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Objective: This study utilizes real-world data from primary membranous
nephropathy (PMN) patients to preliminarily develop a venous
thromboembolism (VTE) risk prediction model with machine learning. The aim
is to improve the rational use of prophylactic anticoagulant therapy by predicting
VTE risk in these patients.
Methods: We collected diagnostic and treatment data for PMN patients
hospitalized at Sichuan Provincial People’s Hospital from 1 January 2018, to
30 September 2024. The data was divided into training and test sets at an 8:
2 ratio, followed by processed using combinations of three imputation methods,
three sampling methods, and three feature selection methods. After
preprocessing, fourteen machine learning algorithms were employed to
develop a predictive model for VTE risk in PMN patients. The SHapley Additive
exPlanation (SHAP) method was used to interpret the contribution of outcome
features. Finally, a VTE risk prediction tool for PMN patients was constructed
using Streamlit.
Results: A total of 643 patients with PMN were included in the study, of whom
93 developed VTE. Among the 504 models constructed, the NGBoost model,
which incorporated imputation by K-Nearest Neighbor, sampling by Borderline-
SMOTE, and feature selection by Frequency-based Selection, was identified as
the optimal model, achieving an area under the curve (AUC) of 0.911. The optimal
model included ten features: D-dimer (DD), Fibrin Degradation Products (FDP)
>5 mg/L, international normalized ratio (INR) of prothrombin, Recurrent
nephrotic syndrome (RNS), cholinesterase (CHE), Urinary Microalbumin to
Creatinine Ratio (umALB/Ucr), statins, antithrombin III (AT III) activity, albumin,
and anti-phospholipase A2 receptor antibody (aPLA2Rab). Finally, an online
predictive tool based on the optimal model was developed to provide real-
time individualized VTE risk predictions for PMN patients.
Conclusion: This study developed a personalized risk prediction model for VTE in
PMN patients using machine learning techniques. Additionally, a web-based tool

OPEN ACCESS

EDITED BY

Marco Allinovi,
Careggi University Hospital, Italy

REVIEWED BY

Osama Nady Mohamed,
Minia University, Egypt
Arwa Jalal Eddine,
Hôpital Foch, France
Tiffany Pon,
University of California San Francisco,
United States

*CORRESPONDENCE

Yuan Bian,
bianyuan567@126.com

Xingwei Wu,
wuxingwei@med.uestc.edu.cn

Qinan Yin,
522922633@qq.com

†These authors share first authorship

RECEIVED 21 August 2025
REVISED 18 October 2025
ACCEPTED 20 October 2025
PUBLISHED 06 November 2025

CITATION

Li L, Wu L, Wang Y, Wang H, Zheng X, Han L,
Yin Q, Wu X and Bian Y (2025) Development of a
venous thromboembolism risk prediction
model for patients with primary membranous
nephropathy based on machine learning.
Front. Pharmacol. 16:1683708.
doi: 10.3389/fphar.2025.1683708

COPYRIGHT

© 2025 Li, Wu, Wang, Wang, Zheng, Han, Yin,
Wu and Bian. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 06 November 2025
DOI 10.3389/fphar.2025.1683708

https://www.frontiersin.org/articles/10.3389/fphar.2025.1683708/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1683708/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1683708/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1683708/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1683708/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1683708&domain=pdf&date_stamp=2025-11-06
mailto:bianyuan567@126.com
mailto:bianyuan567@126.com
mailto:wuxingwei@med.uestc.edu.cn
mailto:wuxingwei@med.uestc.edu.cn
mailto:522922633@qq.com
mailto:522922633@qq.com
https://doi.org/10.3389/fphar.2025.1683708
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1683708


for this predictive model was created. The model demonstrates strong predictive
performance and can assist in clinical decision-making for the prevention and
treatment of VTE in PMN patients.
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learning, prediction model

1 Introduction

Membranous Nephropathy (MN) is primarily characterized by
proteinuria and hypoalbuminemia, typically progressing to
Nephrotic Syndrome (NS). MN can be classified into primary
membranous nephropathy (PMN) and secondary membranous
nephropathy (SMN) based on etiology, with PMN accounting for
80% of cases (Couser, 2017; Ronco and Debiec, 2015; Dc and Pe,
2017). In China, the proportion of PMN among primary
glomerulonephritis cases has risen from 9.89% (1979–2002) to
18.42% (2003–2014), indicating a yearly increase in incidence
(Hladunewich et al., 2009; Hou et al., 2018).

It is currently believed that PMN patients experience prolonged
heavy proteinuria and hypoalbuminemia, which result in the loss of
small-molecule proteins. In response, the liver compensates by
synthesizing large-molecule proteins, causing abnormalities such
as platelet activation, abnormal coagulation system test indexes, and
reduced fibrinolytic system activity. These abnormalities contribute
to a hypercoagulable state in PMN patients, making them highly
susceptible to VTE (Lionaki et al., 2012; Bierzynska and Saleem,
2017; Cheung et al., 2018).

VTE is one of the most common complications of PMN,
encompassing deep vein thrombosis (DVT) and pulmonary
embolism (PE), as well as intra-abdominal venous thrombosis (Li
et al., 2012). Among these, renal vein thrombosis (RVT) is the most
prevalent, with reported incidences varying widely between 29% and
60% across different studies (Velasquez Forero et al., 1988; Singhal
and Brimble, 2006; Li et al., 2012). Additionally, the occurrence of
VTE is associated with the severity of proteinuria and
hypoalbuminemia in PMN patients and typically manifests early
in the disease course (Lionaki et al., 2012; Vestergaard et al., 2022).
During the progression of PMN, the risk of VTE rapidly increases
from less than 1% at the disease onset to 7%, particularly when
serum albumin (ALB) levels are ≤28 g/L. Below this threshold, for
every 10 g/L decrease in serum ALB, the risk of thromboembolic
events nearly doubles (Lionaki et al., 2012; Couser, 2017). Research
shows a markedly elevated risk of thromboembolism early in the
PMN disease course, especially in the nephrotic state; the VTE
incidence was 9.85% within the first 6 months (Mahmoodi
et al., 2008).

However, the current predictive indicators for assessing VTE
risk in PMN patients are primarily based on serum ALB levels.
Recent studies have identified associations between VTE occurrence
in PMN patients and factors such as D-dimer levels, proteinuria,
anti-phospholipase A2 receptor antibody (aPLA2Rab) levels, and
low-density lipoprotein cholesterol (LDL-C) levels (Kumar et al.,
2012; Li et al., 2012; Wu et al., 2022; Zhu et al., 2022). Consequently,
a scientifically rigorous method for assessing VTE risk in PMN
patients remains elusive, and there is a lack of effective predictive
models for the risk of VTE formation in these patients. As a core

technology of artificial intelligence, machine learning is often
employed to construct data analysis and predictive models. This
study aims to incorporate multiple types of factors and use machine
learning algorithms to develop a VTE risk prediction model for
PMN patients. This model could provide crucial support for
devising individualized prophylactic anticoagulation treatment
strategies for PMN patients.

2 Materials and methods

2.1 Data explanation

The data for this study were obtained from the electronic health
record system (EHRS) of Sichuan Provincial People’s Hospital and
through telephone follow-up. The study included PMNpatients who
were hospitalized at Sichuan Provincial People’s Hospital between
1 January 2018, and 30 September 2024. For patients with multiple
hospitalization records, in order to achieve the goal of early
prediction of VTE risk and to avoid the confounding factors
introduced by changes and interventions during multiple
treatment processes, this study extracts data records from the
patients’ first admission, and in cases where the same indicator is
recorded multiple times, the initial record is taken. Inclusion criteria
required patients to be diagnosed with MN via renal biopsy or to
have a positive aPLA2Rab test. Exclusion criteria were as follows: (1)
SMN, including hepatitis B- and C-associated MN, systemic lupus
erythematosus-associated MN, thyroiditis-associated MN, tumor-
associated MN, Sjögren’s syndrome-associated MN, HIV-associated
MN, and ankylosing spondylitis-associated MN; (2) hospitalization
due to VTE; (3) diagnosed with VTE within 24 h of hospitalization;
(4) death during hospitalization; (5) inability to obtain diagnostic
and treatment data; (6) lack of contact information.

The outcome variable of this study is the diagnosis of VTE-
related diseases within 6 months of the initial hospitalization, such
as VTE, DVT, RVT, and PE, as confirmed by vascular ultrasound
examination.

In the course of the study, patients’ private information, such as
names, addresses, and contact approaches, was anonymized. This
study was conducted in accordance with the Declaration of Helsinki
and was approved by the institutional ethics committee.

2.2 Statistical analysis

Continuous variables are expressed as mean ± standard
deviation (SD). For variables following a normal distribution, the
t-test is used, while the Mann-Whitney U test is employed for non-
normally distributed variables. Categorical variables are presented as
frequencies and percentages (%), and analyzed using the chi-squared
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test and Fisher’s exact test. A p-value of <0.05 is considered
statistically significant. Statistical analyses are conducted using
the stats module in Python 3.8, and model development is
performed using the sklearn library in Python 3.8.

2.3 Variable processing

Variables with more than 90% missing values, those where the
largest category accounts for more than 90% of records, those with
more than 90% maximum category count, and those with a
coefficient of variation less than 0.01 were excluded. Binary
categorical variables were assigned values of 0 or 1. Ordinal
categorical variables were assigned values of 1, 2, 3, and so on.
Nominal categorical variables were transformed using one-hot
encoding; for variables with more than five categories,
consolidation was performed prior to encoding.

Three data imputation methods were employed: (1) Simple
Imputation: For continuous variables, the median was used as the
imputation value, while for categorical variables, themode was used. (2)
K-Nearest Neighbors (KNN) Imputation: The KNN algorithm was
utilized to predict and replace the missing values. (3) Random Forest
(RF) Imputation: The RF algorithm was applied to predict and replace
the missing values. RF classification models are used for imputing
categorical variables, while RF regression models are applied for
imputing continuous variables. To prevent data leakage during
imputation, all target labels are excluded, and only feature values are
retained for the imputation process. After imputation, a consistent 8:
2 train-test split was applied to all three datasets using a fixed random
seed, ensuring identical samples in each respective set and producing
three training sets (n = 514) and three test sets (n = 129).

Three data samplingmethodswere employed: (1) SyntheticMinority
Oversampling Technique (SMOTE): synthesizes and supplements new
samples from the minority class using a subset of original data. (2)
Borderline-SMOTE (BSMOTE): an enhanced algorithm based on
SMOTE that selectively generates new samples only from the
minority class samples on the border, thereby improving the
distribution of class samples. (3) Adaptive Synthetic (ADASYN):
dynamically generates data based on the difficulty of learning from
minority class samples. To counteract the continuous values generated
during categorical variables imputation, the values were rounded to the
nearest categories. The sample sampling was conducted solely on the
training sets to allow the models to fully learn minority class
characteristics, while the test sets retained their original imbalanced
distribution for a realistic performance assessment. This step produced
nine training sets.

Three feature screening methods were employed: (1) non-
screening: models were built using all variables. (2) Lasso selection:
a feature screening method based on linear regression, accurately
identifying important variables. (3) LightGBM selection: utilizing the
LightGBM algorithm to assess the importance of feature variables and
select the top ten ranked features. (4) Frequency-based Selection (Freq-
based): After performing feature screening with LASSO and LightGBM,
the frequency of each feature’s occurrence was quantified across the
18 generated subset datasets. Subsequently, the top 10 most frequently
occurring features were selected to reconstruct a refined feature
selection subset. Following feature selection on the training sets,
36 sets were obtained. The test sets were then matched and

supplemented accordingly based on the imputation method,
retaining only the features present in their corresponding training sets.

2.4 Model construction

Through different data imputation techniques, data sampling,
and feature screening, 36 datasets were obtained. 14 machine
learning algorithms were employed, including Logistic Regression
(LR), Support Vector Machine (SVM), KNN, Decision Tree, Multi-
Layer Perceptron (MLP), RF, Extremely Randomized Trees (ExtRa
Trees), Adaptive Boosting (AdaBoost), Gradient Boosting (GBoost),
Extreme Gradient Boosting (XGBoost), Categorical Boosting
(CatBoost), Natural Gradient Boosting (NGBoost), Bernoulli
naive Bayes (Ber NB), and Gaussian naive Bayes (Gau NB).

The training set was used for model development and the test set
was used for model evaluation. Ten-fold cross-validation was
performed on the training set to internally validate the model
and assess the stability of machine learning predictions across
different data partitions and performance metrics.

2.5 Model evaluation

In this study, performance evaluation metrics of classification
models were utilized, including receiver operating characteristic
(ROC) curve and its AUC, precision-recall (P-R) curve,
calibration curve, calibration slope and intercept, decision curve
analysis (DCA), accuracy, precision, recall, F1-score, and Brier score.
SHapley Additive exPlanations (SHAP) were employed to elucidate
the contributions of variables to the models.

To assess the impact of different sample sizes on model prediction
performance, Bootstrapping was conducted by randomly sampling
subsets of 10%, 20%, 30%, up to 100% from the training set. These
10 subsets were used iteratively to build models, and their AUC was
computed using a test set. This process was repeated 100 times to
examine the effect of sample size. 200 bootstrap resampling iterations
were performed to evaluate the impact of different methods of data
preprocessing, modeling, and viable features. One-way ANOVA was
applied in the feature sensitivity analysis.

2.6 Web-based prediction tool

Building upon the aforementioned steps, a final optimal
prediction model is obtained and implemented using Streamlit to
establish a web-based prediction tool. This platform incorporates
multiple predictive indicators highly associated with concurrent
VTE in patients with PMN, ultimately providing personalized
VTE risk assessment for PMN patients.

3 Results

3.1 Research population

A total of 1,349 records of hospitalized patients diagnosed with
MNwere extracted and 725 cases remained after excluding duplicate
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visits. Following inclusion and exclusion criteria screening, SMN
patients were excluded, resulting in a final cohort of 643 patients.
Among these, 93 cases experienced VTE, while 550 did not. Figure 1
depicts the patient enrollment process. The demographic and
clinical characteristics of the patients at baseline are summarized
in Supplementary Tables 1–4.

3.2 The results of variable procession

86 indicators were identified for inclusion after data preprocessing,
being categorized into nine basic demographic features,
21 comorbidities and medical history details, five medication-related
factors, and 51 laboratory test results, as detailed in Supplementary
Table 6. The missing performance of each variable is presented in
Supplementary Table 7. Supplementary Table 8 lists the medical
reference ranges for each variable, while Supplementary Table 9
outlines the specific sub-features encompassed within the merged
features, such as anticoagulants, liver diseases, etc.

The initial dataset was processed for missing values using three
different imputation methods, followed by dataset splitting,
resulting in 36 standardized datasets. The details for each dataset
are provided in Table 1.

3.3 Model building

After fitting 36 datasets using 14 machine learning algorithms,
we generated a total of 504 VTE risk prediction models for PMN
patients. Preliminary assessments of model performance were
conducted using 10-fold cross-validation. Selected results from
the 10-fold cross-validation of some models are shown in Table 2.

3.4 Model evaluation

The evaluation of model performance was conducted using the
test dataset, calculating metrics including AUC, accuracy, precision,
recall, F1 score, and Brier score. Among the models evaluated, the
NGBoost model (Optimal Model), optimized through KNN
imputation, BSMO sampling, and Frequency-based feature
selection, demonstrated superior comprehensive performance in
both AUC (0.911) and F1-score (0.652). Optimal Model, model_
2, and model_3 ranked as the top three in AUC performance, while
model_4 exhibited the best performance among classical LR models,
model_5 achieved the highest F1-score. Figure 2 displays the ROC
curve, P-R curve, calibration curve, and decision curve for the
optimal model. The model calibration evaluation resulted in a
Brier score of 0.095, indicating good overall accuracy. The
calibration intercept was −0.946 and the slope was 0.556,
reflecting minor over-prediction for high-risk cases and under-
prediction for low-risk cases. Nevertheless, the model
demonstrated good discrimination and acceptable calibration.
SHAP values were used to explain the contributions of variables
to the models. Figure 3 illustrates the relationship between the values
of each variable in the final predictive model and the corresponding
changes in SHAP values. Figure 4 displays the ranking of variable
importance in the final predictive model. The results indicate that
D-dimer, FDP > 5 mg/L, INR, RNS, and CHE are the five most
critical variables. In the predictive model, higher SHAP values for a
variable suggest a greater possibility of VTE occurrence. Figure 5
compares the performance of our optimal model against the
traditional Padua score using ROC curves and confusion
matrices. As shown in Figure 6, the AUC value of the test set
increases with the sample size, and the curve gradually flattens,
demonstrating the robustness and persuasiveness of our study. A

FIGURE 1
Patient inclusion flow chart.

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2025.1683708

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1683708


TABLE 1 Data processing combinations and dataset sizes.

Number Fill
method

Sampling
method

Feature selection
method

Number of
variables

Training set
size

Test set
size

1 knn ADA all 62 893 129

2 knn ADA frequent 10 893 129

3 knn ADA lasso 10 893 129

4 knn ADA lightgbm 10 893 129

5 knn BSMO all 62 880 129

6 knn BSMO frequent 10 880 129

7 knn BSMO lasso 10 880 129

8 knn BSMO lightgbm 10 880 129

9 knn SSMO all 62 880 129

10 knn SSMO frequent 10 880 129

11 knn SSMO lasso 10 880 129

12 knn SSMO lightgbm 10 880 129

13 rf ADA all 62 893 129

14 rf ADA frequent 10 893 129

15 rf ADA lasso 10 893 129

16 rf ADA lightgbm 10 893 129

17 rf BSMO all 62 880 129

18 rf BSMO frequent 10 880 129

19 rf BSMO lasso 10 880 129

20 rf BSMO lightgbm 10 880 129

21 rf SSMO all 62 880 129

22 rf SSMO frequent 10 880 129

23 rf SSMO lasso 10 880 129

24 rf SSMO lightgbm 10 880 129

25 simple ADA all 62 893 129

26 simple ADA frequent 10 893 129

27 simple ADA lasso 10 893 129

28 simple ADA lightgbm 10 893 129

29 simple BSMO all 62 880 129

30 simple BSMO frequent 10 880 129

31 simple BSMO lasso 10 880 129

32 simple BSMO lightgbm 10 880 129

33 simple SSMO all 62 880 129

34 simple SSMO frequent 10 880 129

35 simple SSMO lasso 10 880 129

36 simple SSMO lightgbm 10 880 129
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TABLE 2 10-fold cross-validation results of models based on training set.

Models Algorithms Imputation Sampling Selection AUC Accuracy Precision Recall Brier F1_Score

Optimal
Model

NGBoost KNN BSMOTE Freq-based 0.964 ±
0.018

0.898 ± 0.033 0.878 ± 0.048 0.927 ±
0.024

0.078 ±
0.025

0.901 ± 0.030

model_2 RF KNN SMOTE LightGBM 1.000 ±
0.000

0.978 ± 0.014 0.959 ± 0.025 1.000 ±
0.000

0.022 ±
0.008

0.979 ± 0.013

model_3 NGBoost RF BSMOTE ALL 0.974 ±
0.013

0.897 ± 0.039 0.871 ± 0.060 0.939 ±
0.025

0.074 ±
0.025

0.902 ± 0.033

model_4 LR KNN BSMOTE freq-based 0.873 ±
0.044

0.797 ± 0.045 0.795 ± 0.053 0.805 ±
0.062

0.145 ±
0.027

0.798 ± 0.045

model_5 RF RF BSMOTE LightGBM 0.987 ±
0.011

0.942 ± 0.025 0.925 ± 0.037 0.964 ±
0.025

0.052 ±
0.015

0.944 ± 0.023

NGBoost, Natural Gradient Boosting; LR, logistic regression; KNN, K-Nearest Neighbors; RF, random forest; SMOTE, synthetic minority oversampling Technique; BSMOTE, borderline-

SMOTE; LightGBM, light gradient boosting machine; Freq-based, Frequency-based.

FIGURE 2
The Characteristic Curves of The Optimal Model A, the ROC curve; B, the P-R curve; C, the calibration curve; D, the clinical decision curve.
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FIGURE 3
The SHAP Diagram of The Optimal Model ALB, albumin; aPLA2Rab, anti-phospholipase A2 receptor antibody; AT III, antithrombin III; CHE,
cholinesterase; DD, D-dimer; INR, international normalized ratio; umALB/Ucr, Urinary Microalbumin to Creatinine Ratio; PT, prothrombin time; RNS,
relapse of nephrotic syndrome Each dot represents a sample, with red indicating higher variable values and blue indicating lower variable values. For
instance, as shown in the figure, elevated DD levels may be associated with an increased risk of VTE.

FIGURE 4
Feature importance ranking of the optimal model.
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one-way ANOVA was performed based on 200 bootstrap replicates
from the test set to evaluate the effects of different data
preprocessing methods, algorithmic models, and features
included in the optimal model. Table 3 summarizes the results.
In terms of AUC, all factors except the sampling method showed
statistically significant effects on model performance. The NGBoost
algorithm achieved the highest AUC value. For feature sensitivity
analysis, each feature was individually excluded, and the resulting
model was compared against the optimal model via bootstrap
resampling. As shown in Table 4, excluding DD significantly
reduced the AUC from 0.896 ± 0.013 to 0.856 ± 0.016 (p <
0.01). In contrast, excluding Statins, ALB, or AT III activity led

to a slight increase in AUC (p < 0.01), suggesting potential feature
redundancy or noise associated with these variables in this study.

Decision curve analysis (DCA) assesses the clinical value of a
prediction model by estimating its net benefit across various
decision thresholds. The threshold probability is the minimum
probability of a positive outcome at which a clinician would
initiate an intervention (e.g., a threshold of 0.3 implies initiating
prophylactic anticoagulation if the predicted probability is ≥0.3). In
our analysis, the decision curve exceeded the “treat all” and “treat
none” benchmarks for threshold probabilities between 0.2 and 0.9.
This demonstrates that following the model’s recommendations
provides a superior net benefit, quantifying the clinical gains

FIGURE 5
Comparison of Predictive Performance: Optimal Model vs. Padua Score.

FIGURE 6
Sample size validation.
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TABLE 3 Performance metrics of different data processing methods on model prediction performance.

Method AUC Accuracy Precision Recall F1 Brier

AUC

Mean ± SD

AUC 95%CI Accuracy

Mean ± SD

Accuracy

95%CI

Precision

Mean ± SD

Precision

95%CI

Recall

Mean ± SD

Recall 95%CI F1 Mean ± SD F1 95%CI Brier

Mean ± SD

Brier 95%CI

Filling Method

knn 0.783 ±

0.010

0.764–0.802 0.797 ±

0.008

0.782–0.812 0.427 ±

0.012

0.403–0.451 0.491 ±

0.014

0.464–0.517 0.424 ± 0.010 0.406–0.443 0.156 ±

0.005

0.147–0.165

rf 0.764 ±

0.009

0.746–0.781 0.793 ±

0.008

0.777–0.809 0.427 ±

0.013

0.402–0.452 0.482 ±

0.013

0.456–0.507 0.418 ± 0.009 0.400–0.435 0.159 ±

0.005

0.149–0.169

simple 0.769 ±

0.010

0.750–0.788 0.782 ±

0.009

0.763–0.798 0.405 ±

0.013

0.379–0.431 0.473 ±

0.013

0.446–0.497 0.403 ± 0.010 0.384–0.422 0.162 ±

0.005

0.152–0.172

p value p < 0.01 p > 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05

Sampling Method

ADA 0.772 ±

0.009

0.755–0.789 0.786 ±

0.009

0.767–0.804 0.418 ±

0.011

0.396–0.441 0.506 ±

0.010

0.486–0.528 0.433 ± 0.009 0.415–0.450 0.159 ±

0.005

0.150–0.167

BSMO 0.775 ±

0.010

0.756–0.794 0.799 ±

0.007

0.784–0.813 0.426 ±

0.012

0.404–0.450 0.487 ±

0.012

0.463–0.508 0.432 ± 0.010 0.413–0.450 0.156 ±

0.005

0.147–0.165

SSMO 0.768 ±

0.010

0.748–0.788 0.786 ±

0.008

0.770–0.800 0.414 ±

0.014

0.388–0.442 0.454 ±

0.017

0.422–0.486 0.381 ± 0.010 0.361–0.401 0.164 ±

0.006

0.153–0.175

p value p > 0.05 p > 0.05 p > 0.05 p < 0.05 p < 0.001 p > 0.05

Feature Selection Method

all 0.755 ±

0.012

0.731–0.776 0.772 ±

0.011

0.750–0.792 0.418 ±

0.018

0.383–0.455 0.444 ±

0.014

0.415–0.472 0.381 ± 0.010 0.360–0.403 0.176 ±

0.007

0.161–0.190

frequent 0.798 ±

0.010

0.778–0.818 0.809 ±

0.008

0.793–0.823 0.442 ±

0.013

0.416–0.468 0.536 ±

0.016

0.504–0.565 0.460 ± 0.011 0.438–0.481 0.146 ±

0.005

0.137–0.157

lasso 0.762 ±

0.010

0.742–0.782 0.784 ±

0.009

0.765–0.801 0.391 ±

0.012

0.368–0.413 0.475 ±

0.016

0.445–0.506 0.400 ± 0.010 0.381–0.419 0.159 ±

0.005

0.149–0.169

lightgbm 0.772 ±

0.010

0.751–0.791 0.799 ±

0.009

0.780–0.815 0.426 ±

0.014

0.400–0.453 0.476 ±

0.016

0.446–0.508 0.419 ± 0.012 0.396–0.443 0.156 ±

0.005

0.146–0.166

p value p < 0.001 p < 0.01 p < 0.05 p < 0.001 p < 0.001 p < 0.01

Machine learning algorithms

AdaBoost 0.832 ±

0.007

0.817–0.846 0.838 ±

0.003

0.832–0.844 0.458 ±

0.010

0.438–0.477 0.525 ±

0.017

0.491–0.554 0.487 ± 0.012 0.464–0.509 0.215 ±

0.002

0.211–0.219

BernoulliNB 0.743 ±

0.019

0.704–0.777 0.752 ±

0.020

0.707–0.785 0.338 ±

0.015

0.308–0.365 0.553 ±

0.035

0.485–0.618 0.399 ± 0.018 0.363–0.432 0.172 ±

0.007

0.159–0.186

CatBoost 0.872 ±

0.005

0.862–0.881 0.872 ±

0.002

0.867–0.877 0.600 ±

0.012

0.576–0.624 0.430 ±

0.018

0.395–0.468 0.491 ± 0.014 0.464–0.517 0.094 ±

0.001

0.091–0.096

DecisionTree 0.628 ±

0.009

0.611–0.645 0.800 ±

0.004

0.792–0.809 0.342 ±

0.012

0.317–0.365 0.383 ±

0.018

0.348–0.415 0.358 ± 0.013 0.332–0.384 0.200 ±

0.004

0.191–0.208

ExtraTree 0.852 ±

0.006

0.840–0.862 0.858 ±

0.004

0.851–0.864 0.571 ±

0.033

0.508–0.635 0.267 ±

0.023

0.222–0.314 0.332 ± 0.025 0.282–0.382 0.099 ±

0.002

0.096–0.102

(Continued on following page)

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Li
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
5
.16

8
3
70

8

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1683708


TABLE 3 (Continued) Performance metrics of different data processing methods on model prediction performance.

Method AUC Accuracy Precision Recall F1 Brier

GaussianNB 0.787 ±

0.008

0.770–0.803 0.798 ±

0.008

0.782–0.813 0.390 ±

0.012

0.366–0.413 0.580 ±

0.026

0.526–0.630 0.455 ± 0.012 0.430–0.479 0.169 ±

0.008

0.154–0.186

GradientBoosting 0.866 ±

0.005

0.855–0.876 0.863 ±

0.004

0.856–0.870 0.536 ±

0.013

0.511–0.562 0.501 ±

0.019

0.463–0.541 0.515 ± 0.015 0.485–0.544 0.097 ±

0.002

0.094–0.100

KNeighbors 0.557 ±

0.012

0.532–0.579 0.623 ±

0.008

0.605–0.639 0.177 ±

0.009

0.159–0.194 0.419 ±

0.019

0.380–0.456 0.248 ± 0.012 0.225–0.271 0.263 ±

0.005

0.252–0.273

LogisticRegression 0.782 ±

0.009

0.764–0.799 0.750 ±

0.005

0.740–0.760 0.334 ±

0.008

0.318–0.349 0.699 ±

0.019

0.662–0.735 0.451 ± 0.011 0.430–0.471 0.180 ±

0.004

0.173–0.187

MLP 0.743 ±

0.009

0.724–0.761 0.777 ±

0.016

0.744–0.806 0.390 ±

0.021

0.349–0.433 0.516 ±

0.025

0.468–0.564 0.414 ± 0.014 0.387–0.441 0.178 ±

0.016

0.151–0.212

NGBoost 0.881 ±

0.004

0.873–0.889 0.835 ±

0.005

0.825–0.844 0.463 ±

0.010

0.444–0.483 0.680 ±

0.016

0.648–0.711 0.548 ± 0.010 0.527–0.568 0.114 ±

0.002

0.110–0.117

RandomForest 0.870 ±

0.005

0.860–0.880 0.862 ±

0.003

0.856–0.868 0.564 ±

0.016

0.532–0.596 0.363 ±

0.020

0.326–0.402 0.427 ± 0.017 0.396–0.459 0.097 ±

0.001

0.095–0.100

SVM 0.549 ±

0.011

0.527–0.572 0.585 ±

0.023

0.540–0.630 0.184 ±

0.013

0.160–0.210 0.430 ±

0.024

0.382–0.481 0.240 ± 0.009 0.222–0.258 0.240 ±

0.002

0.235–0.244

XGBoost 0.846 ±

0.008

0.830–0.860 0.858 ±

0.003

0.852–0.863 0.524 ±

0.012

0.501–0.547 0.407 ±

0.021

0.365–0.450 0.449 ± 0.016 0.417–0.479 0.112 ±

0.002

0.107–0.116

p value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
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after weighing the risks and benefits, compared to blanket clinical
strategies over this probability range.

The optimal model was compared with the Padua score, a
common VTE risk assessment tool for medical inpatients, using
the test set from this study. Patients with a Padua score ≥4 were
classified as high-risk. In the ROC comparison, the optimal
model’s curve remained above that of the Padua score, with
AUCs of 0.911 and 0.564, respectively. The confusion matrices
further highlight that the performance gap primarily stems from

the identification of high-risk patients. The optimal model
identified 15 true positives, compared to only six by the
Padua score.

Stratified sampling with replacement was performed
multiple times to draw subsamples representing varying
proportions (10%–100%) of the total sample size. The AUC
was calculated for each subsample. The mean AUC and standard
deviation were then derived across all iterations at each
sampling proportion. Error bars in Figure 6 represent the

TABLE 4 Sensitivity analysis of model performance after variable exclusion.

Variable Excluded AUC Accuracy Precision Recall F1 Brier

Base_ALL 0.896 ± 0.013 0.855 ± 0.023 0.510 ± 0.054 0.755 ± 0.060 0.607 ± 0.045 0.11 ± 0.013

Recurrent nephrotic syndrome Yes 0.885 ± 0.013 0.827 ± 0.018 0.447 ± 0.037 0.702 ± 0.067 0.545 ± 0.040 0.125 ± 0.012

p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

DD Yes 0.856 ± 0.016 0.868 ± 0.020 0.555 ± 0.068 0.589 ± 0.066 0.568 ± 0.047 0.102 ± 0.008

p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

umALB/Ucr Yes 0.895 ± 0.012 0.857 ± 0.022 0.514 ± 0.052 0.752 ± 0.063 0.609 ± 0.045 0.109 ± 0.012

p > 0.05 p < 0.01 p < 0.05 p > 0.05 p > 0.05 p < 0.01

Statins Yes 0.903 ± 0.013 0.855 ± 0.025 0.512 ± 0.059 0.754 ± 0.063 0.607 ± 0.046 0.107 ± 0.013

p < 0.01 p > 0.05 p > 0.05 p > 0.05 p > 0.05 p < 0.01

ALB Yes 0.899 ± 0.013 0.863 ± 0.022 0.529 ± 0.055 0.764 ± 0.058 0.623 ± 0.044 0.105 ± 0.012

p < 0.01 p < 0.01 p < 0.01 p < 0.05 p < 0.01 p < 0.01

CHE Yes 0.893 ± 0.014 0.859 ± 0.021 0.518 ± 0.050 0.730 ± 0.061 0.604 ± 0.042 0.109 ± 0.011

p < 0.01 p < 0.01 p < 0.01 p < 0.01 p > 0.05 p < 0.05

FDP > 5 mg/L Yes 0.883 ± 0.013 0.839 ± 0.020 0.475 ± 0.040 0.765 ± 0.056 0.585 ± 0.038 0.124 ± 0.011

p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

INR Yes 0.887 ± 0.015 0.829 ± 0.024 0.452 ± 0.049 0.700 ± 0.071 0.548 ± 0.048 0.118 ± 0.014

p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

aPLA2Rab Yes 0.894 ± 0.013 0.851 ± 0.023 0.500 ± 0.051 0.744 ± 0.059 0.596 ± 0.044 0.113 ± 0.013

p < 0.05 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

AT III activity Yes 0.897 ± 0.012 0.856 ± 0.020 0.513 ± 0.050 0.726 ± 0.062 0.599 ± 0.042 0.109 ± 0.011

p < 0.05 p > 0.05 p > 0.05 p < 0.01 p < 0.01 p < 0.05

TABLE 5 The evaluation results of models based on test set.

Models Algorithms Fill Sampling Selection Accuracy AUC Precision Recall Brier F1

Optimal Model NGBoost KNN BSMOTE Freq-based 0.876 0.911 0.556 0.789 0.095 0.652

model_2 RF KNN SMOTE LightGBM 0.868 0.918 0.750 0.158 0.084 0.261

model_3 NGBoost RF BSMOTE ALL 0.853 0.913 0.500 0.632 0.097 0.558

model_4 LR KNN BSMOTE freq-based 0.767 0.836 0.366 0.789 0.153 0.500

model_5 RF RF BSMOTE LightGBM 0.915 0.888 0.750 0.632 0.088 0.686

NGBoost, Natural Gradient Boosting; LR, logistic regression; KNN, K-Nearest Neighbors; RF, random forest; SMOTE, synthetic minority oversampling Technique; BSMOTE, borderline-

SMOTE; LightGBM, light gradient boosting machine; Freq-based, Frequency-based.
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standard deviation of the AUC estimates at their respective
sampling proportion.

3.5 Web-based prediction tool

Based on the aforementioned results, the functionality of
rapidly constructing web pages using Streamlit was utilized to
develop the optimal model of this study into a web-based
prediction tool. The input and output interfaces of this tool
are depicted in Figures 7, 8. The model has been deployed on
a cloud server and is publicly accessible via the following link:
https://predict-pmn-s-vte-risk-arvbrnedu7g8ehqolwpje2.streaml
it.app/.

4 Discussion

PMN accounts for approximately 80% of cases of MN and is a
common renal disease characterized by prominent symptoms of
proteinuria and hypoalbuminemia (Couser, 2017). The incidence of
PMN in China has been increasing annually (Hou et al., 2018). VTE
represents one of the most frequent complications of PMN,
encompassing RVT, DVT, and PE. VTE often presents
insidiously and poses serious risks, potentially exacerbating the
condition of PMN patients, necessitating appropriate VTE
prevention strategies. Key to VTE prevention is accurate risk
prediction and the implementation of rational preventive
measures. Currently, no specific VTE risk prediction model exists
for PMN patients. Therefore, this study aims to construct a VTE risk

FIGURE 7
Illustration of the Webpage prediction interface.

FIGURE 8
A display of the prediction result.
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prediction model using machine learning algorithms for PMN
patients, providing essential groundwork for prophylactic
anticoagulation strategies.

This study investigated 86 characteristic variables among
643 PMN patients. A total of 36 datasets were generated using
three data imputation methods, three data sampling methods, and
three feature selection methods. Subsequently, 504 models were
constructed using 14 machine learning algorithms. Univariate
analysis revealed substantial impacts of data processing and
modeling strategies on model performance. For data imputation,
the KNN method achieved marginally higher AUC and F1-score
than RF and simple mean imputation, suggesting its relative
advantage in preserving data structure. Among sampling
strategies, ADA and BSMOTE showed comparable discriminative
ability, with only minor differences in recall and F1-score, indicating
limited sensitivity to sampling techniques. Feature selection
markedly influenced outcomes, where the frequent feature
method outperformed alternatives (p < 0.001), supporting the
value of retaining stable, high-frequency variables. Among
machine learning algorithms, NGBoost, CatBoost, and RF
delivered the strongest results, with NGBoost attaining the
highest AUC (0.881 ± 0.004) and the lowest Brier score,
highlighting its capacity for modeling complex relationships and
providing well-calibrated probabilistic predictions. Overall, this
study demonstrates that appropriate data preprocessing, feature
selection, and algorithm choice critically influence the
performance of VTE risk prediction models. In feature sensitivity
analyses, we observed that exclusion of specific variables (such as
statin use, ALB, and AT-III) slightly improved discriminative
performance (e.g., AUC and F1-score), suggesting that these
variables may introduce redundancy or noise, thereby increasing
model variance and limiting generalizability. Nevertheless, given
their established clinical relevance and plausibility, we retained these
features in the final model to maintain interpretability and clinical
completeness. These findings indicate that despite satisfactory
overall performance, some feature redundancy or
multicollinearity may persist. Future studies should further
optimize and validate the model using larger, multi-center datasets.

For the risk prediction of VTE formation, current clinical
practice employs VTE scoring systems. Examples include the
(Caprini et al., 1991; Barbar et al., 2010), and (Khorana et al.,
2008) scores. However, the Caprini and Khorana scores are
generally not applicable to PMN patients, and the Padua score
does not incorporate PMN-specific predictors for VTE risk, such as
hypoalbuminemia, proteinuria, and aPLA2Rab. The Padua score,
refined by Barbar et al., in 2010 and validated in medical inpatients,
remains one of the most widely used VTE risk assessment tools in
clinical practice. Given that PMN patients align closely with the
target population for this score, we compared our model against it.
Results demonstrated superior performance of our optimal model in
the test set. This finding is consistent with a study of 3,277 patients
hospitalized with acute exacerbation of COPD, where the Padua
score also underperformed relative to the Caprini score (AUC:
0.644 ± 0.023 vs.0.713 ± 0.021, p = 0.029) (Zhou et al., 2022).
Yang et al. reported similar findings. Padua score demonstrates
limited predictive performance in PMN patients, which primarily
stems from the score’s lack of specificity for this population. The
11 Padua items do not capture several PMN-specific risk factors,

such as the disease itself being an independent VTE risk factor, along
with hypoalbuminemia, heavy proteinuria, and hyperlipidemia.
Furthermore, certain items such as “reduced mobility” often do
not align with the clinical status of PMN patients. The high weight
assigned to this item further reduces the score’s applicability.
Additionally, some PMN patients with severe hypoalbuminemia
receive prophylactic anticoagulation, which may alter their actual
VTE risk. In summary, the limited clinical relevance of several key
Padua items in the PMN population contributes to its suboptimal
predictive performance. Another significant study was conducted by
Lee et al., in 2014 (Lee et al., 2014), who developed a Markov model
integrating serum albumin levels, bleeding risks, and acceptable risk-
benefit ratios to quantify the potential benefit of prophylactic
anticoagulation with warfarin in MN patients. It is important to
note that this model is applicable only to MN patients receiving
warfarin and incorporates serum albumin levels as the sole risk
factor for VTE. Additionally, some scholars argue that the HAS-
BLED score may be more suitable for assessing bleeding risk (Li
et al., 2023). These factors significantly limit its generalizability and
external applicability. Furthermore, clinical decision algorithms
published to guide prophylactic anticoagulation in MN similarly
rely solely on serum albumin levels to assess VTE risk (Hofstra and
Wetzels, 2016; Lin et al., 2020; Rovin et al., 2021). This study focusses
on VTE risk in MN patients, addressing key issues in prophylactic
anticoagulation by integrating multiple factors and overcoming
limitations associated with anticoagulant use.

The optimal model ultimately incorporated ten clinical
indicators associated with VTE in PMN, including DD,
FDP >5 mg/L, AT-Ⅲ, ALB, and six additional validated
predictors. This suggests that in making decisions regarding
prophylactic anticoagulation therapy for PMN patients, not only
ALB levels but also the aforementioned indicators may be valuable
considerations. The elevation of DD levels is closely associated with
a hypercoagulable state and increased fibrinolysis in the body
(Tripodi, 2011). SHAP results indicate that lower levels of DD
are associated with lower risks of VTE, which aligns with
findings from Li’s study (Li et al., 2012). As a terminal product
of fibrinolysis, FDP becomes elevated during thrombosis and
dissolution, similar to DD. Catalina Filip et al. reported higher
FDP levels in pregnant women with DVT compared to non-DVT
controls in the third trimester (Filip et al., 2025). Similarly, Zheng
et al. identified FDP as an independent risk factor and incorporated
it into a nomogram for preoperative DVT risk in lower limb fracture
patients (Zheng et al., 2024). Consistent with these findings, SHAP
analysis in our model indicated that FDP levels >5 mg/L contributed
to increased predicted VTE risk. The SHAP analysis similarly
underscore the significant role of umALB/Ucr in the model’s
predictions: higher levels are associated with an increased
predicted risk of VTE. This finding is consistent with the large-
scale cohort study by Massicotte-Azarniouch et al., which reported
that even in individuals with normal renal function, heavy
albuminuria significantly elevates the risk of VTE and was
identified as an independent risk factor (Massicotte-Azarniouch
et al., 2017). On the other hand, SHAP analysis suggested statin
use was associated with higher predicted VTE risk. This likely
reflects confounding by indication, patients already prescribed
statins before admission may have had higher baseline risk.
While medication history is essential for modeling, such reverse
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causality should be considered in interpretation. AT-III is the
principal synthesized component of the anticoagulant system in
the liver, providing 70% of the body’s anticoagulant activity. SHAP
analysis indicates that decreased AT-III activity is associated with an
increased risk of VTE. Huang et al. found that patients with PMN in a
hypercoagulable state have lower AT-III activity compared to those
without hypercoagulability (Huang et al., 2016). Serum albumin levels
are recognized as a risk factor for VTE in PMN patients. Consistently,
the SHAP analysis in this study suggests that low serum albumin levels
are similarly associated with a heightened risk of VTE.

5 Limitations

This study is a single-center retrospective study, and the
retrospective design inherently introduces certain biases, particularly
in the accuracy of data recording and patient selection. First, the
retrospective nature of data collection lacks real-time precision and
may result in incomplete or inaccurate information, especially in the
absence of standardized recording procedures. Although various
measures were implemented during the data preprocessing to
mitigate these biases, such as feature selection and techniques for
handling missing data, we acknowledge that these efforts cannot
entirely eliminate all limitations. In the collection of key variables,
we encountered the absence of critical risk factor data, such as the
Leiden factor, total plasma protein S, and prothrombin gene mutations.
Such deficiency could potentially compromise the accuracy of the
model’s predictions. Additionally, data selection was constrained by
the retrospective nature of the study. The majority of patients had
multiple clinical visits on record. Given that this study aims to predict
risk and implement early VTE prevention interventions while
accounting for confounding factors, we chose to include only the
data from patients’ initial visits. The rationale is that first-visit data
more accurately reflect patients’ real health status before substantial
medical intervention. This decision, while helpful in reducing
confounding factors arising from variations and interventions during
treatment, also introduces a series of limitations, particularly in terms of
data integrity and the comprehensiveness of disease progression
information. For example, it fails to reflect the evolution of the
patient’s condition, lacks in-depth assessment of the patient’s
health status, and does not incorporate adjustments in treatment
strategies into the model developing, thereby affecting the
reliability and accuracy of the model’s predictions. Finally, the
sample size in this study was relatively limited, with only
643 PMN patients included, among whom just 93 were VTE-
positive. Small sample size and class imbalance pose challenges to
the model’s ability to handle rare events and conduct subgroup
analyses. Although techniques such as SMOTE and Borderline-
SMOTE were applied to address class imbalance, the limited
sample size may still constrain the model’s generalizability in
clinical practice. Moreover, as this study employed a single-center
retrospective design, the data were restricted to cases and patient
characteristics from a specific medical center, potentially limiting
the external validity and generalizability of the findings. The
model’s generalization capability has not been extensively
validated due to the singularity of the data source, and its
applicability in different populations and healthcare settings
requires further investigation. Data from a single center may

not fully represent all patient groups, particularly those from
diverse regions, ethnicities, or healthcare systems. The model
specifically predicts symptomatic VTE risk, as only clinically
symptomatic cases underwent confirmatory imaging.
Asymptomatic VTE cases may have been undetected due to
the absence of systematic screening.

To address the current limitations of the study and further validate
themodel’s performance, we propose several directions for future work.
First, designing and conducting prospective studies. Compared to
retrospective studies, prospective studies provide more accurate data
by allowing standardized and on-demand data collection from the
outset, thereby reducing the risks of missing data and information bias,
which enhances the reliability of research findings and the precision of
model predictions. Second, delving into themethods for processing and
integrating multiple hospitalization records by developing time-series
models or dynamic predictionmodels tometiculously consider detailed
information from each patient encounter, constructing a continuous
risk prediction trajectory for patients, and monitoring the temporal
variations in patients’ VTE risks. Third, collaborating with other
healthcare institutions to establish a multi-center database. By
incorporating data from diverse regions and populations, this
strategy significantly increases sample size, improves the study’s
statistical ability, and enables a more comprehensive evaluation of
the model’s generalizability. It also ensures its applicability and
effectiveness across various healthcare settings. Through these
efforts, we aim to overcome the limitations of single-center,
retrospective studies and provide robust evidence for the application
of the risk prediction model in real-world clinical practice, ultimately
contributing to better patient outcomes.

6 Conclusion

This study utilized a single-center dataset, employing advanced
statistical methods and machine learning techniques to develop and
evaluate a personalized VTE risk prediction model for PMN patients.
A web-based prediction tool was also created. As a single-center
retrospective study, certain limitations exist, including a relatively
small sample size, imbalanced sample categories, and missing data.
However, data preprocessing measures such as feature selection and
sample resampling were employed to significantly reduce the biases
introduced by these limitations. Internal validation of the model
demonstrated good predictive performance, suggesting its potential
to assist in VTE prevention and management for PMN patients.
Looking forward, we aim to address these limitations by conducting
prospective trials or collaborating with other institutions to construct
multi-center datasets, thereby paving the way for further development
and broader application of the model.
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Glossary
AdaBoost Adaptive Boosting

ADASYN Adaptive Synthetic

AFP alpha fetoprotein

A/G albumin/globulin

ALB albumin

ALT alanine transaminase

ALP alkaline phosphatase

APTR activated partial thromboplastin ratio

aPLA2Rab anti-phospholipase A2 receptor antibody

AST aspartate aminotransferase

AT III antithrombin III

AUC area under the curve

Ber NB Bernoulli naive Bayes

BNP brain natriuretic peptide

CA carbohydrate antigens

CatBoost Categorical Boosting

CHE cholinesterase

CK 19 cytokeratin 19

CK-MB creatine kinase isoenzyme MB

Cl chlorine

DCA decision curve analysis

DD D-dimer

DVT deep venous thrombosis

eGFR estimated glomerular filtration rate

EHRS electronic health record system

EO% eosinophil ratio

ESR erythrocyte sedimentation rate

ExtRa Trees Extremely Randomized Trees

FDP fibrinogen degradation products

FOB fecal occult blood

FIB fibrinogen

Gau NB Gaussian naive Bayes

GBoost Gradient Boosting

GLB globulin

Hcy homocysteine

hs-CRP hypersensitive-C reactive protein

INR international normalized ratio

KNN K-Nearest Neighbor

LDL-C low-density lipoprotein cholesterol

LightGBM Light Gradient Boosting Machine

Lp(a) lipoprotein a

LR logistic regression

MCV mean volume of red blood cells

MLP multi-layer perceptron

MN membranous nephropathy

MYO myoglobin

NE neutrophilic granulocyte

NEUT% neutrophil ratio

NGBoost Natural Gradient Boosting

PCT procalcitonin

PE pulmonary embolism

PLT platelet count

PMN primary membranous nephropathy

P-R Precision-Recall

PT prothrombin time

RF random forest

ROC receiver operating characteristic

RNS relapse of nephrotic syndrome

RVT renal vein thrombosis

SD standard deviation

SHAP shapley additive explanations

SMOTE synthetic minority oversampling Technique

BSMOTE borderline-SMOTE

SVM support vector machine

TP total protein

TT thrombin time

UA uric acid

uALB urinary albumin

Ucr urine creatinine

umALB urinary microalbumin

VTE venous thromboembolism

WBC white blood cell

XGBoost extreme Gradient Boosting.
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