408 67.4%

Not Received 197 32.6%

Rituximab

Received 429 70.9%

Not Received 176 29.1%

ESAs/G-CSF

Received 292 48.3%

Not Received 343 56.7%

Methotrexate

Received 118 19.5%

Not Received 487 80.5%

Cyclophosphamide

Received 412 68.1%

Not Received 193 31.9%

Amphotericin B

Received 21 3.5%

Not Received 584 96.5%

Anticoagulants

Received 221 36.5%

Not Received 384 63.5%

(Continued on following page)
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Venous catheterization had the strongest positive association with
VTE risk, followed by D-dimer, anticoagulant use, LDH, and TP.
Preventive anticoagulation, TP, and cholesterol were negatively
associated with VTE, while mediastinal and CNS involvement
showed weak predictive value.

Simplified model results

To minimize overfitting and redundancy, simplified models
were developed using only the top nine variables identified by

the best-performing full model. Five simplified models were
reconstructed using the same preprocessing methods and
algorithms as their full counterparts. Performance metrics
are presented in Table 3 and ROC curves in Figure 8. The
simplified models bypassed feature selection by directly
incorporating the predetermined top nine features from the
comprehensive analysis. Models 1 and 2, differing only in
feature selection approach but sharing k-NN imputation,
SMOTE sampling, and GBM algorithm, yielded identical
simplified versions (Simp-SMOTE_knn_GBM). Similarly,
models four and 5 converged to the same simplified version.

TABLE 1 (Continued) Baseline characteristics of patients.

Variable name Subclassification Count Proportion (%)

Antiplatelet Agents

Received 47 7.8%

Not Received 558 92.2%

Hemostatic Agents

Received 49 8.1%

Not Received 556 91.9%

Venous Catheterization

Performed 235 38.8%

Not Performed 370 61.2%

General Anesthesia Surgery

Performed 129 21.3%

Not Performed 476 78.7%

ECOG, Eastern Cooperative Oncology Group; VTE, Venous thromboembolism; CNS, central nervous system; ESAs/G-CSF, erythropoiesis-stimulating/granulocyte colony-stimulating factors.

FIGURE 2
Feature importance ranking after screening based on elastic network regression.
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The Simp-SMOTE_rf_GBM model (random forest imputation
+ SMOTE + GBM) demonstrated superior performance across
all metrics: AUC is 0.954 (95% CI: 0.932-0.976), Accuracy:
0.888, Sensitivity: 0.890, Specificity: 0.880, NPV:0.647, PPV:
0.970, and F1:0.885.

DCA (Figure 9) compares the clinical net benefit profiles of the
simplified models across probability thresholds in the test set. The
Simp-SMOTE_knn_GBM model demonstrated superior net benefit
versus treat-all and treat-none strategies at probability thresholds of
15%–85%, suggesting optimal utility for intermediate-risk clinical
decision-making. Both Simp-SMOTE_rf_GBM and Simp-SMOTE_
pmm_GBM maintained clinical utility across the full threshold
spectrum (0%–100%), with Simp-SMOTE_pmm_GBM showing
consistently higher net benefit.

SHAP feature importance ranking for the simplified model
(Figure 10) showed central venous catheterization as the
strongest predictor, followed by anticoagulant use, D-dimer,
LDH, TP, CEA, cholesterol, infectious disease, and ECOG
performance status.

Figure 11 presents the SHAP summary plot for the
parsimonious VTE prediction model incorporating the top nine
features, illustrating both feature importance and directionality of
effects across the test set. The feature ranking of this simplified
model differs from that of the optimal model constructed using full
variable screening. Notably, active infection and TC emerged as new
predictors in the simplified model, while relative importance shifted
for D-dimer, therapeutic anticoagulation, and CEA. SHAP analysis
revealed positive associations between VTE risk and: venous
catheterization, D-dimer, LDH, CEA, and active infection.
Conversely, therapeutic anticoagulation, TP, and TC
demonstrated protective associations. The contribution of the
ECOG score to the model output results is relatively insignificant.

Comparison of simplified and unsimplified
model performance

We conducted a comprehensive performance comparison
between the full-feature models and their simplified counterparts
(using the top nine features) across five key metrics: AUC, sensitivity,
specificity, accuracy, and F1-score, with detailed results shown in
Figure 12. Figure 12 presents the comparative performance analysis
across both training and test datasets, including 95%CI for all metrics.
For the pre-simplification optimal model (a), the full-feature version
demonstrated marginally superior performance compared to its
simplified counterpart. Overall, the predictive performance of the
simplified models differs only slightly from that of their
corresponding original models, and some simplified models even
outperform the original models in terms of performance metrics.
These results suggest that feature reduction incurred minimal
predictive penalty, while maintaining clinical utility through
improved interpretability and computational efficiency.

Discussion

Lymphoma is the most common malignant tumor of the
hematopoietic system, and factors such as the high tumor burden
associated with the disease itself can increase the risk of VTE. In
addition, common treatment methods such as surgery,
chemotherapy, and immunotherapy may also increase the risk of
VTE in patients. Current VTE prevention guidelines primarily
target general chronic disease populations, leaving lymphoma-
specific prevention strategies inadequately addressed—a critical

FIGURE 3
ROC curves and AUC values of the top fivemodels on the training
set after variable selection.

TABLE 2 Performance metrics of top five models selected from complete feature set.

Model
name

Imputation
method

Sampling
method

Feature
selection

Algorithm AUC Accuracy Recall Specificity NPV PPV F1

model_1 0 1 2 6 0.953 0.903 0.908 0.880 0.688 0.971 0.894

model_2 1 1 0 6 0.953 0.925 0.945 0.840 0.778 0.963 0.889

model_3 2 1 2 6 0.947 0.910 0.927 0.840 0.724 0.962 0.881

model_4 1 1 2 6 0.947 0.925 0.945 0.840 0.778 0.963 0.889

model_5 0 1 0 6 0.946 0.866 0.890 0.760 0.613 0.942 0.820
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gap in clinical practice. There are currently comprehensive risk
assessment tools for VTE in patients with lymphoma. In recent

years, researchers both domestically and internationally have
developed numerous VTE risk assessment tools for cancer
patients. Khorana et al. conducted a large-scale retrospective
cohort study involving 66,106 cancer patients with neutropenia
and developed a VTE risk scoring system suitable for outpatient
chemotherapy cancer patients (Streiff et al., 2021). However, two
critical limitations exist: (1) exclusion of hospitalized patients
potentially underestimates true VTE risk (Louzada et al., 2012),
and (2) Khorana scoring studies mostly involve solid tumour
patients, with only a small proportion of lymphoma patients,
raising questions about its applicability in the lymphoma
population. Subsequent studies by Mohren et al. involved a VTE
risk prediction analysis of 2,701 patients with malignant tumours
undergoing chemotherapy. However, the lymphoma subgroup
accounted for only 12.1% of the total sample (Caruso et al.,
2010). The Ottawa score, designed to predict 6-month VTE
recurrence post-anticoagulation in cancer patients, originally
dichotomized patients into low- and high-risk categories.
Subsequent refinements established three risk strata (low,
moderate, high) (Louzada et al., 2012; den Exter et al., 2013).
However, studies by Alatri et al. (2017) have shown that the
improved Ottawa score has an AUC of 0.58 (95% CI: 0.56–0.61),
indicating insufficient predictive performance. The accuracy and
discriminative ability of the score in predicting VTE recurrence are
generally poor, with low sensitivity, specificity, and positive
predictive value. It is unable to accurately predict VTE
recurrence in patients with cancer-related thrombosis, which
could lead to biased clinical decision-making.

FIGURE 4
ROC curves and AUC values of the top five models in terms of
modeling performance after full variable screening on the test set.

FIGURE 5
DCA curve of the top five models selected based on the entire feature set.
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Due to natural differences in ethnicity and genetics, certain
models are not applicable in Chinese cohorts. However, the
universality of pan-cancer models has been called into question
in the context of lymphoma. Validation studies demonstrate
superior discrimination for lymphoma-specific models (e.g., TiC-

LYMPHO: C-statistic 0.783, 95% CI: 0.752-0.814) versus pan-cancer
tools in lymphoma populations (Bastos-Oreiro et al., 2021).
Lymphoma-specific VTE risk factors (e.g., LDH, β2-
microglobulin) differ substantially from solid tumors (Antic
et al., 2016; Lim et al., 2016; Dharmavaram et al., 2020),

FIGURE 6
Feature importance ranking diagram of the optimal model constructed based on full variable feature selection.

FIGURE 7
Summary diagram of the optimal model SHAP constructed based on full variable feature selection.
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explaining the poor performance of pan-cancer models. Key
lymphoma biomarkers, including LDH and β2-microglobulin,
demonstrate VTE associations (Yıldız et al., 2020), yet remain
absent from general cancer models. Suboptimal risk stratification
may cause both under-anticoagulation and over-treatment,
adversely impacting clinical outcomes and healthcare costs. This
study uses machine learning algorithms to analyse real-world
medical data and incorporate multiple types of variables in order
to develop a VTE risk prediction model for lymphoma patients. The
model aims to provide clinicians with an intelligent decision-
support tool that optimises strategies for preventing thrombosis
and reduces the incidence of bleeding events.

Through systematic evaluation of 27 preprocessing pipelines
and nine machine learning algorithms, we developed and validated
243 distinct prediction models. Although the optimal full-variable
model (KNN interpolation + SMOTE + elastic network + gradient
boosting machine) achieved an AUC of 0.953, there is a risk of
feature redundancy. Therefore, based on feature importance, the top
nine key variables were selected to rebuild a simplified model,
ultimately obtaining the Simp-SMOTE_rf_GBM model (AUC =

0.954), which demonstrated superior predictive performance and
practicality compared to the full-variable model. The simplified
model showed robust external validity (calibration slope 0.98)
while preserving accuracy (0.888) and sensitivity (0.890), making
it particularly suitable for clinical implementation. Among the key
features, venous catheterization, D-dimer, and LDH were positively
correlated with VTE risk, while anticoagulant drugs and TP were
negatively correlated. Feature importance hierarchy shifted in the
simplified model, with TC and active infection replacing β2-
microglobulin and hematopoietic growth factors. SHAP analysis
further validated the contribution direction of these features. Key
predictors such as venous catheterization, anticoagulant drugs, TC,
and infectious diseases have special significance in clinical practice.

Venous catheterization is primarily used for patients requiring
long-term intravenous infusion therapy, such as chemotherapy or
intravenous nutrition. Currently, the most commonly used central
venous catheter access routes in clinical practice include central
venous catheters (CVCs) inserted via the internal jugular vein,
subclavian vein, or femoral vein, and peripherally inserted central
venous catheters (PICCs). Research data shows that venous
catheterization may cause a 40%–80% decrease in venous blood
flow rate. When combined with cancer-associated
hypercoagulability, these hemodynamic changes synergistically
increase thrombosis risk, potentially leading to life-threatening
PE (Guan et al., 2018; Yang et al., 2020). Currently, multiple
evidence-based medical studies have confirmed that venous
catheterization is an independent risk factor for VTE in
lymphoma patients (Park et al., 2012; Guan et al., 2018; Kirkizlar
et al., 2020; Wan, 2024). Lymphoma patients receiving PICCs
demonstrate a 5.25-fold increased VTE risk (95% CI 3.8-7.1)
compared to non-catheterized patients (Zhang, 2025). Park et al.
(2012) reported CVC-associated thrombosis risk elevation (OR 2.04,
95% CI 1.02-4.08, p = 0.042) in a prospective cohort of
452 lymphoma patients. A Chinese study, however, showed that
the likelihood of VTE in lymphoma patients using CVC was
6.63 times higher than in those not using CVC (OR = 6.63, 95%
CI: 2.24–19.57, p = 0.001) (Y et al., 2021).

According to clinical practice guidelines, the prophylactic use of
anticoagulants can effectively reduce the risk of VTE and is an
important protective factor (Streiff et al., 2021). Our findings
corroborate guideline recommendations, showing significantly
elevated VTE risk in patients without prophylaxis. Low molecular
weight heparin (LMWH) drugs such as enoxaparin and nadroparin
are currently the drugs of choice for prophylactic anticoagulant
therapy. LMWHs exert their antithrombotic effect through selective
inhibition of factor Xa and factor IIa, effectively interrupting the

TABLE 3 Performance metrics results of the five simplified models reconstructed based on the first nine variables.

Model name AUC Accuracy Recall Specificity NPV PPV F1

Simp-SMOTE_rf_GBM 0.954 0.888 0.890 0.880 0.647 0.970 0.885

Simp-SMOTE_rf_GBM 0.954 0.888 0.890 0.880 0.647 0.970 0.885

Simp-SMOTE_pmm_GBM 0.951 0.888 0.890 0.880 0.647 0.970 0.885

Simp-SMOTE_knn_GBM 0.943 0.903 0.899 0.920 0.676 0.980 0.909

Simp-SMOTE_knn_GBM 0.943 0.903 0.899 0.920 0.676 0.980 0.909

FIGURE 8
ROC curve and AUC values of the simplified model constructed
based on the top nine variables in the test set.
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coagulation cascade. In recent years, direct oral anticoagulants
(DOACs), such as rivaroxaban and apixaban, have become more
widely used in clinical practice. These drugs offer advantages such as
convenient administration and the elimination of the need for
frequent monitoring of coagulation parameters. Studies have

shown that they are as effective as LMWH at preventing blood
clots in patients with malignant tumours (Agnelli et al., 2020).
However, anticoagulation carries inherent bleeding risks,
particularly in patients with thrombocytopenia, a history of
gastrointestinal ulcers, or recent surgical procedures. Therefore,

FIGURE 9
DCA curve of the simplified model reconstructed based on the first nine variables.

FIGURE 10
Optimal model feature importance ranking chart constructed based on the first nine feature variables.
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before initiating anticoagulant prophylaxis, it is essential to conduct
a comprehensive assessment of the patient’s bleeding and
thrombosis risks, and to develop a personalised treatment plan.
Furthermore, the development of safer, easier-to-use anticoagulant
drugs is necessary in order to provide lymphoma patients with an
optimised thrombosis prevention regimen. Ying L et al. (2024)
found that prophylactic anticoagulant use is a significant
protective factor against PICC-related thrombosis in cancer
patients. This factor served as the primary node in their decision
tree model, underscoring its significant impact on thrombus
formation. Furthermore, Boraks et al. (Boraks et al., 1998)
demonstrated that prophylactic low-dose warfarin effectively
reduces the incidence of catheter-related thrombosis. However,
Heaton et al. (2002) found that a low-dose warfarin
regimen (1 mg) did not significantly inhibit catheter-related
thrombotic events in cancer patients. Therefore, the efficacy of
prophylactic anticoagulation in reducing venous thrombosis
incidence requires further validation and investigation in larger,
prospective studies.

Lymphoma patients frequently exhibit compromised immune
function and substantially elevated infection risk attributable to both
the malignancy itself and treatment-related factors, including
chemotherapy and immunosuppressive agents. Such infections
further exacerbate VTE incidence, adversely impacting tumor
prognosis. Multiple studies establish concomitant infections as
significant risk factors for DVT in cancer patients (Chen et al.,
2020; Wang et al., 2023). Patients with concomitant infections
exhibit 2- to 3-fold higher VTE incidence compared to infection-
free patients. This correlation is particularly pronounced within the
initial 6 months post-diagnosis (Nakano et al., 2018). The
prothrombotic effects of infection are multifactorial,

encompassing oxidative stress, systemic inflammation,
coagulation activation, and endothelial injury. Inflammatory
responses—driven in part by neutrophil-derived cytokines such
as interleukin-6 and tumor necrosis factor–α—induce tissue
factor expression in circulating monocytes and promote release
of tissue factor from monocytes and platelets, thereby activating
the extrinsic coagulation pathway, fostering fibrin formation, and
suppressing fibrinolysis to create a hypercoagulable state (Lim et al.,
2016). In parallel, infection triggers innate immune pathways
involving neutrophils and the formation of neutrophil
extracellular traps (NETs), which help immobilize pathogens
within the vasculature but also amplify thrombin generation and
thrombosis (Longstaff et al., 2013). Together, these processes lead to
endothelial injury, platelet activation and aggregation, increased
procoagulant protein activity, and attenuation of anticoagulant
mechanisms, culminating in thrombus formation (Beristain-
Covarrubias et al., 2019). Overall, infection is both a potent
precipitant of VTE in lymphoma and a key determinant of
adverse prognosis.

CEA is a glycoprotein of the immunoglobulin superfamily that
participates in cell adhesion, inflammatory signaling, and tumor
progression (Kankanala et al., 2025). In a study of patients with lung
cancer, multivariable analyses demonstrated a linear positive
association between CEA concentration and pulmonary
embolism, suggesting that elevated CEA may help identify
individuals at increased risk of PE (Zhang et al., 2014). As a
nonspecific tumor marker, CEA reflects tumor burden and
growth kinetics and is widely used for diagnosis and
prognostication. However, evidence linking CEA to VTE risk
remains limited, and its clinical significance is not fully
established. Large, prospective cohort studies are needed to

FIGURE 11
Summary diagram of the optimal model SHAP established based on the first nine feature variables.
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FIGURE 12
Comparison of performance indicators between the model built after full variable screening and the model built with the top nine variables. (a) is a
comparison betweenmodel_1 and its corresponding simplifiedmodel; (b) is a comparison betweenmodel_2 and its corresponding simplifiedmodel; (c)
is a comparison betweenmodel_3 and its corresponding simplifiedmodel; (d) is a comparison betweenmodel_4 and its corresponding simplifiedmodel;
(e) is a comparison between model_5 and its corresponding simplified model.
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clarify the mechanistic relationship between CEA and
thrombogenesis.

Age (Chen et al., 2022),inherited predisposition (Sánchez Prieto
et al., 2024),and reduced mobility (Saito et al., 2021) are established
risk factors for VTE in patients with lymphoma. In one study,
individuals with lymphoma or multiple myeloma who carried factor
V Leiden and SERPINA10 variants had higher VTE incidence; other
data indicate that the coexistence of cancer and factor V Leiden
variants synergistically increases VTE risk (Gran et al., 2016). In our
feature-selection pipeline, however, these variables were not retained
in the final predictive model, likely due to sample characteristics,
collinearity, or methodological constraints. Their exclusion does not
diminish their clinical relevance in lymphoma, and their potential
contributions warrant attention. To define the magnitude and
independence of these associations, adequately powered,
prospective, multicenter studies are needed.

This study has multifaceted clinical applicability. Firstly, the
model helps to identify high-risk patients, supporting the
personalisation of decisions regarding prophylactic
anticoagulation. Secondly, it incorporates dynamic variables, such
as changes in D-dimer levels, which enable ongoing risk assessment
during treatment. Furthermore, the risk factors elucidated by the
model could be used to refine VTE prevention strategies. For
example, more aggressive prophylactic anticoagulation could be
considered for patients requiring mandatory venous
catheterisation. Finally, the simplified version of the model,
which includes only nine readily available clinical variables,
significantly enhances its feasibility for implementation in
settings with limited resources.

Limitations

This study has limitations. Firstly, as this was a retrospective
analysis, several clinically relevant variables, e.g., genetic risk scores,
immunophenotypic scores (IPS), Throly scores and Khorana scores,
were either unavailable or severely lacking because some
assessments are not routinely performed in patients with
lymphoma in the absence of clear clinical indications.
Consequently, they were excluded from modelling and
infrequently used medications were aggregated into composite
categories. Secondly, VTE ascertainment from the electronic
medical record may have missed events (e.g., non-specific
symptoms, lack of screening or diagnoses made at outside
institutions), which would lead to an underestimation of
incidence. The small number of VTE cases also produced class
imbalance, which may persist despite Synthetic Minority Over-
sampling Technique (SMOTE) correction and could affect model
performance. Thirdly, this was a single-centre study with a limited
sample size and few VTE events. Future work should employ larger,
prospective, multicentre cohorts to validate, refine and generalise
the model.

Conclusion

This study developed a VTE risk prediction model specifically
for lymphoma patients. With an AUC of 0.953, the optimized

model exhibited outstanding discriminative capacity for
lymphoma-associated VTE risk, providing an evidence-based
framework to guide optimal timing of anticoagulation
initiation and clinical strategy formulation. This model
enables theoretically grounded and clinically actionable VTE
risk stratification in lymphoma populations, advancing
precision medicine approaches to ultimately enhance
clinical outcomes.

Multicenter prospective validation warrants prioritization to
establish model generalizability and robustness across
heterogeneous healthcare environments. Concurrent integration
of multi-omics data with emerging biomarkers—including
circulating tumor DNA (ctDNA), microvesicles, and novel
coagulation parameters (thrombin-antithrombin complex [TAT],
plasmin-α2-plasmin inhibitor complex [PIC], thrombomodulin
[TM], tissue plasminogen activator inhibitor complex [tPAI·C])—
may substantially improve prognostic precision. Intervention trials
should evaluate risk-stratified anticoagulation protocols via
randomized controlled designs, validating their efficacy in
optimizing hard clinical endpoints. Mechanistic studies must
elucidate lymphoma-specific prothrombotic pathways, focusing
on coagulation biomarkers (e.g., TAT, PIC) within tumor-
associated thrombosis to inform targeted therapeutic
development. These integrated approaches will accelerate the
evolution of precision medicine in lymphoma-associated VTE
management.
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