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Introduction: Philadelphia chromosome-positive acute lymphoblastic leukemia
(Ph + ALL) represents the most prevalent genetic subtype of adult acute
lymphoblastic leukemia (ALL). Despite the availability of targeted therapy
regimens, patients with comorbidities and older patients have poor prognoses.
They are prone to relapse, necessitating the urgent identification of new safe and
effective treatment options. Luteolin (LUT), a natural flavonoid compound, has
demonstrated significant anticancer activity. However, its mechanism of action in
the context of Ph + ALL remains poorly understood. The objective of this study
was to elucidate the potential mechanisms underlying the action of luteolin in
Ph + ALL.
Methods: Luteolin-related targets and Ph + ALL associated targets were
collected from several public databases. The intersection of these targets was
then analyzed for protein-protein interactions (PPI). Additionally, we performed
functional and pathway enrichment analyses employing the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) methodologies. Core
targets were selected from the PPI network, and some of these targets were
further verified through cellular experiments.
Results: A total of 568 luteolin targets and 1,063 Ph + ALL targets were identified,
with 154 overlapping targets. The top ten targets with the highest degree values
were selected as core targets, which include TP53, AKT1, ALB, TNF, JUN, IL6,
EGFR, STAT3, CASP3, and BCL2. Based on GO and KEGG enrichment results, the
phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway was
further investigated. Cell experiments demonstrated that luteolin reduced the
viability of SUP-B15 cells in a time- and concentration-dependent manner.
Additionally, luteolin led to an increase in reactive oxygen species (ROS)
accumulation, a decrease in mitochondrial membrane potential (MMP), and a
reduction in ATP content in SUP-B15 cells. At the molecular level, luteolin
significantly downregulated the protein expression of p-PI3K, p-AKT, p-STAT3
and BCL-2, while upregulating the protein expression of BAX, cleaved caspase-3,
and cleaved caspase-9.
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Conclusion: Luteolin may exert anti-Ph + ALL effects through the PI3K/AKT
signaling pathway, accompanied by the regulation of other targets such as
STAT3, which provides a theoretical basis for the development and screening of
novel anti-Ph + ALL therapies.
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1 Introduction

Philadelphia chromosome-positive acute lymphoblastic
leukemia (Ph + ALL) is a high-risk subtype of acute
lymphoblastic leukemia (ALL), with an overall incidence of
20%–25%. The incidence increases with age, accounting for
over 50% of ALL cases in patients over 50 years old
(Burmeister et al., 2008; Chiaretti et al., 2013). The
characteristic feature of Ph + ALL is the t (9; 22) (q34; q11)
translocation, which leads to the formation of the BCR-ABL
fusion gene (Canichella and de Fabritiis, 2025). This gene
encodes a tyrosine kinase, and these abnormally activated
kinases interfere with downstream signaling pathways,
resulting in enhanced cell proliferation, halted differentiation,
and ultimately triggering leukemia (Kang et al., 2016; Balsat et al.,
2020). Despite significant progress in the treatment of Ph + ALL
in recent years, tyrosine kinase inhibitors (TKIs) targeting the
BCR-ABL1 protein have become the most successful targeted
therapy for Ph-positive leukemia. However, patients with
infections, advanced age, and severe comorbidities have poor
tolerance and are prone to relapse (Wieduwilt et al., 2021;
Gaballa et al., 2022). Therefore, exploring natural-sourced
compounds that possess multi-target activity and may
overcome TKI resistance while exhibiting low toxic side
effects has emerged as a promising new strategy in the field of
Ph + ALL treatment.

Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a natural compound
widely distributed in plants. Due to its widespread availability, the
cost of luteolin has notably decreased. Research indicates that
luteolin exhibits a range of pharmacological properties, such as
anti-inflammatory, antioxidant, and anticancer effects (Imran
et al., 2019; Ma et al., 2023). The BCR-ABL oncogene possesses
constitutive kinase activity that induces myeloid cell proliferation
through various downstream signaling pathways, including the
JAK/STAT pathway and the PI3K/AKT pathway (Al-Rawashde
et al., 2021). Previous research has demonstrated that luteolin can
inhibit cancer cell proliferation, migration, and invasion through
multiple pathways, including the JAK/STAT pathway and the
PI3K/AKT pathway (Singh Tuli et al., 2022). Additionally,
luteolin has been found to be a promising candidate for
synergistic research and may potentially reverse drug resistance
in cancer cells. The combination of imatinib, a tyrosine kinase
inhibitor targeting the BCR-ABL1 protein, and luteolin can act on
human chronic myeloid leukemia cells K562 to reduce the dosage
and toxic effects of imatinib (Danışman Kalındemirtaş et al., 2019).
Thus, we hypothesize that luteolin may possess significant
therapeutic potential for Philadelphia chromosome-positive
acute lymphoblastic leukemia cells. This study aims to identify

targets for luteolin treatment of Ph + ALL through network
pharmacology screening, thereby investigating the network
relationships between the drug, its targets, and related signaling
pathways. Experimental validation of key targets has been
conducted, providing scientific evidence for the mechanism of
luteolin in treating Ph + ALL and supporting drug development.
Figure 1 shows the research flow chart.

2 Materials and methods

2.1 Reagents and antibodies

Luteolin (CAS: 491–70–3, purity≥99%) and Imatinib (CAS:
152,459–95–5, purity≥99%) were acquired from
MedChemExpress (Shanghai, China). The primary antibodies
used include: GAPDH(P60037F), Bcl-2 (T40056F), Bax (T40051),
Cytochrome C (T55734), STAT3 (T56566), p-STAT3 (T55016)
were purchased from Abmart, PI3K(RC6350), p-PI3K(AP0427),
AKT (A22770) were purchased from Abcolnal, p-AKT (4060T)
was purchased from Cell Signaling Technology, Cleaved caspase-
3(F0135), Cleaved caspase-9(F0326) were purchased from Selleck.

2.2 Screening of Ph + ALL and luteolin-
related target genes

Luteolin-related targets were gathered from several public databases,
including SwissTargetPrediction (http://www.swisstargetprediction.ch/
index.php),the Traditional Chinese Medicine Systems Pharmacology
(TCMSP) (https://www.tcmsp-e.com/), the Comparative
Toxicogenomics Database (CTD) (https://ctdbase.org/), and
PharmMapper (http://lilab-ecust.cn/pharmmapper/submitfile.html).
Additionally, targets associated with Philadelphia chromosome-
positive acute lymphoblastic leukemia were sourced from GeneCards
(https://www.genecards.org), Online Mendelian Inheritance in Man
(OMIM) (https://www.omim.org), and the Drugbank database
(https://www.dru gbank.com). All target gene symbols were
standardized using the Universal Protein (UniProt) database (http://
www.uni-prot.org/).

2.3 Acquisition of drug and disease
common targets

Drug and disease target data were analyzed using an online
Venn diagram creation tool (http://sangerbox.com/home.html) to
identify common targets for further investigation.
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2.4 Construction of PPI networks

The common target genes of luteolin and Ph + ALL were
imported into the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) online database (https://string-db.org)

for PPI analysis. The species setting was configured to“Homo
sapiens” with a confidence threshold of ≥0.40. The protein
interaction network was exported and saved as a TSV file, and a
visual PPI network diagram was constructed using Cytoscape 3.10.0
(Liang et al., 2022).

FIGURE 1
The flow chart.
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2.5 Screening of core targets

The data from the downloaded TSV file were imported into
Cytoscape 3.10.0 to create a visual representation. A component-
target network was then constructed, yielding a network
pharmacology profile. Furthermore, topological parameters of the
network were calculated using the cytoNCA plugin. Core targets
were screened and identified based on the magnitude of their
degree values.

2.6 GO and KEGG pathway
enrichment analysis

Using the Database for Annotation, Visualization and Integrated
Discovery (DAVID) data analysis platform (https://
davidbioinformatics.nih.gov/), we performed GO enrichment and
KEGG pathway enrichment analysis on the 154 overlapping targets
shared between luteolin and Ph + ALL. The GO database contains
biological processes (BP), cellular components (CC), and molecular
functions (MF). GO andKEGG items with p-values <0.01 were selected
for further research. Data visualization was performed using the online
website (https://www.bioinformatics.com.cn/) (Chai et al., 2024).

2.7 Cell culture

The human Ph + acute lymphoblastic leukemia cell line SUP-
B15 was purchased from Zhejiang Bodi Biotechnology Co., Ltd.
(C5873-125, Baidi Biotech Ltd, Hangzhou, China). The cells are
cultured in IMDM medium supplemented with 20% fetal bovine
serum (FBS) and 1% penicillin-streptomycin, and maintained at
37 °C in a humidified incubator with 5% CO2 (Shi et al., 2021).

2.8 Cell viability assay

This study used the CCK8 assay kit (C0005, TargetMol, China) to
evaluate the effect of luteolin on the viability of SUP-B15 cells. Cells in
the logarithmic growth phase were selected and placed in 96-well plates
at 5 × 104cells/well. The experimental groups included a blank control,
an untreated control group, and drug treatment groups (10, 25, 50, 75,
100 μM) with five replicates per group. Outliers (maximum and
minimum values) were excluded to minimize errors. SUP-B15 cells
were treated with the drug for 24, 48, and 72 h. Similarly, HK-2 cells
were treated with luteolin for 24,48,72 h. Then 10 μL of CCK-8 solution
was added to each well, and the cells were incubated in a culture
incubator for another 2 h. The absorbance values were measured at
450 nm using a SpectraMax M5 Multi-Mode Microplate Reader
(Molecular Devices, USA). The half-maximal inhibitory
concentration (IC50)was calculated using nonlinear regression analysis.

2.9 Cell apoptosis

The cells were seeded at a density of 5 × 105 cells/well into a 24-well
culture plate and treated with the drug for 24 h. Apoptosis was validated
using the Annexin V-APC/PI Apoptosis Detection Kit (E-CK-A217,

Elabscience, China). After treatment, the cells were washed twice with
pbs and resuspended in 1× Annexin V binding buffer. Subsequently,
2.5 μL of Annexin V-APC and 2.5 μL of PI staining reagents were added
to the cell suspension. The mixture was incubated at room temperature
in the dark for 20 min. Finally, the stained cells were analyzed using a
BD FACS Lyric flow cytometer (USA). Gating Strategy: In the FSC-A
vs. SSC-A scatter plot, the viable cell population was gated (Gate P1);
subsequently, cell aggregates were excluded based on the FSC-H vs.
FSC-A plot (Gate P2); finally, cells within Gate P2 were subjected to
Annexin V-APC vs. PI analysis, and a quadrant gate was set according
to the negative control and single-positive controls to distinguish
between Annexin V-APC single-positive (early apoptosis), PI single-
positive (necrosis), and Annexin V-APC/PI double-positive (late
apoptosis/necrosis) cell populations.

2.10 Measurement of cellular ATP levels

Intracellular ATP levels were quantified using an ATP Assay Kit
(S0026, Beyotime Biotechnology, China). Briefly, cells in the
logarithmic growth phase were seeded into a 12-well culture
plate at a density of 5 × 105 cells per well and treated with
different concentrations of luteolin (0, 30, 50, and 100 μM) for
24 h. After treatment, the cells were centrifuged, and the pellet was
collected and lysed with 100 μL of ATP lysis buffer. The lysate was
then centrifuged at 12,000 rpm for 5 min at 4 °C to collect the
supernatant. The supernatant and the ATP standard solution were
diluted with ATP dilution buffer to the desired concentrations.
Subsequently, 20 μL of each diluted sample or standard was
mixed with 100 μL of the reaction working solution in a black
96-well plate, with five replicates per group. Fluorescence was
measured using a SpectraMax M5 Multi-Mode Microplate Reader
(Molecular Devices, USA).

2.11 Determination of reactive
oxygen species

Intracellular ROS levels were quantified using a commercial
ROS assay kit (G1706, Servicebio, China). SUP-B15 cells in the
logarithmic growth phase were seeded into a 12-well plate at a
density of 5 × 105 cells per well and treated with various
concentrations of luteolin (0, 30, 50, and 100 μM) for 24 h.
Following treatment, the cells were incubated with 20 μM of the
fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA) at 37 °C for 30 min in the dark. The fluorescence
intensity of the stained cells was then determined using a BD FACS
Lyric flow cytometer (USA) and observed under a Leica
DMI3000 fluorescence microscope (Germany). Data from flow
cytometry and fluorescence microscopy were analyzed using
FlowJo software and ImageJ software, respectively.

2.12 Measurement of mitochondrial
membrane potential (MMP)

Changes in the MMP were detected using the Enhanced
Mitochondrial Membrane Potential Assay Kit (C2003S, Beyotime
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Biotechnology, China). SUP-B15 cells in the logarithmic growth
phase were seeded into a 12-well culture plate at a density of 5 × 105

cells per well and treated with different concentrations of luteolin (0,
30, 50, and 100 μM) for 24 h. After treatment, the cells were collected
and resuspended in JC-1 staining working solution, followed by
incubation at 37 °C for 30 min. The cells were then washed and
resuspended in JC-1 staining buffer for analysis. The fluorescence of
the samples was analyzed immediately using a BD FACS Lyric flow
cytometer (USA), and the resulting data were processed with
FlowJo software.

2.13 RT-qPCR

SUP-B15 cells in the logarithmic growth phase were seeded at a
density of 5 × 105 cells/well into a 12-well culture plate and treated
with different concentrations of Luteolin (0, 30, 50, 100 μM) for 24 h.
RNA was isolated using Trizol reagent (B610409, Sangon Biotech,
China) according to the manufacturer’s protocol, and the purity and
concentration of RNA were detected using a UV spectrophotometer
(Nanodrop 2000, USA). The quantified samples were used as
templates to synthesize cDNA using a reverse transcription
system (RK20429, ABclonal, China). Using cDNA as the
template, amplification was performed using targeted primers
(Supplementary Table S1). The PCR reaction conditions were as
follows: 95 °C for 3 min, followed by 40 cycles, each cycle consisting
of 95 °C for 15 s and 56 °C for 1 min. GAPDH expression was used as
an internal control.

2.14 Western blot

SUP-B15 cells in the logarithmic growth phase were seeded at a
density of 2 × 106 cells/well into a 6-well culture plate and treated with
different concentrations of Luteolin (0, 30, 50, 100 μM) for 24 h. Total
protein was extracted from cells using RIPA lysis buffer (P0013B,
Solarbio, USA) and a mixture of protease inhibitors and phosphatase
inhibitors (K1007, K1015, APE×BIO,USA), and protein concentration
was quantified using a BCA assay kit (ZJ102, Epizyne Biotech, China).
The denatured protein samples were separated by SDS-PAGE and
transferred to a PVDF membrane (IPVH00010, Millipore, Germany)
and blocked with rapid blocking solution (MA0406, Meilunbio, China)
for 15 min. Primary antibody incubation occurred overnight at 4 °C,
followed by secondary antibody application for 1h at ambient
temperature. Detection was performed using an automated
chemiluminescence imaging platform (Tanon-5200, China). Gray-
scale analysis was conducted using ImageJ. The experimental process
was independently repeated three times.

2.15 Statistical analysis

Experimental data underwent statistical analysis utilizing
GraphPad Prism version 9.1.0. Each experiment was performed
in triplicate, with outcomes presented as mean ± standard deviation
(SD). Group comparisons were made utilizing one-way ANOVA,
with statistical significance established at p < 0.05 (*p < 0.05, **p <
0.01, ***p < 0.005, ****p < 0.0001; ns means no significance).

3 Results

3.1 Common targets of luteolin and Ph + ALL

After collecting and summarizing information from multiple
databases and removing redundant information, a total of
568 potential targets related to luteolin (Supplementary Table S2)
and 1,063 targets corresponding to Philadelphia chromosome-
positive leukemia (Supplementary Table S3) were obtained.
Following a cross-analysis using a Venn diagram (Figure 2A),
154 common targets associated with both luteolin and
Philadelphia chromosome-positive leukemia were
identified (Figure 2B).

3.2 Construction of PPI network and
identification of core targets

A PPI network consisting of 154 nodes and 3,353 edges was
constructed using the String database (Figure 3A). The color
intensity of the nodes is proportional to their degree values.
Topological analysis was performed using the CytoNCA plugin
in Cytoscape 3.10.0 software (Figure 3B). The top 10 nodes with
the highest degree values were selected as core targets, including
TP53, AKT1, ALB, TNF, JUN, IL6, EGFR, STAT3, CASP3, and
BCL2 (Table 1; Figure 3C).

3.3 GO and KEGG pathway
enrichment analysis

The intersection targets were entered into the DAVID
database for GO and KEGG pathway enrichment analysis.
Based on p < 0.01, the top 10 GO terms were selected in BP,
CC, and MF (Figure 4A), and the top 25 pathways were selected
in KEGG (Figure 4B). BP terms were primarily enriched in
positive regulation of protein phosphorylation,
phosphorylation, and peptide tyrosine phosphorylation. CC
terms were primarily enriched in the plasma membrane,
extracellular region, and cell surface. MF terms were
primarily enriched in protein binding, protein kinase
binding, and ATPase binding. Then, the drugs, diseases,
intersection targets, and 25 pathways were imported into
Cytoscape 3.10.0 software to construct the drug-disease-
target-pathway network (Figure 4C). The results showed that
luteolin can affect multiple targets and pathways in Ph + ALL.
We have focused our research on the top-ranked pathways, such
as the PI3K/AKT signaling pathway and the JAK/STAT
signaling pathway, and these pathways are closely related to
cell proliferation and apoptosis. (Figure 4D).

3.4 Luteolin inhibits the proliferation of SUP-
B15 cells in vitro

To investigate the anticancer effects of luteolin, SUP-B15 cells
were treated with different concentrations of luteolin (0, 10, 25,
50, 75, 100 μM) and the Philadelphia chromosome-positive
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leukemia targeted drug imatinib (0, 10, 20, 30, 40 μM) for 24, 48,
and 72 h. The CCK-8 assay results showed that the proliferation
of SUP-B15 cells was significantly inhibited in a time- and dose-
dependent manner (Figure 5A,B). The IC50 values of luteolin at
24, 48, and 72 h were 27.6 ± 2.01μM, 19.21 ± 6.04μM, and 24.37 ±
4.67μM, respectively., and the IC50 values of imatinib at 24, 48,
and 72 h were 32.18 ± 5.67μM, 17.3 ± 10.86μM, and 10.33 ±
5.23μM, respectively. To test the toxicity of luteolin, human
normal renal tubular epithelial cells HK-2 were treated with
luteolin, and the IC50 values of luteolin at 24, 48, and 72 h
were 94.01 ± 8.43 μM,57.54 ± 23.19 μM,43.63 (Figure 5C), which
was higher than that of SUP-B15 cells (Figure 5D). These data
indicate that luteolin can inhibit the proliferation of human
Philadelphia chromosome-positive leukemia cells and has low
toxicity to normal human cells.

3.5 Effect of luteolin on the apoptosis rate of
SUP-B15 cells

To elucidate the potential mechanisms behind the observed
growth inhibition, apoptosis in SUP-B15 cells was evaluated by
Annexin V-APC/PI double staining after 24 h of luteolin treatment
(Figure 6A). Luteolin treatment significantly induced apoptosis in a
concentration-dependent manner. Compared to the negative
control (4.82%), the apoptosis rates increased to 10.95% and
20.21% at 30 and 50 μM, respectively (Figure 6B). The positive
control, 30 μM imatinib, resulted in an apoptosis rate of 11.46%.
Furthermore, combination treatments of imatinib with 30 or 50 μM
luteolin yielded apoptosis rates of 12.1% and 22.45%, respectively.
All these effects were statistically significant (P < 0.05). Notably,
under the concentration combination used (30 µM luteolin +30 µM

FIGURE 2
Intersection target map. (A) Veen diagram of target intersections of Ph + ALL and luteolin. (B) C-D-T network: the red module represents Ph + ALL,
blue module represents Luteolin, pink modules represent common targets.

FIGURE 3
The PPI network. (A) The PPI network of the common targets. (B) PPI network of Luteolin in the treatment of Ph + ALL, the darker the color, themore
critical the node is in the network. (C) The core genes of luteolin in the treatment of Ph + ALL.
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imatinib), the apoptosis rate induced by the combination therapy
(12.1%) was lower than that of 50 µM luteolin monotherapy
(20.21%) and slightly higher than that of 30 µM imatinib
monotherapy (11.46%). This finding suggests that the interaction
between the two drugs is complex and does not manifest as a simple
additive effect under all conditions.

3.6 Luteolin treatment reduces ROS
accumulation in SUP-B15 cells

Excessive ROS production in cells promotes DNA damage and
cell death. As a flavonoid compound, luteolin can regulate the redox
state of cells. Therefore, we detected ROS accumulation induced by
luteolin in SUP-B15 cells using DCFH-DA staining and flow
cytometry. After treatment with 0, 30, 50, and 100 μM luteolin
for 24 h, the green fluorescence in the luteolin group was
significantly increased compared with the blank control group
(Figure 7A). As the concentration of luteolin increased, the peak
shifted to the right, and the mean fluorescence intensity (MFI) of
SUP-B15 cells increased significantly (P < 0.05) (Figures 7B,C).
Therefore, it is speculated that ROS plays an important role in
luteolin-induced apoptosis of SUP-B15 cells.

3.7 Luteolin treatment reduces ATP
production and lowers mitochondrial
membrane potential

The mitochondrial-dependent apoptosis pathway is triggered by
excessive production of reactive oxygen species (ROS). We
investigated the effects of luteolin on mitochondrial function in

TABLE 1 Core target information.

Gene name Degree

TP53 238

AKT1 220

ALB 220

TNF 208

JUN 206

IL6 204

EGFR 202

STAT3 202

CASP3 198

BCL2 196

FIGURE 4
GO and KEGG pathway analysis. (A) The Gene Ontology Enrichment analysis: the larger the plot, the greater the number of enriched targets, the
smaller the p-value, the darker the plot color. (B) The KEGG pathway enrichment analysis: the top 25 significantly enriched pathways. (C) The drug-
disease-target-pathway network. The yellowmodulemeans luteolin, redmodulemeans Ph+ ALL, pink and greenmodulesmean common targets, green
modules indicate greater importance in the common targets, blue modules mean signaling pathways. (D) The font marked in red represents the
target in the PI3K/AKT signal pathway and JAK/STAT signal pathway closely related to treating Ph + ALL with luteolin.
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Philadelphia chromosome-positive acute lymphoblastic leukemia
cell, including changes in mitochondrial membrane potential and
ATP content. Mitochondrial membrane potential was assessed using
the JC-1 fluorescent dye. In normal cells, JC-1 accumulates within
mitochondria and forms polymers, emitting red fluorescence. In
apoptotic or abnormal cells with low membrane potential, JC-1
remains in its monomeric form and emits green fluorescence. This
reduction in membrane potential is an early sign of apoptosis. Flow
cytometry results showed that treatment of SUP-B15 cells with
luteolin at concentrations of 30, 50, and 100 μM significantly
increased the red/green fluorescence ratio compared to the blank
control group (Figures 8A,B). This indicates that luteolin effectively
reduced the mitochondrial membrane potential levels in SUP-
B15 cells.

Next, ATP content was measured to assess the effects of luteolin
on mitochondrial energy metabolism. The results showed that after
treating SUP-B15 cells with luteolin at concentrations of 30, 50, and
100μM, ATP content decreased significantly with increasing drug
concentration (Figure 8C), demonstrating that luteolin can
significantly reduce ATP levels.

3.8 ROS is implicated in the regulation of
apoptosis of SUP-B15 cells upon luteolin

To determine the role of ROS in the signaling cascade, we
pretreated cells with the ROS inhibitor N-acetylcysteine (NAC). We
found that NAC partially reversed the apoptosis induction and
mitochondrial membrane potential reduction induced by luteolin
(Figures 9A,B). Simultaneously, the expression of p-PI3K, p-AKT,
BCL-2, BAX, cleaved caspase-3, and cleaved caspase-9 were also
eliminated by NAC (Figures 9C,D). In summary, luteolin exerts its
pro-apoptotic effects by inhibiting the PI3K/AKT signaling pathway
through ROS accumulation.

3.9 Luteolin induces apoptosis of SUP-B15
cells by affecting phosphorylation of core
pathways and intrinsic apoptotic pathway

Based on the predictions in Section 3.3 above, two core target
pathways closely associated with cancer—the PI3K/AKT signaling

FIGURE 5
Effects of drug on cell viability. SUP-B15 cells were incubated at different concentrations of luteolin (A) and imatinib (B) for 24, 48 and 72 h, and the
cell viabilities weremeasured via the CCK-8 assay. IC50 values were defined by the concentration that inhibited growth by 50%. (C) The CCK-8 assay was
used to determine the viability of HK-2 cells treated with different concentrations of luteolin. (D) Comparison of IC50 values for SUP-B15 and HK-2 cells
treated with different concentrations of luteolin for 24 h. Compared with the control group, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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pathway and the JAK/STAT signaling pathway—were selected to
further explore the pro-apoptotic mechanism of luteolin on SUP-
B15 cells. RT-qPCR and Western blot were performed to detect
PI3K/AKT pathway-related mRNA (Supplementary Figure S1) and
protein expression. The results showed that, compared with the control
group,the expression levels of p-PI3K, p-AKT, and p-STAT3 were
significantly downregulated in the luteolin treatment
group. (Figure 10A). Preliminary experiments indicate that luteolin
may induce apoptosis in SUP-B15 cells through the mitochondrial-
dependent apoptosis pathway. Protein analysis showed that, compared
with the control group, the expression levels of pro-apoptotic proteins in
the experimental group, including BAX, total cytochrome C, cleaved
caspase-9, and cleaved caspase-3, were upregulated, while the expression
level of the anti-apoptotic protein BCL-2 was downregulated. (Figure
10B). These results collectively indicate that luteolin may influence the
expression of the PI3K/AKT signaling pathway and the JAK/STAT
signaling pathway, thereby inducing apoptosis in SUP-B15 cells through
the intrinsic apoptotic pathway in vitro.

3.10 The key role of the PI3K/AKT signaling
pathway in luteolin-induced
mitochondrial apoptosis

To elucidate the relationship between PI3K/AKT and
mitochondrial apoptosis, we pretreated cells with the PI3K/AKT
inhibitor HY-144806. The results revealed that PI3K inhibitors
partially recapitulated the effects of luteolin, such as increased ROS
levels and upregulation of BAX and cleaved caspase-9 (Figures 11B,C),
but the inhibitors did not reduce MMP (Figure 11A). In summary,
luteolin may induce mitochondrial apoptosis by inhibiting the PI3K/
AKT pathway, but the mitochondrial membrane potential may not be
caused by the suppression of the PI3K/AKT signaling pathway. Given
the findings in section 3.8 above, the decrease in mitochondrial

membrane potential may be caused by the accumulation of ROS.
Taken together, these results suggest that luteolin can induce
apoptosis in Philadelphia chromosome-positive acute lymphoblastic
leukemia cell by inhibiting phosphorylation in the PI3K/AKT signaling
pathway (Figure 12).

4 Discussion

ALL is characterized by aberrations in the proliferation and
differentiation of lymphoblasts, leading to failure of normal immune
response and decreased production of normal hematopoiesis (Balsat
et al., 2020). Ph + ALL is themost common subtype of B-ALL in adults,
accounting for 20%–25%of all genetic subgroups (Chiaretti et al., 2013).
Before the introduction of targeted BCR-ABL specific tyrosine kinase
inhibitors (TKIs), Adult patients with Philadelphia chromosome-
positive acute lymphoblastic leukemia (Ph + ALL) were
insufficiently sensitive to standard chemotherapy regimens, resulting
in no improvement in overall survival (Faderl et al., 2009). Attempts to
improve prognosis through allogeneic stem cell transplantation (SCT)
have been only partially successful. Due to the scarcity of sibling donors
and the toxic reactions and high mortality associated with SCT, this
procedure has failed to produce significant therapeutic effects, making
Ph +ALL themost feared subtype of ALL (Maino et al., 2014). The first-
generation TKI imatinib marked the beginning of a new era in Ph +
ALL treatment, significantly improving the prognosis of Ph + ALL.
However, relapse remains a clinical challenge, as it is also associated
with drug-resistant substitutions in theABL kinase domain (Kharas and
Fruman, 2005; Thomas and Heiblig, 2016; Kato et al., 2024). Central
nervous system (CNS) relapse is also a major challenge in the treatment
of Ph + ALL. Poor penetration of imatinib through the blood-brain
barrier with inadequate concentrations for kinase inhibition may be
associated with an elevated risk of CNS relapse if no additional
prophylaxis is given (Takayama et al., 2002; Pfeifer et al., 2003;

FIGURE 6
Effect of drug on apoptosis of SUP-B15 cells. (A) SUP-B15 cells were treated with either luteolin (30μM, 50 μM) or imatinib (30 μM) alone, or luteolin
and imatinib combined for 24 H, the cell apoptosis was analyzed by flow cytometry. (B) Quantitative analysis of apoptotic cells. The percent-age of
apoptotic cells was represented by a bar diagram. Compared with the control group, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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Gong et al., 2021). Therefore, identifying novel anti-Ph + ALL drugs is
of great significance for clinical treatment. It has been discovered that
traditional Chinese medicine has proven highly effective in cancer
treatment. As extracts from natural products, traditional Chinese
medicines offer significant research value in cancer treatment due to
their low toxicity and side effects, while also exhibiting inhibitory effects
on tumor cells.

Luteolin is a flavonoid compound primarily found in the form of
glycosides in plants, the outer shells of legume peanut fruits, and
traditional Chinese herbs such as honeysuckle (Singh Tuli et al.,
2022; Zhu et al., 2024). Luteolin exhibits pro-apoptotic effects on
various cancer cells, with its mechanism of action involving
antioxidant activity and excessive ROS production (Kang et al.,
2017; Yang et al., 2020; Ma et al., 2023). The objective of this study
was to investigate the effects of luteolin on Ph + ALL. Using network
pharmacology methods, we identified potential targets for luteolin
treatment of Ph + ALL and validated them experimentally. Results
indicate that luteolin promotes apoptosis in SUP-B15 cells. This
discovery highlights luteolin as a promising therapeutic agent for Ph
+ ALL, expanding the mechanistic understanding of its anti-
leukemic efficacy.

The network pharmacology approach is a new model for the
research of traditional Chinese medicine, which aims to predict drug
targets and mechanisms of action by constructing a “Drug-disease-
target” network. This study employs network pharmacology
methodologies to integrate multiple disease databases in order to
identify genes associated with Ph + ALL. Ultimately, we identified
154 potential biological targets for luteolin’s action on Ph + ALL. PPI
network construction, ten highly central nodes including TP53, AKT1,
ALB, TNF, JUN, IL6, EGFR, STAT3, CASP3 and BCL2 were screened
from a total of 154 targets of luteolin against the Ph + ALL.
TP53 encodes the transcription factor p53, which responds to DNA
damage, cellular stress, or oncogenic hyperproliferation (Chen et al.,
2022). TP53-mutated ALL is a high-risk disease (Harris et al., 2025).
ALB is a parameter for assessing nutritional status and hepatic synthetic
capacity. Substantial evidence demonstrates that hypoalbuminemia
predicts a poorer prognosis in cancer patients (Zhang et al., 2022).
ALB and TNF may serve as potential biomarkers for the diagnosis and
treatment of acute lymphoblastic leukemia in children with MLL gene
rearrangements (Zhang et al., 2019). The multifunctional cytokine
TNF-α, a member of the tumor necrosis factor family, plays a
central role in regulating inflammation, immunity, apoptosis, and

FIGURE 7
ROS accumulation in SUP-B15 cells induced by luteolin. (A) The fluorescence intensity of SUP-B15 cells were visualized under a fluorescence
inverted microscope, scale bar = 100 μM. (B) Luteolin-induced ROS levels were detected using flow cytometry in SUP-B15 cells. (C)Quantitative analysis
of ROS levels. Compared with the control group, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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hematopoiesis. TNF-α correlates with a high-risk disease status in adult
B-ALL (Abdalhabib et al., 2022). TNF-α is involved in the progression
and recurrence of acute leukemia. Monitoring TNF-α levels may be
beneficial for patients with acute leukemia (Verma et al., 2022). JUN is a
crucial component of Activator Protein 1 (AP-1) and serves as a key
transcription factor regulating physiological and pathological processes
such as cell survival, proliferation, and differentiation. (Liu et al., 2020).
validated c-JUN as a downstream oncogene of PI3K/AKT, which
regulates tumor migration, invasion, and metastasis by binding to
genes upstream of PI3K/AKT signaling. IL-6 mediates key
interactions in the tumor microenvironment that drive the
progression of multiple cancers. The BCR/ABL fusion protein
induces IL-6 expression in leukemia stem cells, and targeting IL-6R
induces apoptosis in Philadelphia chromosome-positive acute
lymphoblastic leukemia cells (Jiang et al., 2018). EGFR is a
transmembrane receptor tyrosine kinase that regulates fundamental
cellular functions, including proliferation and migration. EGFR
activation stimulates the PI3K/Akt pathway, thereby contributing to
the molecular pathogenesis of diverse cancers. As these pathways are
frequently mutated in T-ALL cells, they represent critical therapeutic
targets for this leukemia (Banerjee et al., 2016). Luteolin may influence
the progression of Ph +ALL by targeting the aforementionedmolecular

targets. KEGG pathway analysis indicates that PI3K/AKT signaling
pathway and janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling pathway may be essential
mechanisms for combating Ph + ALL. The PI3K/AKT signaling
pathway plays a central role in the entirety of leukemia
pathogenesis, including cell proliferation, transformation, and
extramedullary infiltration, making it a crucial therapeutic target
(Lim et al., 2022; Cardoso et al., 2023). In drug-resistant esophageal
cancer cells, luteolin functions to suppress the FAK/PI3K/AKT
pathway, thereby sensitizing them to chemotherapeutic agents (Yang
et al., 2024). The PI3K/AKT pathway, located downstream of BCR-
ABL1, plays a vital role in BCR-ABL1-mediated leukemia development
(Cimino et al., 2006). Constitutive activation of this pathway has been
demonstrated to be associated with the development of TKI resistance
in cells expressing BCR-ABL1 (Xing et al., 2012). STAT3, a member of
the JAK/STAT family of proteins, is in-volved in regulating growth
factors and a variety of cytokines. STAT3 plays a crucial role in the
survival of ALL cells (Adamaki et al., 2015; Agashe et al., 2022; Wang
et al., 2024). Previous research has also confirmed that STAT3 is a
potential diagnostic biomarker and therapeutic target for ALL (Zhao
et al., 2021). Targeted inhibition of the JAK/STAT3 pathway has
emerged as a promising therapeutic strategy for ALL (Jasek-Gajda

FIGURE 8
Mitochondrial membrane potential, ATP levels in SUP-B15 cells induced by luteolin. (A) The luteolin-treated SUP-B15 cells were stained with JC-1
and analyzed using flow cytometry. (B) Quantitative analysis of Mitochondrial membrane potential. Compared with the control group, *p < 0.05, **p <
0.01, ***p < 0.005, ****p < 0.0001. (C) The ATP levels were detected based on the microplate system. Compared with the control group, *p < 0.05, **p <
0.01, ***p < 0.005, ****p < 0.0001.
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et al., 2020; Bhansali et al., 2021). This suggests that luteolin may inhibit
the growth of ALL cells by regulating the JAK/STAT3 signaling
pathway (Singh Tuli et al., 2022; Zong et al., 2024). Consistent with
previous reports, our findings indicate that luteolin produces synergistic
pro-apoptotic signals by downregulating the expression of STAT3 and
PI3K/AKT pathway proteins. Notably, our experimental efforts focused
on the most prominent PI3K/AKT predicted pathway, and we
recognize that the biological functions of other high-value targets are
subjects for subsequent studies.

Mitochondria are central to apoptosis. When cells receive stimuli,
mitochondrial membrane permeability increases, releasing apoptotic
effectors, thereby activating the intrinsic apoptotic pathway within
mitochondria (Poltorak, 2022) B-cell lymphoma 2 (Bcl-2) family
proteins act as downstream effector molecules of the PI3K/AKT
signaling pathway and are also core regulatory factors of the

mitochondrial apoptosis pathway (Singh et al., 2019; Glover et al.,
2024; Li et al., 2024; Moyer et al., 2025). Based on structural and
functional differences, they can be classified into pro-apoptotic proteins
(such as Bak and Bax) and anti-apoptotic proteins (such as Bcl-2 and
Bcl-xL) (Czabotar et al., 2013; Kaloni et al., 2023). Upon receiving
apoptotic signals, the pro-apoptotic factor BAX is activated, leading to
increased mitochondrial membrane permeability. The released
cytochrome C further activates the Caspase family. Studies have
shown that when cells are exposed to external stimuli, luteolin can
induce upregulation of Bax expression while downregulating Bcl-2
expression, increasing mitochondrial membrane permeability, thereby
activating the caspase family and triggering apoptosis (Chen et al., 2018;
Dong et al., 2018;Wang et al., 2019;Ma et al., 2023). Consistent with the
above research results, luteolin downregulates Bcl-2 expression in SUP-
B15 cells while upregulating Bax and total cytochrome C expression. In

FIGURE 9
After treatment with luteolin, ROS exerted a pro-apoptotic effect in SUP-B15 cells. The cells were preincubated with 2 mMNAC for 1 h, followed by
treatment with 50 μM luteolin for 24 h. (A) Flow cytometry analysis of apoptosis. (B) Flow cytometry detection of MMP. (C)Western blotting was used to
detect the expression of proteins related to the PI3K/AKT pathway. (D) Western blotting was used to detect the expression of proteins related to the
intrinsic apoptosis pathway. Compared with the control group, *p < 0.05,**p < 0.01,***p < 0.005,****p < 0.0001. Compared with the luteolin
experimental group, #p < 0.05, ##p < 0.01, ###p < 0.005, ####p < 0.0001.
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addition, luteolin also upregulates the expression levels of cleaved
caspase-9 and cleaved caspase-3 proteins. To clarify the relationship
between the PI3K/AKT pathway and mitochondrial apoptosis, we
employed the PI3K/AKT inhibitor HY-144806. This inhibitor
recapitulates the effects of luteolin, leading to increased reactive
oxygen species (ROS), reduced mitochondrial membrane potential,
and activation of BAX/cleaved caspase-9. Based on the above results, we
speculate that luteolin may further activate the mitochondrial intrinsic
apoptosis pathway by inhibiting the PI3K/AKT pathway.

ROS is an important molecule that directly participates in
mitochondrial function. The accumulation of ROS leads to changes
in mitochondrial membrane permeability, thereby reducing the

mitochondrial membrane potential (MMP) (Yang et al., 2016; Li
et al., 2021). Research reports indicate that reactive oxygen species
produced by leukemia cells induce extracellular trap formation and
promote the progression of leukemia (Nikitovic-Tzanakaki et al., 2016).
In addition, Wang et al. demonstrated that a new compound
synthesized by combining luteolin with zinc oxide nanoparticles
(ZnO NPs), zinc oxide nanoparticles-luteolin (ZnONPs-Lut), can
induce ROS production, thereby inhibiting cell proliferation (Wang
et al., 2025). Consistent with the above results, our study found that
luteolin increased ROS accumulation in the mitochondria of SUP-B15
cells, reduced the level of MMP, and decreased ATP synthesis, thereby
initiating mitochondria-mediated intrinsic apoptosisThe application of

FIGURE 10
The effects of luteolin on proteins related to the PI3K/AKT pathway, JAK/STAT pathway. (A) Treatment with luteolin at concentrations of 0, 30, 50,
and 100 μM for 48 h resulted in the expression of proteins related to the PI3K/AKT pathway and STAT3-related proteins. Compared with the control
group, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001. (B) Treatment with luteolin at concentrations of 0, 30, 50, and 100 μM for 48 h resulted in the
expression of proteins related to the intrinsic apoptosis pathway. Compared with the control group, *p < 0.05, **p < 0.01, ***p < 0.005,
****p < 0.0001.
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ROS scavengers rescued the luteolin-induced decrease inmitochondrial
membrane potential, inhibition of the PI3K/AKT pathway, and
subsequent apoptosis, thereby establishing ROS generation as a
pivotal initiating event in this signaling cascade. However, the

sources of ROS increase remain unclear. Future research should
explore these sources to add significant value to the interpretation of
the underlying mechanisms. Based on the above analysis, we propose a
coherent model: luteolin induces an increase in ROS, which in turn

FIGURE 11
The role of the PI3K/AKT signaling pathway in mitochondrial apoptosis After luteolin treatment. (A) MMP detected by flow cytometry. (B) ROS
detected by a multi-functional microplate reader. (C)Western blotting was used to detect the expression of Bax and cleaved caspase-9. Compared with
the control group, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001. Compared with the luteolin experimental group, #p < 0.05, ##p < 0.01, ###p <
0.005, ####p < 0.0001.
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inhibits the PI3K/AKT signaling pathway. This inhibition disrupts the
BAX, BCL-2 balance, triggers the loss of mitochondrial membrane
potential, and activates Caspase-3,9, ultimately leading to cell apoptosis.
This process may also affect other core predicted targets, including
STAT3, which requires further investigation in future studies.

It is important to consider that the SUP-B15 cell line expresses the
BCR-ABL p190 subtype, and its specific genomic background (involving
chromosomes 9, 22 and 4) may influence sensitivity to luteolin.
Therefore, the findings of this study provide preliminary mechanistic
insights specific to the SUP-B15 model and should not be directly

extrapolated to all Ph + ALL contexts. Although BCR-ABL p190 and
p210 differ in kinase activity and downstream signaling preferences, the
core downstream signaling pathways they activate—such as PI3K/AKT
and JAK/STAT—overlap significantly (Jiang et al., 2018; Danışman
Kalındemirtaş et al., 2019; Shi et al., 2021). To ensure greater rigor in
the research, future work should replicate key experiments across cell
lines expressing different isomers, primary patient samples, and in vivo
models to validate the broad applicability of the findings.

Additionally, the oral bioavailability of luteolin is low and its
distribution within tissues is limited. As a microenvironment rich in

FIGURE 12
Proposed mechanism of Luteolin-induced apoptosis in Ph + ALL cells.
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hematopoietic and immune cells, bone marrow possesses unique
physiological barriers—such as the blood-marrow barrier—that
restrict the entry of hydrophobic compounds. Therefore, high
concentrations of luteolin (100 μM)can only be achieved in vitro
experiments, which may pose an obstacle to clinical development and
application. The development of nanocarrier systems (such as liposomes,
nanoparticles, and microemulsions) has significantly enhanced the
bioavailability of luteolin (Miyashita et al., 2022; Xu et al., 2023).

In summary, luteolin effectively inhibits the proliferation of SUP-B15
cells, with its efficacy fluctuating over time. This phenomenon may be
related to pharmacokinetics and complex multi-target interactions.
Furthermore, this study reveals the complexity of the interaction
between luteolin and imatinib, which does not necessarily exhibit
synergistic effects at all concentrations. It is possible that imatinib
triggers compensatory or negative feedback survival signals through
other pathways not detected in our study (such as the MAPK or
JAK/STAT pathways), thereby partially counteracting the pro-
apoptotic signals driven by luteolin. Future studies should employ
established models (such as the Chou-Talalay combination index
method) for formal synergistic analysis, quantitatively determining the
nature of interactions (synergistic, additive or antagonistic) across
different concentration ranges, thereby providing direction for
subsequent mechanism exploration. The limitations of this study are
that the drugs and disease targets are from public database platforms,
which may be updated at inconsistent frequencies, and the database data
may be incomplete or outdated. Furthermore, the effect and mechanism
of luteolin have only been explored in a single cell line. Future studies
should incorporate cell lines of different isoforms, primary patient
samples, animal experiments and clinical trials to further elucidate the
therapeutic effects of luteolin on Ph + ALL. Due to considerations of
resources and research focus, this study first conducted experimental
validation on the PI3K/AKT pathway—a hub pathway with a higher
ranking in the predicted network. However, the other high-priority
targets identified in this study require further validation in future
research to fully reveal the global landscape of luteolin’s multi-
target effects.

5 Conclusion

In conclusion, current research indicates that luteolin may
induce apoptosis in SUP-B15 cells by inhibiting the PI3K/AKT
pathway, potentially accompanied by regulation of other targets
such as STAT3. The validation of other predicted core mechanisms
and additional high-value targets constitutes an important direction
for future investigation. Luteolin demonstrates significant potential
as a candidate drug for treating PhALL, offering not only safety and
efficacy but also opening new avenues for future drug development
and clinical treatment strategies.
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