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Metastasis remains the prime cause of poor prognosis in lung cancer, a leading
cause of cancer-related mortality worldwide. Because CXCR4/
CXCL12 constitutes a powerful therapeutic target to counter tumor
progression, immune evasion, and therapy resistance, it plays a pivotal role in
lung cancer. Expression of CXCR4 is high in non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC) and has been correlated with aggressive tumor
behavior increased metastatic spread to the bone marrow, the liver, and the brain,
and poor overall survival. Studies in preclinical models have demonstrated that
plerixafor is a CXCR4 inhibitor that can reduce tumor cell migration, increase
chemosensitivity, and re-establish immune response to limit metastasis and
increase treatment efficacy. Furthermore, clinical trials combining plerixafor
with chemotherapy as well as immune checkpoint inhibitors in NSCLC
patients demonstrate that this drug increases T cell infiltration, increases the
ability of the tumor to stimulate anti-tumor immunity, and increases progression-
free survival. However, although there are promising preclinical and encouraging
early clinical data, it is important to address several issues before CXCR4-targeted
therapies can become an integral part of lung cancer treatment. They include
tumor heterogeneity, adaptive resistance mechanisms, as well as the complexity
in the tumor microenvironment of CXCR4 signaling. Additionally, drug
development strategies aimed at suppressing CXCR4-driven immune
suppression and radioresistance must be combined with chemotherapy,
radiotherapy, and immunotherapy therapies to maximize therapeutic benefits.
Imaging of CXCR4 with specific PET and the selection of patients on
CXCR4 biomarker criteria offer the possibility of further improving precision
medicine approaches so that CXCR4-targeted therapies will only be given to
the most CXCR4-responsive patients. The role of CXCR4 in lung cancer
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pathogenesis and development is critically reviewed, the most recent results on
plerixafor inhibition of CXCR4 are summarized, and new, potential strategies for
combination treatment of CXCR4 with other inhibitors are explored.
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1 Introduction

Despite a significant decrease in mortality from this disease, lung
cancer continues to be the primary cause of cancer-related death
worldwide, recording approximately 2.2 million new cases and
1.9 million deaths annually (Sharma, 2022). Despite these recent
advancements in

targeted therapy,
chemotherapy, there is still high resistance to lung cancer

immunotherapy, and

therapeutics (Saha et al, 2024), and survival is dramatically
compromised by the development of adaptive ways for the tumor
to progress and metastasize (Li C. et al.,, 2023; Kuang et al., 2024).
Non-small cell lung cancer (NSCLC), which comprises 85% of lung
cancer cases (Wang N. et al., 2023), has a 5-year survival rate < 20%
and small cell lung cancer (SCLC) which is a more aggressive
subtype is less fortunate with its poor prognosis because it is
rapidly disseminated via early metastatic spread (Megyesfalvi
et al, 2023). Almost half of lung cancer cases are identified at
advanced stages, at which point curative intervention is limited and
metastasis is the predominant barrier to long-term survival (Altorki
et al., 2019). Metastatic sites are most common in the brain, liver,
bones, and adrenal glands, and median survival for individuals with
metastatic lung cancer is typically less than 1 year, even with
treatment (Pass et al., 2012; Zhou et al., 2021). Despite previous
clinical benefits in immune checkpoint inhibitors (ICIs) and
tyrosine kinase inhibitors (TKIs) and a high incidence of disease
progression despite therapy, there is an urgent need for novel
therapeutics directed towards metastatic pathways (Gravina
et al., 2024).

The CXCR4/CXCLI12 chemokine signaling is among the most
well-characterized mechanisms whereby tumors undergo metastasis
and therefore facilitate increased migration, immune evasion, and
treatment resistance (Morein et al., 2020; Britton et al.,, 2021).
CXCR4, a GPC receptor, binds its ligand CXCL12 (stromal cell-
derived factor 1, SDF1), which is highly expressed in metastatic
2020).
CXCR4 controls immune cell trafficking, stem cell homing, and

target organs (Hang, In physiological conditions,
tissue repair (Miller et al., 2008). However, in lung cancer,
CXCR4 overexpression facilitates tumor cells to migrate along
chemotactic gradients of its ligand CXCL12 (stromal cell-derived
factor 1, SDF-1) toward CXCLI12-enriched metastatic niches, where
tumor adhesion, survival, and immune escape are enhanced
(Chandra et al, 2021). Stimulation of the CXCR4-CXCLI12
cascade activates oncogenic pathways (MAPK/ERK, PI3K/AKT,
PLCP/Ca®", and SRC/FAK) that epithelial-to-

mesenchymal transition (EMT), angiogenesis, and are central to

promote

therapy resistance (Wang et al., 2021; Yang et al., 2023). This cascade
allows cancer cells to detach from the primary tumor, circulate via
the bloodstream, and colonize in distant organs where these tumor
cells can establish themselves into a secondary tumor (Panda et al.,

2016; Mir et al, 2021). Furthermore, CXCR4 helps in
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immunosuppression by driving regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and tumor-associated
macrophage (TAMs) into the tumor microenvironment (TME)
along with each other to create an immunosuppressive TME
2025) and at the
chemotherapy, radiotherapy, and ICIs therapies (Barnestein et al.,
2022; Wuet al., 2025). Since CXCR4 is pivotal in the advancement of

lung cancer, focusing on this cascade is an ideal treatment strategy

(Hussain et al., same time neutralize

(Yang et al, 2020). Preventing tumor cell migration, limiting
metastatic burden, and enhancing anti-tumor immune activities
to overcome resistance to standard therapies (Peng et al., 2025),
blocking CXCR4 signaling is the way (Eckert et al., 2018). The small
molecule antagonists, monoclonal antibodies, and peptide inhibitors
for CXCR4 have been explored for their ability to inhibit CXCR4
(Zhou et al., 2019). Currently, there existing lung cancer treatments
mainly target inhibiting the primary tumor progression growth and
managing the micrometastases (Wood et al., 2014). Despite that,
none directly attack CXCR4-driven metastatic cascade (Ko
et al., 2021).

On the preclinical level, CXCR4

demonstrated to significantly reduce lung tumor growth, increase

inhibition has been
chemotherapy and radiotherapy sensitivity, and also to improve
in the TME (D’Alterio et al, 2019).
Furthermore, it has been noted that pharmacological inhibition
of CXCR4 also potentiates the effect of ICIs, including anti-PD-
1 and PD-LI, in reversing tumor-induced immunosuppression
(Park et al., 2022). There are several inhibitors of CXCR4 under
investigation (Fujiwara et al., 2020). Plerixafor was originally

immune infiltration

developed to mobilize hematopoietic stem cells and is also shown
to exert an anti-metastatic and immunomodulatory effect in
2017).  Other
mavorixafor, and

preclinical models  (Regan,
CXCR4 balixafortide,
LY2510924 are being evaluated to enhance combination therapies

lung  cancer

antagonists,

(Leo and Sabatino, 2022). In contrast to standard epidermal growth
factor receptor (EGFR)-TKIs and chemotherapy, which mainly
inhibit primary tumor growth, CXCR4 inhibitors exclusively
prevent metastatic seeding, escape from the immune system, and
therapeutic resistance, which should be crucially incorporated into
current lung cancer treatment regimens (Otsuka, 2011; Alqudah
et al,, 2025). In a study, it was found that lung cancer can be made
more sensitive to drugs with the help of blocking CXCR4 (Su et al.,
2005). Eventually, EGFR inhibitors or chemotherapy fail in most
NSCLC patients, and tumors can evolve resistance and start
increasing in number again (Choi et al, 2012). Nevertheless,
blockade of CXCR4 has been shown to inhibit these adaptive
resistance pathways and thus could prolong the therapeutic
benefit of the standard treatments (Chaudary et al, 2021). For
the clinical benefits of CXCR4 targeted therapy in lung cancer
management, selection combination

the patient strategies,

therapy approaches, and optimized drug formulations will be
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moving forward (Shojaei et al., 2024). Clinical efficacy, safety profile,
and optimal treatment strategies of CXCR4 inhibitors in
with
radiotherapy are being continuously

monotherapy ~ and  combination chemotherapy,
immunotherapy, and
evaluated as monotherapy and in clinical trials as combination
therapy (Sabir et al,, 2021; Alexandru et al., 2024). In this review,
we explore the function of the CXCR4/CXCLI12 axis in lung cancer
metastasis and its therapeutic potential for stopping tumor

progression and strengthening cancer treatment.

2 CXCR4/CXCL12 axis in lung cancer

2.1 Role of CXCR4 in tumor growth and
metastasis

The development of these effector functions of lung cancer has
been linked to the function of the CXCR4/CXCL12 axis (Mezzapelle
et al,, 2022). The chemokine CXCL12, which is highly expressed in
metastatic niches, including the bone marrow, liver, and the brain,
has its receptor CXCR4 that engages in a signaling cascade that
stimulates tumor proliferation, survival, and resistance to apoptosis
through PI3K/AKT, MAPK/ERK, and JAK/STAT pathways
(Mousavi, 2020). The CXCR4/CXCLI12 axis increases metastasis
in lung cancer by mediating chemotaxis of CXCR4+ tumor cells
against CXCL12-rich secondary sites (bone marrow, liver, brain),
which triggers PI3K/AKT, MAPK/ERK, and JAK/STAT signaling
and EMT, invasion, and intravasation/extravasation, and establishes
an immunosuppressive TME through Tregs, MDSCs, and TAMs
recruitment (Wang et al., 2016). Furthermore, the recruitment of
these to a TME via CXCR4 further contributes to systemic
immunosuppression through the release of cytokines, like IL-10
and TGF-B, which prevents cytotoxic T cell killing capacity
(Nengroo et al., 2022b). This axis plays a functional role in every
stage of the metastatic cascade, including local invasion and vascular
dissemination and colonization and outgrowth at the new organs, as
well as in resistance to therapy during chemotherapy, radiotherapy,
and immune checkpoint blockade.

Elevated CXCR4 expression in lung cancer has been correlated
with enhanced tumor aggressiveness as well as a poor prognosis in
tandem with both enhanced therapy resistance to chemotherapy and
ICI therapy (Tajaldini et al., 2023). CXCR4-expressing lung cancer
cells are more metastatic because the receptor promotes chemotactic
migration towards CXCL12-enriched sites, allowing invasion,
extravasation, and colonization (Sun et al., 2010). In addition,
CXCR4 signaling helps to bring about the critical EMT process,
which promotes gaining stem-like characteristics, the ability to be
more motile, and greater resistance to being killed by apoptosis,
leading to more aggressive and efficient metastasis (Sabbah et al.,
2008; Nantajit et al., 2015).

The importance of CXCR4 to metastasis is also potentiated by its
contribution to formulating the TME into an immunoevasive
environment (Lopez-Gil et al, 2021; Wang Z. B. et al, 2024).
CXCR4 signaling recruits TAMs, MDSCs, and Tregs, collectively
suppressing anti-tumor immunity and promoting therapy resistance
(Kohli et al., 2022). Liu et al. demonstrated that while CXCR4 is
expressed in both normal and tumor lung tissues, CXCR7 (presently
ACKR3), a functionally related receptor, is exclusively upregulated
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in tumors, further promoting migration, invasion, and metastasis to
the liver and bone marrow (Liu et al.,, 2020). This indicates that
CXCR7 may act as an alternative driver of metastasis, potentially
compensating for CXCR4 inhibition. Similarly, Xing et al. reported
that lidocaine, a local anesthetic, inhibits CXCR4-mediated
migration in NSCLC by disrupting CXCL12-induced cytoskeletal
remodeling, reducing intracellular Ca*" release, and altering actin
polymerization (Xing et al., 2022). These findings suggest that
targeting CXCR4 may not only disrupt metastasis but also create
new therapeutic opportunities using repurposed drugs. The
therapeutic targeting of CXCR4 is of great interest since this axis
plays a key part in the development of lung cancer. Inhibiting the
tumor cell’s movement towards the CXCR4 prevents tumor cell
migration and immune suppression and promotes the enhancement
of the efficacy of chemotherapy and immunotherapy. Despite these
challenges, we nonetheless face therapy resistance, compensatory
signaling via CXCR7, and potential off-target effects.

CXCLI12 plays a nuclear role in tumor-intrinsic EMT, invasion,
survivability, and metastatic seeding mediated by tumor intrinsic
CXCR4 signaling (through PI3K/AKT, MAPK/ERK, JAK/STAT) as
well as CXCL12 chemotaxis induced by microenvironmental
CXCL12 in stromal and endothelial cells. In combination, these
intrinsic and extrinsic inputs coordinatively organize the entire
metastatic cascade and therapy resistance of lung cancer.

2.2 CXCR4 and the tumor
microenvironment (TME)

Interaction between cancerous cells, stromal components, and
immune cells in the lung cancer TME requires the key regulator of
this process, CXCR4 (Santagata et al., 2021). Furthermore, fibroblast
activation induced by CXCR4 induces a desmoplastic reaction with
dense stromal barriers to suppress immune infiltration and drug
penetration, which is correlated with low response to chemotherapy,
radiotherapy, and immunotherapy (Monteran and Erez, 2019; Li X.
P. et al,, 2023). For the step-wise metastatic mechanism driven by
CXCR4/CXCLI12 in lung cancer, see Section 2.1.

CXCR4 expression in lung cancer has been related to the
enrichment of lung CSC with a capacity for self-renewal,
metastasis, and resistance to treatment. Moreover, hypoxic
conditions in TME stimulate tumor aggressiveness driven by
CXCR4, due to hypoxia-inducible factor 1 alpha (HIFla)
stabilization of CXCR4 expression and tumor cell survival in
nutrient deprivations (Miranda-Galvis and Teng, 2020; Emami
Nejad et al, 2021). Investigations have shown the critical
function of CXCR4 in these processes, with Jager et al. reporting
that CXCR4-overexpressing NSCLC cells exhibit increased
tumorsphere and EMT, partially mediated by
macrophage migration inhibitory factor (MIF) and IL-6 signaling,

formation

which drive tumor progression and enhance stromal support (Jager
et al,, 2020). Similarly, Andtbacka et al. showed that mavorixafor, a
CXCR4 inhibitor, enhances immune infiltration in tumors by
increasing antigen presentation, CD8" T-cell activity, and IFN-y
expression, with combination therapy improving responses to ICIs
in solid tumors, including NSCLC (Andtbacka et al., 2022). These
outcomes suggest that CXCR4-targeted therapies not only disrupt
cancer cell migration and invasion but may also enhance
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immune-mediated tumor clearance, particularly in combination
with immunotherapy. The practical application of targeting this
pathway lies in its central role in shaping an immunosuppressive
and therapy-resistant TME that makes overcoming resistance
mechanisms and increasing therapeutic efficacy a very promising
approach. Nevertheless, owing to the complexity of
CXCR4 interaction in the TME, combinatorial treatment of
CXCR4 with
targeting agents is required to achieve maximum therapeutic

chemotherapy, immunotherapy, or stromal
effect for lung cancer patients.

The CXCR4/CXCL12 axis also communicates with immune
checkpoints (from the mobilization of myeloid/lymphoid cells
and predictability of immune resistance to immunoprotective
T-cell exclusion) and also with hematopoietic trafficking, in
which CXCR4 blockade mobilizes myeloid/lymphoid cells but
may not disrupt pulmonary host-defense dynamics, which is
pertinent both in combination with ICIs and safety monitoring
during on-treatment.

2.3 Clinical significance of
CXCR4 expression in lung cancer

CXCR4 overexpression correlates with poor prognosis, greater
metastatic potential, and resistance to therapy in NSCLC and SCLC
(Zhang et al.,, 2015). Mechanistic underpinnings of CXCR4-driven
metastasis are summarized in Section 2.1; here, we focus on its
prognostic and biomarker implications and on patient selection.

CXCR4 expression is upregulated in NSCLC (Su et al., 2005) and
reported in SCLC models/cohorts, with higher levels in advanced/
metastatic disease. Individuals with CXCR4 overexpression have
reduced overall survival (OS) and disease-free survival (DFS), and it
seems that the high CXCR4 expression has a negative influence,
especially in stage III and IV lung cancer, correlated with metastasis
to the brain, liver, and bone (Franco et al., 2012; Pulido et al., 2017).
Moreover, CTCs positive for CXCR4 are also associated with a
poorer prognosis and are a predictive and prognostic biomarker.
Non-invasive detection of tumors expressing CXCR4 has been
accomplished by imaging modalities using radiolabelled
antagonists of CXCR4 (Oriuchi et al,, 2020). Lakhanpal et al.
demonstrated the potential of 68Ga-plerixafor PET/CT for
visualizing CXCR4-expressing malignancies, with a strong
correlation between PET signal and 18F-FDG uptake, confirming
its diagnostic utility (Lakhanpal et al., 2023). Similarly, Dreher et al.
showed that [68Ga]Ga-Pentixafor PET/CT imaging detected
CXCR4 overexpression in SCLC and other solid tumors,
suggesting its role in guiding targeted therapy selection for
patients with CXCR4-enriched tumors (Dreher et al., 2024).

Beyond its prognostic and diagnostic uses, the increase of
CXCR4 expression is a critical driver of therapy resistance by
regulating DNA damage repair, cancer stemness, and immune
of which
radiotherapy, and ICIs. Many strategies have been explored

evasion, all impair response to chemotherapy,
blocking CXCR4 signaling to improve chemoresponsive and
immunotherapeutic responses, and there have been promising
results from different preclinical and clinical studies (Gibson and
Davids, 2015; Wang S. et al., 2024). Weiss et al. investigated 64Cu-

AMD3100, a radiolabelled CXCR4 antagonist, and demonstrated
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high tumor selectivity and strong tumor-to-muscle and tumor-to-
blood ratios, making it a viable option for non-invasive
quantification of CXCR4 expression to inform treatment
decisions (Weiss et al., 2012). In a similar approach, Azad et al.
evaluated 89Zr-labeled CXCR4 monoclonal antibody (89Zr-
CXCR4-mAb) imaging in NSCLC models and revealed enhanced
PET uptake in tumors with high CXCR4 expression, with
therapeutic responses correlating with CXCR4 levels, supporting
its role in precision medicine approaches for lung cancer (Azad et al.,
2016). Therefore, a growing interest in the therapeutic and
biomarker utility of CXCR4 for patient selection in lung cancer is
motivated by the strong evidence that implicates it in lung cancer
progression and therapy resistance. Therefore, integration of
histology-aware CXCR4 imaging and biomarker strategies may
enable more precise treatment strategies to not only guide
clinicians to identify patients with the highest chances of
CXCR4-directed therapies

and motixafortide

response  to such as plerixafor,

balixafortide, but also address treatment
resistance through targeted combination approaches.

The expression of CXCR4 is different across lesions and over
time in patients and in the same patient. Hypoxia/HIF-la can
upregulate CXCR4 in regional niches, CXCR7 can overcome
CXCR4 blockade in relationship tumors and add biological
variation, which can quench local reactions. Based on this,
lesion-level measurement by CXCR4-targeted PET and/or tissue
biomarkers may aid in identifying patients with CXCR4-high
disease and inform response-adaptive treatment.

Clinically-trial CXCR4 assays should be aforementioned with
(PET)
reconstruction; in tissue IHC state clone, scoring method, and
inter-observer validations, on blood assays include platform and

regarding  clinical-trial standards, state acquisition/

repeatability. Cutoffs of eligibility must be set, such as lesion level
uptake of PET above some reference level or a top quantile cutoff,
and/or tissue CXCR4 levels above a prespecified score; heterogeneity
between sites may be treated by the requirement that there be at least
one target lesion that satisfies PET requirements, and the variance of
locations is obviated by recording. PET conventions and/or other
biomarker dynamics can be used as a basis for on-treatment
assessment that can provide response-adaptive therapy. The
selection and

following  steps accept

homogeneous CXCR4 expression as earlier explained.

operationalize non-

3 Plerixafor: a CXCR4 antagonist in lung
cancer therapy

3.1 Mechanism of action

AMD3100 (plerixafor), a selective CXCR4 antagonist and
disrupts the CXCR4/CXCL12 signaling and has shown antitumor
activity in preclinical lung cancer models (Wang et al., 2016).
CXCR4 receptor binds its ligand, CXCL12 (SDF-1), which is
overexpressed in lung cancer cells, and the interaction of this
receptor-ligand drives tumor proliferation, migration, and
therapy resistance (Cojoc et al., 2013). Plerixafor prevents key
oncogenic processes such as cancer cell mobilization, TME
interactions, and  immune  suppression by  blocking

CXCR4 binding to CXCLI12 (Zhao et al, 2022). Plerixafor
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FIGURE 1

The figure illustrates the CXCR4 signaling pathway and its role in cell survival and proliferation, highlighting the impact of inhibitors such as Plerixafor
and Dasatinib. CXCL12 binds to CXCR4, activating downstream signaling through Gai proteins, which subsequently stimulate SRC-ERK and PI3K-AKT
pathways, promoting cell survival and proliferation. CXCR7 also contributes to CXCR4 activation. Plerixafor inhibits CXCR4 by blocking CXCL12 binding,
while Dasatinib and PTX disrupt SRC and PI3K signaling. Additionally, PDGFB activates PDGFRB and receptor tyrosine kinases (RTKs), which interact

with CXCR4 signaling to enhance survival pathways.

reduces migration and metastatic seeding in preclinical systems by
blocking CXCR4 (Wang et al, 2014). CXCL12 is additionally
secreted by stromal fibroblasts, endothelial cells, and immune
cells in lung cancer in such amounts that they form chemotactic
gradients drawing CXCR4-expressing cancer cells to metastatic
niches such as liver, brain, and bone marrow (Mir et al., 2023;
Thapa et al., 2023). Concerning cancer metastasis, plerixafor blocks
this chemotactic signaling, which reduces the chance that cancer
cells will home to distant organs (Nasrollahzadeh et al., 2020; Lali¢
et al., 2024). Figure 1 illustrates CXCR4 signaling, its regulation by
plerixafor and Dasatinib, and its role in cell survival. Furthermore,
plerixafor interferes with the tumor stroma interactions that are
known to be responsible for resistance to therapy (Eulberg et al.,
2022). It is known that CXCR4 allows cancer stem cell (CSC)
survival and immune evasion within the TME (Dzobo et al., 2020).

When used in combination, plerixafor decreases CSC self-
renewal and increases sensitivity to chemotherapy and
radiotherapy in CSC by blocking CXCR4 (Huang et al,, 2019).
Additionally, it inhibits the recruitment of immunosuppressive
cells to the TME and contributes to immune evasion via an
immune-evasive TME (Shao et al, 2022). It potentiates anti-
tumor immune response and increases tumor responsiveness to
ICIs (Zhang et al, 2022). Finally, plerixafor has been noted to
sensitize lung cancer cells to chemotherapy and radiotherapy in

Frontiers in Pharmacology

the setting of decreased DNA damage repair and survival signaling
(Sun, 2016). Plerixafor and cisplatin killed lung cancer cells more
and caused reduced tumor growth in preclinical studies
(Langhammer, 2013). Furthermore, plerixafor decreases HIFla, a
downstream key force in cancer adaptation to hypoxic conditions,
and decreases cancer cell survival (Mortezaee, 2020). The
mechanism of action of plerixafor is the inhibition of metastasis
by abrogating CXCR4-CXCL12 interactions, the disruption of the
immunosuppressive TME, preserving chemosensitivity, and fighting
therapy resistance (Russo and Nastasi, 2022). Given these
multifaceted effects, a combination of PTG in standard
chemotherapy, radiotherapy, and immunotherapy is a promising
therapeutic agent for lung cancer (Wang H. et al,, 2023), as shown
in Figure 1.

3.2 Preclinical and clinical studies on
plerixafor

Extensive preclinical lung cancer studies have been performed
on plerixafor, including inhibiting tumor growth, reducing
metastasis, and having synergy with chemotherapy and
immunotherapy (Steeg, 2016). Plerixafor exerts significant tumor
burden reduction and metastatic spread inhibition to the brain, liver,
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and bone marrow, common sites of NSCLC dissemination, in
murine models of NSCLC (Mishan et al, 2016; Yang et al,
2023). Studies of plerixafor treatment on CXCR4 overexpressing
NSCLC cell lines have demonstrated reduced cell migration,
inhibited invasion, and enhanced apoptosis, especially in hypoxic
conditions where CXCR4 expression is increased (Li C. et al., 2022).
Li and Oupicky, investigated biodegradable polymeric plerixafor
(PAMD) and found that biodegradable PAMD  significantly
inhibited cancer invasion and metastasis in vivo, suggesting
potential as an optimized CXCR4-targeting strategy (Li and
Oupicky, 2014; Guo et al,, 2025).

In combination with chemotherapy, plerixafor also disrupts
tumor-stroma interactions and reduces CSC survival in further
studies. CXCR4 inhibition is also shown to increase tumor-
infiltrating T cells and decrease immunosuppressive MDSCs in
preclinical findings, and results in sensitization of tumors to the
chemotherapy agents of cisplatin, paclitaxel, and gemcitabine (Xun
et al., 2020). Additionally, Plerixafor has proved able to overcome
radiation resistance through the inhibition of CXCR4-induced DNA
damage repair pathways, leading to more radiosensitive tumors
(Eckert et al, 2018). Ko et al. demonstrated that plerixafor-
functionalized nanomaterials significantly improved drug delivery
with
accumulation and photothermal anticancer efficacy, suggesting
in CXCR4-targeted nanotherapy (Ko

to CXCR4-overexpressing tumors, enhanced tumor
potential applications
et al., 2018).

Clinical trial research with Plerixafor has been encouraged by
preclinical data, and studies of plerixafor’s potential in treating lung
cancer have focused on the utilization of plerixafor in combination
with chemotherapy and immunotherapy (Bao et al, 2023).
Plerixafor has an acceptable safety profile when administered as
an early therapy and was found to be capable of mobilizing tumor
cells from the bioprotected niches in the bone marrow as well as the
TME at a site that is known to limit their vulnerability to treatment
(Morland et al., 2020). Among other things, a Phase I trial of
plerixafor with chemotherapy in advanced NSCLC was able to
show improved response rates as well as prolonged DEFS in
patients with high CXCR4-expressing tumors (Nengroo et al,
2022a). Further, trial data combining plerixafor with ICIs shows
evidence of CXCR4 inhibition improving T cell infiltration, leading
to increased immune activation and thus, the immune response rate
to treatment in NSCLC (Zhu et al., 2023). Weiss et al. utilized PET
imaging with 64Cu-plerixafor to examine CXCR4 expression in
solid tumors, showing high CXCR4 levels in metastatic lung
adenocarcinomas, further supporting the use of CXCR4-directed
therapies in aggressive tumors (Weiss et al., 2017).

Additional research has explored alternative applications of
Plerixafor beyond lung cancer, particularly in hematopoietic cell
mobilization and fibrosis treatment (MacLean et al., 2024). Pillay
et al. investigated plerixafor’s effects on neutrophil mobilization,
demonstrating that while it increases circulating neutrophils, it does
not impair lung neutrophil dynamics, suggesting minimal impact on
respiratory host defense (Pillay et al., 2020). Similarly, Qi et al.
analyzed single-cell RNA sequencing data in fibrosis models,
showing that plerixafor-mediated CXCR4 inhibition significantly
reduced fibrosis progression, highlighting its potential for drug
repurposing in fibrosis management (Qi et al., 2024). Devi et al.
further investigated CXCR4-CXCLI2 signaling in neutrophil
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homeostasis, revealing that plerixafor enhances circulating
neutrophils by preventing their return to the bone marrow,
providing insight into its role in neutropenia management (Devi
et al., 2013). Furthermore, Lakhanpal et al. optimized radiolabeled
plerixafor (plerixafor-DTPA, plerixafor-NOTA) with 68Ga and
177Lu for PET/CT imaging and targeted therapy, showing that
68Ga-plerixafor PET/CT successfully identified CXCR4-expressing
lung lesions, correlating with 18F-FDG uptake, while 177Lu-
plerixafor exhibited high CXCR4 binding affinity and cytotoxicity
in lung cancer cells, emphasizing its potential as a theranostic agent
(Lakhanpal et al, 2022). In contrast, Blayney et al. evaluated
Plinabulin as an alternative mobilizing agent, finding that it
CD34*
significantly inhibiting CXCR4, making it a viable option for
NSCLC patients unresponsive to G-CSF-based mobilization
(Blayney et al., 2018). Plerixafor, as a CXCR4 targeted treatment

for lung cancer, is well supported by preclinical or early clinical

effectively  mobilizes hematopoietic cells without

evidence as a potential therapeutics for lung cancer in combination
with chemotherapy, radiotherapy, and immunotherapy. Thus, it is a
promising agent for lung cancer therapy because of its ability to
enhance immune response, suppress therapy resistance, and
accelerate targeted drug delivery. Further trials will confirm its
clinical efficacy and long-term therapeutic potential and establish
the way for widespread clinical adoption in CXCR4-driven
malignancies.

3.3 Plerixafor in combination therapy

Plerixafor, as a CXCR4 antagonist, has significantly more
efficacy in mobilizing and maintaining CD34" cells and cells for
cancer immunotherapy, chemotherapy, and radiotherapy when
exacerbated with any standard cancer treatment, including
chemotherapy, immunotherapy, radiotherapy, or a combination
of all (Crees et al., 2023). Plerixafor blocks CXCR4 and enables
tumor cells to be mobilized from protective niches like the bone
marrow and hypoxic tumor regions and making them more
susceptible to therapeutic agents (Cancilla et al., 2020). Across
preclinical models and early human signals in small cohorts,
adding plerixafor to chemotherapy has been associated with
greater tumor control and immune infiltration; however,
definitive clinical benefit in lung cancer has not been established
(Chaudary et al., 2024; Thapa et al., 2024). Figure 2 shows CXCL12-
CXCR4/CXCR?7 signaling, activating AKT and NF-kB to drive
proliferation and metastasis. To aid navigation, key plerixafor-
based combination strategies and outcomes are summarized
in Table 1.

These liabilities can be countered by adaptive pathways
(CXCR7 STAT3

engagement), which tailored combinations,

compensation, activation, stromal re-
can counteract:
chemo/RT (to take advantage of tumor-cell mobilization after
transiting protective niches), ICI (to overcome antibodies’s
immune homeostasis based on CXCR4), and anti-angiogenic/
vascular-disrupting (to suppress CXCL12/CXCR4 rebound of
therapy). This framework connects axis biology to rational
partnering and sequencing.

Chemoresistance is dictated in significant part by the high

activity of CXCR4 in the chemo protection of cancer cells within
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CXCL12
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FIGURE 2

CXCL12

ErK1/2

NF-kB

The figure illustrates the CXCL12-mediated signaling pathways through CXCR4 and CXCR?7, driving proliferation and metastasis. CXCL12 binds to
CXCR4 and CXCR?7, activating downstream signaling cascades. CXCR4 signaling involves MEK1/2 and PI3K, leading to AKT activation, which promotes cell
proliferation. CXCR7 signaling activates ERK1/2, which in turn stimulates IKKa/p and NF-kB, contributing to metastasis. AKT also directly regulates NF-kB,

further enhancing metastatic progression.

stromal niches (Lopez-Gil et al,, 2021). In lung cancer mouse
models, co-administration of plerixafor with cisplatin, paclitaxel,
and gemcitabine reduced tumor burden and metastasis vs.
chemotherapy alone (Li H. et al., 2021). Jiang et al. showed that
CXCR4 expression increases following treatment with vascular-
disrupting therapy increases CXCR4 signaling. Combining
plerixafor + combretastatin A4 nanodrug produced marked
tumor growth inhibition (=91%) and fewer lung metastases in
mice (Jiang et al, 2019). Similarly, Fahham et al. evaluated
BKT140, a novel CXCR4 antagonist, in NSCLC cell lines and
found that it inhibited proliferation, reduced colony formation,
and delayed tumor growth in xenograft models, while also
enhancing  chemotherapy = and  radiotherapy  responses,
demonstrating its potential in combination therapy (Fahham
et al, 2012). Panneerselvam et al. further explored the SDF-1/
CXCR4 cascade and found that interleukin-24 (IL-24) can inhibit
CXCR4 signaling, destabilizing CXCR4 mRNA and reducing
downstream AKT, mTOR, and HIF-1a activation, suggesting that
IL-24 in combination with CXCR4 antagonists enhances anti-
metastatic effects in lung cancer (Panneerselvam et al., 2015).
Beyond its role in chemotherapy, plerixafor has shown promise
in overcoming immunotherapy resistance by enhancing T-cell
infiltration and reversing the immune-excluded phenotype of
tumors. CXCR4-mediated signaling in lung cancer contributes to
T-cell immune recruitment  of

exclusion, evasion, and
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immunosuppressive cells, which suppress anti-tumor immunity
(Martin, 2024). Li et al. developed FX@HP, a CXCR4-inhibiting
nanocomplex, which enhanced PD-L1 therapy efficacy by
enhancing T-cell infiltration and reducing immunosuppressive
cells, indicating that CXCR4 inhibition can remodel the TME to
optimize ICI responses (Li et al., 2020). In a related study, Cao et al.
revealed that CXCR4 is overexpressed in exhausted CD8+PD-1high
T cells, limiting immune response, and demonstrated that blocking
CXCR4 restored T-cell function through JAK2-STAT3 inhibition,
of CXCR4 blockade in
immunotherapy (Cao et al, 2024). Similarly, Fortunato et al.
identified a subset of CD133+CXCR4+ metastasis-initiating cells
(MICs) that contribute to immune suppression and found that
Peptide R, a novel CXCR4 inhibitor, effectively reduced MIC
dissemination, restored T-cell cytotoxicity, and limited TAM

reinforcing the role enhancing

polarization, further supporting the therapeutic potential of
CXCR4 blockade in combination with immunotherapy (Cao
et al, 2024). Early human evidence exists in other solid tumors,
but no randomized data demonstrate added clinical benefit in lung
cancer to date.

Radiotherapy remains a cornerstone of lung cancer treatment,
yet CXCR4-mediated DNA damage repair mechanisms contribute
to radioresistance, allowing tumor cells to survive and repopulate
following radiation exposure. Preclinical studies report that
plerixafor enhances radiosensitivity by inhibiting CXCR4-linked
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TABLE 1 Summary of plerixafor-based combination strategies in lung cancer models and translational studies.

Combination/Strategy

Model or
setting

Key outcome

Mechanistic note

Reference

Plerixafor + chemotherapy (cisplatin,
paclitaxel, gemcitabine)

NSCLC preclinical
models

Greater tumor regression and fewer
metastases vs. chemo alone; TT-cell
infiltration; | MDSCs

CXCR4 blockade disrupts stromal
protection and CSC maintenance

Xue et al. (2021)

Plerixafor + RT

Plerixafor + ICI (anti-PD-1/PD-L1)

Combretastatin A4 nanodrug +
Plerixafor

Preclinical NSCLC

Preclinical and
early clinical
NSCLC

Murine model

Enhanced radiosensitivity; Ttumor cell
death post-RT

TT-cell infiltration; reversal of immune
exclusion; improved responses

91.3% tumor growth inhibition; reduced
lung metastases

Inhibits CXCR4-linked DNA repair
pathways; overcomes hypoxia-associated
radioresistance

Remodels TME; reduces
immunosuppressive cell recruitment

Counters therapy-induced SDF-1/
CXCR4 surge that can promote
metastasis

Langhammer
(2013)

De Giglio et al.
(2021)

Jiang et al. (2019)

Plerixafor-functionalized nanomaterials

Preclinical solid

Enhanced tumor accumulation and

CXCR4-targeted homing improves

Zhao et al. (2016)

(photothermal/targeted delivery) tumors/NSCLC photothermal efficacy intratumoral delivery
BKT140 (CXCR4 antagonist) + NSCLC cell lines | |Proliferation and clonogenicity; delayed Potent CXCR4 antagonism Fahham et al.
chemo/RT and xenografts tumor growth; improved therapy complements cytotoxics (2012)
responses
IL-24 + CXCR4 antagonism Preclinical lung Enhanced anti-metastatic effect IL-24 dampens CXCR4 signaling Panneerselvam

cancer

(JAKT/mTOR/HIF-1a)

et al. (2015)

FX@HP nanocomplex (CXCR4- Preclinical TT-cell infiltration; |immunosuppressive CXCR4 inhibition synergizes with Li et al. (2020)
inhibiting) + anti-PD-L1 cells; improved PD-L1 efficacy checkpoint blockade

Peptide R (CXCR4 inhibitor) + Preclinical IMIC dissemination; restored T-cell Targets CD133*CXCR4" MICs; D’Alterio et al.
immunotherapy context cytotoxicity; limited TAM polarization reactivates antitumor immunity (2020)

FM@PFC nanoemulsions

Preclinical lung

|Invasion/angiogenesis/

Pulmonary delivery; dual targeting of

Li et al. (2019)

(CXCR4 antagonist + anti-STAT3 metastasis immunosuppression; Tapoptosis CXCR4/STAT3
siRNA)
Low-dose multi-drug combo (Etoricoxib NSCLC PDX ORR 81%, CBR 100% in therapy-resistant Breaks cellular tumorigenic network Li et al. (2025)
+ Plerixafor + Afatinib + Cabozantinib) models crosstalk; includes CXCR4 blockade
Plerixafor targeting stroma Preclinical |Metastasis via impaired stromal Interrupts stromal support of metastasis = D’Alterio et al.
recruitment and p38 MAPK activation (2012)

DNA repair (Eckert et al., 2019; Kim et al., 2021). D’Alterio et al.
found that CXCR4 inhibition using plerixafor significantly reduced
metastasis by blocking stromal cell recruitment and p38 MAPK
activation, impairing tumor cell survival (D’Alterio et al., 2012). In
another study, Li et al. developed FM@PFC nanoemulsions
containing a CXCR4 antagonist and anti-STAT3 siRNA, showing
that pulmonary delivery of these nanoemulsions reduced tumor
invasion, angiogenesis, and immunosuppression while inducing
apoptosis, demonstrating a novel approach to improving lung
metastasis therapy (Li et al, 2019). Additionally, plerixafor has
been explored in combination with multi-targeted regimens for
therapy-resistant lung cancer (Kast et al., 2022). Giirgen et al.
tested a low-dose combination regimen consisting of Etoricoxib,
plerixafor, Afatinib, and Cabozantinib in NSCLC patient-derived
xenograft (PDX) models, achieving an 81% overall response rate
(ORR) and 100% clinical benefit rate (CBR), even in therapy-
resistant adenocarcinomas and squamous cell carcinomas lacking
the
CXCR4 inhibition in overcoming treatment resistance (Giirgen
et al, 2022). Reinholdt et al. demonstrated that plerixafor
enhances rituximab’s effectiveness in diffuse large B-cell
lymphoma (DLBCL) by reducing CXCR4 expression and

targetable  mutations,  reinforcing importance  of
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increasing tumor apoptosis, supporting the potential expansion of
CXCR4-targeted therapies beyond lung cancer (Reinholdt et al,
2016). In general, the integration of plerixafor into multimodal
treatment strategies has shown great significance potential in lung
therapy, especially in
immunotherapy, and radiotherapy. CXCR4 inhibition offers a

cancer combination chemotherapy,
compelling approach to increase lung cancer outcomes through
sensitization to therapy, shift immune activation, and mobilization
of cancer cells from protective niches as shown in Figure 2.
There is a limited collection of trials involving
CXCR4 antagonists in lung cancer. Randomized Phase II 5 of
LY2510924 administered as a peptide antagonist on carboplatin/
etoposide in extensive disease SCLC (N = 90) failed to improve
either PFS or OS compared to chemotherapy alone, but the safety
was acceptable. There are a few other investigations that are pre-
clinical or pre-imaging feasibility, using [**Gal-based tracers or
[**Cu]-plerixafor, and are hypothesis-generating and not claim-
arming. The probable causes are insufficient biomarker-enriched
selection, adaptive compensation, and incompetent scheduling as
compared with transient cell mobilization. Contemporary designs
predefining the thresholds of CXCR4-positivity and integrating

plerixafor with chemo, RT/ICI are expected to fill these gaps.
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FIGURE 3

The figure illustrates the role of CXCL12-CXCR4 signaling in the tumor microenvironment, promoting tumor growth, metastasis, angiogenesis, and
inflammation. CXCL12 secreted in the tumor microenvironment attracts immune cells and activates CXCR4 on tumor cells, enhancing their proliferation
and invasion. CXCL8 and CCR6-CCL20 interactions further contribute to tumor progression by stimulating angiogenesis and inflammation. The
interconnected signaling pathways create a supportive niche for tumor survival, emphasizing the significance of CXCR4 as a therapeutic target in

cancer treatment.

4 The broader therapeutic potential of
CXCR4 inhibition

4.1 CXCR4 as a target in lung cancer

Over the past years, the CXCR4/CXCLI12 cascade has been a
significant therapeutic target in lung cancer since it offers a major
function in cancer development, metastasis, immunological
evasion, and resistance to treatment (Wang et al., 2016; Wald,
2018). Having been shown to overexpress CXCR4, lung cancer is a
very strong predictor of poor prognosis, increased metastatic
potential, and decreased survival rates, making it a good
candidate target for a treatment intervention (Spiro and Porter,
2002). It is through the activation of CXCR4 that the proliferation
and survival of tumors are promoted, as well as invasion through
oncogenic pathways 2023). Liu et al
demonstrated that hypoxia CXCR4-mediated
metastasis via HIF-1la and HIF-2a activation, promoting cancer

(Habanjar et al,
enhances

cell adhesion, movement, and invasion in response to CXCL12,
indicating that targeting CXCR4 alongside hypoxia pathways may
provide novel therapeutic strategies (Liu et al., 2006). Figure 3
shows CXCL12-CXCR4 signaling facilitating tumor development,
inflammation, and immune cell

metastasis, angiogenesis,

recruitment.
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CXCR4 is known to direct lung cancer cells toward CXCL12-
rich metastatic sites such as the bone marrow, liver, and brain,
fueling metastatic dissemination. Chen et al. found that
CXCR4 expression 1is significantly higher in NSCLC brain
metastases, correlating with poorer survival rates, supporting
CXCR4 as a key driver of brain-specific metastasis (Chen et al.,
2011). Similarly, CXCR4 enhances invasion and migration via
EGFR/MMP-9 upregulation (Zuo et al, 2017). Burger et al.
further highlighted the role of CXCR4 in SCLC metastasis;
CXCR4 promotes invasion/adhesion to bone-marrow stroma;
antagonists disrupt this mechanism (Burger et al., 2003).

Beyond metastasis, CXCR4 contributes to immune suppression
within the TME. CXCR4 overexpression is correlated with reduced
T-cell infiltration, increased MDSCs and Tregs, and resistance to ICIs
(Li X.etal., 2021). Cao et al. observed that CXCR4 is overexpressed in
exhausted CD8+PD-1high T cells, leading to immune dysfunction
and therapy resistance, but CXCR4 inhibition restored T-cell function
and enhanced response to ICIs, suggesting CXCR4 blockade as a
strategy to improve immunotherapy efficacy (Cao et al., 2024). Wald
et al. demonstrated that CXCLI12-expressing cancer-associated
fibroblasts (CAFs) facilitate cancer progression by supporting
CXCR4+ cancer cell survival, reinforcing the significance of
CXCR4/CXCL12 to disrupt
interactions (Wald et al, 2011). In addition to immune evasion,

targeting  the tumor-stroma
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CXCR4 also contributes to chemoresistance and radioresistance by
promoting DNA repair mechanisms and survival signaling in lung
cancer cells, reducing the efficacy of conventional therapies (Césaire
et al,, 2022). Jung et al. demonstrated that CXCR4+ cancer stem-like
cells drive therapy resistance in NSCLC and that CXCR4 inhibition
(AMD3100, siRNA) suppressed sphere formation and tumorigenicity,
suggesting that targeting CXCR4+ NSCLC stem-like cells could
overcome drug resistance and enhance radiotherapy response
(Jung et al, 2013). Kim et al that
CXCR4 enhances radiation resistance via STAT3/Slug signaling
and that CXCR4 inhibition sensitized NSCLC cells to ionizing
radiation,

Similarly, found

reinforcing its role in radiotherapy resistance
mechanisms (Kim et al., 2021).

Several clinical studies have further validated CXCR4 as a
biomarker for lung cancer prognosis. Zhou et al. conducted a
meta-analysis of 1,446 NSCLC patients across 13 investigations,
finding that CXCR4 expression was significantly associated with
advanced-stage disease, metastasis, and reduced survival,
reinforcing its role as a prognostic marker (Zhou et al., 2015).
Similarly, Otsuka et al. analyzed 170 NSCLC biopsies and found
that CXCR4 overexpression in stage IV NSCLC correlated with
significantly worse survival, particularly in females, suggesting
that CXCR4-targeted therapy may be especially beneficial in
advanced lung cancer patients (Otsuka et al., 2011). The role
of CXCR4 in lung cancer therapy extends beyond metastasis and
resistance, with targeted approaches being actively explored
(Ngamcherdtrakul and Yantasee, 2019). Choi et al
demonstrated that CXCR4, but not CXCR7, is essential for
CXCLI12-mediated metastasis, supporting CXCR4 inhibition as
a strategy to prevent NSCLC progression (Choi et al., 2014).
Singla et al. found that CXCR4 inhibition slowed metastatic
tumor growth in an advanced NSCLC model, reinforcing the
potential of CXCR4-targeted therapies in controlling late-stage
disease (Singla et al., 2015). Hartmann et al. further identified
that CXCR4-driven adhesion enhances chemotherapy resistance
in SCLC by activating integrin signaling, suggesting that
CXCR4 inhibition could prevent tumor-stroma interactions
that contribute to residual disease and relapses (Hartmann
et al., 2005).

In novel therapeutic approaches, CXCR4-targeted drug delivery
strategies have shown promise in overcoming therapy resistance
(Costa et al., 2019). Chittasupho et al. developed CXCR4-targeted
nanoparticles to enhance doxorubicin delivery to lung cancer cells,
that CXCR4-specific
accumulation and

finding nanocarriers improved drug
that
CXCR4 inhibition could be used in nanotechnology-driven
chemotherapy enhancements (Chittasupho et al., 2014). Li et al.
investigated the co-expression of uPAR and CXCR4 in SCLC and
found that uPAR+CXCR4+ tumors exhibited greater invasion,

migration, and metastatic potential, reinforcing the importance of

therapeutic efficacy, demonstrating

dual targeting strategies (Li et al., 2014). Similarly, Bi et al. found a
strong correlation between lymph node metastasis in NSCLC and
the expression of VEGF-C and CXCR4, further validating the role of
CXCR4 as a predictive marker for disease progression and
therapeutic response (Bi et al, 2017). Together, these studies
have identified CXCR4 as a major player in driving lung cancer
progression, metastasis, immune suppression, and chemo-resistant
disease, and reinforce that it is a target worthy of precision medicine.
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The direct antagonists of CXCR4, combination therapies, and
nanocarrier-based strategies of CXCR4 inhibition could offer
great clinical advantages in improving lung cancer treatment as
shown in Figure 4 and Table 2.

5 Challenges and future perspectives

5.1 Limitations of CXCR4-Targeted therapy

Despite the promise of CXCR4-targeted therapies in lung cancer
treatment, numerous obstacles and limitations must be overcome to
enable such therapies to become a part of clinical practice (Ashrafi
et al,, 2022). Specificity and safety, mechanisms of resistance, and
complexities of TME fall in this range of limitations (Khalaf et al.,
2021). The major issue with CXCR4-targeted therapies is how to
achieve specificity for tumor cells. However, CXCR4 is expressed
widely in various normal tissues, notably bone marrow, spleen, and
liver, and regulates the function of immune cell trafficking and
healthy tissue homeostasis (Tilsed et al., 2022). Thus, the use of
CXCR4 inhibitors may result in unwanted side effects, which
include excessive immune cell depletion, tissue destruction, or
bone marrow suppression, increasing the occurrence of infections
or hematologic toxicity (Vasan et al., 2019). A major hurdle to the
clinical development of selective CXCR4 antagonists is the need to
find those that will target tumor cells without deleterious effects on
normal tissues (Ho et al., 2020).

Like many targeted therapies, resistance to CXCR4 inhibitors
can occur with time, and in particular, if the inhibitor is combined
with other treatments (Roma-Rodrigues et al, 2019). If these
chemokine receptors happen to be upregulated on the tumors,
tumor cells can continue to migrate and metastasize, even if
CXCR4 is inhibited (Kim et al., 2008). Besides, resistance to
therapeutic agents results from CXCR4 or its downstream
signaling pathway mutations (Korbecki et al., 2022). Further
research on the mechanisms of resistance is needed to design
strategies that will overcome or delay the resistance from
CXCR4-targeted therapies to improve long-term efficacy (Alsayed
et al, 2022). The determination of both the success of
CXCR4 targeted therapy and the clinical significance of
CXCR4 is determined by the TME (Yin et al, 2019). The TME
containing extracellular matrix constituents, stromal cells, and
immune cells can affect the efficacy of treatment (Kim et al,
2008). As Tregs and MDSCs are immunosuppressive cells that
produce barriers to effective immune responses (He et al., 2019),
CXCR4 inhibitor enhancement of anti-tumor immunity is restricted
(Popper, 2016). In addition, the CXCR4 inhibitors may be partially
constrained by the inability to access their targets in hypoxic
conditions and chemoresistant niches within the TME, hence
reducing their therapeutic capability (Kiefer and Siekmann, 2011).

5.2 CXCR4 in personalized medicine

CXCR4 is an important biomarker in lung cancer because of its
important molecular marker and target for personalized medicine
(Rosell et al., 2013). Therefore, CXCR4 targeted therapies are a
promising approach to improve treatment outcomes with a benefit-
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This figure outlines the role of CXCR4 in lung cancer progression and therapy. Elevated CXCR4 expression is associated with aggressive tumor
growth and metastasis, making it an important therapeutic target. Usage of the CXCR4 inhibitor Plerixafor reduces tumor cell migration, restores immune
function, and enhances chemosensitivity. These effects collectively lead to improved treatment efficacy when combined with chemotherapy or
immunotherapy. It also highlights the relevance of CXCR4 imaging for advancing precision medicine in lung cancer management and overcoming

therapeutic resistance.

to-risk ratio as high as possible. Personalized approaches that
incorporate CXCR4
enhance patient selection for targeted therapies (Chai et al., 2021;
2022a). Guo that
CXCR4 overexpression correlated with poor prognosis in NSCLC
but was also correlated with a higher response rate to

status into treatment decisions could

Nengroo et al, et al. have shown

immunotherapy, indicating that CXCR4 expression could serve
as a predictive biomarker for immunotherapy efficacy (Guo et al,,
2023). Yue et al. further supported this by identifying CXCR4,
CXCR5, and CCR7 as prognostic biomarkers in early-stage
NSCLC, where CXCR4 and CXCR5 were associated with worse
five-year DFS and OS (Yue et al., 2020). This highlights the potential
of CXCR4 expression profiling in guiding patient-specific treatment
regimens (Nengroo et al., 2022a). Incorporating CXCR4 inhibitors
such as plerixafor into combination treatment strategies has also
been explored (Srivastava et al., 2022). Given the association
between CXCR4 and immune evasion, Mao et al. found that B7-
H1 and B7-H3 overexpression in NSCLC tumors correlated with
CXCR4-driven immune suppression, while B7-H3 knockdown
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enhanced T-cell activation and reduced CXCR4 expression,
indicating that CXCR4 blockade in combination with ICIs could
improve patient responses (Mao et al., 2014). Additionally, Naz et al.
reported that Abemaciclib, a CDK4/6 inhibitor,
radiosensitivity in NSCLC by disrupting DNA repair and
metabolic pathways, supporting the concept of CXCR4-targeted

increases

therapies in biomarker-selected patients undergoing radiotherapy
(Naz et al., 2018).

Beyond direct therapeutic targeting, CXCR4 expression can
evolve throughout treatment, necessitating adaptive monitoring
strategies (Liu et al, 2024). Marquardt et al. identified
CXCR4 expression as a marker of immune-enriched tumors with
CD8" T-cell infiltration, while fibroblast activation protein (FAP)
overexpression was linked to angiogenesis. These findings suggest
that CXCR4-and FAP-targeted PET imaging could serve as a non-
invasive tool for personalized therapy selection (Marquardt et al.,
2023; Wen et al.,, 2023). Similarly, Bertolini et al. found that cisplatin
treatment in NSCLC increased CXCR4+ MICs and CXCL12 levels,
creating a pro-metastatic TME. However, CXCR4 inhibition
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TABLE 2 CXCR4's role in lung cancer progression and therapy.

Experimental

models

Key findings

Main outcomes

Mechanisms

10.3389/fphar.2025.1683585

Molecular
pathways

Reference

Gefitinib-resistant A549/GR
cells

CXCR4 mRNA/surface
expression in SCLC

CXCL12 enhanced motility
and adhesion

HIF-1a and HIF-2a regulate
CXCR4

Meta-analysis of 1,446 patients

170 NSCLC biopsies analyzed

CXCR4+ NSCLC stem-like cells
drive resistance

CXCR4 drives metastasis in SCLC
CXCR4 and c-Kit promote SCLC
progression

Hypoxia enhances CXCR4 in
NSCLC

CXCR4 overexpression in NSCLC

CXCR4 overexpression in stage IV

CXCR4 inhibition
suppressed sphere formation

CXCLI12 binding induced
MAPK activation

CXCR4 and SCF/c-Kit co-
activated Akt

RNAi knockdown reduced
metastasis

CXCR4 correlated with
metastasis

High CXCR4 linked to poor

STAT3 pathway
regulation

CXCR4 antagonist blocks
adhesion

CXCR4 and c-Kit
signaling synergy

HIF-1a/2a upregulation
Oncogenic
overexpression

CXCR4-mediated

mTOR, Akt, STAT3
MAPK, CXCL12-
CXCR4

Akt, p70 S6 kinase
HIF, CXCR4,
CXCL12

CXCR4, NSCLC
markers

CXCR4, tumor

Jung et al. (2013)

Burger et al.
(2003)

Kijima et al.
(2002)
Liu et al. (2006)

Zhou et al. (2015)

Otsuka et al.

NSCLC survival survival pathways markers (2011)
CXCR4 levels in 32 patients CXCR4 and brain-specific Higher CXCR4 in metastatic = CXCR4-driven brain CXCR4, CNS Chen et al. (2011)
metastasis in NSCLC tumors metastasis migration
CXCR4 upregulates EGFR and = CXCR4 promotes NSCLC CXCR4 linked to lymph CXCR4-EGFR- EGFR, MMP-9, Zuo et al. (2017)
MMP-9 invasion node metastasis MMP?9 interaction CXCR4

CXCR4 enhanced adhesion
to ECM

CXCR4-driven adhesion in SCLC

Tumor-stroma interactions
and chemo-resistance

CXCR4-integrin axis

Integrins, CXCR4

Hartmann et al.
(2005)

CXCR4 knockdown abolished

CXCR4 but not CXCR7 mediates

CXCR?7 had no effect

CXCR4 essential for

CXCR4, CXCR?7,

Choi et al. (2014)

migration NSCLC metastasis metastasis CXCL12

CXCR4 siRNA plasmid CXCR4 inhibition reduces NSCLC | Reduced migration and CXCR#4 silencing CXCR4, siRNA Xie et al. (2014)
downregulation invasion invasion

CXCL12-expressing CAFs CXCL12/CXCR4 in NSCLC ERK signaling and tumor CXCR4-CAF interaction | ERK, CCL20, Wald et al. (2011)
near CXCR4+ tumors progression growth CXCL12

LFC131-DOX PLGA CXCR4-targeted nanoparticles in | Enhanced CXCR4-mediated | CXCR4-mediated CXCR4, drug Chittasupho et al.
nanoparticles lung cancer drug delivery internalization transporters (2014)

NCI-H1299 NSCLC metastasis
model

CXCR4-overexpressing A549/
GR cells

50 SCLC tissue samples
analyzed

110 NSCLC samples analyzed

CXCR4 inhibition slows NSCLC
metastasis

CXCR4 enhances radiation
resistance

uPAR and CXCR4 predict worse
SCLC prognosis

CXCR4 and VEGF-C in NSCLC
lymph node metastasis

AMD3100 slowed metastatic
growth

STAT3/Slug signaling in IR
resistance

High uPAR+CXCR4+ linked
to metastasis

CXCR4 and VEGF-C
upregulated

CXCR4 blockade in late-
stage NSCLC

CXCR4-STAT3-IR
signaling

CXCR4/uPAR synergy

CXCR4-VEGF-C axis

CXCR4, metastasis
pathways

STATS3, Slug, IR
resistance

uPAR, CXCR4

VEGF-C, CXCR4

Singla et al.
(2015)
Kim et al. (2021)

Li et al. (2014)

Bi et al. (2017)

prevented chemotherapy-induced metastasis, reinforcing the need
for biomarker-driven treatment adjustments to mitigate resistance
(Bertolini et al., 2021).

Economic considerations also play a role in personalized
CXCR4-targeted therapy implementation (Abdollahi et al.,, 2024).
Rudakova et al. examined the cost-effectiveness of Gefitinib as a
second-line NSCLC therapy, demonstrating that it increased life
expectancy by 6 months compared to Pemetrexed while reducing
overall medical costs, suggesting that CXCR4-positive patients may
also benefit from economic modeling in treatment selection
(Rudakova et al, 2015). Additionally, genomic profiling can
refine personalized treatment strategies by identifying genetic
variants that influence CXCR4 signaling and therapy resistance
(Li X. et al, 2022; Almawash, 2025). Islam et al. investigated
in the ACRBP gene,
deleterious coding variants that may contribute to tumor

functional polymorphisms revealing
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progression, though further studies are needed to determine their
role in lung cancer pathogenesis (Islam, 2022). This aligns with the
growing emphasis on genomic-guided therapy adjustments, where
ongoing biomarker monitoring helps optimize treatment plans over
time (Tashkandi and Younes, 2024). In integrated medicine for lung
cancer, CXCR4-targeted therapies can be used to improve
therapeutic benefits with reduced unnecessary toxicity. Utilizing
CXCR4 as a prognostic and predictive biomarker, treatment
regimens can be individualized to enhance survival rate, therapy
response, and cost-effectiveness. Genomic analysis of disease and
the use of CXCR4-based imaging, immune profiling, and other
precision medicine will further improve the medical approach to the
treatment of patients who will receive the most efficacious treatment
of their disease in the form that is most tailored to their needs.
Since there is inter- and intra-tumor variability, a combination
of CXCR4-PET and tissue/blood biomarkers is a viable enrichment
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approach to trials and practice. Since the CXCR4-directed PET/CT
is feasible in lung lesions and trials indicate radiolabeled plerixafor
agents, prespecification, including (i) a positivity rule, (ii) treatment
of lesion-level heterogeneity, and (iii) on-treatment PET at a
specified fixed time point with a pre-determined percent-change
threshold, should indicate pharmacodynamic target engagement
versus non-engagement. The readout based on tissue IHC and
blood can be overlaid to prove baseline positivity and follow the
dynamics in parallel with PET. These working regulations conform
to the applicability of biomarkers to trial admission and response
measurement  and PET/

capitalize on the present

theranostic framework.

5.3 Clinical-trials landscape of
CXCR4 inhibition

CXCR4 antagonists have a limited clinical testing experience in
lung cancer. The most recent randomized trial of efficacy (only in
lung cancer) LY2510924 (peptide CXCR4 antagonist) combined
with carboplatin/etoposide in ED-SCLC N = 90 randomized phase
11, with no observed improvement in PFS/OS over chemotherapy
alone, although safety was acceptable, and CXCR4 IHC was an
exploratory biomarker evaluated. This highlights the necessity of
biomarker-informed selection and combinatory-refinement strategy
dominating in trial sequences in the future (Salgia et al.,, 2017).
Simultaneously, CXCR4-based imaging (e.g., [**Ga pentixafor PET/
CT]) and [**Cu pleixafor PET]) imaging can be done in lung cancer
and other solid tumours, providing a strategy to enrich in CXCR4-
high disease and to measure on-treatment target engagement (Lapa
et al., 2016; Burke et al., 2020).

6 Conclusion and future perspectives

Emerging evidence suggests that CXCR4 inhibitors, such as
plerixafor, can effectively disrupt tumor-stroma interactions,
enhance immune infiltration, and sensitize tumors. Preclinical
and early clinical studies indicate that CXCR4 blockade may
limit metastatic dissemination, overcome resistance to therapy,
and improve overall patient outcomes. However, despite these
encouraging findings, several challenges must be addressed before
CXCR4-targeted therapies can be fully integrated into clinical
practice. Compensatory survival mechanisms associated with the
activation of CXCR4 inhibition may limit the therapeutic efficacy.
CXCR4 blockade could trigger alternate signaling pathways such as
PDGFRB, STAT3, as well as CXCR7, which may initiate tumor
progression and therapy resistance. Furthermore, patient
heterogeneity due to tumor heterogeneity and changeable
CXCR4 expression makes it difficult to find the best patient
group for the CXCR4-targeted therapies. To maximize clinical
efficacy while minimizing unnecessary  toxicity,
CXCR4 with

characterization and genomic analysis will be essential for the

integrating

expression  profiling immune landscape
biomarker-driven treatment selection.

As the complexity of tumor progression driven by CXCR4 is so
great, combination therapies have enormous promise in improving

the treatment outcome. In preclinical studies, the combination of
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ICIs, chemotherapy or radiotherapy, and CXCR4 inhibitors has
shown synergistic effects and (reliable) proof of concept, but the
most effective dosing regimens, sequencing strategies, and
combination partners need further clinical validation. Further,
CXCR4 targeted approaches for drug delivery, i.e., nanomedicine-
based formulation, antibody-drug conjugate, and CXCR4 inhibitor
radionuclide, may further enhance tumor selectivity and therapeutic
efficacy while decreasing the off-target effects. Similar to the
CXCR4 antagonists, advances in CXCR4-PET imaging enable a
non-invasive method to measure CXCR4 expression in tumors for
real-time adjustment of treatment and individual patient-tailored
therapy modifications based on individual patient response. Its
involvement in CNS metastases in patients with lung cancer is
further established. Penetration of many CXCR4 targeted agents
into the brain is limited by the BBB, hence, the development of brain
penetrant CXCR4 inhibitors or alternative delivery, such as
Intrathecal, is important.

Definitive clinical benefit in lung cancer has not yet been
demonstrated; ongoing and future phase II/III trials with
CXCR4 imaging/biomarker-guided selection will be essential to
determine where plerixafor adds value. Future research should
focus on addressing the action of CXCR4 inhibition to CNS-
specific metastases in patients with advanced-stage lung cancer
CXCR4 targeted
therapies promise is great, however, long-term safety needs to be

and treatment-resistant brain metastases.
carefully reviewed. CXCR4 has an important role in hematopoiesis
as well as in immune cell trafficking and normal stem cell function,
which could lead to concerns regarding chronic inhibition of
immune homeostasis and normal tissue function. A long-term
toxicity assessment, potential immune-related side effects, and
optimal dosing schedule need to be put in future trials to provide
sustained therapeutic benefits with no complications.

Up to now, the clinical benefit of CXCR4 antagonism has not
been demonstrated in any randomized trial in patients with lung
cancer; phase II/III trials that are biomarker-enriched and imaging-
guided are required to determine the points of value addition of
plerixafor.
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