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Background: Alzheimer's disease (AD) is a neurodegenerative disease
characterized by abnormal accumulation of p-amyloid (Ap) and
hyperphosphorylation of the Tau protein. Currently, there is a lack of effective
and safe therapeutic approaches. In Traditional Chinese medicine (TCM), Gandou
Decoction has shown significant efficacy in improving cognitive decline and
dementia-related symptoms, but its specific mechanism remains unclear.
Methods: This study systematically analyzed the active components and anti-AD
mechanism of Modified Gandou Decoction (MGD) by integrating network
pharmacology, machine learning, molecular docking, molecular dynamics
(MD) simulation, and in vitro experimental validation. Obtain the components
of Chinese medicines in MGD from TCMSP and screen them via ADMET; obtain
AD targets by combining databases and select core targets through machine
learning; verify their effects through various analyses and experiments.
Results: A total of 21 potential active molecules of MGD and 68 intersection
targets were screened out. Among them, 8 core targets (EIF2AK2, PPARG, BACEL,
ESR1, GSK3B, ACE, CASP3, MAPK14) were confirmed to be significantly associated
with AD pathology by gene expression difference analysis (P < 0.05). KEGG
enrichment analysis showed that MGD mainly intervenes in the amyloid
production pathway, the MAPK pathway, and the IL-17 pathway. Molecular
docking demonstrated that the majority of the 21 potential active compounds
exhibited strong binding affinities to the 8 core targets. Moreover, some potential
active molecules exhibited better binding energy and similar binding modes
compared with known inhibitors when binding to the corresponding target
proteins. Molecular dynamics simulation showed that Alisol B, a potential
active component of MGD, could stably bind to BACE1, EIF2AK2, and CASP3.
In vitro cell experiments confirmed that Alisol B could significantly reverse
okadaic acid-induced damage in SH-SY5Y cells (p < 0.001).
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Conclusion: MGD exerts its anti-AD effect through its potential active component
Alisol B, which binds to target proteins BACE1l, EIF2AK2, and CASP3, and

synergistically

inhibits

AR production,  Tau phosphorylation,  and

neuroinflammatory processes through multiple pathways. This study provides a
foundation for developing MGD-derived natural products for AD treatment,
although the precise mechanisms require further experimental validation.

KEYWORDS

Alzheimer’s disease, molecular targets, mechanisms, network pharmacology, molecular
docking, molecular dynamics simulation, experimental validation

1 Introduction

Alzheimer’s disease (AD),
disorder and the leading cause of dementia globally, constitutes a

a progressive neurodegenerative

significant global health burden affecting an estimated 40 million
people, with prevalence projected to rise in the coming decades
(Breijyeh and Karaman, 2020; Twarowski and Herbet, 2023) Its
primary clinical manifestations involve progressive memory loss
and cognitive impairment, which severely compromise patients’
ability to perform basic activities of daily living (Thakral et al.,
2023). As the disease progresses, patients eventually die from
complications such as infection, dysphagia, or malnutrition (Pang
et al,, 2018; Scheltens et al., 2021). The main pathogenesis of AD
involves: inflammatory reactions caused by excessive accumulation
of free B-amyloid (Ap) forming AP plaques, and neurodegeneration
of neurons due to neurofibrillary tangles caused by microtubule-
2021).
Currently, there are no specific drugs for AD treatment; FDA-

associated (Tau) protein denaturation (Kapasi et al,

approved drugs can only improve cognitive function in the short

term and are accompanied by significant adverse reactions (Wong
et al., 2022). With the acceleration of global population aging, the
demand for safe and effective new drugs has become
increasingly urgent.

Traditional Chinese medicine (TCM) emphasizes syndrome
differentiation and holistic treatment, often achieving unique
efficacy, especially for  complex  diseases such as
neurodegenerative diseases, cancer, and diabetes (Gao et al,
2014; Cai et al,, 2025). Since 1970, the Institute of Neurology at
Anhui University of Chinese Medicine has utilized Gandou
Decoction (GDD), which possesses effects of clearing heat,
detoxifying, promoting bowel movement, and draining dampness,
to treat Wilson’s disease (WD) patients, achieving good clinical
efficacy (Xue et al., 2007). Modified Gandou Decoction (MGD) is
derived from the original GDD with the addition of several herbal
components known to promote blood circulation and nourish the
marrow. MGD consists of Rhei Radix ET Rhizoma (Dahuang),
Coptidis Rhizoma

Curcumae Longae Rhizoma (Jianghuang),

(Huanglian), Curcumae Rhizoma (Ezhu),

Houttuyniae Herba
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(Yuxingcao), Alismatis Rhizoma (Zexie), Notoginseng Radix ET
Rhizoma (Sanqi), Paeoniae Radix Alba (Baishao), and Corni
demonstrated that MGD
overload-induced neuronal

Fructus (Shanzhuyu). Researchers

ameliorates copper damage by
downregulating the expression levels of ASM, Cer, and
p38 MAPK at both mRNA and protein levels in the ceramide
signaling pathway in Wilson’s disease model mice brain tissue
(Xu et al, 2017b). In another study by the same research group,
it was further revealed that MGD facilitates the elimination of excess
copper and suppresses the expression of cytochrome C (Cyt C),
Caspase-9, and caspase-3 in neurons, thereby modulating the Cyt C/
caspase signaling pathway. These mechanisms contribute to the
amelioration of brain injury and support the recovery of cognitive
function in patients with Wilson’s disease (Xu et al., 2017a). MGD
has been confirmed to regulate the expression of synaptic-related
proteins, alleviate synaptic dysfunction, and further improve brain
injury (Hu et al., 2004; Feng et al., 2025). Therefore, it is anticipated
that by adjusting the composition of MGD, its components that
alleviate cognitive decline can be retained for AD treatment.

Network pharmacology analyzes the interaction mechanism
between drugs and diseases from a holistic perspective by
constructing a “drug-component-target-pathway-disease” network
(Nogales et al., 2022). Combined with machine learning, it can
effectively screen large and complex datasets, predict drug molecules
with therapeutic potential through computational simulation, and
provide effective methods and scientific basis for analyzing the
therapeutic mechanism of TCM, as well as explain its active
components and mechanism of action at the molecular level
(Yang et al., 2020).

This study analyzed the active components, targets, and
pathways of MGD in AD treatment network
pharmacology, machine learning, molecular docking, molecular

using

dynamics simulation, and other techniques, and further verified
through cell experiments. This research can promote the study of
Chinese medicine prescriptions for AD treatment and accumulate
useful knowledge for the development of natural drugs for AD.

2 Materials and methods

2.1 Acquisition of potential active
components of MGD

Compounds of the 9 Chinese herbs in MGD were retrieved from
the TCMSP database and the
properties of these compounds were predicted using admetSAR
and SwissADME databases. Potential active components of MGD

(https://www.tcmsp-e.com/),

for AD treatment were screened according to the criteria: OB > 30%,
DL > 0.18, compliance with Lipinski’s five rules, blood-brain barrier
permeability, and no hepatotoxicity.

2.2 Prediction of potential targets of MGD
against AD

The 3D chemical structures of MGD’s potential active
components were retrieved from the PubChem database and
input into the PharmMapper database for target prediction;
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targets with a Norm fit score >0.9 were considered highly
relevant. Standardization was performed using the UniProt
database, and relevant literature was retrieved for
supplementation. Using “Alzheimer’s disease” as the keyword,
AD-related targets and their scores were retrieved from the
DisGeNet database. Drug targets and disease targets were
imported into Venny 2.1.0 to generate a Venn diagram. The
intersection targets in the Venn diagram were the potential

targets of MGD against AD.

2.3 Construction of protein-protein
interaction (PPI) network

To further study the interactions between MGD’s potential anti-
AD targets, they were imported into the STRING database (https://
cn.string-db.org/) with the standard set to “Homo sapiens” and the
minimum interaction score >0.4 (Li et al., 2024). The PPI network
39.1.
subnetworks were screened based on disease relevance scores
from the DisGeNet database.

was visualized using Cytoscape Important protein

2.4 Screening of core targets of MGD for AD
treatment using machine learning
algorithms

AD gene expression profiles were retrieved from the Gene
Expression Omnibus (GEO) database (https://www.ncbinlm.nih.
gov/geo/). Expression of key genes in the hippocampus of
60 samples (47 AD samples and 13 normal samples) was
obtained from GSE5281, GSE9770, and GSE28146. To further
screen the core genes of MGD against AD, six machine learning
algorithms were used: Gradient Boosting Machine (GBM), Neural
Network (NNET), Random Forest (RF), Least Absolute Shrinkage
and Selection Operator (LASSO), K-Nearest Neighbor (KNN), and
Support Vector Machine (SVM). Each model was then tested using
the DALEX package to obtain cumulative residual distributions and
box plots, and the area under the receiver operating characteristic
curve (AUC) was used to evaluate the fitting degree of each model
(Xiong et al., 2023).

2.5 Differential expression analysis of
core genes

The expression levels of the 8 core genes in the hippocampus
were obtained from 60 samples in the GSE5281, GSE9770, and
GSE28146 datasets. R packages were used to analyze the differential
expression of core genes in the hippocampus between AD patients
and healthy controls. GraphPad Prism 10 was used for statistical
analysis and box plot visualization, with t-tests (and non-parametric
tests) for statistical significance. Data are expressed as mean + SD.
*p <0.05; **: p < 0.01; **: p < 0.001; ***: p < 0.0001. This can
verify the consistency of core genes screened by machine learning
algorithms; the mechanism of MGD against AD was further
analyzed by evaluating the upregulation or downregulation trends
of core gene expression.
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2.6 GO and KEGG enrichment analysis

The Database for Annotation, Visualization and Integrated
Discovery (DAVID) (https://david.ncifcrf.gov) was used for
Ontology (GO)
Encyclopedia of Genes

Gene enrichment analysis and Kyoto
(KEGG) pathway
enrichment analysis of intersection genes (Zheng et al., 2023).
In addition, the top 10 GO terms and KEGG pathways with
the lowest p-values were visualized using an online platform
targets
targets were mapped to key pathways using KEGG mapper

(Zhou et al., 2024).

and Genomes

(http://www.bioinformatics.com.cn/). Key and core

2.7 Construction of drug-component-
target-pathway-disease network

To study the complex regulatory network of MGD on AD, the
potential active components, targets, and related pathways of MGD
were input into Cytoscape 3.9.1 to establish a drug-component-
target-pathway-disease network.

2.8 Molecular docking

Semi-flexible docking was used in this study. The structures of
MGD’s potential active components were obtained from the TCMSP
database (Chen and Seukep, 2020). 3D models of Core target protein
were obtained from the Protein Data Bank database (Berman and
Burley, 2025) (PDB) (https://www.rcsb.org/): 1IGFW (CASP3) (Lee
etal,, 2000), 7MSA (ESR1) (Liang and Zbieg, 2021), 1Q3W (GSK3B)
(Iwaloye et al., 2020), IUZF (ACE) (Natesh et al, 2004), 2RG6
(MAPK14) (Hynes et al., 2008), 20HP (BACE1) (Hernandez-
Rodriguez et al., 2016), 6D3K (EIF2AK2) (Mayo et al,
2019),7AWD(PPARG) (Willems et al, 2021). These 3D
structures were subjected to preprocessing, including the removal
of all water molecules and the addition of hydrogen atoms
(Moharana and Pattanayak, 2023).

The 3D chemical structures of MGD’s potential active
components were input into AutodockTools 1.5.7, with hydrogen
atoms and charges added. Docking box sites were then defined
according to the position of positive control molecules, and semi-
flexible docking was performed using Autodock Vina to calculate
binding energy. Positive control molecules were known inhibitors of
database.
PyMOL(v.2.5.7) and Discovery Studio Visualizer were used to
visualize the interactions between proteins and MGD’s potential

core target proteins recorded in the Finally,

active molecules, and their binding poses and binding interactions
were analyzed.

2.9 Molecular dynamics simulation

After molecular docking, Gromacs 2020.6 was used for
molecular dynamics (MD) simulation to further analyze the
stability of complexes formed by potential active molecules
with good binding (low binding energy and high similarity in
binding interactions to positive controls) and target proteins.
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Potential active components of MGD were preprocessed on the
ACPYPE
submit/).
temperature of 300K and atmospheric pressure of 1Bar; the
simulation system used the Amber99sb-ildn force field,
with water as the solvent, and Cl- and Na® were added to

server website (https://www.bio2byte.be/acpype/

MD simulation conditions included a constant

stabilize the electroneutral system (Shi et al., 2023). Energy
minimization was performed using the steepest descent
method. Subsequently, equilibration was performed for
100,000 steps under NVT and NPT ensembles. Finally, an MD
simulation was conducted.

Qtgrace and DulvyTools were used to visualize MD simulation
results, including root mean square deviation (RMSD), root mean
square fluctuation (RMSF), and number of hydrogen bonds
(H-bonds). Gibbs free energy (GFE) was calculated using the
built-in  “g sham” and “xpm2txt.py” scripts in Gromacs
2020.6 software. Free energy landscapes were plotted based on
RMSD and radius of gyration (Rg), and MM/PBSA binding free

energy was calculated (Spiliotopoulos et al., 2012).

2.10 Cell culture and CCK-8 assay for
cell viability

Human neuroblastoma cells (SH-SY5Y) were cultured in
DMEM/F12 medium containing 10% fetal bovine serum (FBS)
and 1% penicillin-streptomycin at 37 “C with 5% CO,.

Logarithmic phase SH-SY5Y cells were uniformly seeded into
96-well plates and incubated for 24 h. Cells were treated with
50 nmol/L okadaic acid (OA) for 6 h to construct an AD cell
model (Chen et al., 2016). SH-SY5Y cells were divided into a control
group, OA group, and OA + Alisol B group. Cell viability in each
group was detected according to the CCK-8 kit instructions (Lu
et al.,, 2021).

2.11 Statistical analysis

Statistical analysis was performed using GraphPad Prism
10 software. One-way analysis of variance (ANOVA) and
Student-Newman-Keuls (SNK) method were used to evaluate
statistical differences. Data are expressed as mean + SD.

3 Results

3.1 Acquisition and preliminary screening of
potential active components of MGD

According to OB, DL, Lipinski’s five rules, and ADMET
screening criteria, 21 potential active components of Modified
Gandou Decoction (MGD) were screened from the TCMSP
database and related literature. Among them, MOL000296 and
MOL000940 were derived from Curcuma zedoaria; MOL000830,
MOL000831, MOL000832, MOLO000849, MOL000853,
MOL000854, MOL000856, and MOL000862 from Alisma
orientale; MOL001495, MOL002883, MOL005360, MOL005486,
MOL005503, and MOL005557 from Cornus officinalis;
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FIGURE 1

Acquisition of potential targets and machine learning screening of core targets of Modified Gandou Decoction against AD. (A) Venn diagram of
targets of potential active molecules of Modified Gandou Decoction in the human body and AD disease targets. (B) PPl network of 68 potential targets. (C)
Key subnetwork consisting of 21 targets. (D) Residual box plot of AD samples. (E) ROC curves of six machine learning models. (F) Cumulative residual
distribution plot of AD samples. (G) Core targets obtained by intersection analysis.

MOL001918 and MOL001919 from Paeonia
MOL002904 and MOL013352 from  Coptis  chinensis;
MOL004350 from Houttuynia cordata; and none from Rhubarb,
Curcuma longa, or Panax notoginseng (Supplementary Table S1).

lactiflora;

3.2 Acquisition of potential targets of MGD
against AD

After screening and removing duplicate targets of each
Chinese herb component in MGD, 92 targets highly related to
MGD’s potential active components were obtained through
PharmMapper. 3397 AD-related targets were retrieved from
the DisGeNet database. Using Venny 2.1.0, 68 potential
targets of MGD
intersection (Figure 1A).

against AD were obtained from the

3.3 Construction of PPl network

To study the interactions between MGD’s anti-AD intersection
proteins, a PPI network was constructed using STRING 12.0 and
Cytoscape 3.9.1. The network consisted of 65 nodes and 734 edges;
each node represents a target protein, with redder nodes indicating
higher degree values and more interactions with other target
proteins. Larger nodes indicate stronger relevance to the disease
(Figure 1B). A key subnetwork was constructed by screening target
proteins from cytoHubba with a disease relevance score >0.1,
containing 23 nodes and 87 edges (Figure 1C).

Frontiers in Pharmacology

3.4 Screening of core targets of MGD for AD
treatment using machine learning

To further screen the core targets of MGD against AD, this study
systematically constructed six machine learning models: Gradient
Boosting Machine (GBM), Neural Network (NNET), Random
Forest (RF), Least Absolute Shrinkage and Selection Operator
(LASSO), K-Nearest Neighbor (KNN), and Support Vector
Machine (SVM). Model performance was analyzed using the
“DALEX” R package, and residual box plots were drawn. The
residual box plot in Figure 1D shows the dispersion of prediction
errors of each model; the box length and outlier distribution indicate
that GBM and NNET models have more concentrated residual
distributions, while KNN and SVM models show larger prediction
fluctuations (Figure 1D). The area under the curve (AUC) in
Figure 1E was used to quantitatively evaluate model classification
performance, and Gradient Boosting Machine (GBM, AUC =
0.942), Neural Network (NNET, AUC = 0.934), and Random
Forest (RF, AUC = 0.884) were selected as the optimal models.
The residual reverse cumulative distribution plot in Figure 1F
further verifies model robustness. The Venn diagram in
Figure 1G shows the intersection of the top 15 feature genes
from the three models(GBM, NNET, RF), among which 8 genes
(EIF2AK2, PPARG, BACEI, ESR1, GSK3B, ACE, CASP3, and
MAPK14)
suggesting that these genes may be key target proteins for MGD

were highly weighted in all three algorithms,
in intervening AD.
Among these 8 core proteins, EIF2AK2 is mainly involved in

regulating protein translation and inflammatory factor expression
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FIGURE 2

GO and KEGG enrichment analysis. (A) The top 10 biological process (BP) terms, cellular component (CC) terms, and molecular function (MF) terms
from GO enrichment analysis are represented by green, orange, and purple bars, respectively. (B) Sankey diagram of KEGG pathway analysis of potential
targets of MGD for AD treatment. Left rectangular nodes represent therapeutic targets, right rectangular nodes represent KEGG pathways, and lines
represent the association between targets and pathways. (C) Drug-component-target-pathway interaction network. Purple hexagons represent
potential active components of MGD, circles represent potential targets, and pink diamonds represent pathways.

(Feng et al, 2025); BACEI is closely related to AP production
(Kapasi et al., 2021); GSK3B is involved in AP production and
Tau protein phosphorylation through metabolic regulation (Lauretti
et al., 2020); CASP3 is related to cell apoptosis (Pandya et al., 2025);
MAPK14 participates in cellular inflammatory signaling pathways
(Prabha et al., 2025).

3.5 Differential expression analysis of core
protein genes

R packages were used to analyze the differential expression of the
8 core genes screened by machine learning. The expression levels of
core genes in the hippocampus of AD patients were compared with
those in the normal group (healthy controls). Compared with
healthy controls, 7 core genes in the hippocampus of AD
patients (EIF2AK2, BACEIL, ESR1, GSK3B, ACE, CASP3, and
MAPK14) significantly upregulated, with
significant 0.05),

were statistically

differences (p < except for PPARG

(Supplementary Figure S1).
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3.6 GO and KEGG enrichment analysis

A total of 400 GO terms were obtained through GO enrichment
analysis, including 300 biological process (BP) terms, 36 cellular
component (CC) terms, and 64 molecular function (MF) terms.
Figure 2A shows the top 10 GO biological terms. BPs include:
intercellular steroid hormone receptor signaling pathway, negative
regulation of apoptotic process, proteolysis, signaling transduction,
response to xenobiotic stimulus, peptidyl-threonine phosphorylation,
negative regulation of cholesterol storage, positive regulation of gene
expression, and response to lipopolysaccharide. CCs include: ficolin-
1-rich granule lumen, cytosol, extracellular region, secretory granule
lumen, extracellular exosome, endoplasmic reticulum lumen, receptor
complex, blood microparticle, extracellular space, and cytoplasm. MFs
include: RNA polymerase II transcription factor activity, ligand-
activated sequence-specific DNA binding, enzyme binding, steroid
hormone receptor activity, estrogen response element binding, zinc
ion binding, steroid binding, peptidase activity, sequence-specific
DNA binding, protein serine/threonine/tyrosine kinase activity,
protein kinase activity.
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Heat map of molecular docking binding energy. Binding energy (kcal/mol) of 26 potential active molecules with 8 core targets from molecular
docking, compared with positive control molecules of each core target. Darker colors indicate lower binding energy.

KEGG enrichment analysis identified 103 KEGG pathways
(Figure 2B). The top 10 KEGG pathways include: Pathways in
cancer, Lipid and atherosclerosis, Efferocytosis, Coronavirus
disease-COVID-19, IL-17
resistance, MAPK signaling pathway, Prolactin signaling pathway,
Non-alcoholic fatty liver disease, Colorectal cancer. The results
suggest a potential association between MGD’s anti-AD effect

signaling  pathway, Endocrine

and the MAPK signaling pathway.

3.7 Drug-component-target-pathway
interaction network

The potential active components, their targets, and related
pathways of MGD were imported into Cytoscape 3.9.1 to
construct a drug-component-target-pathway network (Figure 2C).
The network consists of 99 nodes and 724 edges. Hexagonal nodes
on the left represent potential active components of Modified
Gandou Decoction; circular nodes in the middle represent
potential targets of Modified Gandou Decoction for AD
treatment; diamond-shaped nodes on the right represent the top
10 pathways by KEGG enrichment analysis P-value (Figure 2C).

3.8 Molecular docking
The 21 potential active molecules of MGD were docked with the

8 core target proteins of AD. Core target protein structure data were
obtained from PDB: 1GFW (CASP3), 7MSA (ESR1), 1Q3W

Frontiers in Pharmacology

(GSK3B), 1UZF (ACE), 2RG6 (MAPK14), 20HP (BACEL),
6D3K (EIF2AK2). After docking, the binding energy results were
plotted as a heat map (Figure 3). Darker colors indicate lower
binding energy between proteins and small molecules, and more
stable binding. Studies have reported that a binding free
energy <-5.00 kcal/mol indicates good binding affinity,
and <-7.00 kcal/mol indicates extremely strong affinity (Shah
et al,, 2025). Molecular docking results showed that except for
ESR1 with MOL000830, MOL000831, MOL000832, MOL000849,
MOL000853, MOL000854, MOL000856, MOL000862,
MOL002904, MOL005486, and MOL013352, the binding energy
of other MGD potential active molecules with other core target
proteins was less than —5.00 kcal/mol; the lowest binding energy
between PPARG and MOL000856 was —10.2 kcal/mol, and that
between EIF2AK2 and MOL001919 was —10.1 kcal/mol.

The majority of the potential active components in MGD
demonstrated binding affinity with most of the core targets,
indicating that the anti-AD effects of MGD are likely mediated
through multi-component, multi-target, and multi-pathway
mechanisms (Figure 3). The binding modes of MGD’s potential
active components and positive controls with core target proteins
were analyzed, and docking results with low binding energy and
similar binding modes to positive controls were selected for display
(Supplementary Table S2; Figure 4).

In terms of binding energy and similarity of binding to positive
controls, potential active molecules showed good similarity to
positive controls in binding to target proteins, and some even
had advantages. The binding energy of MOL000830 with
EIF2AK2 (-9.5 kcal/mol) was lower than that of its positive
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Molecular docking and binding analysis of MGD potential active molecules with BACE1, EIF2AK2, and CASP3. (A) Spatial structure of MOLO00830-
BACEL. (B) 3D binding of MOLO00830-BACEL. (C) 2D binding of MOLO00830-BACEL. (D) Spatial structure of MOLO00830-EIF2AK2. (E) 3D binding of
MOLO00830-EIF2AK2. (F) 2D binding of MOLO00830-EIF2AK2. (G) Spatial structure of MOLO00830-CASP3. (H) 3D binding of MOLO00830-CASP3. (1)
2D binding of MOLO00830-CASP3. (J) Spatial structure of MOL0O00854-CASP3. (K) 3D binding of MOL0O00854-CASP3. (L) 2D binding of

MOLO00854-CASP3.
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control 2-AP (a known EIF2AK2 inhibitor, —5.0 kcal/mol); 2-AP
formed only 3 bonds with EIF2AK2 (2 hydrogen bonds and
1 hydrophobic bond), while MOL000830 formed a total of
9 bonds with EIF2AK?2; they shared 2 identical bonds, including
CYS369 and VAL294 (Supplementary Table S2). The binding
energy of MOL000830 with BACEL (—8.5 kcal/mol) was lower
than that of its positive control 6IP (-7.2 kcal/mol); 6IP formed
only 3 hydrogen bonds with BACEI, while MOL000830 formed a
total of 8 bonds with BACEL; they shared only 1 identical bond,
i.e.,, ASP32 (Supplementary Table S2). MOL000830 (Alisol B) and
MOL000854 (Alisol C) showed good binding to target protein
CASP3, with binding energies of —8.5 kcal/mol and —8.4 kcal/
mol, respectively; the binding energy of MOL000830 with
CASP3 was the same as that of the positive control, and the
binding energy of MOL00854 with CASP3 was slightly higher
than that of its positive control (8.5 kcal/mol); MOL000830 and
MOLO000854 shared the following identical bonds with the positive
control MSI in binding to CASP3: ARG207, GLY-122, TRY-204,
and PHE-256, showing good similarity. The binding energy of
MOL000832 with target protein MAPKI4 was —8.3 kcal/mol,
lower than that of the positive control (-7.2 kcal/mol); they
shared the same hydrogen bond binding site ASP-168, and the
same 7t-alkyl interaction sites VAL-38, ALA-51, and ILE-84.

The above potential active molecules of MGD, with binding
energy mostly lower than that of positive controls and similar
binding modes, may exert anti-AD effects by competitively
inhibiting related target proteins similarly to positive controls.

3.9 Molecular dynamics (MD) simulation

Molecular docking revealed that MOL000830 exhibited
excellent binding affinity with multiple core targets (EIF2AK2,
BACEl, and CASP3), with binding energies of -9.5, -85,
and —8.5 kcal/mol, respectively. Given its low binding energy and
docking interactions comparable to the positive controls
(Supplementary Table S2; Figures 3, 4), we further investigated
the binding stability of MOL000830 with these targets using 50-
The

following parameters during the dynamics process were analyzed:

nanosecond all-atom molecular dynamics simulations.
root mean square deviation (RMSD); root mean square fluctuation
(RMSF); radius of gyration (Rg); number of hydrogen bonds
(H-bonds); Gibbs energy landscapes; and calculation of MM/
PBSA binding free energy during dynamics.

3.9.1 MD simulation of MOL0O00830-
EIF2AK2 complex

The MD simulation time was 50ns. The RMSD curve of
EIF2AK?2 after binding to MOL000830 (red line) was lower than
that before binding (black line), and the vibration range of the
EIF2AK2 complex molecular system after binding to
MOL000830 was smaller, indicating that the complex showed a
more stable trend after binding (Supplementary Figure S2A).
Similarly, in the 50ns dynamics simulation, the RMSF of the
protein polypeptide backbone atoms in the MOL000830-
EIF2AK2 complex (red line) was lower than that of the free
EIF2AK2 protein (black line), indicating that the protein
molecular structure was more stable in each part after binding to
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MOLO000830 (Supplementary Figure S2B). The radius of gyration
(Rg) of the MOLO000830-EIF2AK2 stabilized at
3.5nm-3.6 nm after 25ns of dynamics simulation, indicating that

complex

the complex stabilized 25ns after formation (Supplementary Figure
S2C). Hydrogen bonds are the main force for binding between small
drug molecules and proteins. Within 0-50ns of dynamics
simulation, the number of hydrogen bonds in the interaction of
the  MOLO000830-EIF2AK2 stabilized at = 2-3
(Supplementary Figure S2D). In addition, the Gibbs free energy
landscape of the MOL000830-EIF2AK2 complex showed that when
the Rg value was 3.48-3.65 nm and RMSD was 0.9-1.29nm, the
MOLO000830-EIF2AK2 complex had lower Gibbs free energy, i.e., a
more stable conformation (Supplementary Figure S2E). The average
binding free energy of MOL000830-EIF2AK2 in the last 5ns
calculated by the MM-PBSA method was —38.419 kcal/mol, and
the main contributors to the binding free energy were amino acid
residues of EIF2AK2: CYS-369, ILE-273, GLN-376, PHE-421, PHE-
368, etc. (Supplementary Figure S2F).

MOL000830 and EIF2AK2 can form a stable complex; therefore,
MOL000830 only occupy the
EIF2AK2 spatially but also maintain stable binding over time,

complex

can not binding site of
continuously preventing the binding of natural substrates to the
target protein, thereby inhibiting the activity of the target protein.
Moreover, MOL000830 and 2-Aminopurine (2-AP, a known
inhibitor of EIF2AK2) share the same binding sites on EIF2AK2:
CYS-369, GLN-367, and VAL-281, indicating that MOL000830 can
inhibit EIF2AK2 through the same competitive inhibition, exerting
anti-AD effects.

3.9.2 MD simulation of MOL0O00830-
BACEL complex

The RMSD curves of BACE1 (black line) and the MOL000830-
BACE1l complex (red line) remained relatively stable within
0-50 ns, with an average RMSD value of BACEl of
approximately 0.21 nm and that of the MOL000830-BACEl
complex of approximately 0.16 nm, indicating that the
MOL000830-BACE1 complex molecule was more stable after
binding (Supplementary Figure S3A). The RMSF value of the
complex system decreased after binding to MOL000830,
indicating that MOL000830 can form a stable complex system
with  BACE1 and has a stabilizing effect on the protein
(Supplementary Figure S3B). Supplementary Figure S3C shows
that the Rg value of the MOL000830-BACE1 complex stabilized at
2.075 nm-2.1 nm within 0-50 ns, indicating that
MOL000830 binds tightly to BACEl. Within 0-50 ns, the
number of hydrogen bonds in the MOL000830-BACE1 complex
was 0-5 (Supplementary Figure S3D). The Gibbs free energy
landscape of the MOL000830-BACEl1 complex showed that
there was only one main free energy basin in the entire free
energy landscape, indicating that the complex can reach a
metastable conformation by crossing only one energy barrier,
and the basin was broad and deep, indicating that the
interaction between BACEI and MOL000830 was strong and
stable during the entire simulation process; when the Rg value
was 2.08-2.1 nm and RMSD was 0.15 nm, the MOL000830-BACE1
complex had lower Gibbs free energy, ie., a more stable
conformation (Supplementary Figure S3E). The average binding
free energy of MOL000830-BACE1 in the last 5ns calculated by the
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MM-PBSA method was -21.546 kcal/mol, and the main
contributing residues were ILE-118, TYR-71, ILE-110, TRP-76,
and VAL-69 (Supplementary Figure S3F).

Molecular dynamics results showed that MOL000830 can form
a stable complex with BACE1 with tight binding. In the simulation,
MOL000830 and 6-[2-(1H-INDOL-6-YL) ETHYL] PYRIDIN-2-
AMINE (an inhibitor of BACE1) shared the same binding sites
ASP-228 and PHE-108, indicating that MOL000830 may inhibit
BACEI through the same competitive inhibition.

3.9.3 MD simulation of MOL0O00830-
CASP3 complex

Supplementary Figure S4A shows that the RMSD of
CASP3 stabilized at 0.15 nm-0.3 nm (black line), and the
MOL000830-CASP3 complex stabilized at 0.10 nm-0.28 nm
(red line); the MOL000830-CASP3 complex was more stable
within 0-50 ns. The RMSF value of the complex system slightly
decreased after binding to MOL000830, indicating that
MOL000830 can form a relatively stable complex with CASP3
(Supplementary Figure S4B). The Rg value of the MOL000830-
CASP3 complex stabilized at 1.78 nm-1.83 nm within 0-50 ns,
that MOLO000830 binds tightly BACE1
(Supplementary Figure S4C). Within 0-50 ns, the number of
hydrogen bonds in the MOL000830-CASP3 complex was 1-3
(Supplementary Figure S4D). The Gibbs free energy landscape
of the MOL000830-CASP3 complex showed that there was only
one main free energy basin in the entire free energy landscape,

indicating to

indicating that the complex can reach a metastable conformation
by crossing only one energy barrier; the basin was broad and deep,
indicating that the CASP3
MOL000830 was strong and stable during the entire simulation

interaction  between and
process; when the Rg value was 1.75-1.80 nm and RMSD was
0.15-0.24 nm, the MOL000830-CASP3 complex had lower Gibbs
free energy and a more stable conformation (Supplementary
Figure S4E). The average binding free energy of MOL000830-
CASP3 in the last 5 ns calculated by the MM-PBSA method
was —11.176 kcal/mol, and the main contributing residues were
PHE-256, TYR-204, TRP-206, THR-166, and LEU-168
(Supplementary Figure S4F).

MD Simulation of MOL000830-CASP3 Complex results showed
that MOL000830 can form a stable complex with CASP3 with tight
binding. In the simulation, MOL000830 and 1-METHYL-5-(2-
PHENOXYMETHYL-PYRROLIDINE-1-SULFONYL)-1H-
INDOLE-2,3-DIONE (an inhibitor of CASP3) shared the same
binding sites TYR-204, TRP-206, and PHE-256, indicating that
MOLO000830 can inhibit CASP3 through the same competitive
inhibition, exerting anti-AD effects.

3.10 CCK-8 assay for cell viability

Okadaic acid (OA) can induce excessive phosphorylation of the
cytoskeleton, thereby causing nerve cell damage similar to that
caused by AP-induced Tau protein phosphorylation, which
reduces microtubule stability (Shen et al., 2018). In this study,
OA (concentration 50 nmol/L) was used to inhibit the viability
of SH-SY5Y human neuroblastoma cells to establish a neural cell
model of AD. Then, different concentrations of MOL000830 (Alisol
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B) molecules were added to protect SH-SY5Y cells and enhance their
viability. The CCK-8 assay revealed that compared with the control
group, treatment of SH-SY5Y cells with 50 nmol/L OA for 6 h
significantly reduced the cell survival rate to 45.12% of that of
untreated cells (p < 0.001) (Figure 5A). After OA treatment, cells
were simultaneously treated with different concentrations of Alisol
B. The results showed that 15 umol/L, 18 pmol/L, and 20 pmol/L
Alisol B significantly increased the survival rate of OA-treated SH-
SYS5Y cells (p < 0.001), with survival rates of 79.55%, 74.38%, and
74.48%, respectively; compared with the OA-treated group alone,
the survival rates were 1.76, 1.65, and 1.65 times that of the OA-
treated group alone, but still did not reach the cell viability of the
blank group (p < 0.001) (Figure 5A). Treatment with 24 pmol/L
Alisol B after OA treatment resulted in a cell survival rate of 46.98%,
with no effect on improving cell survival rate (p < 0.001) (Figure 5A).
Notably, the control groups treated with Alisol B at concentrations
corresponding to those in the experimental groups exhibited no
significant effect on cell viability (Figure 5B).

Microscopic observation of cells in each group of the CCK-8
experiment at x40 magnification yielded the same results (Figures
5C-H). Therefore, Alisol B at 15 pmol/L significantly rescued
OA-induced cell 24 uM
protective effect.

damage, while showed no

4 Discussion

MGD is a classic TCM compound consisting of 9 Chinese
herbs: Rhubarb, Coptis chinensis, Curcuma zedoaria, Curcuma
longa, Houttuynia cordata, Alisma orientale, Panax notoginseng,
Paeonia lactiflora, and Cornus officinalis. MGD has been
demonstrated to ameliorate neuronal damage in the brains of
Wilson’s disease model mice induced by copper overload through
two distinct mechanisms: by regulating the Cyt ¢/caspase signaling
pathway through facilitating the excretion of excess copper and
suppressing the expression of Cyt ¢, Caspase-9, and caspase-3 in
neurons; and concurrently by downregulating the mRNA and
protein expression levels of acid sphingomyelinase (ASM),
ceramide (Cer), and p38 MAPK in the ceramide signaling
pathway (Xu et al, 2017b). In this study, 21 potential active
components were identified from MGD according to the
criteria of OB, DL, Lipinski’s five rules, blood-brain barrier
permeability, and no hepatotoxicity; they are mainly derived
from Coptis chinensis, Curcuma zedoaria, Houttuynia cordata,
Alisma orientale, Paeonia lactiflora, and Cornus officinalis
(Supplementary Table SI).

Further intersection analysis of drug targets and AD-related
targets identified 68 potential targets for MGD in AD treatment. GO
function analysis and KEGG pathway analysis showed that the
potential active components of MGD intervene in AD-related
pathways by acting on disease targets, including pathways in
cancer, lipid and atherosclerosis pathways, IL-17 signaling
pathway, MAPK signaling pathway, etc. (Figures 2A,B). Machine
learning focused on core targets, and finally, 8 core targets were
screened: EIF2AK2, PPARG, BACEI, ESR1, GSK3B, ACE, CASP3,
and MAPKI14 (Figure 1G). The roles of these targets in AD
pathogenesis include: EIF2AK2, involved in cellular stress
response and protein synthesis regulation (Feng et al., 2025),
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BACEL, closely related to A peptide production (Kapasi et al.,
2021), and CASP3, playing a key role in cell apoptosis (Feng et al.,
2025). Differential
hippocampal tissues of AD patients and normal tissues showed

expression analysis of core targets in
that except for PPARG, other core targets were significantly
upregulated hippocampal of AD patients

(Supplementary Figure S1). This finding further validates the

in tissues
importance of the core targets in AD.

Molecular docking results showed that the binding of MGD’s
potential active molecules to AD core targets has the following
characteristics: most of the 21 potential active molecules have strong
binding to core target proteins, with binding energy <-5 kcal/mol;
almost all 21 potential active molecules can bind to the 8 core
proteins of AD; each core protein can bind to multiple potential
active molecules (Figure 3). This fully indicates that MGD’s
therapeutic effect on AD has a synergistic effect through multiple
components, targets, and pathways.

Interestingly, except for poor binding to ESRI, Alisol B
(MOL000830) has good binding to the other 7 core proteins,
mainly reflected in low binding energy and similar binding to
corresponding positive controls (Supplementary Table S2; Figures
3, 4). This characteristic of a small molecule binding to multiple
target proteins suggests that it may simultaneously intervene in -
amyloid production and cellular stress response pathways,
producing a synergistic inhibitory effect. Compared with drug
molecules acting on a single target protein, Alisol B has greater
potential for drug development. Further molecular dynamics
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simulations confirmed that Alisol B can not only bind to
EIF2AK2, BACEIL, and CASP3 spatially to occupy the binding
site and prevent the binding of their natural substrates but also
maintain stable binding over time, continuously preventing natural
substrates from binding to target proteins, thereby inhibiting the
activity of target proteins.

BACEI belongs to the aspartic protease family, and its main
function is to cleave amyloid precursor protein (APP) to cause AP
production and accumulation (Hampel et al., 2021). APP cleavage
has two pathways: the non-amyloidogenic pathway mediated by a-
secretase, and the amyloidogenic pathway mediated by p-secretase
(BACE1) and y-secretase (Chen et al., 2016). BACEL1 is a key enzyme
for A production; therefore, inhibiting BACE1 can directly reduce
AP production, thereby delaying AD progression (Pan et al., 2024).
Alisol B can bind to BACEL; therefore, Alisol B can directly inhibit
AP production (Supplementary Figure S3; Figure 6).

EIF2AK?2, also known as double-stranded RNA-activated protein
kinase (PKR), is one of the human innate immune interferon-
stimulating factors and a pro-inflammatory cytokine (Mafucat-
Tan et al, 2019). EIF2AK2 is involved in various physiological
processes, including antiviral defense, protein translation
regulation, cell apoptosis and proliferation, innate immunity, and
inflammatory response. Studies have shown that aggregated A can
induce upregulation of brain tissue PKR activator (PACT) expression
and activate EIF2AK2 2025);

EIF2AK2 phosphorylates eukaryotic protein translation initiation

(Ramasamy et al, activated

factor 2a (eIF2a), thereby shutting down eIF2a-dependent protein
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translation initiation. This shutdown of protein translation initiation
instead promotes elF2a-independent but mRNA upstream ORFs
(uORFs)-dependent translation initiation of BACEL, thereby
promoting BACE1l expression and further increasing AP
production, forming a cycle that promotes AP production and
accumulation (Mihailovich et al., 2007; Moradi Majd and Mayeli,
2020). In addition to promoting AP production, EIF2AK2 activation
can promote the production and release of inflammatory cytokines
such as IL6, IL1-B, and TNFa through the NF-kB pathway, causing
cellular inflammatory responses and nerve cell apoptosis (Hugon
etal, 2017). Moreover, EIF2AK2 activation can promote Tau protein
phosphorylation, reduce the stability of neuronal microtubules, and
cause them to entangle with each other, forming neurofibrillary
tangles (NFTs); EIF2AK2 activation can also further promote
NFTs production by activating GSK-3f (Otero-Garcia et al., 2022).
EIF2AK2 activation causes continuous A accumulation, leading to
neuronal inflammatory responses and cell apoptosis; in addition, Tau
protein phosphorylation seriously affects the stability of neuronal
microtubule cytoskeleton, causing axonal signal transduction
disorders and leading to memory and cognitive decline (Figure 6).
Alisol B binding to EIF2AK2 can inhibit its activation, effectively
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inhibiting AP accumulation and the resulting neuroinflammation;
interrupting the cycle of EIF2AK2 activation, activating BACEI and
further causing AP accumulation; and simultaneously inhibiting Tau
phosphorylation, preventing the depolymerization of neuronal
microtubule cytoskeleton and the formation of NFTs, effectively
controlling AD progression (Supplementary Figure S2; Figures 4,
6). Therefore, EIF2AK2 plays a key role in AD occurrence and
progression, and inhibiting EIF2AK2 is expected to effectively
control AD progression.

CASP3 is caspase-3, belonging to the cysteine protease family,
mainly involved in the cell apoptosis process; it can directly mediate
B-amyloid (AP)-induced neuronal
abnormal processing of Tau protein and NFTs formation, and is

apoptosis, participate in
also an important protein in the MAPK signaling pathway (Floden
etal., 2005; Yoshida and Goedert, 2006; Wang et al., 2014; Shao et al.,
2018). The results of this study showed that both Alisol B and Alisol
C can stably bind to CASP3 (Figures 3, 4). Therefore, Alisol B and
alisol C binding to CASP3 can inhibit its activity and neuronal
apoptosis, exerting anti-AD effects. A previous study demonstrated
that MGD inhibits the expression of Caspase-3 in neurons. This
agreement with the predictions of our current study lends credence
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to the reliability of our molecular docking and molecular dynamics
simulation analyses (Xu et al., 2017a).

Feng et al. (2025) synthesized a circular RNA that can bind to the
double-stranded RNA-binding domain of EIF2AK2, prevent
EIF2AK2  dimerization, inhibit EIF2AK2
successfully alleviating neuroinflammation and AD symptoms in
AD model mice. The EIF2AK?2 inhibitor C16 can reduce cognitive
memory impairment, neurodegeneration, neuroinflammation, and

and activation,

AP accumulation in the brain (Ingrand et al., 2007). Studies have
reported that Alisol B has anti-tumor effects, suggesting that its
inability to enhance cell survival rate at 24 pmol/L may be related to
its anti-tumor effect (Xu et al., 2018). This study used OA to act on
SH-SY5Y human neuroblastoma cells to establish an AD cell model;
CCKS8 cell experiment results showed that Alisol B can reduce OA-
induced decrease in AD cell viability (Figure 5A). These research
results support that the potential active component Alisol B in MGD
can target and inhibit EIF2AK2, BACE1, and CASP3, thereby having
potential applications in AD treatment.

Network pharmacology analysis showed that Alisol B is a
potential active molecule derived from the Chinese herb Alisma
orientale. Chen et al. (Chen et al., 2024) reported through UHPLC-
Q-Orbitrap HRMS that Alisol B and its concentration can be
identified in the serum of mice fed with Alisma Decoction,
indicating that Alisol B is stable during Chinese herb decoction
and can be well absorbed into the blood through the mouse intestine.
ADMET analysis showed that Alisol B can cross the blood-brain
barrier (Supplementary Table S1). This indicates that Alisol B has
the characteristics of an AD therapeutic drug.

Although this study investigated the anti-AD potential of MGD
through multi-faceted computational simulations and preliminary
experiments, several limitations should be acknowledged. Firstly, the
effects of Alisol B were only verified through in vitro cell
experiments, lacking in vivo validation using AD animal models
(such as behavioral assessment and brain tissue pathological
examination), resulting in insufficient support for clinical
translation. Secondly, the synergistic or antagonistic effects
among the 21 potential active ingredients in MGD were not
explored, failing to fully reflect the “multi-component - multi-
target” characteristics of traditional Chinese medicine formulas.
Thirdly, only SH-SY5Y cells were used in the in vitro
experiments, and only cell viability was detected, leading to a
Fourthly,
pharmacokinetic studies or safety assessments of Alisol B were

single model and detection dimension. no
conducted, limiting its reference value for drug development.
Finally, the regulatory network among core targets was not
adequately analyzed, and the depth of mechanism elucidation
was insufficient. In the future, in vivo validation could be
improved by constructing AD animal models. The synergistic
mechanisms of multiple components could be analyzed using
techniques such as UPLC-Q-TOF/MS. The experimental models
and detection systems could be optimized. Pharmacokinetic and
safety assessments could be carried out. Research on the regulatory
network of targets could be deepened to improve the anti-AD
mechanism of MGD and promote clinical translation.

In conclusion, this study screened 21 potential active molecules
of MGD for AD treatment and their 8 core targets in AD through
network pharmacology and artificial intelligence analysis. Further

differential expression analysis of core target genes confirmed the
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effectiveness of core target upregulation for potential active molecule
binding. Molecular docking results showed that most of the
21 potential active molecules have strong binding to the 8 core
target proteins, indicating that MGD has a synergistic effect through
multiple components, targets, and pathways in alleviating cognitive
decline in AD. Molecular dynamics results confirmed that Alisol B
can stably bind to BACE1, EIF2AK2, and CASP3, inhibiting AP
production and accumulation, Tau protein phosphorylation and
NFTs formation, neuroinflammation, and inflammation-induced
neuronal apoptosis, thereby alleviating AD occurrence and
progression. CCK8 cell experiment results further confirmed the
protective effect of Alisol B on OA-induced damage in SH-SY5Y
human neuroblastoma cells. This study can provide a basis for the
use of MGD in alleviating cognitive decline in AD and useful
insights for the development of AD therapeutic drugs, but its
specific mechanism requires further research verification.
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