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Cardiovascular disease (CVD) is a highly prevalent and lethal disease worldwide,
and existing conventional therapeutic drugs have limitations due to their side
effects. Medicinal plant-derived metabolites have become a research hotspot
due to their multi-target and multi-pathway cardioprotective potentials, while
exosomal miRNAs, as core regulatory molecules of intercellular communication,
play a key role in CVD such as atherosclerosis and myocardial infarction. This
paper systematically reviews the mechanisms by which medicinal plant-derived
metabolites regulate exosome miRNA or synergize with exosome therapy
to protect CVD. For instance, Tanshinone IIA, Astragaloside IV, Paeonol, and
Ginsenoside Rg1 can achieve effects such as promoting/inhibiting angiogenesis,
anti-inflammation, and vascular remodeling by regulating exosomal miRNA
expression. Finally, we look forward to the future direction of Medicinal plant-
derivedmetabolites combinedwith exosomes in the protection of cardiovascular
diseases, and provide a theoretical basis for the application of Medicinal plant-
derived metabolites in CVD protection and the development of exosomal
miRNA-targeted drugs.
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1 Introduction

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality
worldwide, affecting more than 500 million people globally and causing 18.6 million deaths
annually (Inam et al., 2023; Vaduganathan et al., 2022), making it a major global health
issue. Statins, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers,
beta-blockers, and other drugs form the foundation of cardiovascular disease treatment
(Netala et al., 2024). However, these drugs may tigger side effects such as gastrointestinal
reactions, electrolyte disturbances, kidney damage, dizziness, etc. (Khatiwada and Hong,
2024; Ko et al., 2002; Chen et al., 2021). In addition to the conventional therapies mentioned
above, herbal medicine has attracted considerable attention for its potential cardiovascular
benefits (Hao et al., 2017). Active ingredients in natural products, such as terpenoids,
polysaccharides, and phenolic compounds, have demonstrated good cardioprotective
effects and help enhance cardiovascular health (Zhao et al., 2020).
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Exosomes (Exos) are cell-derived lipid bilayer microvesicles
that can carry various bioactive molecules, such as microRNA
(miRNA), soluble proteins, and membrane proteins (Bofill-De Ros
and Vang Orom, 2024). As a key mediator of intercellular
communication, exosomes transmit biological signals by
targeting and recognizing recipient cells and releasing their
contents, of which miRNAs are the core molecules mediating
this process due to their highly efficient regulatory activities
(Macias et al., 2015). miRNAs are a class of endogenous non-
coding RNAs with highly conserved sequences that are capable of
regulating post-transcriptional gene expression (Lu and
Rothenberg, 2018), And the gene network regulated by miRNAs
is a complex gene regulatory network involving multiple targets
and multiple pathways (Miao et al., 2018). Research has shown that
exosomal miRNA participates in the occurrence and development
of various cardiovascular diseases, such as atherosclerosis,
myocardial infarction, and myocardial ischemia-reperfusion, by
regulating the expression of target genes. This deep involvement in
the disease process has also led to increasing attention being paid
to extracellular research in the field of cardiovascular medicine
(Zheng et al., 2021).

Medicinal plant-derived metabolites, especially those derived
from herbal medicines, such as terpenoids, polyphenols,
polysaccharides, alkaloids, and other compounds, also exhibit
multi-pathway and multi-target characteristics when exerting
their effects. Numerous studies have shown that these medicinal
plant-derived metabolites can modulate exosomal miRNAs, thereby
achieving stable cellular phenotypes, anti-inflammatory effects, and
enhanced cellular antioxidant capacity in the treatment of
cardiovascular diseases (Shi et al., 2020; Fu et al., 2021; Yang
et al., 2024). This review will conduct a comprehensive analysis
of both in vivo and in vitro experiments, and summarize the research
progress on the medicinal plant-derived metabolites that regulate
exosome miRNA expression or cooperate with exosomes in the
treatment of CVD.

2 Data collection methods

We searched PubMed, Web of Science, and the China National
Knowledge Infrastructure (CNKI) database with the keywords
“Cardiovascular Disease” “Medicinal plant-derived metabolites”
“Exosomes” “miRNA” and their combinations. The search was
conducted until 1 July 2025 (no time limit before this date).
Inclusion criteria: (1) Original experimental studies (in vivo or
in vitro) investigating the therapeutic effects of single or well-
defined components from medicinal plant on CVD; (2) The
medicinal plant-derived metabolites is a verifiable bioactive
monomer, which exerts its therapeutic effects on CVD through
synergistic interaction with exosomes or regulation of exosomal
microRNAs; (3) Cell experiments, animal studies or preclinical
research directly linked to the pathological mechanisms of CVD;
(4) The literature should be in English or Chinese, and the type
should be a peer-reviewed journal article or a degree thesis.
Exclusion criteria: (1) Medicinal plant are crude extracts or
mixtures of unidentified constituents; (2) The focus of the
literature review lies in the toxicological effects or
pharmacokinetic characteristics of medicinal plant, rather than

their pharmacological mechanisms for treating CVD; (3) Research
exclusively utilising exosomes as drug delivery vehicles for the
treatment of CVD; (4) Medicinal plant-derived metabolites exert
their effects not via the exosomal pathway, but by directly
regulating intracellular microRNAs or modulating non-
exosomal extracellular vesicles; (5) Studies with major flaws in
experimental design, such as the absence of a negative control
group or insufficient sample size; (6) The paper is included in the
conference proceedings but the full text is not available for reading.
Through the above search methods and inclusion/exclusion
criteria, we initially reviewed the titles and abstracts of the
included articles, then carefully read the full texts, ultimately
including 12 studies (Table 1).

3 Mechanism of action of medicinal
plant-derived metabolites in regulating
exosomal miRNA therapy for CVD

In the pathological progression of CVD, mechanisms like
angiogenesis, inflammation, oxidative stress, vascular remodelling,
and autophagy interact complexly. Excessive reactive oxygen
species-induced oxidative stress is a pivotal trigger (Taleb et al.,
2018): it activates inflammatory pathways to worsen vascular wall
inflammation via macrophage infiltration and inflammatory
mediator release, and damages vascular endothelial cells to
disrupt vascular homeostasis and initiate vascular remodelling
(Totoń-Żurańska et al., 2024). The inflammatory response further
amplifies oxidative stress and bidirectionally influences angiogenesis
by regulating factors such as VEGF and AngⅡ, thus compensating
for ischaemic injury (Hu et al., 2025); however, excessive
angiogenesis may cause vascular leakage and intra-plaque
inflammatory infiltration, exacerbating plaque instability (de
Vries and Quax, 2016). During vascular remodelling,
inflammation and oxidative stress regulate smooth muscle cell
proliferation/migration and extracellular matrix restructuring,
while indirectly affecting autophagy by altering vascular
architecture (Whiteford et al., 2016; Gallo et al., 2018). As a
cellular homeostasis mechanism, autophagy eliminates oxidatively
damaged proteins/organelles to suppress inflammation and
remodelling, but persistent oxidative stress or severe ischaemia
may induce excessive/insufficient autophagy, exacerbating cell
apoptosis and tissue damage (Ren et al., 2023). These
mechanisms form a multidimensional network, and disrupted
dynamic equilibrium thereof is the core pathological basis for
CVD onset and progression.

3.1 Promote/inhibit angiogenesis

Angiogenesis is the process by which endothelial cells
proliferate, differentiate, and migrate to generate new capillaries
through budding or anastomosis on the basis of existing
microvenules (Gete et al., 2021). Following myocardial ischemia
or myocardial infarction, angiogenesis represents a crucial pathway
for resolving ischemic injury, restoring myocardial blood supply,
and improving cardiac function (Yang et al., 2025; Wu et al., 2021).
However, angiogenesis occurring within atherosclerotic plaques
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significantly compromises plaque stability, leading to intraplaque
hemorrhage and triggering plaque rupture (Perrotta et al., 2019;
Brezinski et al., 2019).

Tanshinone IIA is a triterpenoid compound with potent
protective effects on the cardiovascular system (Qin et al., 2020).
Studies have shown that Tanshinone IIA can significantly improve
left ventricular ejection fraction (LVEF), left ventricular fractional
shortening (LVFS), maximum rate of pressure rise (+dP/dt_max),
and minimum rate of pressure decline (-dP/dt_min) in rats
following myocardial ischaemia-reperfusion injury in rats by
down-regulating miRNA-223-5p derived from bone marrow
mesenchymal stem cells. And reduce infarct size and collagen
deposition, alleviate inflammatory cell infiltration and apoptosis,
and inhibit chemokine (C-C motif) receptor 2 (CCR2) activation,
thereby reducing monocyte infiltration, promoting angiogenesis,
improving MIRI (Li et al., 2023).

Astragaloside IV is a triterpenoid compound exhibiting
biological activities such as antitumor, antioxidant, and anti-
inflammatory effects (Yao et al., 2023; Liang et al., 2023). Animal
studies have demonstrated that exosome-derived from bonemarrow
mesenchymal stem cells (BMSC), induced by astragaloside IV via
the miR-411/HIF-1α axis, can mitigate myocardial damage caused
by AMI, which is primarily manifested by a reduction in left
ventricular end-diastolic diameter (LVEDD) and left ventricular
end-systolic inner diameter (LVESD), increasing LVEF and LVFS,
reducing collagen deposition and CD31 expression in myocardial
tissue, and inhibiting the expression of the target gene HIF-1α (Yang
et al., 2024).

Astragalus polysaccharides are polysaccharide compounds with
immunomodulatory effects, therapeutic benefits for cardiovascular
diseases, and antitumor properties (Li et al., 2022; Su et al., 2025;
Zhang et al., 2024). Guo et al. demonstrated that Astragalus
polysaccharide combined with exosomes derived from adipose-
derived mesenchymal stem cells can promote angiogenesis and
endothelial cell migration through the PI3K/Akt pathway, increase
the survival rate of AC16 cells, reduce myocardial cell apoptosis, and
lower the expression levels of Bax and cysteine-dependent aspartate-
specific protease-3 (caspase-3). Increase the expression levels of B-cell
lymphoma-2 (Bcl-2), phosphatidylinositol 3-kinase (PI3K),
phosphorylated phosphatidylinositol 3-kinase (p-PI3K), and
protein kinase B (PKB) protein expression levels, thereby achieving
a protective effect on damaged myocardial tissue (Guo et al., 2023).

Zedoarondiol is a terpenoid compound exhibiting anti-
inflammatory, antiviral, and antioxidant biological activities (Ko
et al., 2018; Barcellos Marini et al., 2018). Research has found that
Zedoarondiol downregulates the levels of platelet-derived exosomal
miRNA-let-7a, thereby increasing the expression of aortic
thrombospondin-1 (THBS-1) and cluster of differentiation 36
(cluster of differentiation 36, CD36) expression levels, inhibiting
aortic plaque formation, reducing vascular neogenesis within
plaques, and lowering the expression levels of vascular VEGF
and plasma low-density lipoprotein (LDL). It also reduces
the concentration of matrix metalloproteinase-9 (matrix
metalloproteinase 9, MMP-9) and tumour necrosis factor-alpha
(TNF-α) concentrations, ultimately exerting anti-AS activity (Xie
et al., 2025).

TABLE 1 The medicinal plant-derived metabolites that regulate exosome miRNA expression or cooperate with exosomes in the treatment of CVD and
related factors.

Metabolite Targeted
miRNA

Main
pathway

Cardiovascular outcome References

Tanshinone ⅡA miR-223-5p↓ miR-223-5p/CCR2 LVEF, LVFS, +dP/dt_max, -dP/dt_min, Microvascular density↑; MI area,
Inflammatory cell infiltration, Cell apoptosis, Collagen fibers, Macrophage

abundance, CCR2 Monocyte↓

Li et al. (2023)

Astragaloside IV miRNA-411↑ miR-411/HIF-1α LVEF, LVFS, CD31, VEGF, Tube formation↑; LVEDD, LVESD, Collagen
deposition↓

Yang et al. (2023)

Astragalus
polysaccharide

-- PI3K/Akt Vascular grid, Cell migration rate, Survival rate of myocardial cells, PI3K, p-PI3K,
Akt↑; Apoptosis rate↓

Guo et al. (2023)

Zedoarondiol miRNA-let-7a↓ -- THBS-1, CD36↑; Density of new blood vessels, Platelet activation rate, VEGF, ox-
LDL, TNF-α, MMP-9↓

Xie et al. (2025)

Paeonol miRNA-223↑ STAT3 IL-1β, IL-6, VCAM-1, ICAM-1, STAT3, pSTAT3↓ Liu et al. (2018)

Paeonol miRNA-223↑ NLRP3 RAEC survival rate↑; TC, TG, IL-1β, IL-6, NLRP3, ASC, caspase-1, ICAM-1↓ Shi et al. (2020)

Ginsenoside Rh2 -- HMGB1/NF-κB Cardiomyocyte homing ability↑; NF-kB p65, NLRP3, HMGB1↓ Qi et al. (2022)

Tanshinone ⅡA -- PI3K/Akt Cell vitality, Tube-forming activity, Akt mRNA, PI3K mRNA, p-PI3K, p-Akt↑;
LDH leakage rate, ROS, IL-1β, IL-6, TNF-α↓

Ma et al. (2023)

Astragaloside IV -- PDHA1 LVEF, LVFS, PDHA1↑; LVEDS, LVEDD, IL- 6, TNF-α, MI area, Apoptosis rate of
myocardial cells↓

Su et al. (2025)

Ginsenoside Rg1 miRNA-7977↑ miRNA-7977/
MAPK13

α-SMA, SM-MHC, Smoothelin-B↑; Proliferative activity, Proliferation index,
Smemb, MAPK13↓

Shuai (2022)

Curcumin miRNA-92b-3p↑ miR-92b-3p/KLF4 KLF4, RUNX2↓ Chen et al.
(2022)

Oridonin -- -- CD63, CD81, AliX, Beclin-1, ATG13, Bcl-2, Ki67, EdU positive cells↑; Cell
apoptosis, heart rate, LVSP, LVFS, LVEF, LVWT, Apaf1, Bax↓

Fu et al. (2021)
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3.2 Anti-inflammatory

Chronic inflammation is a major risk factor for CVDs
(Prousi et al., 2023). It damages vascular endothelial cells,
promotes AS plaque formation, and may lead to plaque
instability triggering thrombosis, thereby increasing the risk
of diseases such as myocardial infarction. Simultaneously,
when CVDs like myocardial ischemia occur, they further
activate the body’s inflammatory response, creating a vicious
cycle (Sagris et al., 2021).

Paeonol is a phenolic compound with pharmacological effects
such as anti-inflammatory, anti-tumor and metabolic regulation,
and has good application value in the treatment of CVD (Yang and
Li, 2022). Research has confirmed that the mechanism by which
paeonol inhibits AS may involve upregulating the levels of
monocyte-derived exosomal miRNA-223, thereby inhibiting the
inflammatory pathway of signal transducer and activator of
transcription 3 (STAT3) and its downstream inflammatory
factors, including interleukin-1β (IL-1β), interleukin-6 (IL-6),
intercellular adhesion molecule-1 (ICAM-1), and vascular cell
adhesion molecule-1 (VCAM-1) (Liu et al., 2018). Another
studies have shown that paeonol can increase the expression level
of plasma exosomal miR-223, inhibit the downstream
NLRP3 inflammasome pathway, reduce serum TC, TG, IL-1β
and IL-6 levels, improve the survival rate of RAECs, and play an
anti-inflammatory role in endothelial cells of hyperlipidemic (HLP)
rats (Shi et al., 2020).

Ginsenoside Rh2 is a triterpenoid compound exhibiting multiple
pharmacological activities, including antitumor effects,
improvement of cardiac function and fibrosis, anti-inflammatory
properties, and antibacterial activity (Liu et al., 2022). Qi et al. found
through an in vitro model of AMI that ginsenoside Rh2 modulates
the NF-κB signalling pathway via the high mobility group box 1
(HMGB1)/nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) to improve the OGD environment, enhance the
homing ability of cardiomyocytes, thereby inhibiting the nuclear
translocation of NF-κB p65 and the activation of the
NLRP3 inflammasome, and enhancing the protective effect of
BMSC-derived exosomes on damaged myocardium, providing
new evidence for the regulation of exosomes by traditional
Chinese medicine in the treatment of cardiovascular diseases (Qi
et al., 2022).

3.3 Anti-oxidative stress

Physiological levels of ROS can act as signaling molecules to
regulate a wide range of processes in the cardiovascular system and
contribute to the maintenance of cardiovascular homeostasis.
However, excessive production or persistently elevated ROS levels
play a pivotal role in the onset, progression, and clinical outcomes of
CVD (Csányi and Miller, 2014).

In the process of AS, vascular endothelial injury serves as the
initiating step (Yubero-Serrano et al., 2020). Research has found that
Tanshinone ⅡA synergises with mesenchymal stem cell (MSC)-
derived exosomes can enhance the therapeutic effect on AS. This is
achieved by enhancing the proliferation and tubularisation capacity
of thoracic aortic endothelial cells, upregulating the mRNA and

phosphorylation levels of phosphatidylinositol 3-kinase (PI3K) and
Akt (protein kinase B, PKB); reducing lactate dehydrogenase leakage
rates and reactive oxygen species levels, and downregulating the
levels of inflammatory factors such as IL-1β, IL-6, and TNF-α (Ma
et al., 2023). Another study found that after administering
astragaloside IV combined with MSC exosomes to rats with
AMI, the infarct size, LVEDS, and LVEDD were significantly
reduced, LVEF and LVFS were significantly increased, and
myocardial tissue IL-6, TNF-α, and apoptosis rates were
significantly reduced. Pyruvate dehydrogenase alpha
(Recombinant Pyruvate dehydrogenase alpha 1, PDHA1) was
identified as the key factor involved in this process (Zhongxin
et al., 2025).

3.4 Vascular remodeling

Vascular remodeling (VR) is a process involving changes in
the cell types, morphology, and function of blood vessels caused
by abnormal hemodynamics. It represents a significant risk factor
for the progressive development of hypertension and target organ
damage (Li et al., 2024; Rizzoni et al., 2023). Ginsenoside Rg1 is a
triterpene saponins with pharmacological activities such as
cardiovascular protection, anti-inflammation and immune
regulation (Yang et al., 2023). A study on endothelial injury-
induced VR demonstrated that ginsenoside Rg1 upregulated the
expression of human umbilical vein endothelial cell-derived
exosomal miR-7977, decreased the expression of synthetic
marker proteins osteopontin (OPN), non-muscle myosin
heavy chain isoform-B (Smemb), and cellular retinol binding
protein-1 (CRBP-1), while increasing the expression of
contractile marker proteins α-SMA, smooth muscle myosin
heavy chain (SM-MHC), and Smoothelin-B. It also targeted
and inhibited the mitogen-activated protein kinase 13
(MAPK13) gene, inhibiting the phenotypic transformation and
proliferation of vascular smooth muscle cells and promoting
vascular repair (Shuai, 2022).

Vascular calcification (VC) is a systemic and dynamic vascular
disease, which refers to the ectopic deposition of hydroxyapatite
minerals in the arterial wall, often accompanied by vascular
remodeling, and is closely related to cardiovascular diseases (Lee
et al., 2020). Curcumin is a phenolic compound with anti-
inflammatory, anti-hyperlipidemic, and antioxidant properties.
Chen et al. found that curcumin reduces vascular calcification in
rat aortas by downregulating the expression of transcription factor
KLF4 and osteogenic factor RUXN2 through upregulating the
expression of miR-92b-3p in exosomes derived from vascular
smooth muscle cells (Chen et al., 2022).

3.5 Other mechanisms

Autophagy plays a dual role in CVDs through adaptive or
maladaptive regulation. Moderate autophagy protects
cardiomyocytes by clearing damaged organelles accumulated
during ischemia, whereas excessive or insufficient autophagy
exacerbates cardiomyocyte apoptosis and structural damage,
worsening the severity of MI/RI (Mei et al., 2015). Oridonin is
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a terpenoid compound exhibiting a wide range of biological
activities, including anti-inflammatory and antitumor effects
(He et al., 2018; Zhou et al., 2023). Fu et al. found that
Oridonin combined with exosomes derived from in BMSC can
inhibit MIRI, which was represented by the ability of exosomes
treated with oridonin to significantly reduce the number of
apoptotic cardiomyocytes and reverse the increasing trend of
cardiac parameters such as heart rate, left ventricular systolic
pressure (LVSP), LVFS, LVEF and left ventricular wall
thickness (LVWT). The expression of recombinant human
beclin 1 protein (Beclin-1), autophagy-related protein 13
(ATG13), and B-cell lymphoma-2 gene (Bcl-2) was upregulated,
the expression of apoptotic protease activating factor-1 (Apaf1),
B-cell lymphoma-2-associated X protein (Bax) and proliferation

cell nuclear antigen Ki67 was downregulated, and the proportion
of edu-positive cells was increased (Fu et al., 2021).

4 Conclusion and outlook

Medicinal plant-derived metabolites show remarkable potential
in cardiovascular disease protection by regulating exosomal
miRNAs or synergizing with exosomes, and their multi-target
and multi-pathway action properties provide new strategies to
overcome the limitations of traditional drugs. This study
summarizes the effects of terpenoids (such as Zedoarondiol,
Tanshinone ⅡA, and Oridonin), phenols (such as Paeonol and
Curcumin), polysaccharides (e.g., astragalus polysaccharide), and

FIGURE 1
Medicinal plant-derived metabolites-exosomes miRNAs-main cardiovascular effects.
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triterpenoids (e.g., astragaloside IV, ginsenoside Rh2, and
ginsenoside Rg1) play a role in promoting/inhibiting
angiogenesis, anti-inflammatory and anti-oxidative stress in AS,
MIRI, and AMI by regulating exosomal miRNA expression or
synergizing with exosomes (Figure 1). Although these medicinal
plant-derived metabolites show promise in the treatment of CVD,
the existing research has certain limitations: (1) Most studies focus
on a single component regulating specific miRNAs, but exosomal
miRNA expression is dynamic (Yu et al., 2016). Whether these
metabolites act via miRNA networks (not single molecules) needs
verification with single-cell sequencing and high-throughput
screening. (2) Translating basic research to clinical use faces
challenges (e.g., standardized metabolite extraction, optimized
drug delivery), requiring pharmaceutical/bioengineering
breakthroughs to build a standardized extraction-testing system
and more preclinical pharmacodynamic evaluations. (3) There are
few studies on these metabolites regulating exosomal miRNA for
CVD treatment, lacking basic/clinical data on diseases like
hypertension, arrhythmia, heart failure, and cardiomyopathy, as
well as research on other metabolites for this purpose. Expanding
CVD study scope/models, exploring more metabolites’ potential,
and integrating CRISPR (to identify key exosomal miRNA nodes)
with a focus on clinical translation are needed. (4) Due to their
small size, high heterogeneity, and susceptibility to interference
from other components in biological fluids, exosome isolation
methods (such as ultracentricentrifugation, magnetic bead
sorting, etc.) and quantification techniques (such as nanoparticle
tracking analysis, Western blot quantification, etc.) have yet to
establish unified standards. It is essential to compare the principles
underlying current mainstream separation and quantification
methods, analyze the advantages and limitations of each
approach, explore the core elements of standardized protocols,
and define critical parameters to enhance the reliability and
reproducibility of results. (5) Previous studies have primarily
focused on the identification of plant metabolite components
and their biological activities, with insufficient attention given to
pharmacokinetic research, namely the absorption, distribution,
metabolism, and excretion (ADME) processes within the body.
Future studies should supplement these analyses by investigating
their stability in the gastrointestinal tract, transmembrane transport
mechanisms, hepatic metabolic pathways, and excretion routes.
Integrating experimental data from animal models, such as changes
in blood drug concentrations and tissue distribution patterns will
elucidate how in vivo metabolic processes influence bioavailability
and efficacy. This will also facilitate discussions on potential
formulation optimization strategies to enhance pharmacokinetic
performance. (6) Included literature relies heavily on in vitro
experiments and animal models, lacking clinical sample
verification. Future research should emphasize clinical sample
collection/analysis and validation to confirm these metabolites’
effectiveness/safety in regulating exosomal miRNA for CVD
protection.

In summary, research on the protection of CVD using
medicinal plant-derived metabolites via exosome-derived
miRNAs or synergistic exosome pathways holds both
fundamental theoretical value and clinical translation potential.
With advancements in research methods and technological
progress, such medicinal plant-derived metabolites are poised to

become a key source for the next-generation of CVD therapies,
offering safer and more effective solutions to global cardiovascular
health challenges.
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