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Background: The cannabinoid receptor 2 (CB2) is involved in regulating immune
responses, yet its specific function inmicroglia remains poorly defined. This study
aimed to generate and validate a microglia-specific, inducible CB2 knockout
mouse model incorporating reporter genes to enable precise detection of CB2

expression and CB2 knockout.
Methods: A novel floxed CB2 mouse line was generated, incorporating GFP and
tdTomato reporter genes driven by theCnr2 promoter to indicate CB2 expression
and CB2 knockout, respectively. This line was crossed with Cx3cr1 or
Tmem119 tamoxifen-inducible Cre lines to achieve macrophage- or
microglia-specific CB2 knockout, respectively. Behavioural testing, in vitro
assays, sequencing and in vivo immunofluorescence were used to assess the
efficiency and specificity of CB2 knockout as well as potential off-target effects.
Results: The floxed allele did not alter breeding or motor behaviour in mice, nor
CB2 function. CB2 expression, indicated by GFP, followed expected patterns
across tissues and conditions. Sequencing revealed both DNA and RNA of the
floxed allele was as anticipated. Tamoxifen-induced Cre activity successfully
initiated tdTomato expression exclusively in microglia of tamoxifen treated, Cre
positive mice, validating the specificity and inducibility of CB2 knockout.
Microglial tdTomato expression confirmed successful CB2 knockout in 9.3% of
TmemCB2 and 91.7% of Cx3CB2 microglia. Peripheral tdTomato expression
persisted beyond 3 weeks post-tamoxifen in Cx3CB2 mice but was minimal in
TmemCB2 mice.
Conclusion: This novel microglia-specific, inducible CB2 knockout model is the
first to combine a floxed CB2 allele with reporter genes, an essential advancement
given the lack of reliable CB2 antibodies. The findings demonstrate the model’s
specificity and effectiveness, while highlighting important considerations
regarding Cre-mediated effects and recombination specificity. Furthermore,
the floxed mouse can be crossed with any Cre line to study CB2 expression
and function in various tissues. This model provides a powerful platform for
advancing understanding of CB2 roles in microglia and supports future
exploration of CB2-targeted therapeutic strategies.
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1 Introduction

The endocannabinoid system (ECS), a tightly regulated
signalling network present in all animal species, is a key regulator
of homeostasis, including immune responses (Di Marzo, 2018; Van
et al., 2021; Silver, 2019; Lowe et al., 2021; Antignano et al., 2023;
Rakotoarivelo et al., 2024). The ECS includes cannabinoid receptors
CB1 and CB2, along with their endogenous ligands,
endocannabinoids. While CB1 is mostly expressed by neurons,
CB2 is primarily expressed by immune cells. CB2 expression is
upregulated during inflammation and is understood to play a
crucial role in immune modulation (Brusco et al., 2008; Ferranti
and Foster, 2022; N. Joshi and Onaivi, 2019). Numerous studies have
demonstrated the therapeutic effects of CB2 agonists in a large range
of disease models, including Alzheimer’s disease (Wu et al., 2013;
Jayant et al., 2016; Fakhfouri et al., 2012; C. Li et al., 2019; Aso et al.,
2013; Moreno et al., 2012; Sobue et al., 2024), Parkinson’s disease
(Rentsch et al., 2020; Gómez-Gálvez et al., 2016; Chung et al., 2016;
Liu et al., 2022; Espadas et al., 2020; Viveros-Paredes et al., 2017; H.
Yu et al., 2021; Joers et al., 2024), Huntington’s disease (Sagredo
et al., 2009; Palpagama et al., 2019), traumatic brain injury (Braun
et al., 2018), cerebrovascular and cardiovascular disorders (Yu et al.,
2021; Zarruk et al., 2012; Tang et al., 2016; More et al., 2024),
metabolic disorders (Rorato et al., 2022; Youssef, El-Fayoumi, and
Mahmoud, 2019; Rohbeck, Eckel, and Romacho, 2021; Verty et al.,
2015; Rossi et al., 2016; Hosoki, Asahi, and Nozaki, 2024), pain (Xu
et al., 2023; Monory and Lutz, 2005; van den Hoogen et al., 2021;
Nan et al., 2023), cancer (Alenabi and Malekinejad, 2021;
Gambacorta et al., 2023) and more (Smoum et al., 2022; Whiting
et al., 2022; Gasperi et al., 2023; Lowe et al., 2021; Grabon et al.,
2023a; Onaivi, 2006; Kong et al., 2014; Espejo-Porras et al., 2019).
These studies predominantly attribute the therapeutic effects to
CB2’s anti-inflammatory properties; however, the cell-specific
mechanisms mediating these effects remain unclear.

In the central nervous system (CNS), CB2 is minimally expressed
under basal conditions, but its expression is upregulated in microglia,
the resident immune cells of the brain, during neuroinflammation
(Duffy et al., 2021). Microglia are essential for maintaining CNS
homeostasis and neuronal health. In their resting state microglia
continuously monitor the environment for threats. Their phenotypic
plasticity allows them to rapidly adapt to environmental cues, and upon
activation by inflammatory stimuli, microglia adopt a pro-
inflammatory phenotype, a defining feature of neuroinflammation
(Araki, Ikegaya, and Koyama, 2021; Prinz, Jung, and Priller, 2019;
Umpierre and Wu, 2021; Gao et al., 2023; Paolicelli et al., 2022).
Chronic neuroinflammation is implicated in disease pathogenesis, as
demonstrated in vivo (Wang P et al., 2022; Kang et al., 2024; Penney
et al., 2024; Liang et al., 2023; Shi et al., 2019; Dong et al., 2021; Munro
et al., 2024; X. Chen et al., 2023; Bido et al., 2021; Gratuze et al., 2023;

Arvanitaki et al., 2024; Jing et al., 2021; Ding et al., 2021; Cui et al., 2021;
Rocha et al., 2023; W. Kong et al., 2023; Pan et al., 2023; Ryan et al.,
2023; Kitchener, Dundee, and Brown, 2023), in vitro (Zhou et al., 2023;
Salvadores et al., 2022; C. Zhang et al., 2023), and genetic studies
(Takatori et al., 2019; Andersen et al., 2021; Corley et al., 2021;
ConsortiumInternational Multiple Sclerosis Genetics, 2019; Rodero
et al., 2008). Mechanistically, pro-inflammatory microglia contribute
to neuronal damage through various pathways, including direct
neuronal interactions (Lindhout et al., 2021; Fricker, Oliva-Martin,
and Brown, 2012; Butler et al., 2021), the release of neurotoxic cytokines
(Lindhout et al., 2021; Rodriguez-Gomez et al., 2020; Oyarce et al., 2022;
X. Liu et al., 2021), propagation of pathogenic proteins (Zheng and
Zhang, 2021;Wang C et al., 2022; Odfalk, Bieniek, and Hopp, 2022; Xia
et al., 2021), and recruitment of peripheral immune cells (Liddelow
et al., 2017; X. Chen et al., 2023; Green et al., 2024; Joshi et al., 2019).
These pathological activities are compounded by the loss of microglial
homeostatic functions (Della Valle et al., 2024; Borst, Dumas, and Prinz,
2021; Zrzavy et al., 2017; Sobue et al., 2021; Kwon and Koh, 2020;
Angelova and Brown, 2019). Conversely, microglia in anti-
inflammatory states can exert neuroprotective effects, and there is
growing evidence that therapies aimed at shifting microglia from a
pro-inflammatory to an anti-inflammatory phenotype is beneficial in
treating neurodegenerative diseases (Q. Li et al., 2021; Wang W et al.,
2023; Willis et al., 2020; Shibuya et al., 2022; Mader et al., 2024; Yoo
et al., 2023; Chadarevian et al., 2024; Munro et al., 2024; Daria et al.,
2017; Lee et al., 2020; Tao et al., 2021; Jang et al., 2022; Pan et al., 2023;
Piano et al., 2023; Birkle and Brown, 2023; Z. Yang et al., 2019; Guo,
Wang, and Yin, 2022; Rizzi et al., 2018; Gao et al., 2023). CB2 is
upregulated in pro-inflammatory microglia, and CB2 stimulation has
been shown to mitigate their activation, making CB2 an attractive
therapeutic target (Wang M et al., 2023; Chung et al., 2016; Ojha et al.,
2016; Chen et al., 2025).

Although microglia are the principal CB2-expressing cells in the
CNS, studies have reported CB2 expression in certain neuronal
populations, other glial cells, and by immune cells that infiltrate the
CNS during inflammation (Ziring et al., 2006; Robinson et al., 2015;
Jia et al., 2020). However, the extent and functional significance of
CB2 expression in these cell types remains debated, in part due to
challenges in antibody specificity and detection methods (Atwood
and Mackie, 2010; Grabon et al., 2023a; Eraso-Pichot et al., 2023).
This raises a critical question: Are the therapeutic effects of CB2
agonists primarily mediated throughmicroglia, or do other CNS and
peripheral cell types contribute significantly?

To address this knowledge gap, we have generated a novel floxed
CB2 mouse line (CB2flx). This model allows for conditional knockout
(KO) of the entire coding region of Cnr2, the gene encoding CB2, in
specific cell populations by crossing with appropriate Cre driver lines.
This line is novel in that it incorporates dual fluorescent reporter genes
for visualising CB2-expressing cells and cells in which CB2 has been
deleted. The incorporation of reporter genes overcomes the limitations
posed by a lack of reliable CB2 antibodies (Grabon et al., 2023a; Grabon
et al., 2023b; Zhang et al., 2019), providing a robust tool for investigating
CB2 expression and function. This line was then crossed with inducible
microglia-specific Cre lines, allowing for precise, cell type-specific
deletion of CB2 in microglia. Given the complexity of the genetic
modifications, rigorous validation is essential to ensure the specificity,
efficiency, and functional neutrality of the system prior to its application
in disease models.

Abbreviations: BL6, C57BL/6JAusb; CB1, Cannabinoid receptor type 1; CB2,
Cannabinoid receptor type 2; CB2flx, C57BL/6-Cnr2tm1(GFP,tdTomato)BViss/J
mouse line; CNS, Central nervous system; Cx3CB2, B6.129P2(Cg)-
Cx3cr1tm2.1(Cre/ERT2)Litt/WganJ x CB2flx mouse line; ECS, Endocannabinoid
system; GFP, Green fluorescent protein; KO, Knockout; LPS,
Lipopolysaccharide; SN, Substantia nigra; Tam, Tamoxifen; tdT, tdTomato;
TmemCB2, C57BL/6-Tmem119em1(Cre/ERT2)Gfng/J x CB2flx mouse line; YFP,
Yellow fluorescent protein.
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FIGURE 1
Conditional CB2 knockout mechanism. The CB2flx mouse line contains genetic modifications in which the entire Cnr2 coding region (blue box) is
surrounded by lox sites. The reporter genes GFP (sense orientation) and tdT (antisense orientation) are inserted into the Cnr2 locus under control of the
Cnr2 promoter, such that cells expressing CB2 also express GFP. The CB2flx line is crossed with a Cre/ERT2 line to create an inducible CB2-knockout line.
Following tamoxifen injection, Cre mediated recombination excises the floxed Cnr2 coding region and GFP, while flipping tdT into the sense
orientation. Consequently, cells in which CB2 has been knocked out now express tdT as a marker of recombination. GFP, green fluorescent protein.
tdT, tdTomato.
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2 Methods

2.1 Animals

2.1.1 Cre-Lox FLEx switch mechanism
A spatially and temporally specific CB2-KO mouse line was

generated using the Cre-Lox recombination system. CB2 is encoded
by the Cnr2 gene, which contains a single protein coding exon (exon
2). The entire coding region of Cnr2 was flanked by loxP sites using
homologous recombination in embryonic stem cells, enabling
complete KO of CB2 protein expression upon Cre-mediated
recombination. To facilitate monitoring of Cnr2 expression and
recombination, GFP and tdTomato (tdT) reporter genes were
inserted under the control of the Cnr2 promoter. The tdT
cassette was placed in an inverse orientation and flanked by
lox2272 sites as part of a flip-excision switch (Supplementary
Figure S1A). In the absence of Cre recombinase, CB2 and GFP
are expressed under the control of the Cnr2 promoter. Following
Cre-mediated recombination, the floxed Cnr2 coding region and
GFP are excised, while tdT is simultaneously flipped into the sense
orientation and will now be expressed under the Cnr2 promoter,
providing a permanent marker of recombination (Figure 1;
Supplementary Figure S1B). This novel line was named C57BL/6-
Cnr2tm1(GFP,tdTomato)BViss/J line (CB2flx).

Genotyping of all genetically modified mice was performed for
the Cnr2 floxed allele and relevant Cre alleles using real-time PCR
with SYTO9-based melt curve analysis on a LightCycler 480 system.
Primer sequences and PCR conditions are detailed in
Supplementary Table S1.

2.1.2 Housing and husbandry
Mice were housed under specific-pathogen-free conditions at

21 °C ± 1 °C with a 12-h light-dark cycle, in plastic cages with ad
libitum access to water and standard chow. A maximum of five
same-sex mice were housed per cage. Mice were acclimated to the
facility for at least 1 week prior to experiments. Experimental groups
comprised 8–12-week-old male and female mice, and mice of the
same sex and genotype were randomly assigned to
experimental groups.

All genetically modified mice used in experiments were
homozygous for the floxed Cnr2 allele. Experimental TmemCB2
and Cx3CB2 mice were bred so that littermates were either
heterozygous (Cre/+) or wildtype (+/+) for the Cre/ERT2 allele.

All animal research and care procedures were approved by the
Garvan Institute/St. Vincent’s Animal Ethics Committee (ARA
numbers 23/13, 20/10, 18/37), per guidelines issued by the
National Health and Medical Research Council of Australia and
the Australian Code of Practice for the Care and Use of Animals for
Scientific Purposes.

2.2 Tamoxifen administration

Tamoxifen (Tam) (20 mg/mL) was dissolved in sunflower oil.
Mice received i.p. injections of Tam or vehicle control according to
three regimens: 150 mg/kg every other day for four doses, 100 mg/kg
daily for 8 days, or 100 mg/kg twice daily for ten doses. Tissue was
collected 3 weeks after the final injection.

2.3 Motor behaviour

Locomotor activity was assessed in a 30 × 30 cm plexiglass open
field arena within a sound-attenuated chamber under dim
illumination (MedAssociates). One day following a 10 min
habituation session, mouse movements were tracked for 10 min.
Total distance travelled, centre zone (19 × 19 cm) entries, and time
spent in the centre zone were recorded. Blinding was maintained
during testing.

Mice were trained on an accelerating rotarod (0–40 RPM)
whereby they were placed on the rotarod and returned to it each
time they fell off, for 5 min. The following day, latency to fall was
measured over three 5-min trials, separated by 30-min intervals. The
average of the highest two trials was used for analysis. Experimenters
were blinded to treatment groups.

2.4 Stereotaxic lipopolysaccharide injection

To induce inflammation-induced neurodegeneration,
stereotaxic surgery was performed to ipsilaterally inject the
striatum with the endotoxin lipopolysaccharide (LPS).
Intrastriatal LPS is well established to produce a robust
neuroinflammatory response in the substantia nigra (SN), while
its large volume allows for more accurate targeting and reduced
mechanical damage (Deng et al., 2020; Jang et al., 2022; Skrzypczak-
Wiercioch and Salat, 2022). Before surgery, mice received 4 ×
150 mg/kg doses of Tam or vehicle control, once every other
day, followed by a 4-week washout period. Mice were then
anesthetised via an anaesthetic cocktail (10 mL/kg, i.p.),
containing ketamine (Mavlab, Australia; 10 mg/mL) and xylazine
(Troy Laboratories, Australia; 2 mg/mL). LPS was administered as
previously described (Gómez-Gálvez et al., 2016). Briefly, LPS
(Salmonella enterica, Minnesota) was dissolved in 0.9% sterile
saline to a concentration of 5 mg/mL. Two injections of 1 μL of
LPS were injected into the right striatum at AP +1.18, ML -1.5, DV
-3.5 and AP -0.34, ML -2.5, DV -3.2, relative to bregma and the dural
surface. Injections were given at a rate of 0.5 μL/min using a 2 μL
Neuros syringe (Hamilton, Germany).

Mice were acrificed for histological analysis 15 days
after surgery.

2.5 Histology

2.5.1 Tissue collection and processing
Animals were anaesthetised before cardiac perfusion with 4%

paraformaldehyde. The brain was immediately dissected out and
submerged in paraformaldehyde at 4 °C for 24 h, before being
transferred to cryoprotectant solution (30% sucrose in PBS).

2.5.2 Immunofluorescence
Free-floating 40 µm sections were blocked in 3% BSA +0.25%

Triton for 1 h before primary antibody (Supplementary Table S2)
was applied for 72 h, at 4 °C. Tissue was then incubated with the
corresponding Alexa Fluor-conjugated secondary antibody for 24 h
at 4 °C, protected from light. Finally, the sections were incubated in
DAPI (Thermo Fisher; 1:1000 in PBS) for 10 min.
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2.5.3 FIJI image analysis
For colocalization of GFP, tdT and Iba1, four representative

images of each brain were taken in consistent areas of the striatum,
SN, and hippocampus with a Zeiss Axio Imager.Z2 microscope. For
each image, four z-stacks were taken using the ×40 objective.
Percentages of GFP, tdT and Iba1 colocalization were quantified
using the FIJI (ImageJ) Colocalization Object Counter plugin
(Lunde and Glover, 2020). Both the max projection and stack
were analysed. A cell would only be counted if the nuclear
marker DAPI was present.

2.6 In vitro cAMP assay

Primary glia cultures were prepared from P0–P3 C57BL/6JAusb
(BL6), CB2flx and Cx3CB2 pups, as previously described (Schildge
et al., 2013). Briefly, cortices were dissected in dissection medium
(HBSS, 1% P/S) dissociated with trypsin-EDTA (0.005%), and a
single cell suspension in glia medium (DMEM/F12, 10% FBS, 1%
P/S) was added to PDL coated flasks. Media was changed after
24–36 h and then every 2–3 days thereafter, until the cells reached
approximately 90% confluence (~9 days). Microglia and astrocytes
were separated by shaking cultures at 200 RPM for 6 h. Microglia
and astrocyte cell pellets were resuspended in stimulation buffer
(HBSS + 5 mM HEPES +0.5 mM IBMX +0.075% BSA; pH 7.4) for
use in cAMP assays. Forskolin-stimulated cAMP levels were
measured using the LANCE Ultra cAMP kit (PerkinElmer),
following manufacturer’s instructions.

For assay optimisation, forskolin concentration-response curves
were established for both microglia and astrocytes at various cell
densities to determine the optimum cell density and forskolin
concentrations for subsequent CB2 agonist cAMP assays. It was
concluded that the ideal conditions for microglia were 2000 cells/
well with a forskolin concentration of 71.4 µM (Supplementary
Figure S2A). For astrocytes, 500 cells/well with a forskolin
concentration of 2.6 µM (Supplementary Figure S2B).

For the agonist assays, Hu308 was diluted in DMSO to generate
a concentration response curve of forskolin-stimulated cAMP levels
for each cell type. For all assays, samples were run in triplicate and a
cAMP standard curve was run on every plate. TR-FRET signal was
measured with the PHERAstar FSX microplate reader
(BMG LabTech).

2.7 Statistics

All statistics were performed using Prism 10 software
(GraphPad). Unless otherwise stated, p < 0.05 was considered
significant and data are reported as mean ± standard error of the
mean. Before undergoing parametric tests, D’Agostino-Pearson
normality test was carried out and if a dataset failed this test, the
Q-Q plot was inspected to determine if there were major violations
of a Gaussian distribution. Further, Spearman’s rank test was used to
test for homoscedasticity, and if this test failed, the residual plot was
inspected for major violations. Data that passed these tests
underwent one-, two- or three-way ANOVAs. For post hoc
corrections, Tukey’s was used when comparing every mean with
every other mean, Dunnett’s for comparing every mean to a control

mean, Dunn’s correction for non-parametric comparisons, and
Šídák’s correction for all other post hoc comparisons.

Details of all mouse lines, reagents, equipment and software used
are listed in Supplementary Table S3.

3 Results

3.1 Validation of Cnr2 gene targeting

To validate the genetic modifications in the floxed Cnr2 locus,
DNA sequencing was performed by OzGene. As expected, the
sequencing results confirmed alignment with the anticipated
sequence across the targeted region, except for a 510 bp stretch
within the 5′homology arm, for which incomplete sequencing data
were obtained due to poor trace quality. Despite this limitation, the
low-quality sequenced portion of the region exhibited 100% identity
to the predicted sequence (Supplementary Figure S3). Furthermore,
sequencing of Cnr2 mRNA, performed by The Garvan Institute’s
Genetics Core Facility, indicating precise alignment with the
anticipated sequence and therefore no unintended disruptions in
Cnr2 transcription. These in-depth sequencing analyses confirm the
successful incorporation of the intended genetic modifications in the
floxed Cnr2 locus, with no evidence of off-target alterations affecting
Cnr2 transcription. Full sequencing data for both DNA and mRNA
is available on GenBank.

3.2 Genetic modifications do not impair
reproductive fitness

The reproductive fitness of the genetically modified mouse lines
was assessed compared to BL6 controls by a prospective analysis of
breeding outcomes. There was no significant difference between
groups for litter size (F (3, 196) = 1.31, p = 0.27; Figure 2A), mortality
rate (KW(4, 200) = 3.79, p = 0.28; Figure 2B), or sex ratio (F (3,
192) = 0.094, p = 0.96; Figure 2C). Furthermore, no overt
developmental or behavioural abnormalities were observed
during routine breeding and handling. These findings
demonstrate that the genetic modifications in the CB2flx,
Cx3CB2, and TmemCB2 mouse lines do not adversely affect
reproductive capacity or offspring viability.

3.3 Motor behaviour is unaffected in
CB2flx mice

To assess the effects of the floxed Cnr2 allele on motor
behaviour, CB2flx mice were subjected to open field and rotarod
test. In the open field test, no significant differences were observed
between CB2flx and BL6 mice in total distance travelled (t (11) =
0.670, p = 0.516; Figure 3A), number of ambulatory episodes (t
(11) = 0.421, p = 0.682; Figure 3B), or time spent in the central zone
(t (11) = 1.138, p = 0.279; Figure 3C). Similarly, performance on the
rotarod test revealed no differences in latency to fall (t (11) = 0.346,
p = 0.736; Figure 3D). Collectively, these findings demonstrate that
the presence of the floxed Cnr2 allele does not affect locomotor
activity or motor coordination.
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3.4 CB2 function is preserved in glial cells

As a G⍺i-coupled receptor, CB2 activation inhibits cAMP
production (Kaminski, 1998). Therefore, a cAMP assay was
performed to assess receptor function in primary glial cultures
from CB2flx and Cx3CB2 mice. First, optimisation experiments
were conducted to determine appropriate cell densities and
forskolin concentrations for both microglia and astrocytes
(Supplementary Figure S2).

Upon stimulation with the CB2 agonist Hu308, forskolin-
induced cAMP levels were reduced in a dose-dependent manner
across all groups. No significant differences were observed in
Hu308-induced cAMP inhibition between CB2flx, Cx3CB2, and
BL6 controls for microglia (F (2,28) = 0.027, p = 0.973;

Figure 4A) or astrocytes (F (2,32) = 0.432, p = 0.653; Figure 4B).
These results indicate that CB2 function is preserved in glial cells
derived from genetically modified strains.

3.5 Reporter gene expression in the CB2flx
mouse line

Given the challenges in using immunohistochemistry to detect
CB2, a fluorescent reporter system was incorporated into the CB2flx
line to enable visualisation of CB2 expression. In the CB2flx line, GFP
expression is driven by the Cnr2 promoter, allowing detection of
CB2-expressing cells through histological analysis. In the absence of
Cre-mediated recombination, tdT should not be expressed. To

FIGURE 2
Litter characteristics are not impaired in genetically modified strains. (A) Number of pups born per litter. One-way ANOVA, Dunnett’s post hoc test.
(B) Proportion of litter mortality between birth and weaning. One-way ANOVA, Dunnett’s post hoc test. (C) Proportion of pups that were female at
weaning. One-way ANOVA, Dunn’s post hoc test. Data were collected from 50 litters per strain over a similar timeframe. Data are represented as
mean ± SEM.

FIGURE 3
Motor behaviour is not impaired in the CB2flx strain. (A–C)Open field and (D) rotarodmotor behaviour tests in CB2flxmice. N = 6-7/group. Unpaired
t-test. Data are represented as mean ± SEM.
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FIGURE 4
CB2 function is conserved in primary glia cultures. The CB2 agonist Hu308 inhibited cAMP production in primary (A)microglia and (B) astrocytes in a
dose dependent manner in all strains. Data was normalised whereby 100% represents 0 mM Hu308 and 0% represents no forskolin control. N = 5-8/
group. Two-way ANOVA, Dunnett’s post hoc test. Data are represented as mean ± SEM. Each point represents the mean of three technical replicates.

FIGURE 5
Reporter gene expression reflects expected CB2 expression in CB2flx mice. Representative images of green fluorescent protein (GFP) and tdTomato
(tdT) reporter gene expression in (A) the naive BL6 CNS, (B) naive CB2flx CNS, (C) naive CB2flx spleen, and (D) CB2flx CNS treated with intrastriatal LPS.
Green arrows = GFP expression. Red arrows = tdT expression. Yellow arrows = GFP/tdT colocalization. Scale bar = 100 µm.
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confirm this, GFP and tdT expression were examined using
immunofluorescence in the periphery, as well as in the brain
under naive and inflammatory conditions.

BL6 controls displayed some small points of autofluorescence
for both GFP and tdT, which served as an essential benchmark to
distinguish true signal from artefacts (Figure 5A). In the naive
CB2flx brain (Figure 5B), minimal GFP expression was observed,
consistent with the low basal expression of CB2 in the CNS, while the
spleen exhibited strong GFP expression, particularly in white pulp
regions, which are enriched in CB2 expressing immune cells
(Figure 5C) (Galiègue et al., 1995; Simard et al., 2022; Lewis,
Williams, and Eisenbarth, 2019).

To assess inflammation-induced CB2 expression,
neuroinflammation was elicited via intrastriatal injection of LPS.
GFP expression increased markedly in the inflamed CNS, aligning
with the expected upregulation of CB2 during neuroinflammation.
Occasional tdT expression was observed, but this was restricted to
regions with intense GFP signals, suggesting fluorescence channel
bleed-through rather than true tdT expression (Figure 5D).

Overall, GFP expression in CB2flx mice mirrored the expected
CB2 expression profile: low in the naive CNS, elevated in the CNS
during inflammation, and pronounced in peripheral tissues. These
findings validate the utility of this mouse model for studying CB2
expression and function.

3.6 Tam induces microglial specific tdT
expression in Cx3CB2 mice

Given that CNS CB2 is primarily expressed by microglia (Duffy
et al., 2021), the CB2flx line was crossed with a macrophage-specific
Cre line (JAX, strain#: 021160), resulting in the establishment of the
Cx3CB2 line. In these mice, Cre expression is limited to Cx3cr1-
expressing cells, which include microglia and peripheral
macrophages (Subbarayan et al., 2022; Mizutani et al., 2012).
Upon Tam administration, Cre-mediated CB2-KO is expected in
all Cx3cr1-expressing cells.

To determine the most efficient Tam protocol for inducing Cre-
mediated recombination in Cx3CB2 mice and to assess the effects of
Cre and Tam on CB2 expression, we analysed reporter gene
expression in BL6, CB2flx, and Cx3CB2 mice. In Cx3CB2 mice
heterozygous (Cre/+) for the Cre allele, GFP serves as a marker
of CB2 expression, while yellow fluorescent protein (YFP) is
expressed in Cx3cr1-Cre cells as part of the Cre driver line. A
technical limitation of this experimental design is that the
overlapping emission spectra of GFP and YFP could not be
distinguished using our immunofluorescence approach.
Consequently, in Cx3CB2

Cre/+ microglia, which express both YFP
(from the Cre allele) and potentially GFP (from CB2 expression), the
fluorescent signal primarily reflects YFP from Cre expression, and
prevents direct assessment of CB2-driven GFP in these cells. In
contrast, cells from other genotypes (CB2flx, Cx3CB2

+/+) and non-
microglial cell types do not express YFP, allowing GFP signal in
these groups to be unambiguously attributed to CB2 expression.
Despite this limitation in directly visualising CB2 expression in Cre-
positive microglia, the tdT reporter system provides definitive
confirmation of successful Cre-mediated CB2 deletion in these cells.

In Cx3CB2
Cre/+ mice, nearly all Iba1+ microglia (>92%)

expressed GFP/YFP, with no significant differences between
treatment groups (F (6, 19) = 923.3, p < 0.0001; Figure 6A).
Furthermore, over 96% of GFP/YFP signal colocalized with Iba1+
microglia, again with no significant differences between treatment
groups (F (3, 9) = 0.413, p = 0.747; Figure 6B). These results confirm
that Cre expression is restricted to microglia in Cx3CB2

Cre/+ mice,
and that Tam treatment does not influence Cre expression levels.

Microglia from all other genotypes exhibited minimal GFP/YFP
signal, confirming the absence of Cre and supporting prior findings
of low basal CB2 expression in microglia. Additionally, no significant
differences were observed between Tam-treated Cx3CB2

+/+ and
BL6 controls, demonstrating that Tam administration does not
induce CB2 expression in microglia (Figure 6A).

tdT expression serves as a reporter for successful CB2-KO in
Cx3CB2 mice, therefore tdT should be restricted to microglia in
Tam-treated and Cre/+ mice. As expected, no significant tdT
expression was detected in any control group, confirming the
absence of CB2-KO. In contrast, nearly all Iba1+ microglia in
Tam-treated Cx3CB2

Cre/+ mice expressed tdT (Figure 6C). Within
these groups, over 92% of tdT expression colocalized with microglia,
with no significant differences between Tam administration
protocols, confirming high recombination efficiency across all
protocols (F (2, 7) = 4.07, p = 0.067; Figure 6D). High-
magnification (Figures 6E–I) and low-magnification
(Supplementary Figure S4) representative images further
emphasise the stark differences in reporter gene expression
between groups. Furthermore, no GFP/YFP or tdT signal was
observed in neurons or astrocytes, confirming that Cre
expression, CB2 expression, and CB2-KO were microglia/
macrophage-specific (Supplementary Figure S5).

Given that Cx3cr1-expressing macrophages are also present in
peripheral tissues, we next examined CB2 expression outside the
CNS. Peripheral macrophages have been reported to undergo
renewal every 3 weeks, suggesting that tdT should be absent in
the spleen at this timepoint, rendering CB2-KO microglia-specific
thereafter (Wang et al., 2020; Dick et al., 2019; Goldmann et al.,
2013; Peng et al., 2016; Bedolla et al., 2023). As expected, Tam-
treated Cx3CB2

+/+ spleens exhibited GFP but lacked tdT, similar to
CB2flx controls (Supplementary Figure S6A). Conversely, tdT was
detected in Cx3CB2

Cre/+ spleens 1-week post-Tam, as anticipated
(Supplementary Figure S6B). However, tdT expression persisted at
3 weeks, contrary to prior reports, suggesting that CB2-KO is not
specific to microglia at this timepoint (Supplementary Figure S6C).
This finding challenges the conventional assumption that a 3-week
waiting period is sufficient to ensure microglia specificity in
this Cre line.

These results confirm the microglia-specific expression of Cre in
the CNS of Cx3CB2

Cre/+ mice and its Tam-dependent activity. All
Tam protocols efficiently induced CB2-KO in macrophages, with no
significant differences between protocols. Based on these results,
four doses of 150 mg/kg administered every other day was selected
for continued use, as it exhibited the highest mean microglial tdT
expression and specificity of 91.7%. Notably, CB2-KO persisted in
peripheral macrophages beyond 3 weeks post-Tam, highlighting the
need for extended evaluation periods if exclusive microglial
specificity is required in this model.
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FIGURE 6
In Cx3CB2 mice, tdT expression is microglia specific and is Tam/Cre dependent. (A–D) Quantification of GFP and tdT colocalization with Iba1.
Significance bars between Cx3CB2

Cre/+ groups only are shown. N = 3-4/group. An average of 133.4 (±4.3) Iba1+ cells were counted per n. Data are
represented as mean ± SEM. One-way ANOVA with Tukey’s post hoc test, ****p ≤ 0.0001. Representative images of substantia nigra immunostaining in
(E) BL6, (F) CB2flx, (G) Tam treated Cx3CB2

+/+, (H) Vehicle-treated Cx3CB2
Cre/+ and (I) Tam-treated Cx3CB2

Cre/+ animals. White arrows = GFP
expression. Yellow arrows = GFP/tdT colocalization. Scale bar = 50 µm.
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FIGURE 7
In TmemCB2 mice, tdT expression is microglia specific and is Tam/Cre dependent. (A–D) Representative images of substantia nigra GFP/tdT/
Iba1 immunostaining. (A) BL6, (B) Tam treated TmemCB2

+/+, (C) Vehicle treated TmemCB2
Cre/+ and (D) Tam treated TmemCB2

Cre/+. Scale bar = 50 µm.
(E–G)Quantification of GFP and tdT with Iba1+microglia. As only one group expressed tdT, G contains one panel only. N = 3/group. An average of 115.8
(±6.1) Iba1+ cells were counted per n. Data are represented as mean ± SEM. One-way ANOVA, Tukey’s post hoc test **p ≤ 0.01.
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FIGURE 8
In TmemCB2 mice, reporter gene expression does not colocalize with astrocytes or neurons. Representative images of immunostaining in the
substantia nigra. GFP and tdT with either (A–C) GFAP or (D–F) NeuN. (A,D) Tam treated TmemCB2

+/+, (B,E) Vehicle treated TmemCB2
Cre/+ (C,F) Tam

treated TmemCB2
Cre/+. Scale bar = 20 µm.
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3.7 Tamoxifen induced reporter gene
expression in the TmemCB2 line

To improve microglia specificity of the CB2-KO, we generated
the TmemCB2 line by crossing the CB2flx line with a
Tmem119Cre/ERT2 line (JAX, strain# 031820), in which Cre
expression is driven by the highly microglia-specific
Tmem119 promoter (Kaiser and Feng, 2019). We assessed CB2-
KO efficiency and specificity in the TmemCB2 line using the
optimised Tam protocol established in Cx3CB2 mice (four doses
of 150 mg/kg administered every other day). Tam was administered
to TmemCB2 mice either homozygous for the wild-type Tmem119
allele (+/+) or heterozygous for the Tmem119Cre/ERT2 allele (Cre/+),
alongside untreated BL6 controls. Onlymicroglia in the Tam-treated
TmemCB2

Cre/+ group were anticipated to express tdT.
Reporter gene expression and colocalization with Iba1 were

analysed to determine KO efficiency (representative images in
Figures 7A–D). GFP expression in Iba1+ microglia did not differ
between TmemCB2 groups and BL6 controls, suggesting a lack of
basal CB2 expression in microglia under naive conditions (F (3, 8) =
0.732, p = 0.561; Figure 7E). Similarly, tdT expression in
TmemCB2

+/+ and vehicle-treated controls did not differ from

BL6 mice, confirming an absence of CB2-KO cells. However, in
Tam-treated TmemCB2

Cre/+ mice, 9.3% of microglia expressed tdT,
indicating a significant increase in CB2-KO microglia (F (3, 8) =
18.23, p = 0.0006; Figure 7F). This confirms that tdT expression in
microglia is Tam-dependent. Furthermore, in this group, 94.3% of
tdT signal colocalized with Iba1+ microglia, demonstrating that
CB2-KO is microglia-specific in the CNS (Figure 7G). Low
magnification representative images further demonstrate the
differences in reporter gene expression between groups
(Supplementary Figure S7).

Neither GFP nor tdT colocalized with astrocytes (Figures 8A–C)
or neurons (Figures 8D–F) in any group, further confirming that
CB2 is not detectably expressed in these CNS types under basal
conditions and that CB2-KO is microglia-specific.

Finally, we examined reporter gene expression in the periphery
of Tam- or vehicle-treated TmemCB2 mice. As expected, minimal
tdT expression was observed in the spleen of Tam-treated
TmemCB2

+/+ mice (Figures 9A,B). However, rare tdT expression
was detected in the spleen of Tam-treated TmemCB2

Cre/+ mice
(Figures 9C,D), though at significantly lower levels than in
Cx3CB2 mice. This suggests that the TmemCB2 line exhibits
greater specificity for CNS microglia.

FIGURE 9
Reporter gene expression is present in the TmemCB2 spleen. Representative immunofluorescent images of Tam treated (A,B) TmemCB2

+/+ and
(C,D) TmemCB2

Cre/+ spleens. Red arrows = tdT expression. Scale bar = 100 µm.
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3.8 Reporter gene expression is upregulated
in LPS lesioned mice

To assess whether reporter gene expression accurately reflects
CB2 upregulation in an inflammatory environment, we examined
Tam- and vehicle-treated TmemCB2

Cre/+ mice following LPS-
induced neuroinflammation. GFP and tdT expression were
analysed in the SN after an ipsilateral intrastriatal injection of
LPS to evaluate CB2 expression and KO persistence. CD68 is
expressed by phagocytic macrophages and is considered a marker
for activated microglia within the CNS (Walker and Lue, 2015).
Since CB2 is upregulated in activated microglia, the colocalization of
CD68 with GFP and tdT was assessed to determine the extent of CB2
expression in pro-inflammatory microglia in the striatum of
this model.

In both treatment groups, GFP expression was highly
upregulated in the ipsilateral striatum, indicating a robust
increase in CB2 expression in response to LPS. GFP almost

always colocalized with CD68+ cells, which mark activated
microglia, although rare GFP+ CD68− cells were
observed (Figure 10).

In vehicle-treated mice, tdT expression was faint and restricted
to the lesion site. This tdT signal exclusively colocalized with areas of
intense GFP immunoreactivity, suggesting that it arose from
channel bleed-through rather than true tdT expression (Figure 10).

In Tam-treated mice, tdT expression was widespread, observed
throughout the brain and most prominently at the lesion site. Bright
tdT signals were found in the ipsilateral and contralateral striatum,
not colocalizing with GFP, indicating true signal and KO of CB2 in
these cells. In the ipsilateral striatum, tdT predominantly, but not
exclusively, colocalized with CD68 (Figure 10).

These findings demonstrate that neuroinflammation induces
CB2 upregulation, as indicated by increased ipsilateral reporter gene
expression in both groups. Importantly, Tam-treated mice exhibited
persistent and specific CB2-KO throughout the brain under
inflammatory conditions.

FIGURE 10
Immunofluorescence analysis of reporter gene expression in the striatum of LPS-lesioned TmemCB2

Cre/+ mice. Representative images from
vehicle- and tamoxifen-treatedmice are shown for both ipsilateral and contralateral striata. Red arrows = tdT expression. Green arrows=GFP expression.
Yellow arrows = GFP and tdT coexpression. Solid arrows = reporter gene colocalizing with CD68. Hollow arrows = reporter gene not colocalizing with
CD68. White arrows indicate CD68 expression only. Scale bar = 25uM.
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4 Discussion

This study successfully developed and validated a novel
microglia-specific, inducible CB2-KO mouse model that
incorporates a dual reporter system to enable precise,
simultaneous visualisation of CB2 expression and gene deletion.
While floxed Cnr2mouse lines (Q.-R. Liu et al., 2017; Stempel et al.,
2016) and CB2-reporter lines (López et al., 2018; Schmöle et al.,
2015) have been generated previously, this is the first model to
combine an inducible CB2-KO with reporter genes. This unique
configuration allows both tracking of endogenous CB2 promoter
activity and permanent labelling of cells that have undergone CB2-
KO, a feature not present in any previously described CB2-KO
models. The CB2flx line can be crossed with any Cre driver line,
providing a versatile tool to investigate CB2 function and regulation
in both the CNS and the periphery. This flexibility represents a
significant advancement for CB2 research.

Given the well-documented lack of reliable CB2-specific
antibodies (Atwood and Mackie, 2010; Grabon et al., 2023b;
Eraso-Pichot et al., 2023), traditional biochemical and histological
methods for detecting CB2 expression remain limited. By placing the
reporter genes under the endogenous Cnr2 promoter, our approach
overcomes this critical methodological barrier: GFP fluorescence
enables identification of cells actively expressing CB2, while tdT
provides a permanent genetic marker of recombination. This allows
the monitoring of Cnr2 promoter activity even after CB2 protein has
been knocked out, providing unique insights into transcriptional
regulation that are not possible with antibody-based methods.
Moreover, this design enables assessment of how CB2 deletion in
1 cell type may influence CB2 expression in other cell populations,
supporting more nuanced investigation of intercellular signalling
dynamics. While alternative methods such as RNAscope in situ
hybridisation can detect low-abundance CB2 mRNA with high
sensitivity, including in neuronal populations where CB2
expression is minimal (Eraso-Pichot et al., 2023), our model
offers complementary advantages for long-term in vivo tracking
and functional manipulation of CB2-expressing cells without
requiring tissue processing or probe optimisation for each
experimental condition. However, we do note the limitations of
reporter gene lines in detecting low abundance CB2 expression.

CB2 is known to play critical roles in reproduction,
development, and motor control (Atwood and Mackie, 2010), so
it was essential to confirm that genetic modifications made to the
Cnr2 gene did not disrupt these functions before microglial KO was
induced. Our findings demonstrate these physiological processes
remain intact. Additionally, in vitro studies revealed no differences
in the responses of genetically modified glia to a CB2 agonist,
indicating that CB2 signalling remained intact prior to
conditional KO.

Under basal conditions, GFP expression, marking CB2 activity,
was detected in peripheral tissues but was minimal in the CNS,
consistent with previous GFP-CB2 models (López et al., 2018; Ruiz
De Martín Esteban et al., 2022). Following LPS-induced
neuroinflammation, GFP expression increased in microglia,
confirming its association with microglial activation and
mirroring results from previous research, including those using
CB2-GFP mice in disease models (López et al., 2018). These
findings validate the responsiveness and fidelity of the Cnr2

promoter in driving reporter expression under
neuroinflammatory conditions. Furthermore, Tam-induced Cre
activity in the TmemCB2 and Cx3CB2 lines successfully triggered
expression of tdT, indicating successful CB2-KO. Importantly, tdT
expression was exclusively observed in microglia of Cre/+ mice
following Tam administration, validating the inducibility and
specificity of the Cre-lox system.

Under inflammatory conditions, reporter gene expression was
upregulated in microglia, confirming CB2 upregulation, consistent
with previous reports (Grabon et al., 2023b). While CB2 primarily
co-localised with pro-inflammatory microglia, distinct populations
were observed, suggesting that CB2 expression is heterogeneous
among microglial subtypes. The diversity of microglia expression
profiles and how this translates to differences in phenotype and
function is only beginning to be understood (Paolicelli et al., 2022),
so it is not surprising that not all activated microglia ubiquitously
express CB2 and CD68. Another explanation is that CD68+CB2+
cells at the LPS lesion site could be non-microglial cells expressing
CB2, but given that no GFP expression was observed in neurons or
astrocytes, this is unlikely. Future studies incorporating additional
markers of reactive microglia could provide further insight into
microglial heterogeneity and CB2 expression. Additionally,
investigation into reporter gene colocalization with markers for
other CNS cell types under various physiological and
pathological conditions may reveal context-specific upregulation
of CB2 in these populations. Although there is little evidence for
CB2 expression in other CNS cell types, such as oligodendrocytes,
future studies may wish to validate reporter gene expression in other
cell types (Bernal-Chico et al., 2023). One limitation of this model in
assessing CB2-KO efficiency is that tdT, the marker of successful
CB2-KO, is only expressed if the Cnr2 promoter is active. Since basal
CB2 expression is very low in the CNS, most cells with CB2-KO
would not be expected to express tdT. Nonetheless, our findings
confirm that at least 9.3% of microglia in the TmemCB2 line and
91.7% in the Cx3CB2 line exhibited CB2-KO. Additionally, it is
important to note that almost all microglia in the Cx3CB2 line and
almost all reporter gene expressing microglia in the TmemCB2 line
expressed tdT, indicating high KO efficiency. To address challenges
posed by low basal CB2 expression, DNA-based methods such as in
situ hybridisation will be essential for definitive confirmation of
CB2-KO efficiency.

Expression levels of tdT in Cre+ animals receiving Tam were
significantly higher than GFP expression in control groups, despite
both reporters being driven by the Cnr2 promoter. This discrepancy
suggests that Cnr2 promoter activity is increased following Cre-
mediated recombination, complicating the accurate assessment of
CB2-KO efficiency through reporter genes. This is unlikely to be an
effect of Tam, as Tam treated +/+ groups did not have increased
Cnr2 promoter activity, as indicated by GFP expression
(Figures 6A, 7E).

A potential explanation for both the increased tdT expression
compared to GFP expression in controls and the higher tdT
expression in the Cx3CB2 line compared to the TmemCB2 line
may be Cre toxicity. Cre recombinase, after Tam-induced
translocation to the nucleus, has been shown to cause DNA
damage or other toxic effects that alter cellular function
(Sahasrabuddhe and Ghosh, 2022), potentially resulting in
increased Cnr2 promoter activity. Notably, this effect appears to
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be more pronounced in the Cx3CB2 line, where tdT expression was
nearly tenfold higher than in the TmemCB2 line. This aligns with
previous reports suggesting that Cre toxicity is more significant in
Cx3cr1-Cre mice compared to Tmem119-Cre lines, possibly due to
differences in Cre expression levels (Sahasrabuddhe and Ghosh,
2022). These findings highlight the importance of considering Cre-
mediated effects when interpreting data from Cre-lox models,
particularly in systems where promoter activity is under
investigation; however, further research is required to validate
this hypothesis.

Analysis of tdT expression in peripheral tissues also highlighted
limitations in the specificity of the Cre drivers used. In the Cx3CB2
line, tdT expression persisted in the spleen 3 weeks post-Tam,
despite the expectation that Cre-mediated recombination would
be restricted to CNS microglia due to rapid turnover of peripheral
Cx3cr1+ cells after this time. This persistence suggests that a longer
washout period may be necessary to achieve microglia-specific
recombination in this line. In contrast, tdT expression in
TmemCB2 spleens was minimal, supporting the evidence that
Tmem119 provides greater specificity to microglia. However, our
findings also contribute to emerging evidence that Tmem119 is
expressed at low levels outside the CNS. Additionally, given that
Tmem119 is downregulated in activated microglia, further
investigation is needed to determine its specificity and sensitivity
as a microglial marker under both homeostatic and inflammatory
conditions (Vankriekelsvenne et al., 2022; Bedolla et al., 2024).

Although most studies using Cx3cr1Cre/ERT2 lines to target
microglia suggest that a 3-week washout period will result in
microglia specificity (Bedolla et al., 2023; Costa et al., 2021; Peng
et al., 2016; Mo et al., 2019; Hohsfield et al., 2021; Y. Yang et al.,
2023), evidence confirming the clearance of peripheral cells with
Cre-mediated recombination at this time point is lacking. The
assumption that a 3-week washout period is sufficient for
peripheral clearance of KO cells is based on studies using
neonate (Parkhurst et al., 2013) or adolescent (Goldmann et al.,
2013) mice with low-dose Tam administration protocols. As the
majority of studies employing Cx3cr1Cre/ERT2 lines use adult mice
with longer and higher-dose Tam regimens, the persistence of Cre-
mediated modification in peripheral macrophages under these
conditions remains unclear, and more recent evidence supports
our finding that a washout period is not sufficient (Bedolla et al.,
2024). Therefore, if microglia-specific CB2-KO is required in the
Cx3CB2 line, a time course study of peripheral tdT expression is
needed to determine the minimum washout period required to
achieve specificity, as we have confirmed here that 3 weeks is
insufficient.

In summary, this study presents the development and validation
of a unique CB2 transgenic model that integrates inducible KO with
dual fluorescent reporters, offering a versatile and powerful tool to
investigate CB2 function across tissues, disease states, and
developmental stages. The flexibility of the CB2flx line, which can
be crossed with any Cre line, allows for the study of CB2 function
and expression across various cell types and tissues. This versatility
makes the CB2flx line an invaluable tool for exploring CB2 in a range
of contexts, from neuroinflammation to other disease models in
which CB2 has been suggested to play a role. By directly addressing
existing methodological limitations in CB2 research, this model
enables experiments that were previously not possible, laying the

groundwork for future studies aimed at understanding CB2’s
contribution to disease processes and assessing the therapeutic
potential of CB2 modulation.
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SUPPLEMENTARY FIGURE S1
Floxed Cnr2 construct. Modified Cnr2 gene (A) before and (B) after Cre
mediated recombination. Blue boxes indicate exons. SA = Splice acceptor.
pA = poly (A). IRES = internal ribosome entry site. eGFP = enhanced green
flouresent protein. UTR = untranslated region.

SUPPLEMENTARY FIGURE S2
Optimisation of cAMP assay for primary glia cultures. Forskolin
concentration-response curves were generated for different cell densities
to determine optimum cell density and forskolin concentration.

SUPPLEMENTARY FIGURE S3
Sequencing of floxed Cnr2 gene.

SUPPLEMENTARY FIGURE S4
Representative, lowmagnification images of Cx3CB2 substantia nigra (A) Tam
treated Cx3CB2

+/+, (B) Vehicle treated Cx3CB2
Cre/+, (C) Tam treated

Cx3CB2
Cre/+. Scale bar = 100 µm.

SUPPLEMENTARY FIGURE S5
In Cx3CB2 mice, reporter gene expression does not colocalize with
astrocytes or neurons. Representative images of immunostaining in the
substantia nigra of GFP and tdT with either (A–C) GFAP or (D–F) NeuN.
(A,D) Tam treated Cx3CB2

+/+, (B,E) Vehicle treated Cx3CB2
Cre/+, (C,F) Tam

treated Cx3CB2
Cre/+. Scale bar = 50 µm.

SUPPLEMENTARY FIGURE S6
Reporter gene expression is present in the Cx3CB2 spleen. Representative
images of spleen immunofluorescence for (A) Cx3CB2

+/+ Tam treated,
1 week-post Tam. (B) Cx3CB2

Cre/+ Tam treated, 1 week-post Tam. (C)
Cx3CB2

Cre/+ Tam treated, 3 weeks-post Tam. Scale bar = 100 µm.

SUPPLEMENTARY FIGURE S7
Low magnification representative images of TmemCB2 substantia nigra (A)
Tam treated TmemCB2

+/+, (B) Vehicle treated TmemCB2
Cre/+, (C) Tam

treated TmemCB2
Cre/+. Arrows indicate colocalization of reporter gene

with Iba1. Scale bar = 100 µm.
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