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Background: Chronic nerve pain is a complex and debilitating condition.
Considering the complex pathophysiology of chronic nerve pain, researchers
aim to develop novel multi-targeting agents. Polydatin (PLD), a natural multi-
targeting compound, has demonstrated antioxidant and anti-inflammatory
properties, positioning it as a promising option for alleviating chronic nerve pain.
Purpose: The current study investigated the potential of PLD in treating
neuropathic pain induced by chronic constriction injury (CCI) in rats.
Materials and Methods: Sixty male Wistar rats were assigned to ten distinct
groups: sham, CCI (negative control), gabapentin (GBP, positive control,
100 mg/kg), and three PLD treatment groups (5, 10, 15 mg/kg). Groups seven
to ten received flumazenil (FLU, 0.5mg/kg) and naloxone (NAL, 0.1mg/kg) with or
without themost potent dose of PLD. Hot plate, acetone drop, inclined plane, and
open field tests were used to monitor behavioral changes for 14 days.
Biochemical assays were performed to assess changes in catalase (CAT),
glutathione (GSH), and nitrite. Additionally, the zymography method was
utilized to measure serum levels of matrix metalloproteinase (MMP)-
2 and MMP-9 on days 7 and 14. Finally, on day 14, histopathological changes
were also assessed.
Results and Discussion: PLD alleviated neuropathic pain and enhanced
locomotor activity following CCI. It also increased antioxidant CAT/GSH levels,
reducing oxidative nitrite levels, and inflammatory MMP-2 and MMP-9. From the
histological results, PLD improved myelin sheaths and protected against axonal
swelling, and reduced the dysregulation of gaps in the nerve fibers. FLU and NAL
partially reversed these positive effects of PLD.
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Conclusion: PLD could be a promising multi-targeting candidate for treating
neuropathic pain and motor dysfunction through its anti-inflammatory,
antioxidant, and neuroprotective properties, acting on opioid and GABA receptors.
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1 Introduction

Neuropathic pain is a complex and debilitating condition that
severely impacts the individual’s quality of life. It arises from damage
or dysfunction in the nervous system, leading to various sensory
distortions that challenge normal sensory processing (Szewczyk
et al., 2022). The origins of neuropathic pain lie in various
medical conditions that induce damage or dysfunction within the
nervous system (Feldman et al., 2019). Neuropathic pain could
happen in the context of chronic conditions (e.g., diabetes), viruses
(e.g., post-herpetic neuralgia) (Hadley et al., 2016), spinal cord
injury (SCI) (Shiao and Lee-Kubli, 2018), multiple sclerosis, and
stroke through which disrupt the pathways through which pain
signals are transmitted and processed (Nurmikko et al., 2010;
Mohanan et al., 2023). The neurobiological underpinnings of
neuropathic pain involve alterations in both peripheral and
central nervous system functions. Changes in nerve signaling can
lead to spontaneous pain experiences and the phenomena of
hyperalgesia and allodynia. In hyperalgesia, even minor injuries
or stimuli can evoke overwhelming pain responses, while allodynia
can cause sensations like light touch or temperature changes to be
perceived as painful (Jensen and Finnerup, 2014).

Experimental models of peripheral nerve injury enable us to
investigate the mechanisms responsible for hypersensitive
responses, to discover new analgesic targets (Fleetwood-Walker
et al., 2007). Chronic constriction injury (CCI) is a widely
utilized experimental model for studying neuropathic pain,
primarily in rodent species. This model was first established by
Bennett and Xie in 1988 and has since become a standard method
for investigating the mechanisms of neuropathic pain and testing
potential therapeutic interventions (Bennett and Xie, 1988;
Gopalsamy et al., 2019). The CCI model accurately replicates the
symptoms of neuropathic pain seen in humans, including allodynia
and hyperalgesia, which arise from peripheral nerve damage and
inflammation (Bennett and Xie, 1988; Okamoto et al., 2001). One of
the key advantages of the CCI model is its ability to induce long-
lasting and widespread behavioral changes, making it an essential
tool for understanding the underlying mechanisms of chronic pain
(Austin et al., 2012). In addition to pain-related symptoms, the CCI
model is also associated with various behavioral disabilities,
including anxiety and depression, thereby providing a
comprehensive framework for evaluating potential therapeutic
interventions for neuropathic pain and its comorbid
psychological conditions (Fonseca-Rodrigues et al., 2021).
Accordingly, the CCI model can serve as a crucial platform for
advancing our understanding of neuropathic pain and developing
effective treatments.

Oxidative stress plays a significant role in the pathophysiology of
pain following nerve damage, particularly through the increased
production of reactive oxygen species (ROS). ROS are critical

substrates for excitatory nociceptive transmission in the spinal
dorsal horn (Nishio et al., 2013). Increased ROS levels lead to
neuronal hyperexcitability, which is a hallmark of neuropathic
pain conditions (Kim et al., 2015). Increased oxidative stress
markers have been observed in animals subjected to CCI,
correlating with inflammation. Pro-inflammatory cytokines like
interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) are
released after nerve injury. These cytokines can enhance pain
perception by activating signaling pathways involving mitogen-
activated protein kinase (MAPKs) and nuclear factor-kappa B
(NF-κB), leading to heightened neuronal excitability and chronic
pain conditions (Popiolek-Barczyk and Mika, 2016; Vanderwall and
Milligan, 2019). Matrix metalloproteinase (MMP)-2 andMMP-9 are
crucial in modulating the inflammatory response. They facilitate the
migration of immune cells such as macrophages and neutrophils
into inflamed tissues, which is essential for effective immune
responses but can also lead to tissue damage if not properly
regulated. For instance, MMP-9 activates pro-inflammatory
cytokines, further amplifying the inflammatory response
(Nissinen and Kähäri, 2014; Fingleton, 2017). As another
pharmacological aspect, benzodiazepine receptors, particularly
those associated with the GABA-A receptor, and opioid receptors
both play important roles in pain modulation. Their interaction can
lead to enhanced analgesic effects, which is an important
consideration in pain management (Gear et al., 1997; Primeaux
et al., 2006).

Natural products are rich sources of active compounds (Fakhri
et al., 2022a; Majnooni et al., 2023), such as polyphenols, especially
stilbenoids, which are part of the resveratrol family. Polydatin (PLD,
3,4′,5-trihydroxystilbene-3-β-D-glucoside) is one of the most
popular stilbenoids. PLD, commonly referred to as resveratrol-3-
β-mono-D-glucoside, is derived from the roots of Reynoutria
japonica Houtt [Polygonaceae]. It is also present in grapes,
peanuts, hop cones, chocolate, cocoa, and a variety of other
foods. This compound has a higher absorption than resveratrol,
especially from the intestine (Fakhri et al., 2021). PLD is more stable
and water-soluble than resveratrol, and it can reduce oxidative
stress, inflammation, and cell death (Jiang et al., 2017; Fakhri
et al., 2021). We previously showed the neuroprotective effects of
PLD in the context of SCI. PLD showed antioxidant and anti-
inflammatory effects after SCI. PLD also increased neuronal survival
while decreasing lesion size in the spinal cord (Bagheri Bavandpouri
et al., 2024). We also unveiled the antinociceptive effect and
appropriate doses of PLD passing through the L-arginine/nitric
oxide/cyclic GMP/ATP-sensitive potassium channel pathway
(Abdian et al., 2025). As another confirmed model of
neuropathic pain, CCI was previously employed to evaluate the
anti-neuropathic pain effects of active compounds. Accordingly, we
previously showed the neuroprotective effects of astaxanthin after
CCI in rats (Hashemi et al., 2024).
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Considering the lack of effective treatments with lower side
effects and high efficacy against CCI, in this study, we aim to
investigate the effects of PLD on neuropathic pain and motor
impairment resulting from CCI. Mechanistically, we evaluated
the antioxidative, anti-inflammatory, and neuroprotective effects
of PLD, mediated through opioid and benzodiazepine receptors,
whichmay contribute to alleviating neuropathic pain and improving
motor function.

2 Materials and methods

2.1 Chemicals and reagents

Polydatin (PLD) and gabapentin (GBP) were obtained from
Sigma–Aldrich (USA). We also sourced naloxone (NAL), an opioid
receptor blocker, from Caspian Tamin Pharmaceutical Company in
Iran, and flumazenil (FLU), a GABA receptor antagonist, from
Hameln in Germany.

2.2 Animals

The experimental procedures were conducted following the
ethical guidelines for animal use and care established by the
Kermanshah University of Medical Sciences and the National
Institutes of Health (IR.KUMS.AEC.1401.019). It should be noted
that the animals were housed in standard conditions, featuring a 12-
h light and 12-h dark cycle, with a comfortable temperature
maintained between 25 °C and 27 °C, and easy access to
water and food.

Sixty male Wistar rats, aged 8–10 weeks, were organized into
10 separate groups: sham (surgery with no injury then receiving
distilled water as a vehicle), CCI (negative control, received injury
then receiving distilled water as a vehicle), gabapentin (GBP, positive
control group, received injury then 100 mg/kg of GBP), three
treatment groups of PLD (received injury then 5, 10, and
15 mg/kg of PLD), and four additional groups that received FLU
at a dose of 0.5 mg/kg and NAL at a dose of 0.1 mg/kg, either alone
or in combination with the optimal dose of PLD (10 mg/kg). All
substances were administered intraperitoneally (i.p.) daily for
14 days. Distilled water was used as the vehicle for all treatments.

2.3 Chronic constriction injury

To induce CCI, the sciatic nerve was partially ligated with
sutures, causing persistent compression. This procedure was
performed under anesthesia using ketamine and xylazine (80/
10 mg/kg, i.p.) (Hashemi et al., 2024). The hair on the lower
back and thighs of the rat was shaved, followed by a lateral
incision made on the left thigh to expose the underlying tissues.
The biceps muscle was then dissected to expose the sciatic nerve,
which is typically located in the upper thigh region. The dorsal third
of the sciatic nerve was partially ligated using a suture. Four loose
chromic catgut ligaments (4.0), with a 1-mm gap between each
ligature, were placed around the sciatic nerve (Zamani et al., 2025).

This creates a persistent compression that leads to nerve injury
(Rezq et al., 2020).

2.4 Behavioral test

The rats were assessed for behavioral changes on days 1, 3, 5, 7,
9, 11, 13, and 14 post-surgery.

2.4.1 Acetone drop test
To assess cold sensitivity in rats, acetone was sprayed on their

paws, and their pain responses were scored based on a scale from
0 to 4. This scoring system provides a structured way to quantify the
intensity of pain reactions: No reaction (0), flinching only (1), partial
paw withdrawal between 5 and 30 s (2), extended withdrawal of
more than 30 s (3), and severe pain (4) (Fakhri et al., 2018; Sobeh
et al., 2020).

2.4.2 Hot plate test
To evaluate heat hyperalgesia and an increased sensitivity to

painful heat stimuli, the rats were placed on a hot plate. Rats were
placed on a heated surface between 50 °C and 54 °C. The
environment was enclosed to prevent escape, ensuring the animal
remained on the hot plate during the assessment. The primary
outcomes measured were the time it took for the animal to exhibit
nocifensive behaviors, such as licking its paw or jumping off the
plate. Finally, the paw withdrawal latency (PWL) was recorded
considering the cut-off time of 60 s to prevent any potential
harm to the animal (Muthuraman and Singh, 2011; Fakhri
et al., 2022b).

2.4.3 Open field test
The open-field behavior test measures anxiety, depression, and

motor activity in animals. In this study, rats were placed in a black
box and their movements were monitored for 5 min. Their
behaviors, including rearing, grooming, and crossing, were
recorded over 5 minutes (Hashemi et al., 2024). Crossing serves
as a direct measure of locomotor activity. A higher number of
crossings, rearing, and grooming indicates lower levels of pain
sensation, as it suggests a greater willingness to explore the
environment (Suarez and Gallup, 1981; Sturman et al., 2018).

2.4.4 Inclined plane test
This test evaluates the ability of animals to maintain their

balance on a sloped surface, providing insights into their motor
capabilities and neurological health. The inclined plane consisted of
a flat surface that could be adjusted at angles between 0 and 60°. Rats
were placed on the inclined plane, and the steepest angle at which
they could remain upright for at least 5 s was recorded (Chang
et al., 2008).

2.5 Biochemical test

After the behavioral tests were completed, the rats were
euthanized, and their blood was collected for
biochemical analysis.
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2.5.1 Glutathione and catalase assay
To evaluate changes in glutathione (GSH) and catalase (CAT)

levels, which indicate antioxidant status, we employed a colorimetric
assay. GSH levels were determined using the Ellman method, which
measures the decline of GSH in the presence of Ellman’s reagent
(5,5-dithio-bis-(2-nitrobenzoic acid, DTNB). For this assay, 60 μL of
rat serum and 100 μL of 2 mg/mL DTNB were mixed in a plate, and
phosphate buffer (50 μL) was added. After 10 min of incubation at
37 °C, absorbance was read at 412 nm (Eyer and Podhradský, 1986).
CAT activity was measured using the Aebi method, which involves
assessing changes in serum hydrogen peroxide (H2O2) levels. In this
assay, 20 μL of serum was mixed with 100 μL of H2O2 (65 mM) and
incubated for 4 min. The reaction was stopped using ammonium
molybdate, and the concentration of H2O2 was read at 405 nm.
Changes in concentration were reported as a percentage of the
control (Aebi, 1984; Fakhri et al., 2022b).

2.5.2 Nitrite assay
Nitrite levels in serum samples were measured using the Griess

assay. Serum (100 µL) was mixed with sulfanilamide solution
(50 µL) and incubated in the dark for 5 min. After that, naphthyl
ethylene diamine dihydrochloride (NEDD; 50 µL) was added to the
mixture, and it was incubated for 30 min. Optical density was
measured at 540 nm (Sun et al., 2003).

2.6 Zymography

MMP-2 and MMP-9 activities were measured on days 7 and 14.
The serum samples containing 100 μg of total protein were loaded onto
sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
with 0.1% gelatin, followed by electrophoresis at 150V. After a 1-hwash
in Triton X-100 buffer, the gel was incubated at 37 °C for 18 h in a
calcium-containing incubation buffer. The gel was then stained with
Coomassie blue and destained with acetic acid and methanol. Clear
bands indicated MMPs activities, which were quantified using ImageJ
software (Fakhri et al., 2022b).

2.7 Histological analysis

On the 14th day, the ligated sciatic nerve segments were
dissected and preserved in formalin (10%). Then, serial sections
prepared from paraffin-embedded tissue were stained with
hematoxylin and eosin (H&E). These sections were qualitatively
assessed under a light microscope at 400× magnification to evaluate
axonal degeneration using standard histological methods
(Muthuraman et al., 2008; Bakare and Owoyele, 2020). The
percentage of damaged area was quantified using ImageJ (NIH).

2.8 Statistical analysis

Results were analyzed using version 8.0 of Prism software. One-
way ANOVAwas followed by Tukey’s multiple comparison test, and
two-way ANOVA was followed by Bonferroni correction to adjust
for multiple comparisons. The area under the curve was determined
using the trapezoidal method. Data are expressed as mean ±

standard error of the mean (SEM), with significance defined at
p < 0.05. The effect sizes were calculated using eta squared (ηp2).

3 Results

3.1 Behavioral result

3.1.1 Acetone drop test
The acetone drop test demonstrated a significant enhancement

in the paw withdrawal reflex for the CCI group when compared to
the sham group (p < 0.001) (Figure 1A). Furthermore, treatment
with PLD at three different doses, similar to GBP (as a positive
control), improved the tolerance to cold stimuli compared to the
CCI group (p < 0.05, effect size = 0.76). Among the three doses of
PLD, the most pronounced effect was observed in the group treated
with PLD at a dose of 10 mg/kg, starting from day 5 (p < 0.05)
(Figure 1A). Additionally, the area under the curve for cold allodynia
in these groups showed a significant decrease compared to the CCI
group (p < 0.05) (Figure 1B). In contrast, the paw withdrawal reflex
in response to cold stimuli in rats treated with FLU or NAL alone did
not differ significantly from the CCI group (Figure 1C). However,
the data indicated that administering NAL thirty minutes before
PLD (10 mg/kg) significantly diminished the analgesic effects of
PLD (p < 0.01), resulting in an enhancement in cold allodynia in this
group (Figure 1C). Moreover, there was a notable increase in the
area under the curve for cold allodynia in this group in comparison
to the PLD (10 mg/kg) treated group (p < 0.05) (Figure 1D).

3.1.2 Heat hyperalgesia
The hot plate test showed that the sham group had consistent PWL,

while the CCI group reacted strongly to heat, significantly lowering
PWL from the first day (p < 0.001) (Figure 2A). Treatment with the
three doses of PLD, similar to GBP, increased PWL after CCI (p< 0.001,
effect size = 0.93) (Figure 2A). The area under the curve clearly showed
an increase in these groups compared to the CCI group (p < 0.001)
(Figure 2B). There was no difference in PWL between the 10 mg/kg
PLD and GBP groups (Figure 2B), and the 10 mg/kg PLD dose proved
to bemore effective than the 5mg/kg PLD dose (p< 0.001). Rats treated
with FLU or NAL showed no significant change in PWL compared to
the CCI group. Additionally, co-administering PLD with FLU or NAL
significantly reduced PWL compared to PLD alone, indicating
increased thermal hyperalgesia due to receptor blockade (p <
0.05 and p < 0.01, respectively) (Figures 2C,D).

3.1.3 Open field test
The open field test results revealed a significant decrease in all

three components of locomotor activity, crossing (Figure 3A),
grooming (Figure 3C), and rearing (Figure 3E), between CCI and
sham groups (p < 0.001). PLD administration, similar to GBP,
enhanced these motor function parameters, crossing (p < 0.05, effect
size = 0.90), grooming (p < 0.05, effect size = 0.74), and rearing (p <
0.05, effect size = 0.93), in comparison to the CCI group. The area
under the curve most clearly showed the reduction of these
parameters following the CCI model and the positive effect of
PLD on them (p < 0.001) (Figures 3B,D,F). The group that
received a dose of 10 mg/kg had the most significant effect
among the three doses of PLD administered (p < 0.01).
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FLU and NAL alone did not affect locomotor activity
(Figures 4A,C,E). Nevertheless, the FLU and NAL groups
exhibited a statistically significant reduction in these
parameters compared to the 10 mg/kg PLD group (p < 0.05).
These changes were clearly illustrated by the area under the
curve (p < 0.05) (Figures 4B,D,F).

3.1.4 Inclined plane test
The results indicated that rats in the CCI group exhibited a

significant decline in their joint function and ability to remain on the
ramps compared to the sham group (p < 0.01). Treatment with the
three doses of PLD positively impacted the rats’ functional recovery
after the CCI (p < 0.001, effect size = 0.93) (Figure 5A). The area
under the curve in these groups showed a significant enhancement
compared to the CCI group (p < 0.001) (Figure 5B). Of the three

doses of PLD administered, the best effect was observed in the group
treated with 10 mg/kg of PLD (p < 0.05) (Figure 5B).

Two additional treatments, FLU and NAL, did not lead to
significant improvements compared to the CCI group. When
FLU and NAL were administered alongside PLD, there was a
significant decrease in performance compared to the group
receiving only PLD (10 mg/kg) (p < 0.01). The area under the
curve showed this reduction more prominently (p < 0.001).

3.2 Biochemical analysis

3.2.1 Glutathione/catalase assay
The biochemical assay results on days 7 and 14 showed that

serum CAT (p < 0.001) (Figure 6A) and GSH (p < 0.01) (Figure 6C)

FIGURE 1
The impact of PLD on cold allodynia in rats following the CCI model. Two-way ANOVA revealed that CCI significantly reduced the tolerance
threshold of cold stimulus, and PLD was able to reverse it (A), and this result was confirmed by AUC analysis (B). While FLU and NAL, when administered
alone, did not affect cold allodynia, their combined usewith PLDmitigated the effects of PLD (C), a result that was confirmed by AUC analysis (D). The data
are shown asmean± SEM. ***p < 0.001 vs. sham; +p < 0.05, ++p < 0.01, +++p < 0.001 vs. CCI; p̂ < 0.05, ^̂p < 0.01, ^̂ p̂ < 0.001 vs. GBP; #p < 0.05, ##p <
0.01, ###p < 0.001 vs. PLD (10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; FLU, Flumazenil; NAL, Naloxone; PLD, Polydatin.
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levels in the CCI group rats were meaningfully lower than those in
the sham group. Administration of three doses of PLD significantly
increased these CAT (p < 0.05) and GSH (p < 0.001) levels compared
to the CCI group. In these regards, PLD 10 mg/kg had an effect
almost similar to GBP. Among the three doses of PLD, the group
receiving 10 mg/kg exhibited the most significant effects (p < 0.05).

Administration of FLU and NAL separately did not affect serum
CAT or GSH levels in rats. However, when they were administered
in combination with PLD, they decreased the positive effect of PLD
on CAT (Figure 6B) and GSH (Figure 6D) levels. This reduction in
effect was significant for CAT (p < 0.01) (Figure 6B).

3.2.2 Nitrite assay
The results showed that on days 7 and 14 after surgery, serum

nitrite levels in the CCI group were significantly higher than in the
sham group (p < 0.001). In contrast, the serum nitrite level in all

three PLD groups and the GBP group showed a significant decrease
compared to the CCI group (p < 0.05). Among the three doses of
PLD, the 10 mg/kg group showed stronger effects (p < 0.05). No
significant differences were observed between the PLD 10 mg/kg
group and the GBP group (Figure 7A). The administration of FLU
and NAL alone did not alter serum nitrite levels in the CCI rats.
However, when FLU and NAL were co-administered with PLD, they
resulted in significant changes in serum nitrite levels compared to
the PLD 10 mg/kg group on days 7 and 14 (p < 0.01) (Figure 7B).

3.3 Zymography

Zymography results indicated that the CCI model led to a
marked increase in MMP-9 (p < 0.01) (Figure 8) and MMP-2
(p < 0.05) (Figure 9) levels when compared to the sham group

FIGURE 2
The impact of PLD on thermal hyperalgesia in rats following the CCI model. Two-way ANOVA revealed that CCI significantly reduced paw-licking
latency during thermal hyperalgesia, and PLD was able to reverse it (A), and this result was confirmed by AUC analysis (B). While FLU and NAL, when
administered alone, did not affect thermal hyperalgesia, their combined use with PLDmitigated the effects of PLD (C), a result that was confirmed by AUC
analysis (D). The data are shown asmean± SEM. ***p < 0.001 vs. sham; +p < 0.05, ++p < 0.01, +++ p < 0.001 vs. CCI; p̂ < 0.05, ^̂p < 0.01, ^̂ p̂ < 0.001 vs.
GBP; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. PLD (10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; FLU, Flumazenil; NAL, Naloxone;
PLD, Polydatin.
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on days 7 and 14. PLD treatment doses, particularly in a 10 mg/kg
dose, effectively countered this elevation, showing no significant
difference from the positive control, GBP (p < 0.05). However,
administering FLU and NAL 30 min before the injection of PLD
10 mg/kg significantly reduced its beneficial effects on MMP-9 (p <
0.05) and MMP-2 (p < 0.01) activity levels.

3.4 Histological analysis

In the sham group, the sciatic nerve sections exhibited well-
organized myelin sheaths with only mild hemorrhage present
between them. Conversely, the stained nerve sections from the
CCI group exhibited disrupted myelin sheaths, marked axonal

FIGURE 3
The impact of PLD on locomotor activity in rats following the CCI model. Two-way ANOVA revealed that CCI significantly reduced crossing (A),
grooming (C), and rearing (E), and PLDwas able to reverse them, and these results were confirmed by AUC analysis (B,D,F). The data are shown asmean ±
SEM. ***p < 0.001 vs. sham; +p < 0.05, ++p < 0.01, +++p < 0.001 vs. CCI; p̂ < 0.05, ^̂ p < 0.01, ^̂ p̂ < 0.001 vs. GBP; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. PLD
(10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; PLD, Polydatin.
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swelling, and notable gaps between the nerve fibers. Notably, the
sections of the GBP (100 mg/kg) and PLD (10 mg/kg) groups
demonstrated marked improvement. In contrast, groups co-
administered with PLD (10 mg/kg) along with NAL (0.1 mg/kg)
or FLU (0.5 mg/kg) reduced the effect of PLD 10 mg/kg

(Figure 10A). The CCI group exhibited a significant increase in
nerve degeneration compared to the Sham group (p < 0.001),
confirming successful induction of neuropathic injury. Treatment
with GBP (100 mg/kg) markedly reduced the degenerated area
compared to the CCI group (p < 0.01). Similarly, PLD

FIGURE 4
The impact of co-administering PLD with FLU and NAL on locomotor activity in rats following the CCI model. FLU and NAL, when administered
alone, did not affect crossing (A), grooming (C), and rearing (E); their combined use with PLD mitigated the effects of PLD, and these results were
confirmed by AUC analysis (B,D,F). The data are shown as mean ± SEM. +p < 0.05, ++p < 0.01, +++p < 0.001 vs. CCI; #p < 0.05, ##p < 0.01, ###p < 0.001 vs.
PLD (10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; FLU, Flumazenil; NAL, Naloxone; PLD, Polydatin.

Frontiers in Pharmacology frontiersin.org08

Abdian et al. 10.3389/fphar.2025.1691130

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1691130


(10 mg/kg) significantly decreased degeneration (p < 0.05), though
its effect was less pronounced than GBP. However, co-
administration of PLD with FLU (0.5 mg/kg) or NAL
(0.1 mg/kg) partially reversed the protective effect of PLD (p <
0.05) (Figure 10B).

4 Discussion

The present study investigated the effects of PLD on neuropathic
pain in a rat model of CCI. The results demonstrated that PLD
treatment significantly attenuated pain-related behaviors and
enhanced locomotor activity in the affected rats. Among the
tested doses, the 10 mg/kg i.p. administration of PLD elicited the
most substantial anti-neuropathic response. Furthermore, PLD
administration was associated with a marked reduction in

oxidative stress markers, including nitrite, as well as antioxidative
enzymes such as CAT and GSH. Besides, PLD increased the levels of
inflammatoryMMP-2 andMMP-9. From another mechanistic view,
the co-administration of FLU, a selective antagonist of
benzodiazepine receptors, and NAL, an opioid receptor
antagonist, effectively reversed the aforementioned effects of
PLD. These findings reveal that such therapeutic effects of PLD
pass through opioid and GABA receptors. Our histopathological
evaluation confirmed that PLD regulated axonal swelling, myelin
sheaths, and pronounced hemorrhage (Figure 11).

The CCI model is a prominent experimental method for
studying neuropathic pain, particularly affecting the sciatic nerve
in rodents. Following CCI, there is an increase in pro-inflammatory
cytokines and chemokines, which activate immune cells and trigger
inflammatory responses, contributing to pain hypersensitivity
(Safieh-Garabedian et al., 2019; Gopalsamy et al., 2019). This

FIGURE 5
The impact of PLD on joint function and mobility in rats following the CCI model. Two-way ANOVA revealed that CCI significantly reduced joint
function andmobility, and PLD was able to reverse it (A), and this result was confirmed by AUC analysis (B). While FLU and NAL, when administered alone,
did not affect joint function and mobility, their combined use with PLD mitigated the effects of PLD (C), a result that was confirmed by AUC analysis (D).
The data are shown as mean ± SEM. ***p < 0.001 vs. sham; +p < 0.05, ++p < 0.01, +++p < 0.001 vs. CCI; p̂ < 0.05, ^̂p < 0.01, ^̂ p̂ < 0.001 vs. GBP; #p <
0.05, ##p < 0.01, ###p < 0.001 vs. PLD (10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; FLU, Flumazenil; NAL, Naloxone; PLD, Polydatin.
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immune activation is linked to heightened oxidative stress, resulting
in neuronal damage and increased pain perception (Tan et al., 2009;
Komirishetty et al., 2016). Upregulation of oxidant-generating
enzymes like nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase elevates ROS, causing cellular damage and
perpetuating inflammation (Sun et al., 2021a; Olufunmilayo
et al., 2023).

Antioxidative defenses are often weakened in CCI models, with
reductions in critical antioxidants such as GSH and CAT (Tan et al.,
2009; Chen et al., 2022). Additionally, oxidative stress can activate
MMPs (Baba and Bhatnagar, 2018), which further exacerbate
neuronal damage and pain (Ji et al., 2009). Interventions
targeting oxidative stress and neuroinflammation may alleviate
neuropathic pain in these models. PLD, a natural derivative of

FIGURE 6
The impact of PLD on CAT and GSH activity in rats following the CCI model. Two-way ANOVA revealed that CCI significantly reduced CAT (A) and
GSH (C) activity, and PLD reversed these effects. While FLU andNAL, when administered alone, did not affect CAT (B) and GSH (D) activity, their combined
use with PLD partially mitigated the effects of PLD. The data are shown as mean ± SEM. **p < 0.01, ***p < 0.001 vs. sham; +p < 0.05, +++p < 0.001 vs. CCI;
^p < 0.05, vs. GBP; ##p < 0.01 vs. PLD (10 mg/kg). CAT, Catalase; CCI, Chronic constriction injury; GBP, Gabapentin; GSH, Glutathione; FLU,
Flumazenil; NAL, Naloxone; PLD, Polydatin.

FIGURE 7
The impact of PLD on the nitrite level in rats following the CCI model. Two-way ANOVA revealed that CCI significantly increased nitrite level, and
PLDwas able to reverse it (A). While FLU and NAL, when administered alone, did not affect nitrite level (B), their combined use with PLD partially mitigated
the effects of PLD. The data are shown as mean ± SEM. ***p < 0.001 vs. sham; ++p < 0.01, +++p < 0.001 vs. CCI; p̂ < 0.05, ^̂ p̂ < 0.001 vs. GBP; #p < 0.05,
##p < 0.01, ###p < 0.001 vs. PLD (10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; FLU, Flumazenil; NAL, Naloxone; PLD, Polydatin.
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FIGURE 8
The impact of PLD on the MMP-9 level in rats following the CCI model. Two-way ANOVA revealed that CCI significantly increased the MMP-9 level,
and PLD reversed this effect. FLU and NAL mitigated the effects of PLD. The data are shown as mean ± SEM. **p < 0.01, ***p < 0.001 vs. sham; +p < 0.05,
++p < 0.01 vs. CCI; #p < 0.05, ##p < 0.01 vs. PLD (10 mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; FLU, Flumazenil; MMP, Matrix
metalloproteinases; NAL, Naloxone; PLD, Polydatin.

FIGURE 9
The impact of PLD on the MMP-2 level in rats following the CCI model. Two-way ANOVA revealed that CCI significantly increased the MMP-2 level,
and PLD reversed this effect. FLU and NAL mitigated the effects of PLD. The data are shown as mean ± SEM. *p < 0.05, ***p < 0.001 vs. sham; ++p < 0.01,
+++p < 0.001 vs. CCI, ##p < 0.01, ###p < 0.001 vs. PLD (10mg/kg). CCI, Chronic constriction injury; GBP, Gabapentin; MMP, Matrix metalloproteinase; FLU,
Flumazenil; NAL, Naloxone; PLD, Polydatin.
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resveratrol, enhances the body’s antioxidant defenses primarily
through the activation of the transcription factor nuclear factor
erythroid 2 p45-related factor 2 (Nrf2) pathway, which leads to
increased expression of antioxidant enzymes such as superoxide
dismutase (SOD) and heme oxygenase-1 (HO-1) (Fakhri et al., 2021;
Petrikonis et al., 2024). This mechanism helps to mitigate oxidative
stress by scavenging ROS and reducing lipid peroxidation (Karami
et al., 2022). On the other hand, the anti-inflammatory action of
PLD is mediated through several pathways. It inhibits the NF-κB
signaling pathway, which is crucial for the expression of pro-
inflammatory cytokines like TNF-α, and ILs (Ye et al., 2017; Hu
et al., 2022; Ren et al., 2025). By decreasing phospholipase A2
(PLA2) activity and modulating AMPK/Sirt1 signaling, PLD
effectively reduces inflammation in various experimental models,

including those simulating neuroinflammatory conditions (Chen
and Lan, 2017; Sun et al., 2021b). In the present study, consistent
with the findings of previous research, we observed that PLD,
particularly at a dosage of 10 mg/kg, effectively reduced oxidative
stress and MMPs activities. Behaviorally, these beneficial effects
were associated with a decrease in neuropathic pain and an
enhancement in motor function.

In prior studies, we demonstrated that PLD effectively alleviated
neuropathic pain and restored motor function in rats following SCI.
This beneficial effect was attributed to its anti-inflammatory and
antioxidant properties, which contribute to mitigating the impact of
the injury (Bagheri Bavandpouri et al., 2024). In addition, recent
advances in the study of natural stilbenoids have highlighted their
multifaceted roles in alleviating neuropathic pain and

FIGURE 10
Histological examination of hematoxylin and eosin (H&E) stained sciatic nerve in rats after CCI. Sections of the sciatic nerve were stained using H&E
(40x magnification) (A). Thick red arrows indicate gaps between neurons, highlighting significant separations between the nerve fibers. Thin red arrows
represent areas of axonal swelling. The rightmost red arrow identifies the nucleus of a Schwann cell. The percentage of damaged area was quantified
using ImageJ (B). The data are shown asmean ± SEM. ***p < 0.001 vs. sham; +p < 0.05, ++p < 0.01, vs. CCI; #p < 0.05 vs. PLD (10mg/kg). CCI, Chronic
constriction injury; GBP, Gabapentin; FLU, Flumazenil; NAL, Naloxone; PLD, Polydatin.
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neuroinflammation through diverse molecular mechanisms.
Saadabadi et al. (2025) demonstrated that these compounds exert
analgesic effects partly via modulation of the TRPA1 ion channel, a
critical mediator in pain signal transduction, suggesting a novel
target for neuropathic pain treatment (Saadabadi et al., 2025).
Additionally, stilbenoids have been shown to stabilize and reduce
inflammatory responses by inhibiting key pathways such as
phosphoinositide 3-kinase (PI3K)/Akt and NF-κB, resulting
in decreased production of pro-inflammatory cytokines,
including IL-6, monocyte chemoattractant protein 1 (MCP-
1), and TNF-α (Al-Khayri et al., 2023). PLD’s ability to enhance
antioxidative enzymes and shift the MMPs balance toward anti-
inflammatory types mirrors the broader neuroprotective profile of
stilbenoids reported in recent literature. Importantly, these
compounds have also demonstrated neuroprotective effects on
neuronal structures, supporting axonal integrity and myelin
sheath preservation, which correlates with the histopathological
findings of decreased axonal swelling and improved myelin
integrity seen in this study. Also, our previous findings revealed
that PLD exerts neuroprotection after SCI by preserving neuronal
populations within the dorsal and ventral horns and by limiting
secondary tissue degeneration in the spinal cord (Bagheri
Bavandpouri et al., 2024). The reduction in the activity of MMPs,
especially MMP-9, plays a vital role in maintaining the extracellular
matrix (ECM) and blood-nerve barrier integrity, which are crucial
for normal nerve function (Marcianò et al., 2023). Excessive MMP
activities lead to degradation of ECM components and disruption of
the blood-nerve barrier, increasing permeability and facilitating
infiltration of inflammatory cells, which exacerbates
demyelination and axonal injury. MMPs not only participate in
tissue remodeling by releasing proteases that degrade ECM
components but also induce intracellular protein remodeling by
acting on intracellular targets, both of which contribute to the
pathogenesis of chronic pain (Dai et al., 2024).

Moreover, PLD exhibited anxiolytic effects in a chronic pain
mouse model, highlighting its potential to alleviate not only
pain but also the associated anxiety often experienced by
individuals with chronic pain conditions (Guan et al., 2020).
Wang et al. reported that PLD effectively suppressed

depression- and anxiety-like behaviors in a mouse model by
inhibiting neuroinflammation and oxidative stress (Wang
et al., 2023).

Mechanistically, benzodiazepine receptors are primarily
associated with GABA, an inhibitory neurotransmitter that
plays a crucial role in calming the nervous system. When
benzodiazepines bind to the GABA-A receptor, they enhance
the effects of GABA, leading to increased inhibition of neuronal
activity. This can result in a reduction of anxiety, muscle
relaxation, and also, importantly, a decrease in the perception
of pain (Griffin et al., 2013; Zeilhofer et al., 2015). On the other
hand, opioid receptors, which include mu, delta, and kappa types,
are primarily activated by endogenous peptides (like endorphins)
and exogenous compounds (like morphine). Activation of these
receptors leads to pain relief (analgesia), as they modulate pain
signals in the brain and spinal cord (Corder et al., 2018). These
two receptor systems can interact with one another. Research has
shown that when benzodiazepine receptors are activated, they
can enhance the analgesic effects of opioids (Gear et al., 1997;
Lewis et al., 2012). Our research indicated that the
beneficial effects of PLD could be decreased by administering
FLU or NAL, which suggests that PLD may act through
this mechanism.

In addressing the potential limitations of our study, we
acknowledge that the sample size may limit the generalizability of
our findings. While our results demonstrate significant effects of
PLD on neuropathic pain and motor impairment in the CCI model,
a larger sample size could provide more robust statistical power and
enhance the reliability of our conclusions. However, animal ethics in
the use of laboratory animals prefer minimally acceptable numbers
in vivo. Additionally, the long-term effects of PLD treatment were
not assessed in this study. Long-term toxicity studies need to be
developed in future studies. Future research should investigate the
sustained efficacy of PLD and its impact on neuropathic pain and
related behaviors over extended periods. This would provide
valuable insights into the potential for PLD as a long-term
therapeutic option and help to establish a clearer understanding
of its safety profile and therapeutic window in chronic pain
management. Potential differences in receptor expression between
rodents and humans urge the need to develop well-controlled
clinical trials.

5 Conclusion

In conclusion, PLD exerts significant antioxidant, anti-
inflammatory, and neuroprotective effects that collectively
alleviate neuropathic pain and improve motor performance in
rats subjected to CCI. The observed modulation of oxidative
stress markers, MMPs activities, and histopathological features
such as axonal swelling and myelin integrity underscores its
neuroprotective capacity. Importantly, the reversal of PLD’s
effects by opioid and benzodiazepine receptor antagonists
suggests a receptor-mediated mechanism that parallels established
pathways in human pain modulation.

These findings highlight the translational potential of PLD as a
promising candidate for the development of novel therapeutics
targeting neuropathic pain and its comorbidities, such as anxiety

FIGURE 11
An overview of the study protocol. Polydatin attenuated
inflammation, oxidative stress, and neuronal degeneration following
CCI. CAT, Catalase; CCI, Chronic constriction injury; GSH,
Glutathione; MMP, Matrix metalloproteinase.
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and motor dysfunction. Further preclinical and clinical
investigations are warranted to determine optimal dosing, long-
term efficacy, and safety, paving the way for potential clinical
application of PLD in chronic pain management.
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