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Introduction: Chronic alcohol consumption is a major contributor to
neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption,
leading to significant neuronal injury. Traditional therapies for alcohol use
disorder (AUD) predominantly target behavioral and receptor-based
mechanisms, often neglecting the direct pathophysiological impacts of
alcohol on brain tissue. This study explores the neuroprotective potential of
Gardenin A (GarA), a hexa-methoxylated flavone, in counteracting alcohol-
induced inflammation and physiological damage.

Methods: /n vitro experiments utilized SH-SY5Y neuroblastoma cells treated with
varying concentrations of GarA, assessing cell viability, nuclear integrity, oxidative
stress, and gene expression. In vivo experiments involved the administration of
ethanol alongside GarA at doses of 50 and 100 mg/kg body weight to male Wistar
rats. Subsequent brain tissue analysis employed histological and
immunohistochemical methods to evaluate structural preservation and cellular
responses. Key molecular targets were examined, including vimentin, brain-
derived neurotrophic factor (BDNF), and Claudin5. Protein levels of
inflammatory markers and antioxidant enzymes were quantified using ELISA,
providing detailed insights into the biochemical pathways involved.
Complementary in silico methods, such as molecular docking and network
pharmacology, were employed to elucidate the mechanistic interactions and
predict potential molecular binding sites.

Results: The treatment with GarA resulted in enhanced neuronal viability and a
reduction in ethanol-induced oxidative stress in vitro. In vivo results
demonstrated preservation of brain architecture, attenuation of astroglial
reactivity, and significant downregulation of tumor necrosis factor-alpha
(TNFa), a key mediator of neuroinflammation. Additionally, GarA was
associated with restored BDNF expression and upregulated antioxidant
markers like HO-1 and Nrf2, maintaining neurovascular integrity and
neurotrophic balance.

Discussion: GarA demonstrates neuroprotective potential, with evidence
suggesting modulation of neuroinflammation and oxidative stress that may
involve TNFa and BDNF pathways. These promising findings suggest potential
therapeutic  applications for GarA in  addressing alcohol-related
neurodegeneration. Future research focusing on clinical trials may prove
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helpful in validating these preclinical findings. Expanding studies to include diverse
animal models and exploring combinatory treatments with existing AUD therapies
could enhance understanding and application. Such efforts may pave the way for
incorporating GarA into comprehensive pharmacotherapeutic strategies aimed at
mitigating the neuropathological effects of chronic alcohol consumption.
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1 Introduction

Ethanol, a widely consumed psychoactive substance and Class I
carcinogen, exerts neurotoxic effects through mechanisms involving
oxidative stress, inflammation, and metabolic disruption (World
Health Organization, 2024). Chronic exposure to ethanol is a well-
established contributor to systemic toxicity and is a major risk factor
for neurodegenerative disorders, including Alzheimer’s (AD) and
Parkinson’s disease (PD). Globally, reports indicate that alcohol
consumption has been steadily increasing over time.

While the liver is the primary site of ethanol metabolism, the
brain is both susceptible and metabolically active, with the ability to
oxidize ethanol via catalase and cytochrome P450 2E1 (CYP2EIL),
leading to nearly 80% of the neuronal alcohol metabolism
(Beisswenger et al, 1985; Martinez et al., 2001; Galter et al,
2003; Zimatkin et al., 2006; Wilson and Matschinsky, 2020; Wen
et al,, 2022). Furthermore, astrocytes (a type of glial cell) have
acetaldehyde dehydrogenase 2 (ALDH2) which leads to the
formation of acetate, which contributes to severe intoxication and
alcohol dependence (Carmichael et al., 1991; Volkow et al.,, 2013;
Mews et al., 2019; Jin et al., 2021). Alcohol not only crosses the
blood-brain barrier (BBB) but also disrupts its structural integrity,
exacerbating neuroinflammatory responses (Vore and Deak, 2022).
Hence ethanol’s metabolism in neuronal tissue produces
acetaldehyde and reactive oxygen species (ROS), leading to
cellular redox imbalance, mitochondrial damage, and membrane
destabilization. These mechanisms underlie its classification as a
neurotoxic agent in toxicological studies.

The central nervous system (CNS) comprises four main types of
glial cells: astrocytes, microglia, oligodendrocytes and their
precursor cells, polydendrocytes. All of these are significantly
impacted by alcohol exposure in terms of their growth,
morphology, physiology, and gene expression (Miguel-Hidalgo,
2018). At low levels, alcohol can transiently activate microglia,
eliciting neuroprotective responses. However, chronic exposure
results in microglial overactivation and the release of pro-
inflammatory cytokines. Among the critical mediators of alcohol-
induced neurotoxicity, tumor necrosis factor-alpha (TNFa) plays a
central pathogenic role, while proprotein convertase subtilisin/kexin
type 9 (PCSK9) has been implicated as a novel neuroinflammatory
mediator linking the liver-brain axis. Ethanol exposure upregulates
TNFa and PCSK9 expression, which in turn amplifies the
inflammatory milieu by stimulating microglial and astrocytic
activation (accompanied by increased expression of intermediate
filament protein such as vimentin) and downstream cytokines such
as monocyte chemoattractant protein-1 (MCP-1), interleukin 1-beta
(IL-1PB), and interlukin-6 (IL-6) (Ward et al., 2009; Qin and Crews,
2012; Patel and Mandal, 2018; Anand et al., 2023).
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Prolonged TNFa signaling contributes to neuronal apoptosis,
BBB dysfunction, and synaptic loss - hallmarks of alcohol-induced
cognitive decline. Ethanol-induced ROS and RNS production,
coupled with ER stress, impairs tight junction proteins and
compromises BBB integrity (Varadinova et al, 2019). Studies
have shown that alcohol induced neuroinflammation, along with
oxidative and endoplasmic reticulum (ER) stress, disrupts tight
junctions (TJs) and compromises BBB integrity (Carrino et al.,
2021; Wei et al,, 2021). This further aggravates the inflammation
by allowing the permeation of inflammatory cytokines and other
immune cells from the peripheral nervous system (PNS) (Togre
et al,, 2024). In parallel, ethanol suppresses neurotrophic signaling,
particularly the expression of BDNF, impairing neuronal survival,
plasticity, and repair mechanisms (Tapia-Arancibia et al., 2001;
Raivio et al., 2012; Martin-Gonzélez et al., 2022).

Researchers worldwide are actively investigating the toxic effects
of alcohol on the brain and are exploring potential therapeutic
strategies to mitigate its impact. While most studies predominantly
target alcohol dependence and withdrawal, fewer have addressed the
underlying stress mechanisms in the brain caused by chronic alcohol
overconsumption. A limited number of preclinical studies have
evaluated natural compounds for their potential to alleviate
alcohol-induced oxidative stress and inflammation, including
resveratrol (Petrella et al., 2020), olive polyphenols (Carito et al.,
2017), saffron and crocin (Bandegi et al., 2014) and minocycline
(Motaghinejad et al., 2021). Additional research has focused on
preventing or treating alcohol-induced neurodegenerative apoptosis
using agents such as nicotinamide (Ieraci and Herrera, 2006) and
epigallocatechin-3-gallate (EGCG) (Tiwari et al., 2010). Parallel
studies have also explored the neuroprotective effect of these
natural compounds in the context of neurodegenerative
disorders. For instance, quercetin has been shown to mitigate
mitochondrial dysfunction in PD (Kang et al, 2020), while
baicalein exerts neuroprotection through its anti-inflammatory,
antioxidant and anti-apoptotic properties (Lee et al., 2005; Li
et al.,, 2012).

GarA, (Cy;H»,09) (molecular weight: 418.4 g/mol) a hexa-
methoxylated flavone, is found in various plant sources,
including Gardenia resinifera Roth. (Toppo et al., 2017). and
1996). It has

and  anti-

Murraya paniculata (Kinoshita and Firman,

previously  demonstrated  hepatoprotective
hyperlipidaemic properties against metabolism-associated liver
disease (MASLD) in in vitro and in vivo models (Toppo et al,
2017) and against alcohol-induced liver and gut damage in an
in vitro model (Chadha et al,, 2025). GarA has also shown anti-
oxidative and neuroprotective properties in a rat model of focal
brain ischemia (Zhang et al., 2005), and has been found to facilitate

neurite outgrowth in PC-12 cells, suggesting potential therapeutic
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relevance for neurodegenerative conditions such as AD and PD
(Chiu et al., 2013). It has anti-anxiety-like, anti-convulsant, and anti-
depressant-like neuropharmacological activities in mice (Alonso-
Castro et al, 2020) and anti-neuroinflammatory effects in the
Drosophila model of PD (Maitra et al.,, 2021). Most importantly,
recently (Hack et al., 2024) uncovered the potential of GarA to cross
the BBB
dysfunction against PD.

and protect against cognitive and motor

Currently, three FDA-approved medications are available for
the treatment of AUD, but these drugs primarily function by
targeting neural receptors and are associated with notable
limitations. For example, some of these drugs are contraindicated
in individuals with comorbid conditions—naltrexone and disulfiram
in those with advanced liver disease, acamprosate in cases of renal
impairment, and disulfiram in patients with cognitive deficits
(MacKillop et al, 2022; Agabio et al, 2024). Despite growing
interest in flavonoid-based neuroprotection, little is known about
their effect on ethanol-induced dysregulation of key molecular
targets such as TNFa, PCSK9, MCP-1, Claudins, Vimentin, and
BDNF. These markers are closely associated with oxidative stress
response, tight junction integrity, and neuroinflammatory signaling.
This study investigates the potential of GarA to influence TNFa-
driven neuroinflammatory cascades and associated molecular
markers in ethanol-induced neurotoxicity, using an integrated
in vitro, in vivo, and in silico approach.

2 Materials and methods

2.1 Materials

Culture media, supplements, antibiotic-antimycotic solution,
fetal bovine serum (FBS), 1X phosphate buffered saline (PBS)
and rat feed components were procured from HiMedia (Mumbai,
India), unless specified otherwise. Retinoic acid (RA) for
differentiation and Silymarin (SilM) for use as standard drug was
obtained from Sigma-Aldrich (St. Louis, Missouri, United States).
Antibodies for immunohistochemical staining were purchased from
Thermo Scientific (anti-vimentin V9, MA5-11883) and Agilent
Technologies (EnvisionTM HRP, Dako). Enzyme linked
immunosorbent assay (ELISA) kits for rat TNFa (Cat. no. ELR-
TNFa-1), rat BDNF (Cat. no. ELR-BDNF-1), rat IL-6 (Cat. no. ELR-
IL6-1) and rat MCP-1 (Cat. no. ELR-MCP1-1) were purchased from
RayBiotech Life, Inc. (Georgia, USA) and rat HO-1 (Cat. no.
orb411280) and rat Nrf2 (Cat. no. orb781880) were purchased
from Biorbyt LLC (North Carolina, USA).

2.2 Cell culture study

SH-SY5Y (RRID: CVCL_0019), neuroblastoma cells were
obtained from National Centre for Cell Science (NCCS, Pune,
India) and were provided mycoplasma-free. Cells were cultured
in Dulbecco’s Modified Eagle Medium/ Nutrient Mixture F-12 Ham
(DMEM/ F12, 1:1 ratio), supplemented with 10% FBS and 1%
antibiotic and antimycotic solution, maintained at 37 °C and 5%
CO, in a water-jacketed incubator. Cells were subcultured at 70%-
80% confluency with adequate medium replenishment. For
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experimental assays, cells were seeded at a density of 1 x 10*
cells per well in 96-well plates and 5 x 10° cells per well in 6-
well plates. Cells between passage 25 - 30 were used for the
experiments. For neuronal differentiation, cells were treated with
10 mM RA in low-serum medium (1%) for 3 days prior to treatment,
following the protocol by (Bustos-Rangel et al., 2023) and validated
using morphological changes using Image] neurite length analysis
(Supplementary Figure S1; Supplementary Table S1). To minimize
ethanol evaporation during treatments, plates were sealed with
Parafilm (covering ~75% of the surface, allowing adequate gas
exchange) and maintained in a water-jacketed incubator to
ensure stable humidity and temperature. Ethanol-treated wells
were placed toward the center of the plates, while untreated
control wells were positioned at the periphery to minimize
differential evaporation. In addition, medium containing ethanol
was added to the unused spaces of the culture plates, which has been
shown to further reduce evaporation (Rath et al., 2022).

2.3 Animal study

Animal experimentation was performed as per standard ethical
ARRIVE (Animal research: reporting of in vivo Experiments)
guidelines and approved (RPCP/IAEC/2023-24/R16) by the
Institutional ethical committee of Charotar University of Science
and Technology. Eight-to ten-week-old male Wistar rats (weighing
200-250 gm) were procured from SyncBio Research Pvt. Ltd.
(Gujarat, India). Before beginning the study, the rats were caged
in ambient conditions (25 °C + 2 °C with relative humidity 55% +
5%) with two rats per cage. They were provided with a standard
chow diet and water ad libitum, and allowed to acclimatize for a
period of 7 days. They were accommodated in 12 h dark and light
cycles throughout the study.

2.4 Preparation of GarA stocks for in vitro
and in vivo experiments

Pure GarA was previously extracted, isolated from G. resinifera
Roth. gum and characterized in the lab (Chadha et al., 2025) was
utilized for this study. For the in vitro study, the stock solutions
(1 mg/mL and 100 pg/mL) were prepared using dimethyl sulfoxide
(DMSO) and 1X PBS, ensuring the final DMSO concentration did
not exceed 0.1%. For in vivo study, GarA and SilM stock solutions
(50 mg/mL each) were prepared using 1% carboxy-methyl cellulose
(CMC) in sterile water. The stock solutions were prepared under
aseptic conditions and autoclaved before use, to ensure sterility.

2.5 In vitro assays

2.5.1 Cell viability assay using resazurin

Cells were seeded in 96 well plate and allowed to adhere for 20 h,
then treated with differentiation media for 3 days. Cells were treated
with 10-100 pug/mL concentration of GarA, in increments of 10 ug/
mL. After 24 h, the medium was aspirated and cells were washed
with 1X PBS and new medium (100 uL) and resazurin was added
(0.16 mg/mL, 10 L) and the plate was incubated at 37 °C with 5%
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CO, supply for 2 h. Later, the plate was read using a multimode
reader for fluorescence at excitation 544 nm and emission 590 nm.
No cell and no treatment control wells were kept for baseline
correction and calculations of cell viability.

2.5.2 Reactive oxygen species estimation

Cells were seeded and treated similarly for differentiation,
followed by GarA treatment (10 pg/mL) with and without the
presence of ethanol (500 mM) for 24 h. The concentration of
500 mM ethanol was selected based on preliminary cell viability
assays (Supplementary Figure S2), which confirmed that SH-SY5Y
cells remain sufficiently viable at this level over the experimental
timeframe to allow for mechanistic analyses. Cells were incubated
with DCFDA (2',7'-dichlorodihydrofluorescein diacetate) (10 uM)
for staining for 45 min, followed by lysis using Triton X 100 and
measurement of fluorescent intensity at excitation 485 nm and
emission 535 nm, using a multimode reader.

2.5.3 Observation of nuclear integrity using
DAPI staining

Seeding, differentiation and treatment of GarA and ethanol were
given similarly as previous section. After 24 h incubation, the cells
were fixed using 4% fixing buffer and stained using DAPI (4',6-
diamidino-2-phenylindole) (50 nM) for 15 min. Cells were washed
using 1X PBS thrice and fluorescence intensity was measured at
355 nm excitation/ 460 nm emission. Images were captured using a
fluorescence microscope using the blue channel.

2.6 In vivo study

2.6.1 Animal experimentation

After acclimatization, male Wistar rats were randomly divided
into five groups: Isocaloric Control (NC), Ethanol-fed (E), Standard
drug-SilM (50 mg/kg) (STD), GarA-low dose (50 mg/kg) (GAL) and
GarA-high dose (100 mg/kg) (GAH), (Toppo et al, 2017),
maintaining a similar average weight in each group. The control
group was fed an isocaloric maltodextrin liquid diet, containing
equal amounts of calories as compared to the ethanol fed groups, to
rule out the variation caused due to caloric differences. While the
remaining groups were fed ethanol containing Lieber-DeCarli diet
(Supplementary Tables S2-S5). The concentration of maltodextrin
and ethanol was increased gradually in 5 days, starting from 1% to
5% on the fifth day. The feeding protocol was continued for 30 days.
To mimic normal drinking conditions, the rats were fed with 31.5%
maltodextrin and ethanol on 11th and 22nd day (Liu et al., 2023)
(Supplementary Table S6). No animals were excluded from the
analyses, and the investigators performing further analyses were
blinded (using coded identifiers known only to the personnel
administering treatment) to the treatment groups.

2.6.2 Brain weight and histopathological
observation

Brain samples were collected and weighed. Their size and
appearance were noted and compared. Samples were stored in a
10% neutral buffered formalin solution for fixing. Samples were
embedded in paraffin wax and washed for 2 h under running water.
Blocks were then dehydrated using increasing concentration of
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isopropyl alcohol (30%-70% - 90%-100%) and deparaffinized
using xylene, and impregnated in melted paraffin wax. Thin
sections (4-5 pm) of the samples were cut using automated
rotary microtome (Leica RM2255). The sections were fixed on
poly-L-lysine coated (0.1% w/v in H,O) slides and stained using
hematoxylin and counterstained with eosin using Gemini AS
Automated Slide Stainer (Thermo Scientific). The stained slides
were  observed under a contrast

phase microscope

at x40 magnification (Suvarna et al., 2012).

2.6.3 Immunohistochemical observation

The tissues were fixed, and slides were prepared similarly as in
case of HE staining. Sections were de-paraffinized and rehydrated.
Autoclave method was utilized for antigen retrieval as per (Bankfalvi
et al,, 1994), containing antigen retriever buffer of pH 9.0, after a
complete cycle of autoclave, the sections were incubated in the buffer
for 2 min. Sections were cooled and washed using tris-buffered
saline (TBS) pH 7.4, and quenching of endogenous peroxidase was
carried out using incubation in 3% H,O, for 30 min. The sections
were then incubated in anti-vimentin V9 (Thermo scientific, MA5-
11883, 1:200) primary antibody. Later, the sections were rinsed with
TBS and incubated in EnVision Detection Systems, Peroxidase/
DAB, Rabbit/Mouse (Agilent, Dako, Denmark) for 30 min at 25 °C.
The sections were counterstained using Mayer’s hematoxylin and
mounted. Canine mammary tumor samples were used as positive
controls (Wang et al., 2022).

2.6.4 Protein isolation and ELISA

The tissue samples were thawed, and 200 mg samples were
taken. The samples were homogenized in 500 uL RIPA buffer
(prepared as per Ruiz-Uribe and Bracko, 2020) under ice
incubation. After 2 h incubation at - 20 °C, samples were thawed
and centrifuged at 12,000 rpm at 4 °C for 20 min. The upper aqueous
layer was collected and used for ELISA estimation using specific kits
for TNFa, BDNF, heme oxygenase 1 (HO-1), nuclear factor
erythroid 2-related factor 2 (Nrf2), IL-6 and MCP-1, following
the kits’ protocol.

2.7 Gene expression study

SH-SY5Y cells were plated in six well plates and differentiated.
After differentiation, cells were treated in four different groups:
ethanol (500 mM), GarA (10 pg/mL), ethanol (500 mM) with GarA
(10 pg/mL) and no treatment control for 24 h. Brain tissue samples
were weighed (100 mg) and homogenized. RNA from both cells and
tissue samples was isolated using RNA isoplus (Takara) and cDNA
was prepared using kit method (Thermo Verso cDNA synthesis kit).
To anticipate the neuroprotective effect of GarA against ethanol in
cellular and rodent models, various genes were selected. For in vitro,
genes for the neurotrophic factor BDNF, pro-inflammatory
cytokines and chemokines such as TNFa and MCP-1, and
antioxidant genes such as Nrf2 and HO-1, and lastly for the
integrity of the BBB, Claudinl (CLDN) was selected. And for in
vivo, BDNF, vimentin, PCSK9, HO-1, Nrf2, interleukin 10 (IL-10),
MCP-1, TNFa, and CLDN5 were selected. 18S (for in vitro) and -
actin (for in vivo) were used as the housekeeping genes for the
samples. The primers used were designed in silico using
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PrimerBLAST (Ye et al., 2012) and have been published previously
(Patel et al, 2021; Aghara et al., 2024; Chadha et al, 2025)
(Supplementary Tables S7 and S8). For qPCR, SYBR green
master mix and Agilent MxPro3000 were used.

2.8 Molecular docking and molecular
dynamics (MD) simulations

Three target proteins: BDNF (PDB ID: 1BND)(Robinson
et al., 1995), IL-6 (1ALU) (Somers, 1997), and MCP-1 (1IDOL)
(Lubkowski et al., 1997) were selected for docking analysis.
Protein structures were retrieved from the RCSB Protein Data
Bank and prepared using Schrédinger’s Protein Preparation
Wizard (Madhavi Sastry et al., 2013) (Maestro, v2024-2),
including bond order assignment, hydrogen addition,
hydrogen-bond optimization (PROPKA, pH 7.4),
removal (>5 A from hetero groups), and restrained
minimization with the OPLS4 force field (Lu et al., 2021)
(RMSD cutoff: 0.3 A). To compare the results of the docking
interaction of GarA with the target proteins, docking with known
binders of BDNF (4-methyl catechol) (Vetrivel et al., 2012), IL-6
(Pinostrobin chalcone) (Tjiptaningrum et al., 2024) and MCP-1
(Bindarit) (Paccosi et al., 2012), was performed. The three-
dimensional structures of GarA and known binders were
downloaded from PubChem.

The receptor grid was generated using Glide’s Receptor Grid

water

Generation module (Friesner et al., 2006). The grid was centered
on the binding sites of BDNF (Sangeet et al., 2023), IL-6 (Litov
etal.,2021) and MCP-1 (Reid et al., 2006) and extended to cover a
20 A? volume to allow full conformational sampling of the ligand.
A van der Waals scaling factor of 1.0 and a partial charge cutoff of
0.25 were used for nonpolar atoms. No positional or hydrogen
bond constraints were applied to retain unbiased binding
predictions. Docking was carried out using Glide in Extra
(XP) which
discriminating scoring algorithm that includes terms for

Precision mode, incorporates a more
hydrophobic enclosure, desolvation penalties, ligand strain

energy, and explicit treatment of directional hydrogen
bonding. The best-ranked pose based on Glide XP score was
selected for post-docking analysis and minimization. Key
ligand-protein interactions were visualized using Maestro
v12.5 and PyMOL 3.0.2.

To evaluate the stability and dynamic behavior of the protein-
ligand complex, molecular dynamics (MD) simulations were
performed using the Desmond module (Bowers et al., 2006) in
Schrodinger Suite (version 2024-2). The docked complex
obtained from XP docking was first imported into the System
Builder panel, where it was embedded in an orthorhombic
simulation box and solvated using the TIP3P explicit water
model (Jorgensen et al.,, 1983). A buffer distance of 10 A was
maintained between the complex and the edges. The system was
neutralized by adding appropriate counterions (Na* or CI"), and
0.15 M NaCl was added to mimic physiological ionic strength.
The OPLS4 force field was used for all protein, ligand, and solvent
parameters. A series of energy minimizations were performed to
eliminate bad contacts, followed by equilibration steps under

NVT and NPT ensembles. The production MD simulation was
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run for 100 ns under NPT ensemble conditions at 300 K
temperature and 1.01325 bar pressure, maintained using the
Nose-Hoover thermostat and Martyna-Tobias-Klein barostat,
respectively (Nosé, 1984; Martyna et al., 1994). A time step of
2 fs was used, and trajectories were saved every 100 ps for
analysis. Trajectory analysis included root mean square
deviation (RMSD) root mean square fluctuation (RMSF), and
ligand-protein interaction profiles over time, using the
Simulation Interaction Diagram tool in Maestro. Additionally,
the ligand-protein contacts throughout the trajectory were
monitored to evaluate the stability and duration of binding

interactions over the course of the simulation.

2.9 Network pharmacology

To identify probable protein targets of GarA, multiple web-
based prediction tools were utilized, including PASS Online
(Filimonov et al, 2014), TargetNet (Yao et al, 2016),
SwissTargetPrediction (Daina et al., 2019), Similarity Ensemble
Approach (SEA) (Keiser et al, 2007), and PharmMapper (Liu
et al,, 2010). All predicted targets were compiled, and duplicates
were removed to generate a non-redundant list of GarA-
associated proteins.

Genes associated with ethanol-induced brain damage were
retrieved using the keywords “ethanol-induced brain injury” and
“ethanol-induced brain damage” from the following databases:
NCBI Gene, DisGeNET (Pifiero et al, 2019), and GeneCards
(Stelzer et al, 2016). All gene lists were standardized and
merged, with duplicate entries eliminated.

The intersection between GarA targets and ethanol-related
disease genes was determined using Venn diagram analysis
(Venny 2.1.0) (Oliveros, 2015) to identify common targets
potentially relevant to neuroprotection. These overlapping genes
were submitted to the STRING database (Szklarczyk et al., 2023)
(confidence score >0.4) to construct a protein—protein interaction
(PPI) network. The resulting PPI data were imported into Cytoscape
(v3.9.1) (Shannon et al, 2003) for network visualization and
analysis, including topological parameter calculation.

To explore the functional significance of the overlapping genes,
the top 20 core genes were submitted for Gene Ontology (GO)
(biological process, molecular function, cellular component) and
Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed using ShinyGO v0.77 (Ge
et al, 2020). Terms with a p-value <0.05 were considered
statistically significant. Enrichment results were visualized as bar
plots and bubble charts.

2.10 Statistical analysis

Cell culture assays were performed in biological triplicates (n =
3), while animal experimentation was carried out in six biological
replicates (n = 6). For histological analyses, multiple fields per
animal were quantified, and the average per animal was used as the
experimental unit for statistical analysis. Data were expressed as
Mean + SD, where a value of p < 0.05 was considered significant.
Statistical analyses were performed using GraphPad Prism
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FIGURE 1
Cell viability of SH-SY5Y cells in presence of GarA (10-100 pg/

mL). Data was normalized by control and represented as Mean + SD
Significance was calculated using One-way ANOVA with Dunnet'’s
multiple comparisons, where the significance between 0, 10 and

20 pg/mL was p > 0.05, whereas 0, 30 and 40 pg/mL was p < 0.01 and
0 and 50-100 pg/mL was p < 0.0001 (n = 3).

9.1.0 and involved One-way analysis of variance (ANOVA) with

either Dunnet’s or Tukey’s HSD post-hoc multiple

comparisons test.
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3 Results

3.1 GarA confers neuroprotection in SH-
SY5Y cells

The resazurin assay was performed to evaluate the effect of
GarA on the neuroblastoma cell line, SH-SY5Y. Cells showed a
dose-dependent decrease in cell viability (Figure 1). Maximum
viability was observed at 10 pg/mL GarA, which showed more
than 100% viability, showing maintained or slightly enhanced
cell viability relative to control. This assay showed that GarA is
less toxic till 40 pg/mL, and shows a cell viability above 75%. The
lowest viability was observed at a concentration of 100 pg/
mL (~50%).

3.2 GarA mitigates ethanol-induced
oxidative stress and nuclear damage in
SH-SY5Y cells

The ROS and nuclear damage caused due to ethanol
treatment, and its prevention using co-treatment with GarA
was measured using DCFDA and DAPI staining methods.
GarA showed protective effect against the ethanol induced
oxidative damage, which was evident by a decrease in the

*
*
1
Xk kK %k kK Kk - Control
2 1x107
Z’ BN 500 mM EtOH
2 §x10¢ g 500 mM E{OH
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=
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FIGURE 2
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(A) DCFDA fluorescence intensity in presence of ethanol (500 mM) and GarA (2.5, 5 and 10 ug/mL); (B) Photo-micrographs of SH-SY5Y cells
(at x40 magnification) in presence and absence of ethanol (500 mM) and GarA (10 ug/mL); (C) DAPI fluorescence intensity. Values are represented as
Mean + SD and significance was calculated using One-way ANOVA with Dunnet’s multiple comparisons where "p > 0.05, *p < 0.05, **p < 0.01 and

***%n < 0.0001. (n = 3) (Scale bar = 50 pm).
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GarA helps reduce inflammation and has an antioxidant and neuroprotective activity in SH-SY5Y cells against ethanol. Gene expression over 18S
in vitro in different treatment groups showing (A). TNF-a (B). MCP-1 (C). Nrf2 (D). HO-1 (E). BDNF (F) CLDN. Values are represented as Mean + SD and
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FIGURE 4

Weight of rodent brain collected after study completion. Values

are represented as Mean + SD and significance was calculated using
One-way ANOVA with Tukey's post hoc HSD. Different letters across
the treatment groups indicate significant difference p < 0.05

(n=16)

DCFDA fluorescence intensity in the co-treatment group, in
comparison to the ethanol treatment alone. The cells in the
untreated group and the GarA group showed a similar
intensity (Figure 2A).

Frontiers in Pharmacology

Likewise, the cells showed an uptake of higher amount of DAPI
stain in the ethanol treated group. Additionally, the nuclei of that
group showed an fragmented morphology
accompanied by nuclear condensation (Figure 2B). The cells in
the control, GarA alone and the co-treatment group showed more
stable and protected nuclei in comparison to the ethanol
group. This trend was observed in the fluorescence intensity of

irregular or

the groups (Figure 2C).

3.3 GarA modulates neuroprotective,
inflammatory, and barrier-related gene
expression in vitro

The gene expression study in SH-SY5Y cells showed
neuroprotective effects of GarA via modulation of various genes.
GarA aided in protection of the cells against ethanol induced
inflammation, which was evident by a downregulation in the
levels of TNFa and MCP-1, respectively, as compared to the
ethanol alone treatment (Figures 3A,B). Additionally, GarA
showed an increase in the expression of Nrf2 and HO-1, in the
co-treatment group, as compared to the ethanol alone treatment
group (Figures 3C,D). The expression of BDNF in the GarA (1.00 +
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FIGURE 5

Haematoxylin and eosin staining in rat cerebral cortex showing (A) normal morphology in control (B) damaged neuronal morphology in ethanol-fed
rodents (C) and (D) slightly improved neuronal morphology in Standard drug treated and GarA low dose (GAL), respectively (E). Improved neuronal tissue
and cells in GarA high dose (GAH) treated rodents. Black arrows depict vacuolisation, yellow arrows show pericellular space around necrotic neurons and
red arrows show pyknotic nuclei. Images taken at x40 magnification and scale bar depicts 100 ym.

EREK KEAK

Normal control (NC)
Ethanol-fed (E)
Standard drug (STD)
GarA low dose (GAL)
GaraA high dose (GAH)
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Vimentin positive staining area %
™

FIGURE 6

Vimentin immunohistochemistry for staining reactive astrocytes. Photo-micrographs of rat brain cerebral cortex at x40 magnification stained using
anti-vimentin antibody showing (A) normal in control (B) increased positive staining in ethanol-fed rats and decreased in (C) drug treated (D) low dose
GarA and (E) high dose GarA treated rats (F). Graph showing vimentin positive staining area % in different groups (fields/animal). Values are represented as
Mean + SD and significance was calculated using One-way ANOVA with Tukey's post hoc HSD where "p > 0.05, and ****p < 0.0001 (n = 6, technical
replicates).

0.293) and co-treatment groups (0.96 + 0.115), were comparable to ~ Moreover, the co-treatment with GarA (0.81 + 0.025) caused an
the control group (1.00 + 0.264) ("*p > 0.05), and markedly higheras  upregulation in the expression of CLDN, in comparison to the
compared to the ethanol treated cells (0.07 + 0.020) (Figure 3E).  ethanol group (0.03 + 0.022) (Figure 3F).
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Protein expression profiles of TNFa, BDNF, HO-1, Nrf2, IL-6 and MCP-1 in rat brain tissue samples. Values were represented as Mean + SD and
significance was calculated using One-way ANOVA with Tukey’'s multiple comparisons where **p < 0.01, ***p < 0.001 and ****p < 0.0001 (n = 6).

3.4 GarA attenuates ethanol-induced brain
injury and inflammation in vivo

3.4.1 GarA preserves brain architecture and
astrocyte activation status

Chronic alcohol consumption can cause neuronal loss which
leads to a decrease in the brain size and weight (Crews, 2008). The
rats receiving SilM (STD group), or GarA treatment showed bigger
brain sizes, and higher weight (Figure 4) as compared to the disease
group. Moreover, the HE staining showed more normal morphology
of neurons in the control (100%) and GAH (96.1%) groups, in
comparison to the disease group (71.7%) (Figure 5). While the STD
and GAL group showed a few anomalies, the morphology appeared
improved as compared to the disease group. The neurons in the
disease group showed pyknosis (16.6%), formation of vacuoles
(5.7%) and pericellular spaces (5.7%) around the necrotic
neurons (Ghosh et al., 2021). This trend was decreased in case of
STD and GAH groups, where only 2.2% pyknosis was observed in
each of those groups. Vimentin is a marker of astrocyte activation
and reactive gliosis leading to neurodegeneration (Zhang et al.,
2025). Through
observed, that the brain tissue of the disease group showed

immunohistochemistry ~experiment, it was

increased staining with vimentin, showing higher neuronal
activation. This pattern changed, and a decrease in the vimentin
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uptake was observed in the GAH group (Figure 6). Similarly, the
gene expression levels of Vimentin in rat brain tissue showed a
similar trend (Figure 8A).

3.4.2 GarA helps in neuroprotection against
alcohol induced damage in rats

Protein expression in rat brains was estimated using ELISA kits
for selected protein targets. TNFa in the diseased group (E), was
found to be upregulated 3-folds of the control (NC) rats. While it
was observed that the expression decreased in the STD and GarA
treated groups. Moreover, the expression of BDNF showed an
upregulation in the case of GAH animals, as compared to the
NC animals as well. BDNF was diminished in the disease (E)
group. Similar trends were observed in the expression of HO-1
and Nrf2 expression profiles, further corroborating the results.
Notably, it was observed that for IL-6 and MCP-1, the GAH
group showed a drastic reduction in the expression, as compared
to all the other groups (Figure 7).

3.4.3 GarA regulates gene expression associated
with neuroinflammation and barrier function in
rat brain

Alcohol consumption causes inflammation, alters brain
function and decreases the BBB integrity (Vore and Deak,
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FIGURE 8

GarA shows neuro-protective effect in rats against alcohol induced damage. Gene expression over B-actin in vivo in different treatment groups
showing (A). Vimentin (B). TNFa (C). MCP-1 (D). HO-1 (E). Nrf2 (F). BDNF (G). CLDN5 (H). IL-10 (I). PCSK9. Values are represented as Mean + SD and
significance was calculated using One-way ANOVA with Tukey's multiple comparisons where ™p > 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001

(n=6).

2022). Gene expression study carried out using rat brain tissue
showed an ethanol-induced increase in TNFa levels in the disease
group (1.44 + 0.176), which was decreased in the GAH group
(0.33 + 0.092), even less than the control group (1.08 £ 0.041)
(Figure 8B). Likewise, the chemokine MCP-1 (CCL-2), was
upregulated in the disease group (3.54 + 0.213) and
downregulated in the GAH group (0.32 £ 0.077) (Figure 8C).
On the contrary, the GAH group showed an upregulation in the
expression of HO-1 and Nrf2 levels, as compared to the disease
group (Figures 8D,E).

Additionally, the factor for neuronal growth, development and
survival, BDNF, was found to be upregulated 2-fold in the GAH
group (1.79 + 0.152) as compared to the control group (1.00 +
0.012). While the disease group (0.24 + 0.192) showed an
approximate 4-fold decrease in the expression as compared to
the control group. Expression for the STD and GAL groups, was
comparable to control, but less than the GAH group (Figure 8F).

Furthermore, it was observed that SilM and GarA treatment
showed an increase in CLDN5, meaning increased BBB integrity.
Contrastingly, the disease group and low dose treatment (GAL)
groups showed a decreased expression, hence increased permeability
due to the barrier junction dysfunction caused by ethanol
(Figure 8G). Notable increase in IL-10 expression in the GAH
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group was observed, similar to the SilM treated standard group
(Figure 8H). Whereas, the PCSK9 expression was decreased
drastically in the GAH group and upregulated in the ethanol fed
rodents (Figure 8I).

3.5 Molecular docking and MD simulations
reveal stable complex formation of GarA
with BDNF, IL-6, and MCP-1

3.5.1 GarA shows binding in the active site of BDNF,
IL-6 and MCP-1

Molecular docking analysis demonstrated that GarA binds
effectively in the active sites of BDNF, IL-6, and MCP-1 through
a range of stabilizing interactions. In the BDNF-GarA complex
(Figure 9), GarA engaged in multiple conventional hydrogen bonds
with key residues ARG88 and TYR52 with a binding energy
of —4.17 kcal/mol. The complex also had van der Waals and
hydrophobic interactions involving TRP19, VAL42, VAL44,
LEU49, PHE53, VAL87, ALA89, TRP100 and PHE102. The
binding was further stabilized by charged positive interactions
with LYS50 and ARG88, and polar interaction with GLN5I,
highlighting a robust interaction interface. In the IL-6-GarA
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Molecular docking of GarA with BDNF protein where (A). Ribbon representation of the BDNF protein (blue) with the docked GarA (pink) situated in

the hydrophobic binding cavity, (B). Zoomed-in view of the binding site showing key hydrogen bonding interactions between the ligand and active site
residues including TYR52 and ARG88. Distances (in A) represent favourable hydrogen bonding geometry, and (C). 2D ligand interaction diagram,
illustrating hydrogen bonds, hydrophobic contacts, and surrounding residues.

complex (binding energy = —3.23 kcal/mol) (Figure 10), GarA
exhibited strong hydrogen bonding with ARG179 and GLN75, as
well as charged negative contact with GLU172 and positive contacts
with LYS66 and ARGI179. Polar contacts with GLN75, SER76,
SER169 and SERI176, also contributed to the stable bonding.
Notably, n-n stacking with PHE74 and hydrophobic bonding
with PRO65, MET67, PHE74 and PHE173, supported additional
stabilization. The MCP-1-GarA (Figure 11) complex showed a
binding energy of -4.63 kcal/mol supported by hydrogen
bonding with TYRI13 and ASNI14, and hydrophobic interactions
with CYS11, CYS12, PHE15, ILE49, ILE51 and CYS52. Polar
interactions were also prominent, especially involving THRI0,
and THR16. These molecular interactions indicate favorable
binding conformations across all three protein targets as
compared to known ligands, with comparable binding energies
and interacting residues (Supplementary Table S9).
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3.5.2 MD simulations show stable complex
formation of GarA with molecular targets

To further validate the stability of GarA within the protein-ligand
complexes, 100 ns molecular dynamics simulations were conducted for
BDNF, IL-6 and MCP-1. For the BDNF-GarA complex (Figure 12A),
RMSD remained stable around 3.0 A, and fluctuations were minimal in
the structured domains. The ligand RMSD remained under 2.0 A, with
stable hydrogen bonds formed with TYR52 and ARG88. Water bridges
with LYS50, TYR52, TYR54 and ARG88 further contributed to ligand
affinity, supporting a potential modulatory role of GarA on
neurotrophic signalling. The IL-6-GarA complex (Figure 12B) also
displayed equilibrium RMSD profiles, with minimal drift and ligand
retention within the pocket. Key interactions with MET67, PHE74,
GLN75, and ARG179 were observed, involving both hydrophobic
contacts and hydrogen bonding. Water-mediated  bridges
contributed to transient stabilization, reinforcing the interaction
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Molecular docking of GarA with IL-6 protein where (A). Ribbon representation of the IL-6 protein (cyan) with the docked GarA (pink) situated in the
hydrophobic binding cavity, (B) Zoomed-in view of the binding site showing key hydrogen bonding interactions between the ligand and active site
residues including PHE74, GLN75, and ARG179. Distances (in A) represent favourable hydrogen bonding geometry, and (C). 2D ligand interaction diagram,
illustrating hydrogen bonds, hydrophobic contacts, and surrounding residues.

profile. The MCP-1-GarA complex (Figure 12C) showed consistent
protein backbone RMSD (3.0 A) with a mild shift at later simulation
stages (~4.5 A), suggesting local conformational flexibility. Ligand
RMSD was stable (<25 A), with residues TYRI3 and
ASN14 exhibiting persistent hydrogen bonding. Additional
hydrophilic and hydrophobic contacts were formed with GLU50,
ARG29, and CYS52, stabilizing the ligand within the active site
(Supplementary Figures S3-S5 and Supplementary Videos 1-3).

3.6 Network pharmacology reveals key
targets and pathways of GarA in ethanol-
induced brain injury

A total of 155 GarA-predicted targets and 1,239 ethanol-
associated disease genes were retrieved. After eliminating
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duplicates, 107 intersecting genes were identified as common to
both datasets (Figure 13A). The 107 intersecting genes were input
into STRING to generate a PPI network, resulting in a graph with
107 nodes and 1,557 edges, and an average node degree of 29.1,
which suggests higher protein interaction (Figure 13B). Genes with
darker
(Figure 13C). Visualization in Cytoscape and analysis via
CytoHubba yielded the top 10 core hub genes based on degree
centrality (Figure 13D). Similarly, given the role of tight junctions in

coloration indicated stronger interaction potential

BBB integrity, a tight junction-specific PPI network was constructed
and merged with the GarA-target network. The resulting interaction
map highlighted significant overlap, suggesting GarA may influence
tight junction-related targets (Figure 14A).

Gene Ontology (GO) analysis of the top core genes revealed
enrichment in biological processes such as response to oxidative
stress, cytokine activity, and apoptotic regulation (Figures 14B-D).
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residues including TYR13, and ASN14. Distances (in A) represent favourable hydrogen bonding geometry, and (C). 2D ligand interaction diagram,
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KEGG pathway analysis highlighted the association of GarA with
pathways involved in tight junction integrity, TNFa signalling, IL-6,
IL-17, HIF-1, and apoptosis (Figure 14E). Among these, the TNFa
pathway emerged as a central node, linking oxidative stress,
inflammation via IL-6, and BBB dysfunction, which are hallmark
features of ethanol-induced neurotoxicity. A few of these predicted
targets and pathways such as TNFa, BDNF, and Nrf2/HO-
1 signaling, were consistent with the changes observed at the
molecular level in the in vitro and in vivo assays in the current
study, thereby reinforcing the biological relevance of the network
pharmacology findings.

4 Discussion

Chronic ethanol consumption disrupts brain physiology via
oxidative stress, glial reactivity, and impaired neurotrophic
signaling (Fadda, 1998; Das et al., 2007; Yang and Luo, 2015;
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Guerri and Pascual, 2019; Li et al., 2020). Sustained ethanol
exposure leads to the activation of microglia and astrocytes,
resulting in the release of inflammatory cytokines such as TNFa,
IL-1pB, and MCP-1 (Fernandez-Lizarbe et al., 2009; Zou and Crews,
2012; Pascual et al, 2015; Holloway et al., 2023). These pro-
inflammatory mediators exacerbate neuronal damage, disturb
synaptic communication, and facilitate neurodegenerative
cascades that are implicated in disorders like AD and PD.
(Kamal et al., 2020). Despite FDA-approved therapies for alcohol
dependence, their impact on systemic health and long-term
limited (MacKillop 2022).

Accordingly, the present study investigates the potential of GarA

neuroprotection remains et al,
to prevent alcohol-induced brain damage.

GarA, a polymethoxylated isoflavone previously isolated and
characterized (Chadha et al., 2025), was evaluated in this study for its
neuroprotective potential. This is the first instance where GarA is
investigated for its protective role against ethanol-induced

neurotoxicity. In SH-SY5Y cells, GarA significantly enhanced cell
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Molecular dynamics simulation analysis of the top docked complexes where Protein RMSD plot showing the stability of the: (A) BDNF; (B) IL-6 and
(C) MCP-1 backbone (Ca atoms) over a 100 ns MD simulation.

viability up to 40 pg/mL and mitigated ethanol-induced oxidative et al., 2005). These effects were consistent with prior reports
stress by reducing intracellular ROS and stabilizing nuclear — demonstrating the efficacy of GarA in reducing oxidative damage
morphology. The ROS and DNA damage are caused due to  and inflammation in hepatic and intestinal cell models (Chadha
elevated oxidative stress and pro-inflammatory cytokines (Haorah et al, 2025) and EL-4 cells (Yang et al., 2020). In the current study,
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FIGURE 13

Network pharmacology between Gardenin A and ethanol induced brain damage: (A) Venn diagram of Gardenin A target genes and disease-related
genes; (B) PPl network diagram; (C) Network of Gardenin A target genes in Ethanol-induced brain damage; (D) Top 10 core target genes of Gardenin A

in disease.

GarA treatment was associated with decreased pro-inflammatory
cytokine levels and an increased expression of antioxidant genes,
indicating a  protective  effect against ethanol-induced
cellular damage.

Ethanol consumption in higher amounts leads to reduced brain
weight (Das et al.,, 2007). GarA also exhibited protective effects in
vivo. Ethanol-fed rodents demonstrated reduced brain weight and
significant histoarchitectural alterations, including glial activation
and pyknotic nuclei. Although brain concentrations of GarA were
not directly measured, its lipophilic nature and previously reported
ability to cross the BBB (Hack et al., 2024) suggest that it can access
neuronal tissue at biologically relevant levels, supporting the
plausibility of the observed in vivo neuroprotective effects. This
also enables direct modulation of neuronal health and synaptic

plasticity. GarA ameliorated neuronal damage and restored normal
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brain histology. Previously, curcumin showed similar effects in
histopathological morphology against rotenone induced PD
(Fikry et al,, 2022).

Beyond cellular oxidative damage, ethanol also affects
neurovascular integrity, particularly the BBB, which is vital for
maintaining brain homeostasis. The ROS generated due to
ethanol disrupts the BBB due to activation of the myosin light
chain kinase (MLCK) and disruption of tight junctions (Haorah
et al., 2005; 2007a; 2007b). Here, GarA treatment was associated
with preservation of BBB integrity, including modulation of
CLDN5 gene expression. It also showed a promising antioxidant
effect by causing a rise in the gene and protein levels of HO-1 and
Nrf2, while decreasing the pro-inflammatory gene levels. As BBB
breakdown allows infiltration of inflammatory mediators and
immune cells, it also facilitates the activation of resident glial
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associated with GarA in the treatment of ethanol induced brain damage.

cells, further amplifying neuroinflammation. While we quantified
neuronal damage and glial activation, BBB integrity using protein
expression studies was not assessed in the present study. Future
work, including quantitative evaluation of tight junction proteins
such as CLDN5 will be important to further validate the
neuroprotective effects of GarA. Given the upregulation of
Nrf2 and HO-1, GarA may exert its antioxidant effects via

Frontiers in Pharmacology

activation of the Nrf2 signaling pathway, a central mediator of
cellular responses to oxidative stress (Qiao et al., 2024). Previous
studies have implicated phytochemicals in modulating this pathway
(Feng et al., 2022), which could explain the enhanced antioxidant
enzyme expression observed in the current model.
Neuroinflammatory reactivity, particularly through TNFa
and glial activation, was evident in both gene and protein
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Schematic diagram showing cellular and molecular mechanisms occurring in the brain and BBB in the state of intoxication (upper half) and GarA
provided as a drug along with ethanol (lower half), separated by dashed line. Ethanol exposure is associated with glial activation, increased pro-
inflammatory cytokines such as TNFa, IL-6 and potential disruption of BBB. GarA is shown to be linked with modulation of neuronal and glial responses,
including factors such as BDNF, Nrf2, HO-1 and IL-10. Image drawn using SketchBook app v6.0.4.

expression. Immunohistochemical and transcriptional data
showed upregulation of vimentin and TNFa in ethanol-
exposed GarA their
consistent with a potential role in modulating TLR4-NF-xB

rats. significantly reduced levels,
ethanol-mediated
2009). A

previous study showed alcohol induced neurodegeneration due

signaling, as previously implicated in

neuroinflammation (Fernandez-Lizarbe et al.,
to binge ethanol consumption in rat model, where vimentin was
upregulated due to ethanol-induced cell death (Kelso et al., 2011).
Concurrently, the anti-inflammatory cytokine IL-10 was
elevated, while PCSK9, a novel neuroinflammatory mediator
in the liver-brain axis was downregulated by GarA (Lee et al,,
2021). Furthermore, GarA also helped in reducing the protein
expression of IL-6 and MCP-1.

Importantly, GarA treatment was associated with restored
BDNF expression in both in vitro and in vivo models, suggesting
potential support for synaptic plasticity, learning, and memory.
While the upregulation of BDNF is promising, the direct causal
GarA  associated-BDNF

neuroprotection remains to be confirmed. Ethanol-induced

linkage  between restoration and

reductions in BDNF expression are well-documented and
contribute to cognitive decline and neurodegeneration (Shafiee

et al., 2023). The probable ability of GarA in upregulating BDNF,
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surpassing control levels, might support its role in neuronal survival
and regeneration.

Given the multi-target nature of ethanol-induced neurotoxicity,
a network pharmacology analysis was undertaken to predict
potential interacting pathways and validate the mechanistic scope
of GarA. The integrated molecular docking and MD simulation
results support the hypothesis that GarA exhibits a strong multi-
target interaction profile relevant to ethanol-induced neurotoxicity.
Docking and MD simulation results suggest that GarA may interact
with BDNF, IL-6, and MCP-1, indicating potential associations with
neurotrophic and inflammatory signaling pathways consistent with
experimental observations. These proteins play pivotal roles in
alcohol-related brain damage, BDNF is essential for neuronal
survival and plasticity, while IL-6 and MCP-1 are central to glial
activation and sustained neuroinflammation. Previously, molecular
docking with TNFa and GarA has shown high binding affinity with
a stable complex formation (Chadha et al., 2025).

The docking affinity of GarA across all three targets, combined
with the observed conformational stability during MD simulations,
indicates its probable potential to maintain prolonged interaction
under physiological conditions. The low ligand RMSD values and
stable protein backbones in the simulations further suggest that
GarA can occupy and persist within the active sites without
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significant disruption, enhancing its likelihood of effective biological
modulation. MD simulations were performed as single 100-ns
trajectories due to computational constraints; while replicates
would provide error estimates, the detailed parameters, RMSD/
RMSF profiles, and deposited files ensure reproducibility and
offer meaningful insights into complex stability. Further, in vitro
protein assays may help clarify the binding modes of GarA with
these targets.

These findings align well with the results of network
pharmacology, which highlighted TNFa, IL-6, and related
pathways as key modulatory hubs in ethanol-induced damage. By
simultaneously targeting proteins involved in inflammatory
signaling and neuroprotection, GarA may offer a synergistic
mode of action, suppress pro-inflammatory cascades while
preserving or enhancing neurotrophic support (Figure 15). These
associative findings support further investigation into GarA as a
potential therapeutic candidate in alcohol-related
neurodegenerative conditions.

The current study combined in vitro, in vivo, and in silico
approaches to generate converging evidence that GarA is
of

neuroprotective pathways, including TNFa, BDNF, and Nrf2/

associated  with ~ modulation neuroinflammatory  and
HO-1. Although direct perturbation studies with pathway-specific
inhibitors or genetic knockdowns were not included, the consistency
of findings across experimental systems provides strong support for
the of

investigations incorporating such targeted interventions would

involvement these signaling mechanisms. Future
help to further delineate mechanistic specificity. Further, given
that
neurodegeneration are increasingly recognized, inclusion of both

sexes in future studies will be essential to establish the broader

sex-specific  differences in  neuroinflammation and

relevance of these findings. From a translational perspective, the
doses of GarA used in rodents (50 and 100 mg/kg) were guided by
prior safety and efficacy reports; however, these doses cannot be
directly extrapolated to humans due to interspecies differences in
metabolism, pharmacokinetics, and bioavailability. Collection of
pharmacokinetic and pharmacodynamic data, together with dose-
scaling studies, are required to evaluate clinical feasibility.
Additionally,
experimental paradigms may be necessary to further validate and

complementary  models and  longer-term

extend the translational relevance of these findings.
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