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Eye movement deficits, including abnormal saccades and impaired smooth
pursuits, are among the earliest observable indicators of neurodegenerative
diseases, particularly Alzheimer’s disease (AD). These deficits arise from
dysfunctions in neural circuits controlling oculomotor function, including the
superior colliculus, parietal and frontal eye fields, cerebellum, and locus
coeruleus (LC). Since these circuits rely on a delicate balance of excitation
and inhibition (E/I), their impairment reflects broader neural dysregulation
seen in neurodegenerative diseases. Notably, oculomotor abnormalities
strongly correlate with cognitive decline and the progression of
neuropathological hallmarks, highlighting their potential as sensitive, non-
invasive clinical markers for early detection. GABAergic signaling, the principal
mechanism of inhibitory neurotransmission, plays a central role in maintaining E/I
balance and regulating neural network activity. In neurodegenerative diseases,
GABAergic dysfunction is characterized by reduced GABA levels, altered GABAA

receptor function, and compromised inhibitory control. These changes drive
network hyperexcitability, synaptic instability, and cognitive impairments. Such
disruptions are particularly impactful in oculomotor circuits, contributing directly
to eyemovement deficits. The potassium-chloride co-transporter 2 (KCC2), a key
regulator of intracellular chloride homeostasis, is essential for maintaining
GABAergic inhibition. In AD, KCC2 dysfunction exacerbates GABAergic
dysregulation, amplifying E/I imbalance and impairing neural circuits. This
review integrates current findings on GABAergic signaling, KCC2 dysfunction,
and oculomotor deficits in AD, offering novel insights into themechanisms linking
KCC2 dysfunction and oculomotor impairments within the context of AD.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by the deterioration of interconnected brain
networks essential for cognition. Growing evidence indicates that
AD pathology selectively disrupts specific circuits, with amyloid and
tau accumulation driving distinctive patterns of dysfunction
(Buckner et al., 2005; Seeley et al., 2009; Jones, 2010; Sperling
et al., 2010). Among the earliest affected are networks mediating
visual attention and oculomotor control, which provide valuable
insights into disease progression (Anderson and MacAskill, 2013;
Wilcockson et al., 2019; Hannonen et al., 2022; Opwonya et al.,
2023). Impairments in these systems compromise the brain’s
capacity to filter, prioritize, and integrate sensory input, thereby
accelerating decline in memory, executive function, and visuospatial
processing (Rizzo et al., 2000; Quental et al., 2013; Eraslan Boz et al.,
2024). Mechanistically, alterations in the excitatory/inhibitory (E/I)
balance within vulnerable networks are emerging as key
contributors to AD pathogenesis.

Here, we examine how early oculomotor anomalies, reflecting
visual attention deficits in AD, provide critical insights into disease
progression. We focus on GABAergic transmission dysfunction, a
pivotal factor in the breakdown of inhibitory control within these
circuits. The inhibitory action of GABA relies on the complementary
functions of ionotropic GABAA receptors (GABAARs) and
metabotropic GABAB receptors (GABABRs). GABAARs are Cl−/
HCO3

−-permeable channels whose inhibitory efficacy depends on
intracellular chloride concentration ([Cl−]ᵢ), which determines the
reversal potential (EGABA). Under physiological conditions, low
[Cl−]ᵢ maintains a negative EGABA, such that GABAAR activation
produces hyperpolarizing or shunting inhibition. In AD, chloride
homeostasis is disrupted, leading to depolarized EGABA and
weakened inhibition (Chen et al., 2017). In extreme cases,
depolarizing GABAARs activation can trigger the opening of
voltage-gated Ca2+ channels and facilitate NMDA receptor
(NMDAR) activation (Leinekugel et al., 1997; Kilb, 2021).
Notably, inhibition of NMDARs with memantine, a low-to-
moderate affinity, uncompetitive, and voltage-dependent channel
blocker, preferentially suppresses pathological overactivation while
sparing physiological signaling, providing modest symptomatic
benefit in moderate-to-severe AD (Kishi et al., 2017). In contrast,
GABABRs are GPCRs that mediate slow inhibition through
activation of GIRK (Kir3) K+ channels and presynaptic Ca2+

channel inhibition, thereby maintaining membrane
hyperpolarization via a chloride-independent pathway
(Benarroch, 2012). Importantly, nanoscale remodeling of GABAB

R–GIRK complexes has been observed near amyloid plaques
(Martín-Belmonte et al., 2022). Moreover, selective
pharmacological activation of GIRK channels (e.g., ML297,
VU0810464) restores hippocampal function and memory in AD
models, identifying this pathway as a promising therapeutic strategy
(Jeremic et al., 2021).

During early development, GABAergic signaling is
predominantly excitatory due to chloride gradients regulated by
transporters such as KCC2. As the nervous system matures,
signaling shifts toward inhibition, establishing the excitatory/
inhibitory (E/I) balance essential for network stability (Ben-Ari
et al., 2007; Kaila et al., 2014). Disruptions in these late
neurodevelopmental processes, particularly those involving
KCC2-dependent maturation, may leave lasting circuit
vulnerabilities that predispose to AD-related fragility. While
oculomotor abnormalities can serve as early markers of altered
E/I balance in pediatric populations, there is no direct evidence that
they predict AD onset. For example, voluntary saccadic control
depends on prefrontal E/I maturation; in children with
neurodevelopmental challenges, deficits in this control signal
atypical development but do not predict later neurodegeneration
(Ibrahimi et al., 2024). Nonetheless, subtle oculomotor alterations
may reveal persistent vulnerabilities shaped by disrupted
GABAergic maturation. According to John Stein’s magnocellular
theory, dyslexia arises from dysfunction in the magnocellular visual
pathway, which is critical for motion processing and eye movement
control (Stein, 2019). Individuals with dyslexia exhibit reduced
visual motion sensitivity and binocular instability, leading to
reading difficulties, perceptual instability, and letter reversals.
Characteristic oculomotor features also include increased
regressions, a higher number of fixations, and longer fixation
durations (Bilbao et al., 2024). These neurobiological
vulnerabilities underlie reading challenges in dyslexia and may
predispose to degeneration of dorsal visual pathways later in life,
potentially linking dyslexia with certain neurodegenerative
conditions, such as primary progressive aphasia and the visual
impairments seen in posterior cortical atrophy (PCA). Clinical
heterogeneity in AD further supports this framework. Distinct
AD phenotypes are thought to arise from selective vulnerabilities
of specific brain networks (Mesulam et al., 2008; Rogalski et al., 2013;
Miller et al., 2018), even when they share common hallmarks such as
synaptic loss or amyloid deposition (Jones et al., 2016; Mahzarnia
et al., 2023). Thus, AD manifestations emerge from the interplay
between universal pathogenic processes and network-specific
susceptibilities, which together shape symptom profiles and
disease progression. These vulnerabilities may first appear as
subtle oculomotor changes, remain compensated for years, and
ultimately contribute to the cognitive decline characteristic of
AD. Combined with genetic predispositions and cumulative
lifespan risk factors, they may exacerbate E/I imbalance,
potentially constituting a pre-amyloid mechanism that accelerates
pathology. From this perspective, oculomotor alterations may
represent intermediate phenotypes of neural E/I imbalance and
thus warrant longitudinal study as candidate biomarkers for
preclinical AD. By bridging the gap between subjective cognitive
complaints and measurable network dysfunction, oculomotor
features hold promises as clinically meaningful indicators. When
integrated with genetic and neuroimaging data, they could

Abbreviations: AD, Alzheimer’s disease; Aβ, Amyloid-beta; BDNF, Brain-
derived neurotrophic factor; dlPFC, Dorsolateral prefrontal cortex; EWN,
Edinger-Westphal nucleus; E/I, Excitatory/inhibitory; FEF, Frontal eye fields;
FOF, Frontal oriented field; IL, Infralimbic, prelimbic (PL) cortices; ipRGCs,
Intrinsically photosensitive retinal ganglion cells; LC, Locus coeruleus; mPFC,
Medial prefrontal cortex; MCI, Mild cognitive impairment; PV, Parvalbumin-
positive interneurons; PCA, Posterior cortical atrophy; KCC2, Potassium-
chloride co-transporter 2; PLR, Pupillary light reflex; RGCs, Retinal
ganglion cells; NKCC1, Sodium-potassium-chloride co-transporter; SNr,
Substantia nigra pars reticulata; SC, Superior colliculus; TBI, Traumatic
brain injury.
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substantially improve early risk identification. This review therefore
adopts a late-neurodevelopmental perspective, emphasizing how
altered GABAergic signaling and chloride regulation in eye-
movement networks illuminate both shared and phenotype-
specific mechanisms of AD. Integrating oculomotor assessments
with molecular approaches aimed at restoring KCC2 function and
GABAergic inhibitory tone may provide a comprehensive strategy
that bridges neuroscience and clinical intervention in AD.

1.1 GABAergic signaling and chloride
homeostasis in Alzheimer’s disease

The brain’s primary inhibitory neurotransmitter, GABA,
ensures stable neural network dynamics and overall brain
homeostasis (Ben-Ari, 2002). In AD, GABAergic signaling is
disrupted, with reduced GABA levels, altered receptor function,
and impaired inhibitory control contributing to cognitive decline,
network instability, and an exacerbated E/I imbalance that
accelerates disease progression (Zhou et al., 2021; Capsoni et al.,
2022; Mao et al., 2024). While normal aging is associated with a
decline in GABAergic signaling, including reduced glutamate
decarboxylase (GAD) expression, altered interneuron
subpopulations, and receptor subunit changes that impair
plasticity (McQuail et al., 2015; Rozycka and Liguz-Lecznar,
2017), both postmortem and in vivo studies demonstrate that
these deficits are more pronounced in AD, particularly within the
hippocampus and prefrontal cortex (Rissman et al., 2007; Lanctôt
et al., 2017; Jiménez-Balado and Eich, 2021; Zhou et al., 2021).
Magnetic resonance spectroscopy further indicates that such
reductions emerge as early as the mild cognitive impairment
(MCI) stage (Mao et al., 2024). These deficits correlate with
synaptic loss and neuronal degeneration, particularly in the
entorhinal cortex and hippocampus, regions critical for memory,
at levels exceeding those observed in age-matched controls (Xu et al.,
2020; Jiménez-Balado and Eich, 2021; Scaduto et al., 2023).
Crucially, AD pathology entails not only reduced GABA
concentrations but also receptor dysfunction, altered subunit
composition, and selective vulnerability of parvalbumin (PV)
interneurons to Amyloid-β (Aβ) toxicity. The loss of PV
interneurons, key regulators of gamma oscillations associated
with memory and attention (Tessier et al., 2023), leads to
network hyperactivity and disrupted oscillatory rhythms, thereby
exacerbating cognitive impairment (Busche and Konnerth, 2016;
Vericel et al., 2024; Wei et al., 2024). In parallel, both GABAARs and
GABABRs functions are altered in AD. The density of GABAARs,
particularly in the hippocampus and cortex, is reduced (Mao et al.,
2024), and alterations in subunit composition, most notably
affecting the α5 subunit, impair receptor function. Consistent
with subunit-specific changes, inhibition of α5-containing
GABAARs has been shown to enhance cognition by reducing
tonic inhibition in hippocampal and prefrontal networks. By
contrast, α1 expression is decreased, whereas β-subunits are
relatively preserved in AD (Howell et al., 2000; Rissman et al.,
2007), supporting the rationale for subunit-selective modulation
combined with approaches that restore KCC2-dependent chloride
homeostasis. Meanwhile, GABABRs dysfunction contributes to
impaired neurotransmitter release and neuronal synchronization,

further aggravating network instability and cognitive decline (Vico
Varela et al., 2019).

At the molecular level, Aβ oligomers directly impair GABAergic
signaling through oxidative stress, disruption of synaptic function,
and interference with receptor trafficking (Zhou et al., 2021). The
amyloid peptide β also promotes neuroinflammation, activating
microglia and increasing pro-inflammatory cytokines like TNF-α,
which modulate the expression of key proteins such as brain-derived
neurotrophic factor (BDNF) and its receptor TrkB. This signaling
cascade is crucial for the regulation of KCC2, which is essential for
maintaining the inhibitory function of GABAARs (Heubl et al., 2017;
Porcher et al., 2018; Hamze et al., 2024). Disruptions in chloride
homeostasis are now recognized as a core mechanism of GABAergic
dysfunction in AD. Under physiological conditions,
KCC2 maintains low [Cl−]ᵢ, thereby allowing GABA to exert
inhibitory effects (Medina et al., 2014). In AD, however,
pathological alterations in the excitatory–inhibitory (E/I) balance
have been documented, most notably the downregulation of
KCC2 in hippocampal and prefrontal circuits, together with the
aberrant upregulation of NKCC1, which is normally suppressed in
mature neurons (Kreis et al., 2021; Lam et al., 2022; Del Turco et al.,
2023; Lam et al., 2023; Barbour et al., 2024). This shift results in
[Cl−]ᵢ accumulation, which impairs GABAergic inhibition, thereby
promoting neuronal hyperexcitability and cognitive decline
(Figure 1). Although inhibitory dysfunction predisposes neuronal
networks to hyperexcitability in AD, several compensatory
mechanisms initially stabilize excitatory activity and prevent
uncontrolled firing. Even when GABAergic signaling becomes
less hyperpolarizing, increased chloride conductance can still
exert a shunting inhibitory effect that lowers membrane
resistance and limits excitatory input efficacy (Buzsáki, 1984;
Kaila et al., 2014). At the intrinsic level, neurons enhance
potassium conductance via Kv7/KCNQ and GIRK channels,
thereby stabilizing membrane potential and counteracting
excessive depolarization (Sánchez-Rodríguez et al., 2019). In
parallel, homeostatic synaptic plasticity adjusts excitatory drive
through synaptic scaling and activity-dependent regulation of ion
channel expression (Baculis et al., 2022; Wen and Turrigiano, 2024).
Glial mechanisms are equally critical: astrocytes maintain ionic
balance through Kir4.1-mediated K+ buffering and stabilize
synapses by clearing glutamate via EAAT2 transporters, processes
impaired in AD models and human cortex (Yeung et al., 2021;
Wood et al., 2022; Kim et al., 2024; Samokhina et al., 2025; Srivastava
et al., 2025). Neuromodulatory systems further provide tonic
regulation of excitability: cholinergic inputs adjust firing
dynamics through TRPM4-dependent mechanisms (Combe et al.,
2023); dopaminergic projections modulate inhibitory control in
prefrontal circuits (Di Domenico and Mapelli, 2023); serotonergic
pathways exert receptor-specific actions, either enhancing inhibition
(5-HT1A) or facilitating excitation (5-HT2A) (Celada et al., 2013;
Salvan et al., 2023); and noradrenergic tone contributes to arousal-
dependent gain control and E/I stabilization (Slater et al., 2022).
Collectively, these mechanisms help delay overt network
dysfunction in early AD. However, with disease progression,
marked by interneuron loss, chloride transporter dysregulation,
and astrocytic failure, these protective adaptations are ultimately
overwhelmed, leading to network hyperexcitability, seizures, and
cognitive decline.
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Mechanistically, Aβ oligomers downregulate KCC2 by
disrupting BDNF–TrkB signaling and impairing proBDNF
maturation (Garzon and Fahnestock, 2007; Jerónimo-Santos
et al., 2015; Zhou et al., 2021). Accumulated proBDNF
preferentially activates p75NTR, promoting synaptic loss and
destabilizing KCC2 through internalization, thereby amplifying
chloride imbalance and shifting GABA action toward excitation
(Riffault et al., 2014; 2016; Bie et al., 2022; Bruno et al., 2023;
Hamze et al., 2024). These alterations create a vicious cycle in
which chloride dysregulation, GABAergic failure, and
neuroinflammation reinforce one another. Chronic
inflammation exacerbates KCC2 downregulation, further
destabilizing synapses and accelerating pathology (Tessier et al.,
2023) (Figure 1). As a result, inhibition shifts from protective to
maladaptive, contributing directly to network dysfunction and
degeneration. Whether NKCC1/KCC2 alterations are primary
drivers or secondary amplifiers remains unresolved. Signaling
pathway through mTORC1, a key regulator of chloride
transporters, is dysregulated early in AD, aggravating E/I
imbalance and seizure susceptibility. Patients have a 6–10-fold
higher seizure risk than age-matched controls (Pandis and
Scarmeas, 2012; Xu et al., 2021; Zhang et al., 2022). Rapamycin,
an mTORC1 inhibitor, restores NKCC1/KCC2 balance and
reduces seizure pathology, whereas the contribution of the

WNK/SPAK pathway to transporter regulation in AD remains
largely unexplored (Barbour et al., 2024; Blum and Levi, 2024).
Emerging evidence suggests that E/I imbalances established during
neurodevelopment may act as permissive triggers of AD pathology.
Altered interneuron function can precede amyloid deposition and
clinical symptoms, driving early synaptic dysfunction and
abnormal activity in hippocampal and prefrontal circuits (Xu
et al., 2020; Lam et al., 2023). Soluble Aβ further impairs
inhibition by targeting fast-spiking interneurons, promoting
hyperexcitability that accelerates tau pathology and neuronal
loss (Li et al., 2016; Ren et al., 2018). Subtype-specific features
underscore this vulnerability: early-onset AD (EOAD) is
characterized by denser tangles and more aggressive cortical
pathology than late-onset AD (LOAD), likely accelerating
transporter dysregulation and shifting GABAergic signaling
toward excitation (van der Flier et al., 2011; Jagust, 2018). By
contrast, in aging and LOAD, transporter alterations progress
more gradually and may initially remain compensable
(Schneider et al., 2007; Rahimi and Kovacs, 2014). Thus, while
KCC2 downregulation and NKCC1 upregulation are consistent
hallmarks of symptomatic AD, early developmental E/I
disturbances may prime circuits for dysfunction. Clarifying the
timing, regional specificity, and molecular regulation of chloride
transporters across EOAD, LOAD, and aging will be critical to

FIGURE 1
Aβ-induced disruption of GABAergic signaling and chloride homeostasis in Alzheimer’s disease (AD). Amyloid-β (Aβ) oligomers contribute to
GABAergic dysfunction through multiple molecular mechanisms. They directly impair GABAergic transmission by inducing oxidative stress, altering
synaptic function, and disrupting receptor trafficking. In parallel, Aβ promotes neuroinflammatory responses, notably through microglial activation and
increased production of pro-inflammatory cytokines such as TNF-α. These inflammatory signals affect the expression of the potassium-chloride
cotransporter KCC2, a key regulator of intracellular chloride concentration. In AD, KCC2 expression is downregulated, particularly in the hippocampus
and prefrontal cortex, while the sodium-potassium-chloride cotransporter NKCC1 is aberrantly upregulated. This imbalance leads to intracellular
chloride accumulation, weakening GABAergic inhibition. The resulting neuronal hyperexcitability contributes to neurodegeneration and the cognitive
decline characteristic of AD. The red and blue arrows represent the vicious cycle linking Alzheimer’s disease, inflammatory processes, and GABAergic
dysregulation.
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disentangle cause from consequence in disease trajectory (Jones
et al., 2016; Mahzarnia et al., 2023).

1.2 KCC2 phosphorylation and its
implications in Alzheimer’s disease

Emerging research underscores a critical link between the
phosphorylation state of KCC2 and the pathophysiology of AD.
Alterations in KCC2 function have been shown to disrupt neuronal
inhibition and contribute to cognitive decline (Keramidis et al., 2023). A
major mechanism regulating KCC2 activity is post-translational
modification, particularly phosphorylation. Phosphorylation at serine
940 (S940) enhances KCC2 membrane stability and functional
expression, thereby promoting its activity. Conversely,
phosphorylation at threonine residues 906 and 1007 inhibits
KCC2 by reducing its surface expression and chloride transport

capacity (Kahle et al., 2013; Kaila et al., 2014; Medina et al., 2014;
Pethe et al., 2023). In AD, increasing evidence indicates that
KCC2 function is impaired due to dysregulated phosphorylation and
enhanced degradation. The amyloid precursor protein, a central player
in AD pathology, has been shown to interact with KCC2 and limit its
tyrosine phosphorylation. In the absence of amyloid precursor protein,
KCC2 undergoes excessive tyrosine phosphorylation and
ubiquitination, triggering its degradation and significantly reducing
its expression and function (Chen et al., 2017). Such degradation leads
to disrupted chloride homeostasis and depolarizing GABAergic
responses, which in turn exacerbate neuronal hyperexcitability and
cognitive dysfunction (Figure 2). Notably, AD mouse models,
particularly those expressing amyloid precursor protein mutations,
exhibit early impairments in KCC2 expression and function that
precede overt amyloid deposition and synaptic degeneration. These
early deficits are accompanied by increased levels of Aβ 42 and correlate
with learning and memory impairments (Keramidis et al., 2023).

FIGURE 2
Dysregulation of KCC2 phosphorylation in Alzheimer’s disease (AD). KCC2 function is critically regulated by post-translational phosphorylation,
which modulates its membrane expression and chloride efflux. Phosphorylation at serine 940 (S940) enhances KCC2 stability at the plasma membrane
and promotes its activity, whereas phosphorylation at threonine residues 906 and 1007 (T906/1007) reduces surface expression and inhibits function. In
AD, KCC2 activity is disrupted by imbalanced phosphorylation and increased degradation. The amyloid precursor protein (APP) normally limits
KCC2 tyrosine phosphorylation; in its absence or dysfunction, KCC2 becomes hyperphosphorylated on tyrosine residues, leading to ubiquitination,
degradation, and loss of function. These molecular alterations impair chloride homeostasis and shift GABAergic signaling toward excitation, contributing
to neuronal hyperexcitability, cognitive decline, and early pathophysiological changes in AD.
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FIGURE 3
Schematic overview of the mouse visual system. Sagittal section (Nissl staining) from the Allen Brain Atlas overlaid with key regions of the visual
system. The frontal orienting field (FOF) receives input from the posterior parietal cortex (PPC) and prefrontal cortex (PFC). Neuronal projections from the
FOF, visual cortex (Vis Cx), and olivary pretectal nucleus (OPN), as well as a direct retinal pathway, converge onto the superior colliculus (SC). The lateral
geniculate nucleus (LGN) is also indicated.

FIGURE 4
The saccadic system in humans. (A) Illustrates the brain regions involved in the command, execution, control, and modulation of saccades. It
highlights the specific interaction between cortical and subcortical structures. (B) Video Oculography (VOG) trace of a horizontal saccade showing a
correspondence between the recorded oculomotor parameters and their relationship with brain structures. The highlighted section shows the anti-
saccade trace when there is a failure to inhibit a rightward saccade, resulting in a left-sided error.
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2 Eyemovement deficits as amarker for
neurodegeneration

2.1 Oculomotor system and neural circuits

Eye movements depend on the intricate coordination of
complex neural networks that govern their initiation, execution,
regulation, and precision (Massone, 1994). These movements are
broadly categorized into extrinsic and intrinsic types. Extrinsic eye
movements encompass a variety of oculomotor functions, including
rapid saccades, steady fixations, convergent and divergent vergence,
smooth pursuit of moving targets, and various oculomotor reflexes.
These movements, primarily controlled by the extraocular muscles,
play a crucial role in positioning and stabilizing the eyes. Intrinsic
eye movements, on the other hand, are limited to pupillary
adjustments that regulate light intake and contribute to visual
acuity. This distinction underscores the complexity and
adaptability of the oculomotor system in responding to both
external visual stimuli and internal cognitive demands.

In human and rodents several key brain regions orchestrate
these eye movements, including (Figures 3, 4):

1. Cortical structures: The fronto-parietal network, consisting of
the Frontal Eye Fields (FEF) and parietal eye fields, is integral
to visual attention and eye movement control. In humans, the
FEF regulates saccades via direct projections to the Superior
Colliculus (SC), supports smooth pursuit movements, and
coordinates both covert and overt spatial attention
(Medendorp et al., 2011; Lane et al., 2012; Vernet et al.,
2014; Mirpour and Bisley, 2021). In rodents, the secondary
motor cortex, specifically the Frontal Oriented Field (FOF), is
considered as a functional homolog of the primate FEF. It
projects to the SC, receives input from the posterior parietal
cortex and prefrontal areas, and plays a critical role in planning
and preparation of orienting movements. Inactivation of the
FOF in rodents leads to impaired contralateral orienting,
particularly for memory-guided tasks, closely paralleling the
role of the FEF in memory-guided saccades in primates.
However, while the primate FEF predominantly controls eye
movements, the rodent FOF controls combined head and body
orienting responses rather than pure ocular saccades, reflecting
species differences in oculomotor repertoire (Figure 3). Both
systems exhibit delay-period neuronal activity predictive of
upcoming movement direction (Bruce and Goldberg, 1985;
Erlich et al., 2011; Zahler et al., 2021). The posterior parietal
cortex contributes in both species to visuospatial integration
and updating spatial representations following eye movements
(Duhamel et al., 1992; Medendorp et al., 2011; Klautke et al.,
2023). The supplementary eye fields in humans assist in
executing eye movements toward memorized locations and
sequencing them (Heide et al., 2001; Isoda and Tanji, 2002; Lu
et al., 2002) (Figure 4A). A direct rodent supplementary eye
fields equivalent is less well defined, though some dorsal medial
areas may serve partially analogous functions. The dorsolateral
prefrontal cortex (dlPFC) inhibits unwanted reflexive saccades
in humans (Pierrot-Deseilligny et al., 2003; 2005; Cameron
et al., 2015). Rodents lack a true dlPFC homolog, but their
medial prefrontal cortex (mPFC), notably the infralimbic (IL)

and prelimbic (PL) cortices, interconnected with the FOF,
exerts inhibitory control over orienting and attention. The
PL supports goal-directed behavior and memory retrieval,
whereas the IL is more engaged in response inhibition,
suppression of undesired actions, and habit formation. Both
regions are strongly interconnected with the hippocampus,
amygdala, striatum, and other cortical regions, enabling
flexible learning and adaptive control (Gutman et al., 2017;
Capuzzo and Floresco, 2020). Together, PL and IL modulate
executive control and response inhibition within broader
fronto-parietal circuits. While the FOF directly orchestrates
motor planning for orienting actions, the IL and PL provide
top-down executive modulation. In primates, the FEF and
dlPFC perform broadly analogous roles to the rodent FOF
and PL/IL, even though rodents lack a precise dlPFC
counterpart. Damage to these interconnected regions
disrupts spatial attention and awareness in both species,
with rodents showing deficits more in head–body
orientation than in gaze control (Zahler et al., 2021).
Because of their overlap with higher-order cognitive
systems, both human FEF–dlPFC and rodent FOF–PL/IL
networks are particularly vulnerable to neurodegenerative
processes that impair cognitive control (Ng et al., 2021).
This comparative framework underscores how prefrontal
regions coordinate attention, memory-guided behavior, and
executive control—functions critically impaired in AD. In the
frontal cortex, including the FEF, reductions in GABA levels
and interneuron dysfunction correlate with impaired cognitive
control and attentional regulation (Govindpani et al., 2017; Xu
et al., 2020). Similar deficits are seen in the parietal cortex and
other neocortical areas (Bai et al., 2015). Specific interneuron
subtypes, notably parvalbumin (PV) and somatostatin (SST)
cells, appear especially vulnerable: decreased activity and loss
of these interneurons have been reported in the medial
temporal lobe and medial prefrontal regions, including the
rodent PL/IL cortices (Beal et al., 1985; 1986; Saiz-Sanchez
et al., 2013; Nava-Mesa et al., 2014; Saiz-Sanchez et al., 2016;
Xu et al., 2020). These alterations are tightly linked to network
hyperexcitability and cognitive deficits, underscoring the
central role of GABAergic dysfunction in AD pathogenesis.

2. Subcortical structures: The basal ganglia form a fundamental
subcortical hub, integrating motor, cognitive, and emotional
functions through four parallel loops—motor, associative/
cognitive, limbic, and oculomotor. Each connects specific
cortical regions with basal ganglia substructures and the
thalamus, thereby coordinating distinct aspects of behavior
(Lanciego et al., 2012). The oculomotor loop is particularly
relevant for eye movements and visual attention: frontal and
supplementary eye fields project to the caudate nucleus, which
relays signals via the substantia nigra pars reticulata (SNr) to
the SC. Those neurons provide tonic inhibition of the SC to
suppress unwanted saccades; transient pauses in SNr firing
disinhibit the SC, enabling controlled gaze shifts (Shires et al.,
2010). Thus, the circuit functions as a gatekeeper for
oculomotor control. Although substantial GABAergic cell
loss is not typically reported in the basal ganglia during AD,
synaptic dysfunction at inhibitory terminals may impair
regulation of oculomotor pathways (Govindpani et al.,
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2017). Within the SC, GABAergic signaling suppresses
unwanted or reflexive saccades, while transient disinhibition
permits planned orienting movements. In this way, the SC
integrates diverse oculomotor behaviors—including saccades,
smooth pursuit, vergence, and coordinated head
movements—and mediates both overt and covert shifts of
spatial attention (Lomber et al., 2001; Thier and Ilg, 2005;
Krauzlis et al., 2013; Bollimunta et al., 2018; Liu et al., 2022).
Essential for gaze control and attentional shifts, the SC appears
particularly vulnerable in AD, likely due to its high metabolic
demands and extensive connectivity. Although less extensively
studied, emerging evidence suggests that impaired inhibitory
control within the SC contributes to oculomotor deficits in AD
(Dugger et al., 2011; Erskine et al., 2017; Pin et al., 2023). In
rodents, the FOF, a functional analog of the primate FEF,
projects strongly to the SC and is critical for planning and
executing orienting movements involving the eyes, head, and
body (Erlich et al., 2011; Zahler et al., 2021). Given the basal
ganglia’s central role and broad connectivity, dysfunction
within these loops can profoundly disrupt oculomotor
control and visual attention, contributing to the deficits
observed in neurodegenerative conditions such as AD.

3. Premotor nuclei of the brainstem: These nuclei, including the
medial vestibular nucleus, prepositus hypoglossal nucleus, and
rostral interstitial nucleus of the medial longitudinal fascicle,
are integral to eye movement control and gaze stabilization.
They generate and coordinate saccades, smooth pursuit, and
vergence movements while integrating sensory input from
multiple brain regions. Dysfunction in these areas can
contribute to oculomotor abnormalities observed in various
neurological disorders (Erlich et al., 2011; Zahler et al., 2021)
Despite anatomical differences, these nuclei perform
comparable functions across species in integrating motor
and sensory signals for gaze stability. Lesions contribute to
oculomotor abnormalities across numerous
neurological diseases.

4. Autonomic control of pupillary responses: The locus coeruleus
(LC) and Edinger-Westphal (EWN) nucleus (EWN) regulate
pupillary dilation and constriction, respectively. The LC,
through its noradrenergic projections, influences arousal
and cognitive function, while the EWN drives the light and
near reflexes. Receiving input from the pretectal olivary
nucleus, the EWN transmits signals via the oculomotor
nerve to the ciliary ganglion and iris sphincter muscle
(Mathôt, 2018). Their interaction is complex, with evidence
suggesting inhibitory or presynaptic connections between the
LC and EWN, possibly involving the SC (Wang and Munoz,
2015). These nuclei integrate signals from multiple brain
regions to adjust pupil size based on light, arousal, and
cognitive demands. Notably, both are among the earliest
affected in neurodegenerative disorders, particularly AD,
where pathological changes may emerge before cognitive
symptoms (Wang and Munoz, 2015). The LC, a key
noradrenergic center, is highly susceptible to oxidative stress
and toxic protein accumulation, making it an early target in
disease progression (Andrés-Benito et al., 2017; Olivieri et al.,
2019; Matchett et al., 2021). Similarly, EWN dysfunction,
critical for autonomic regulation, contributes to early

pupillary abnormalities in neurodegeneration (Scinto et al.,
1999; Mavroudis et al., 2014; Chougule et al., 2019).

5. Cerebellar contributions: The cerebellum fine-tunes eye
movements through its connections with the brainstem and
other regions. Key areas include the flocculus/paraflocculus for
vestibulo-ocular reflex adaptation, nodulus/ventral uvula for
otolith-driven eye movements, and dorsal vermis/posterior
fastigial nucleus for saccadic accuracy. The cerebellar
hemispheres contribute to smooth pursuit and saccades,
while the cerebellum also modulates the brainstem neural
integrator to maintain stable fixation (Leigh and Zee, 2015).
Cerebellar dysfunction is linked to spinocerebellar ataxias,
Friedreich’s ataxia, multiple system atrophy (cerebellar
type), Parkinson’s disease subtypes, and certain variants of
AD (Larner, 1997; Chaudhari et al., 2021; Cheng et al., 2023;
Yang et al., 2024). These conditions often lead to motor
coordination deficits, balance issues, and abnormal eye
movements, underscoring the cerebellum’s essential role in
both motor control and cognitive function.

The oculomotor system relies on interconnected neural
networks that are vulnerable to neurodegenerative disruptions
through both direct and indirect mechanisms. Some
neurodegenerative diseases directly impair these networks,
leading to observable oculomotor dysfunctions, while others
primarily affect cognitive and behavioral circuits, indirectly
influencing eye movement control due to the brain’s
interconnected nature (Gaymard, 2012; Leigh and Zee, 2015;
Shakespeare et al., 2015). This interplay highlights the complex
relationship between cognitive, behavioral, and motor functions in
the brain (Zola et al., 2013; Dragan et al., 2017; Granholm et al.,
2017; Readman et al., 2021). Analyzing eye movement parameters
provides valuable diagnostic insights into both the primary impact
of neurodegenerative diseases on oculomotor function and the
secondary effects of broader neural dysfunctions (Figure 4B).

Overall, eye movement assessments offer a powerful, non-
invasive tool for the early detection of neurodegenerative
processes, providing valuable insights into disease progression
and informing the development of targeted intervention strategies.

2.2 Neuronal circuits controlling eye
movements and their reliance on precise
E/I balance

The visual attention system plays a fundamental role in
integrating perception and action, enabling adaptive interactions
with the environment. This integration is facilitated by various types
of eye movements, which are essential for efficient visual processing
and attentional control (Rolfs and Schweitzer, 2022). Among
extrinsic eye movements, we distinguish saccades (rapid shifts in
gaze between fixation points, fixations) periods of gaze stabilization,
smooth pursuit (continuous tracking of moving objects), and
vergence movements (adjustments that maintain binocular focus
at different distances) (Leigh and Zee, 2015). Intrinsic eye
movements, such as the pupillary photomotor reflex and
psychosensory response, further enhance visual attention by
optimizing retinal image quality, regulating light intake, and
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reflecting cognitive and emotional states (Mathôt, 2018). These
finely tuned mechanisms enable rapid and efficient adaptation to
dynamic visual environments, supporting selective attention, spatial
awareness, and exploratory behavior.

The interaction between visual attention and eye movements is
bidirectional: attention directs eye movements toward areas of
interest, while eye movements influence attentional allocation
(Sheliga et al., 1994; Kowler et al., 1995; Deubel and Schneider,
1996; Hutton, 2008; Ibbotson and Krekelberg, 2011; Souto and

Kerzel, 2021). This dynamic relationship enables efficient visual
exploration and rapid adaptation to environmental changes. At its
core, this system maintains a balance between two complementary
processes (Katsuki and Constantinidis, 2014) (Figure 5A): i).
Bottom-up (stimulus-driven) processes, triggered by the intrinsic
properties of visual stimuli; ii). Top-down (goal-directed) processes,
guided by higher cognitive and motivational factors. This balance is
essential for two key reasons. First, it sustains visual attention on
ongoing tasks, ensuring continuity and efficiency of action. Second,

FIGURE 5
GABAergic inhibition plays a fundamental role in the visual system. (A) As the main inhibitory neurotransmitter in the central nervous system, GABA
enables the fine regulation of neuronal excitability and actively participates in the selection of visual information. Its action begins early, at the level of the
retina, where it modulates neuronal circuits involved in the initial processing of light signals and contributes to the spatiotemporal encoding of visual
information. The regulation of pupil size mainly depends on autonomic circuits within the brainstem such as the Edinger-Westphal nucleus (EWN)
and Locus coeruleus (LC). Throughout the stages of visual information integration, GABAergic inhibition shapes and modulates signal transmission,
enhancing contrast and the selectivity of neuronal responses. In the ventral visual pathway, it contributes to object formation and recognition (percept
formatting), while in the dorsal pathway, it is involved in the selection of salient information and the management of automatic visual attention, in
interaction with dorso-ventral attentional control networks. GABAergic inhibition also plays a role in the voluntary orientation of visual attention (dorso-
dorsal visual attentional system) according to behavioral and homeostatic needs and contributes to the overall regulation of visual behavior. The analysis
of oculomotor responses—whether intrinsic (pupillary responses) or extrinsic (eye movements) —provides an objective tool for studying these
mechanisms of integration and regulation of visual information. SC (Superior Colliculus), LGN (lateral geniculate nucleus), PULV (pulvinar), VAS (visual
attention system). (B)GABAergic interneurons receive excitatory input and release GABA, which activates GABAA receptors on target neurons. Activation
of these receptors causes an influx of Cl− ions, hyperpolarizing the membrane and making it more difficult to generate an action potential. This
mechanism acts as a filter: it selects strong or relevant signals and prevents the propagation of weak or irrelevant signals, thereby ensuring precise control
of neuronal transmission. This GABAergic filtering thus enables the active selection of signals transmitted within neural circuits, preventing overload and
promoting the accuracy of brain responses.
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it enables rapid attentional shifts in response to environmental
changes, optimizing adaptability. The system’s efficiency relies on
a finely tuned interplay between inhibitory and excitatory neural
circuits. Various neuronal populations, each with distinct firing
patterns and transmission modes, contribute to this regulation.
In visual attention systems, GABAergic inhibition is especially
critical for two fundamental mechanisms (Figure 5B):

2.2.1 Selection of relevant information
GABAergic transmission plays a crucial role in sensory

processing by efficiently gating and integrating information,
suppressing background noise, and refining visual perception.

• Retinal Circuitry: In the retina, GABAergic transmission
modulates neural activity at multiple levels, serving as a
crucial mechanism for sensory gating and the selection of
relevant visual information. Among GABA receptor subtypes,
GABACRs (ρ-subunit–containing) are concentrated on
bipolar cell terminals, where they generate sustained tonic
inhibition characterized by slow kinetics and high GABA
sensitivity. Functionally, GABAC-mediated inhibition
contributes to gain control and signal-to-noise optimization
by suppressing background activity and preventing saturation
of bipolar responses, thereby enhancing contrast sensitivity
and visual acuity (Wang et al., 2007; Popova, 2014; Matsumoto
et al., 2025; Medina Arellano et al., 2025). By contrast, GABAA

Rs, widely expressed on retinal ganglion cells (RGCs) and
other retinal neurons, mediate fast, phasic inhibition that
dynamically shapes RGC excitability and firing patterns.
This rapid inhibition supports precise temporal tuning,
direction selectivity, and motion detection in the inner
retina (Wang et al., 2007; Okumichi et al., 2008). Together,
the complementary actions of GABAC and GABAARs allow
the retina to filter, refine, and transmit selected visual
information efficiently, ensuring accurate visual perception.

• Superior Colliculus: In the superior colliculus, GABAergic
inhibition is vital for shaping appropriate behavioral and
physiological responses. In sensory processing, it refines
topographically aligned visual, auditory, and somatosensory
inputs, facilitating precise multisensory integration (Behan
et al., 2002). In motor command generation, GABAergic
circuits regulate orienting behaviors such as saccadic eye
movements, with tonic inhibition from the SNr playing a
crucial role (Kaneda et al., 2008). Moreover, GABAergic
inhibition fine-tunes the spatial and temporal properties of
collicular responses, ensuring appropriate E/I balance and
preventing excessive activation (Behan et al., 2002; Kaneda
et al., 2008).

• Thalamic Visual Pathways and Their Role in Visual Attention:
Visual information reaches the cortex through two main
thalamic pathways that are regulated by GABAergic
inhibition, each playing distinct roles in visual attention:
o Lateral Geniculate Nucleus Pathway

The lateral geniculate nucleus is the primary sensory relay
nucleus in the thalamus, transmitting retinal signals to the
primary visual cortex (V1). GABAergic inhibition dynamically
filters and sharpens visual signals, supporting selective and

sustained visual attention by maintaining thalamo-cortical
oscillations and optimizing signal-to-noise ratio (Kim et al., 1997;
Ye et al., 2017; Klein et al., 2018).

o Colliculo-Pulvinar Pathway

An alternative visual route involves the SC sending processed
visual information to the pulvinar nucleus, which then projects to
visual and parietal cortical areas involved in spatial attention and
gaze control. GABAergic inhibition within the SC finely regulates
the flow of salient visual information to the pulvinar, enabling rapid
detection of visual targets and flexible reorientation of spatial
attention. This pathway is critical for exogenous (automatic)
attention and the selection of relevant stimuli in complex
environments (Berman and Wurtz, 2011; Soares et al., 2017;
Fang et al., 2020).

Together, these pathways, through distinct GABAergic
inhibitory mechanisms, enable the brain to balance focused,
selective attention with rapid, flexible orienting responses,
ensuring efficient processing of visual information according to
behavioral demands.

• Gamma Oscillations in the primary visual cortex (V1): The
density of GABAARs in the human V1 correlates positively
with gamma peak frequency and negatively with gamma
amplitude, highlighting their role in shaping gamma
oscillatory dynamics essential for efficient visual processing
(Kujala et al., 2015).

• Cortical Networks and Visual Perception: Recent findings
reveal that GABA’s influence on visual perception is
region-specific. In the parietal cortex, GABA levels correlate
with size perception, while in the occipital cortex, they
influence orientation perception. This suggests that GABA
functions as a precise modulator of distinct perceptual
attributes rather than merely exerting global inhibition,
underscoring its sophisticated role in shaping visual
experience through specialized cortical networks (Song
et al., 2017).

2.2.2 Attentional flexibility
GABAergic inhibition plays a critical role in adaptive behavior

by facilitating the interruption of ongoing actions when necessary,
enabling the reallocation of attentional resources to more
contextually appropriate tasks.

• Neural Dynamics and Working Memory: In higher-order
cortical regions, GABAergic inhibition shapes neural
dynamics and supports working memory performance. The
density of GABAARs in these areas predicts reaction times in
working memory tasks and correlates positively with gamma
oscillation peak frequency while negatively with BOLD
amplitude. These interactions contribute to dynamic
complexity and spatiotemporal flexibility in cortical
networks, crucial for adaptive attentional shifts (Kujala
et al., 2024).

Overall, the visual attention system, in coordination with eye
movements, optimally synchronizes perception and action through
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complex regulatory mechanisms. This sophisticated interplay serves
a crucial adaptive function, enabling organisms to meet homeostatic
needs, adapt to dynamic environmental demands, process relevant
visual information while filtering out distractions, and rapidly shift
focus to salient stimuli. The GABAergic system contributes
significantly to this balancing process by modulating neural
activity across multiple levels of visual processing. Through its
inhibitory action, GABA refines neuronal response properties
from the retina to higher cortical areas, enhancing signal
selectivity, optimizing sensory integration, and ensuring efficient
attentional control.

2.3 Alterations in oculomotor circuits reflect
broader impairments in brain function

Neurodegenerative diseases selectively target interconnected
functional networks in the brain, progressively disrupting their
structure and function (Seeley et al., 2009; Drzezga, 2018).
Oculomotor networks exemplify this vulnerability, illustrating
how complex neural circuits are systematically affected by
neurodegeneration (Gorges et al., 2018). The susceptibility of
these networks stems from their tight functional integration,
where dysfunction in one region can cascade through multiple

functional domains. Maintaining precise synaptic regulation
within these networks is critical for preventing neuronal
overstimulation and ensuring the production and recycling of
growth factors essential for neuronal survival (Palop et al., 2007;
Palop and Mucke, 2010). A delicate balance between regulatory and
stress factors maintains network stability. Regulatory mechanisms
mitigate the harmful effects of stressors, preserving neural circuit
integrity. However, when this balance is disrupted, aberrant
neuronal discharge patterns emerge, promoting maladaptive
network dynamics that drive the spread of pathological
behavioral changes (Kazim et al., 2021; Karimani et al., 2024).
This propagation is driven by an imbalance between excitatory
and inhibitory activity, triggering maladaptive network dynamics
that amplify dysfunction and accelerate disease progression.

Traumatic brain injury (TBI) has emerged as a critical model for
understanding how acquired brain vulnerabilities disrupt neural
homeostasis, particularly through E/I imbalance. Moderate-to-
severe or repeated mild TBI elevates dementia risk up to 4.5-fold
and accelerates cognitive decline by years (Graham and Sharp, 2019;
Mielke et al., 2022), with mechanistic overlaps to AD including
shared chloride homeostasis disruption and inhibitory
neurotransmission deficits. One proposed link is the persistent
dysregulation of chloride transporters, leading to depolarizing
GABAergic signaling and prolonged network hyperexcitability

FIGURE 6
Traumatic brain injury (TBI)-induced neurovascular pathology leading to Alzheimer’s disease (AD). This schematic illustrates the proposed
pathological cascade linking TBI to AD-related neurodegeneration. Following TBI, early cerebrovascular alterations include amyloid-β (Aβ) deposition
and reduced NOTCH3 expression in vascular smooth muscle cells, contributing to vascular dysfunction. Disruption of chloride homeostasis,
characterized by NKCC1 upregulation and KCC2 downregulation, compromises blood-brain barrier (BBB) integrity and promotes
neuroinflammation. This neurovascular dysfunction activates the NF-κB/NLRP3 inflammatory pathway, further exacerbating neuronal injury and
cognitive decline. Repeated mild TBIs reinforce this trajectory by sustaining chloride dysregulation and perpetuating a pro-degenerative
microenvironment, ultimately contributing to AD-like pathology.
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FIGURE 7
The balance between excitation and inhibition (E/I) in the brain is crucial for optimal neuronal functioning. (A) In the physiological state, this balance
is maintained by several mechanisms, primarily through the action of GABAergic neurons and the activity of the KCC2 cotransporter. The latter plays an
essential role in extruding chloride ions (Cl−) from neurons, thus counterbalancing the action of NKCC1, which brings these ions into the cells. This
effective inhibition allows neural networks to enter into oscillatory activity, promoting network activity in the gamma band and the synchronization
of theta-gamma activity. These oscillations are crucial for neuromodulation and optimal activity of networks supporting complex cognitive functions
such as visual attention, language, memory, and behavior. The E/I balance also facilitates effective interaction between the default mode network (DMN)
and networks specifically involved in various cognitive functions. The activity of these networks can be evaluated by studying oculomotor behavior during
different cognitive tasks. The combined analysis of oculomotor parameters such as latencies, velocities, amplitudes, and error rates provides an
interesting insight into the functioning of neural networks. (B) In Alzheimer’s disease (AD), various stress factors, including traumatic brain injuries (TBI),

(Continued )
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(Hui et al., 2016; Zhang et al., 2017; Tessier et al., 2023; Caccialupi
Da Prato et al., 2025; Hochstetler et al., 2025). A study investigating
vascular pathology post-TBI identified early Aβ aggregation and
reduced NOTCH3 expression in vascular smooth muscle cells,
implicating cerebrovascular dysfunction as a key driver of AD-
related changes (Özen et al., 2025). Given that chloride
dysregulation contributes to blood-brain barrier impairment,
these findings suggest a pathological trajectory linking TBI-
induced neurovascular damage to AD-related neurodegeneration.
Further supporting this connection, studies in TBI models
demonstrate that NKCC1 inhibition alleviates blood-brain barrier
disruption and reduces neuroinflammation by suppressing the NF-
κB/NLRP3 signaling pathway (Bergauer et al., 2022; Zhang et al.,
2025). Additionally, individuals with a history of repeated mild TBI
exhibit increased markers of intracellular chloride homeostasis
dysregulation and elevated NKCC1 expression, leading to
persistent excitotoxicity and cognitive decline (Li J. et al., 2024)
(Figure 5). Persistent chloride imbalances in TBI models have also
been linked to long-term synaptic dysfunction and neuronal circuit
remodeling, mirroring changes observed in early stage of AD
(Srinivasan and Brafman, 2021; Capsoni et al., 2022; Lam et al.,
2022; Barbour et al., 2024; Panayi et al., 2024; Zhang et al., 2024; Sun
et al., 2025). A growing body of evidence suggests a shared
pathophysiological mechanism between TBI-induced E/I
imbalance and the eye movement abnormalities seen in AD. TBI
leads to persistent disruptions in chloride homeostasis and
GABAergic transmission, which may underlie the oculomotor
deficits observed in both TBI and AD. Similar to AD, the
downregulation of KCC2 and upregulation of NKCC1 following
TBI result in intracellular chloride accumulation, weakening
GABAergic inhibitory transmission. In both conditions, impaired
inhibitory control within the SC and prefrontal cortex results in
delayed saccades, deficits in memory-guided eye movements, and
reduced visual tracking accuracy (Tyler et al., 2015; McDonald et al.,
2022; Bell et al., 2023; Cade and Turnbull, 2024). Additionally,
disruptions in gamma oscillations, closely linked to GABAergic
dysfunction, further compromise oculomotor coordination. These
findings indicate that TBI may accelerate neurodegeneration by
destabilizing inhibitory networks crucial for eye movement control.
Future studies should investigate whether normalizing chloride
homeostasis in TBI survivors could mitigate Alzheimer’s-related
neurodegeneration, potentially unveiling dual-purpose therapeutic
strategies. This approach gains urgency from recent findings
showing that TBI-induced chloride dysregulation persists for
years post-injury, creating a latent window for intervention.

A mechanistic understanding of how E/I imbalance propagates
network instability is critical for developing treatments that
preserve and promote neural integrity across disease stages.
Importantly, the observed interplay between oculomotor deficits

and cognitive decline in both TBI and AD underscores the
necessity of systems-level interventions, therapies addressing
not just molecular targets but distributed neural network
functionality.

2.4 Eye movement deficits in AD: neural
hyperexcitability and network
desynchronization from E/I imbalance

Gamma oscillations are essential for neural communication and
cognitive function, serving as a dynamic gating mechanism that
enhances information routing, memory processing, attention, and
overall cognitive performance (Guan et al., 2022). These high-
frequency brain waves are highly sensitive to neuronal network
dysfunction, making them valuable early indicators of potential
neurodegenerative processes, often preceding clinical symptom
onset (Mably and Colgin, 2018). The generation and
maintenance of gamma oscillations rely on a finely tuned balance
between E/I inputs, enabling coherent oscillatory patterns while
preserving flexibility to adapt to environmental demands (Orekhova
et al., 2017) (Figure 6A). However, in AD, this balance is
progressively disrupted, leading to heightened neuronal
excitability and cortical hyperexcitability (Maestú et al., 2021).
Multiple factors contribute to this imbalance, including Aβ and
tau accumulation, dysfunction of inhibitory GABAergic
interneurons, altered glial cell activity, and genetic predispositions
such as the ApoE4 genotype (Kurosinski and Götz, 2002; Wishart
et al., 2006; Cheng et al., 2020; Mattson, 2020; Umpierre and Wu,
2021; Sun et al., 2023). The E/I imbalance in AD is characterized by a
preferential impairment of local inhibitory connections, primarily
mediated by GABAergic interneurons, relative to excitatory ones.
Consequently, individuals with MCI and AD exhibit weakened
neural connections, leading to a progressive decoupling of neural
populations.

The disruption of GABAergic inhibition is particularly critical,
as GABA is essential for stabilizing gamma oscillations (Limon et al.,
2012). Studies have highlighted the role of diminished GABAergic
function in AD pathogenesis and its consequences on brain
oscillations, particularly in resting-state networks where an
elevated functional E/I ratio correlates with cognitive decline
(Palop et al., 2007; Bi et al., 2020; Xu et al., 2020; Jiménez-Balado
and Eich, 2021; Lauterborn et al., 2021; Scaduto et al., 2023). Aβ and
tau accumulation further exacerbate this imbalance, promoting
neuronal hyperactivity and impairing synaptic plasticity,
ultimately disrupting gamma oscillations (Chapman et al., 1999;
Minkeviciene et al., 2009; Targa Dias Anastacio et al., 2022). As
gamma activity declines, neural circuit communication deteriorates,
contributing to both amnestic and non-amnestic AD symptoms

FIGURE 7 (Continued)

trigger a cascade of dysfunctions. We observe neuroinflammation leading to a decrease in KCC2 activity, the formation of beta-amyloid oligomers,
an imbalance in the E/I balance, an alteration of gamma activity, and a desynchronization of theta-gamma activity, leading to neural network dysfunction.
These changes result in amyloid saturation of the DMN, common to different AD phenotypes, as well as the propagation of lesions specifically associated
with clinical phenotypes (visual, language, memory, behavioral) linked to Tau pathology. These early alterations can be detected by studying
oculomotor behavior during various cognitive and oculomotor tasks. We can thus observe the alteration of different oculomotor parameters, offering a
window into the underlying neuronal changes.
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(Murty et al., 2021; Traikapi and Konstantinou, 2021)
(Figure 7; Box 1).

Box 1 Key Points on Oculomotor Disturbances in Alzheimer’s
Disease Phenotypes.

Typical Phenotype (Memory-Onset AD)
Neural Network Disruption and Clinical Features:
Neurodegeneration in typical memory onset Alzheimer’s disease originates

in the ventral anterior temporal network, disrupting non-contextual memory
encoding before spreading to dorsal medial temporal regions and impairing
contextual/spatial processing. This progression correlates with connectivity
loss within the default mode network (DMN) (Kahn et al., 2008; Zhou et al.,
2008; Didic et al., 2011; Gour et al., 2011; Koronyo et al., 2013; Jones et al.,
2016).

Oculomotor Measures:
In AD, eye-tracking metrics - including reduced stable fixation duration,

increased saccadic latency, and impaired visual pursuit (Garbutt et al., 2008;
Molitor et al., 2015)-combined with pupillometry may offer objective measures
of neural network dysfunction. These techniques map attention allocation
through the dorsal (spatial processing) and ventral (object recognition) visual
pathways during memory-related tasks (Corbetta, 1998). These tools quantify
subtle alterations in gaze patterns and pupil responses, offering a window into
preclinical or early-stage network dysfunction.

Visual Variant (Posterior Cortical Atrophy or PCA)
Neural Network Disruption and Clinical Features:
PCA is a posteriorly shifted neurodegenerative syndrome with

predominant parietal/occipital atrophy affecting ventral (object recognition)
and dorsal (spatial processing) visual networks, most commonly linked to AD
(Crutch et al., 2017; Chapleau et al., 2024).

Oculomotor Measures:
Eye movement patterns reflect posterior neuro-visuo-cortical vulnerability,

critical areas for visuospatial attention: Impaired visual pursuit (reduced
accuracy in tracking moving objects), Saccadic deficits (increased latency
and errors in voluntary gaze shifts), fixation instability (difficulty
maintaining steady gaze) (Shakespeare et al., 2015; Pin et al., 2023).

Language Variant (Logopenic variant of primary progressive
aphasia or lvPPA)

Neural Network Disruption and Clinical Features
The IvPPA in AD is characterized by neurodegeneration within the dorsal

phonological network, which encompasses the left posterior superior and
middle temporal gyri and the inferior parietal lobule (Gorno-Tempini et al.,
2004, 2011). This degeneration disrupts phonological encoding, retrieval, and
working memory, manifesting as impaired sentence repetition, phonemic
paraphasias, and lexical retrieval deficits.

Oculomotor Measures:
Oculomotor profiling in IVPPA leverages eye-tracking during language

tasks to quantify reading dysfluency (prolonged fixations on phonologically
complex words) and impaired comprehension monitoring (reduced
anticipatory saccades). Explicitly links metrics to phonological processing
and working memory, core deficits in 1vPPA (Readman et al., 2021;
Nelson et al., 2023).

Frontal Variant
Neural Network Disruption and Clinical Features
The frontal variant of Alzheimer’s disease (fvAD) arises from early

dysfunction in fronto-subcortical circuits, driving executive and behavioral
deficits (e.g., apathy, impulsivity) that precede memory decline (Larner, 1997;
Bruno et al., 2023).

Oculomotor Measures:
Eye-tracking and pupillometry - including antisaccade errors (to a lesser

extent), prolonged saccadic latency, and distinct task-evoked pupillary
responses - provide a non-invasive method to differentiate frontal variant
Alzheimer’s disease (fvAD) from behavioral variant frontotemporal dementia
(bvFTD) (Lage et al., 2021). These metrics quantify disease-specific attentional
and emotional processing deficits, which correlate with divergent fronto-
subcortical network impairments: fvAD disrupts fronto-subcortical circuits
and the default mode network (DMN), whereas bvFTD primarily affects the
salience network (SN) and subcortical modules (Ng et al., 2021).

(Continued in next column)

Box 1 (Continued) Key Points on Oculomotor Disturbances in
Alzheimer’s Disease Phenotypes.

Cross-Cutting Insights
Oculomotor disturbances mirror Alzheimer’s neurobiological

heterogeneity. They provide non-invasive early biomarkers, complementary
to neuroimaging. Critical for differential diagnosis between Alzheimer’s
phenotypes and other dementias

Interestingly, these neurophysiological alterations manifest in
oculomotor abnormalities. The oculomotor system, which relies on
precise neural coordination, serves as a valuable indicator of broader
neural dysfunction in AD. Eye movement impairments correlate
with cognitive decline and disease progression, with measurable
changes in oculomotor parameters reflecting underlying network
disruptions linked to E/I imbalance and impaired gamma
oscillations (Riek et al., 2023; Tokushige et al., 2023; Qi et al.,
2024) (Figure 6B). This relationship underscores the potential of
oculomotor metrics as biomarkers for AD, bridging cellular-level
dysfunction with observable clinical manifestations and offering
insight into the complex interplay between neurophysiological
alterations and behavioral outcomes (Figure 7).

2.5 Synaptic plasticity alterations in AD and
their impact on memory-guided saccades

Alzheimer disease is marked by profound synaptic plasticity
alterations, closely linked to oculomotor dysfunction, particularly
impairments in memory-guided saccades. Synapse loss is an early
and defining feature of AD, strongly correlating with dementia
severity and preceding both neuronal loss and cognitive decline
(Shankar and Walsh, 2009). This dysfunction systematically
disrupts brain regions essential for oculomotor control, impairing
the neural circuits responsible for precise eye movements.

Memory-guided saccades directed toward remembered spatial
targets depend on coordinated activity across a distributed neural
network. Key regions include the posterior parietal cortex (spatial
processing), dorsolateral frontal cortex (motor planning), prefrontal
cortex (working memory), hippocampus (memory consolidation),
and subcortical structures such as the SC (Pierrot-Deseilligny et al.,
1995; Sugiura et al., 2004; Vericel et al., 2024). These areas integrate
visual information, retain spatial memory, and execute precise eye
movements through dynamic synaptic interactions.

In AD, progressive neurodegeneration disrupts this network,
causing oculomotor deficits such as inaccurate saccades and
impaired spatial memory. These deficits mirror broader synaptic
dysfunction, particularly in synaptic plasticity-a process critical for
learning and memory. Notably, GABAARs containing the
α5 subunit emerge as pivotal regulators of plasticity. By fine-
tuning excitatory neuron activity, these receptors modulate the
balance between long-term potentiation and long-term
depression, mechanisms underlying adaptive neural rewiring
(Engin et al., 2013; Zhu et al., 2023). Dysfunctional GABAergic
signaling in AD reduces cognitive flexibility and destabilizes
memory retention, exacerbating both motor and cognitive decline
that can be investigated through oculomotor biomarkers, such as
aberrant memory-guided saccades. This interplay highlights how
synaptic plasticity deficits, driven by impaired GABAARs activity,
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contribute to the pathophysiology of AD (Wolff et al., 1993;
Schmidt-Wilcke et al., 2018). Importantly, these GABAergic
mechanisms are closely influenced by the function of KCC2.
Beyond its canonical role in maintaining low intracellular
chloride concentrations necessary for effective inhibitory
signaling, KCC2 has emerged as a critical regulator of neuronal
structure and function.

The co-transporter KCC2 engages in chloride-independent
signaling pathways that modulate cytoskeletal dynamics and
synaptic connectivity. Notably, KCC2 interacts with the Rac1/
Cdc42 guanine nucleotide exchange factor β-PIX, thereby
inhibiting its activity and attenuating downstream Rac1 signaling.
This suppression limits the phosphorylation of cofilin-1, an actin-
depolymerizing factor, and promotes dynamic actin remodeling
within dendritic spines, a process essential for spine
morphogenesis and the stabilization of glutamatergic synapses
(Chamma et al., 2012; Llano et al., 2015). Loss of KCC2 disrupts

this regulatory pathway, resulting in elevated levels of
phosphorylated (inactive) cofilin-1, excessive stabilization of actin
filaments, and reduced spine motility. These alterations compromise
excitatory synaptogenesis and underscore the structural function of
KCC2 as a modulator of synaptic architecture (Llano et al., 2015;
Côme et al., 2019). Importantly, studies employing conditional
deletion of KCC2 in adult glutamatergic neurons have
demonstrated deficits in both spatial and nonspatial memory,
suggesting that KCC2 contributes to cognitive processes via both
inhibitory regulation and maintenance of excitatory synaptic
integrity. Interestingly, while long-term potentiation at the
dendritic level remains preserved, enhanced excitatory
postsynaptic potential-to-spike coupling indicates a shift in E/I
balance, likely due to impaired GABAergic inhibition resulting
from disrupted chloride homeostasis (Kreis et al., 2023).
Together, these findings position KCC2 as a multifunctional
protein at the interface of ion transport, cytoskeletal remodeling,

FIGURE 8
Normal GABAergic Inhibition within the Saccade Network and Possible Impairments in Case of Loss of Inhibition: Video Oculography (VOG)
Findings. Eye position is plotted on the x-axis, and the y-axis depicts the corresponding time in seconds. Black lines indicate the horizontal eye position;
green traces illustrate the vertical eye position, and blue dashed lines show the position of the target (desired eye position). (A) Inputs from the posterior
parietal cortex (PPC) and frontal cortex (FC), via direct or indirect pathways through the basal ganglia, are sent to the superior colliculus (SC). The SC
is a pivotal structure, integrating and relaying commands from the cerebral cortex to the premotor brainstem saccadic nuclei, then to the extrinsic
oculomotor muscles (EOM), and influencing the vegetative pupil motor nuclei (VN) and the iris muscles, which are responsible for intrinsic oculomotor
function. The cerebellum (CER) exerts a modulatory function and controls the precision of saccades. GABAergic inhibition plays a key role in the control
of rapid eyemovements (saccades) bymodulating the excitability of the involved neural circuits, particularly in the cerebellum, the superior colliculus, and
the basal ganglia. Reciprocal GABAergic inhibition between frontal and posterior parietal structures can influence saccade latency by modulating the
balance between excitation and inhibition within oculomotor circuits. (B) Loss of GABAergic inhibition alters neural circuits by increasing excitatory
output within various cortical and subcortical structures. (A1) VOG record of a normal horizontal saccade trajectory and normal inhibitory control in the
(A2) anti-saccade task. (B1) VOG records in the case of loss of GABAergic inhibition show several impairments: Amplitude and gain: Reduced GABAergic
inhibition increases the response of cerebellar neurons during saccades, altering their amplitude and directional selectivity (red arrow), Velocity and
duration: GABAergic dysfunction in the superior colliculus can decrease peak saccade velocity and prolong their duration (blue arrow), Latency and
initiation: The release of tonic GABAergic inhibition (from the basal ganglia to the superior colliculus) is a key trigger for saccade initiation. Excess
inhibition delays or prevents saccades, while disinhibition facilitates rapid initiation (purple arrow). (B2) Loss of inhibition in frontal regions leads to errors in
anti-saccade tasks.
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and synaptic function. Its dual role, mediating inhibitory efficacy
through chloride extrusion and supporting excitatory connectivity
through actin-dependent mechanisms, places KCC2 at the center of
mechanisms governing synaptic plasticity and memory formation.

This dynamic balance between long-term potentiation and long-
term depression enables flexible and efficient information
processing, supporting higher-order cognitive functions and
adaptive behavior. In AD, disruption of this balance contributes
to impaired memory-guided saccades, further underscoring the role
of synaptic plasticity deficits in disease progression.

2.6 Oculomotor biomarkers that may be
affected by abnormalities in GABAergic
signaling in AD

GABAergic transmission plays a pivotal role in the generation
and control of saccades, influencing velocity, latency, and targeting
precision through inhibitory mechanisms in the SC. Increased
GABAergic inhibition in this structure has been associated with
reduced saccade velocity, prolonged latency, and decreased accuracy
in target acquisition. Additionally, GABA contributes to fixation
stability, with GABAergic neurons in the rostral SC playing a crucial
role in maintaining steady fixation (Villalobos et al., 2018). The
competition between automated and voluntary saccade commands
is also modulated by GABAergic neurons across various brain
regions, particularly in the basal ganglia, where inhibitory control
mechanisms help regulate saccadic initiation and suppression (Coe
and Munoz, 2017). Abnormal GABA transmission can result in
difficulty suppressing saccades to peripheral targets during fixation,
particularly in tasks that require voluntary control over reflexive eye
movements, such as the anti-saccade task. In this paradigm, which
demands the suppression of automatic saccades toward a sudden
stimulus, GABAergic inhibition is critical for preventing express
latency direction errors (Coe and Munoz, 2017). The gap effect, a
well-documented phenomenon in pro-saccade latencies, further
suggests a common GABAergic mechanism in saccade
programming, emphasizing the role of inhibitory control in the
timing of reflexive eye movements (Mize, 1992; Behan et al., 2002;
Carrasco et al., 2011; Essig et al., 2021). Pharmacological modulation
of GABAergic activity also affects saccade dynamics.
Benzodiazepines, for example, can reduce peak saccade velocity
while simultaneously improving the precision of anticipated eye
position beliefs (Bittencourt et al., 1981). Beyond saccades, GABA
influences smooth pursuit eye movements, affecting both initiation
and maintenance. Inhibitory signaling within the brainstem plays a
role in pursuit onset timing and may also impact the ability to
suppress intrusive saccades during smooth tracking (Blazquez and
Yakusheva, 2015).

Pupillary responses, particularly dilation in reaction to
emotional stimuli, may also be modulated by GABAergic
signaling. Dysregulation of GABA transmission in the LC could
disrupt the coordination of pupillary dynamics with cognitive and
emotional processing (Breton-Provencher and Sur, 2019). In rat
models, activation of GABAARs has been shown to increase
noradrenaline release from the LC via a facilitatory effect on
glutamatergic terminals projecting to this region. Interestingly,
this effect can be replicated by blocking NKCC1 with

bumetanide, highlighting the role of GABAergic signaling and
the NKCC1/KCC2 chloride balance in fine-tuning LC activity
and, consequently, its influence on the oculomotor system (Koga
et al., 2005; Capsoni et al., 2022). Furthermore, GABA levels in the
visual cortex are linked to eye dominance and may modulate
binocular visual competition, thereby affecting oculomotor
control. Variations in GABAergic inhibition between the eyes
during visual stimulation influence perceptual dominance and
binocular rivalry dynamics, with pharmacological manipulation
of GABA affecting perceptual switches and suppression (Ip et al.,
2020). These findings collectively underscore the central role of
GABAergic neurotransmission in the control of eye movements.
Abnormal GABA neurotransmission can lead to measurable
changes in oculomotor parameters. Overall, abnormalities in
GABA synaptic transmission can lead to impaired performance
in cognitive oculomotor tasks by affecting inhibitory control,
sensory integration, and the synchronization of neural activity
required for precise eye movements (Figure 8).

2.6.1 Measure of oculomotor parameters during
saccades, fixations, smooth pursuit

During the progression of AD, GABAergic dysfunction plays a
critical role in the emergence of oculomotor deficits, reflecting the
broader E/I imbalance characteristic of AD pathology (Bi et al.,
2020). These deficits manifest across multiple domains of
oculomotor control, including saccades, smooth pursuit, fixation,
and inhibitory mechanisms. Patients with AD exhibit increased
saccade latencies, hypometric saccades, and a higher frequency of
saccadic intrusions during fixation. Additionally, they show
impaired smooth pursuit eye movements, difficulty suppressing
saccades during pursuit, and compromised fixation stability due
to an inability to suppress reflexive saccades in antisaccade tasks
(Molitor et al., 2015; Readman et al., 2021). These impairments
provide insights into the broader cognitive and neural network
disruptions in AD, highlighting the intricate relationship between
neurotransmitter imbalances and motor outputs (Schmidt-Wilcke
et al., 2018; Mattson, 2020; Xu et al., 2020; Maestú et al.,
2021) (Figure 8).

Among these oculomotor markers, memory-guided saccades
stand out as potential biomarkers for AD, given their reliance on
spatial working memory and executive function. In AD, memory-
guided saccades are characterized by decreased accuracy, prolonged
latency, and reduced peak velocity, reflecting disruptions in neural
circuits underlying spatial working memory (Pierrot-Deseilligny
et al., 1991; 2002). The severity of cognitive decline correlates
with the degree of neuronal network dysregulation, emphasizing
the close link between synaptic dysfunction and cognitive
performance. These impairments may stem from reduced
GABAergic inhibition in the frontal and parietal cortices, areas
crucial for working memory and saccade generation (Gao et al.,
2024). Furthermore, the percentage of correct memory-guided
saccades strongly correlates with verbal memory performance,
particularly with Total Free and Delayed Recall tests in AD
patients (Lage et al., 2021). This relationship suggests that
GABAergic dysfunction impacts not only motor control but also
fundamental memory processes (Williams et al., 2023).
Additionally, memory-guided saccade impairments may aid in
differentiating AD from other neurodegenerative disorders, such
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as semantic variant primary progressive aphasia, which exhibits
distinct GABAergic dysfunction patterns (Lage et al., 2021).

In Posterior Cortical Atrophy (PCA) (Box 1), saccadic
performance serves as a key diagnostic marker, with patients
exhibiting prolonged fixation times, increased first major saccade
latency, and significantly reduced saccade amplitudes (Shakespeare
et al., 2015; Pin et al., 2023). These abnormalities reflect cognitive-
perceptual processing deficits rather than mere motor dysfunction.
Fixation stability is another major area of impairment, characterized
by frequent large saccadic intrusions, shorter sustained fixations,
and disrupted visual stabilization mechanisms (Shakespeare et al.,
2015). These findings suggest a fundamental disruption in neural
circuits responsible for visual attention and spatial orientation,
possibly linked to alterations in GABAergic inhibition. Given its
role in modulating visual perception and attention, disruptions in
parietal and occipital cortical GABA levels could contribute to the
observed deficits in spatial orientation and visual processing (Song
et al., 2017; Gao et al., 2024; Kujala et al., 2024). Pursuit tracking
further highlights the complexity of PCA, as patients exhibit
diminished pursuit gain, increased saccadic intrusions, and
reduced tracking precision (Shakespeare et al., 2015). These
findings point to dysfunction in neural circuits responsible for
smooth visual tracking and spatial integration, likely influenced
by imbalances between GABAergic inhibition and glutamatergic
excitation. Disruptions in GABAergic fine-tuning of neuronal
responses in visual areas could lead to compensatory reliance on
saccadic movements, impairing smooth pursuit (Thier and Ilg,
2005). Thus, the oculomotor profile in PCA goes beyond a mere
symptomatic description, serving as a refined neurophysiological
marker of posterior cortical network degeneration. The interplay
between GABAergic dysfunction and visual processing deficits
illustrates PCA’s complex pathophysiology and emphasizes the
role of neurotransmitter imbalance in impairments of visual
attention and tracking. Such vulnerabilities may trace back to
early neurodevelopmental disturbances in magnocellular
pathways, where initial E/I imbalance sets the stage for later
network fragility. In this context, PCA exemplifies how network-
specific susceptibilities rooted in developmental imbalance can
manifest decades later as selective neurodegenerative syndromes,
reinforcing the idea that oculomotor alterations may act as
intermediate phenotypes and candidate biomarkers for
preclinical AD.

2.6.2 Measures of pupillary light reflex (PLR)
Early retinal changes have been reported in AD, with retinal

abnormalities in the early stages including a specific pattern of
retinal nerve fiber layer loss, narrowed veins, and decreased retinal
blood flow. Amyloid deposits in the retina have been found at
significantly higher levels in individuals with MCI, with a fivefold
increase, and in those with AD, with a ninefold increase. These
deposits may affect various retinal cells, particularly intrinsically
photosensitive retinal ganglion cells (ipRGCs), especially
melanopsin-expressing RGCs, which could, in turn, alter the
pupillary light reflex (PLR) (Koronyo et al., 2017; 2023; Mirzaei
et al., 2020). GABAergic transmission plays a crucial role in retinal
ganglion cell function and visual processing. Some RGCs are
themselves GABAergic, projecting to various brain regions,
including the superior colliculus, where they contribute to

transmitting looming signals and regulating innate defensive
responses (Popova, 2015; Yuan et al., 2024). Additionally,
ipRGCs express primarily GABAA- and GABACRs, which
mediate inhibitory inputs that shape visual processing.

Most studies attribute GABAcR function to presynaptic
modulation at bipolar cell synapses, rather than to direct
postsynaptic effects on ipRGCs (Fletcher and Wässle, 1999; Zhu
et al., 2007; Medina Arellano et al., 2025). This modulation shapes
bipolar output and indirectly influences ipRGC responses, including
pupillary and circadian rhythms. Although the direct involvement of
GABACRs in AD–related retinal or ocular pathology remains
unclear, the loss of GABACR-mediated fine-tuning of retinal
signaling may contribute to altered pupillary motility. Further
studies are needed to clarify the contribution of retinal
GABAergic mechanisms, particularly GABACR transmission, to
AD-associated ocular changes.

Recent findings utilizing chromatic pupillometry have provided
valuable insights into PLR abnormalities in AD. Findings suggest
that detectable changes in the PLR emerge even in the early stages of
the disease, potentially reflecting underlying pathological alterations
in the dendritic processes of melanopsin-containing RGCs before
the degeneration of their cell bodies (Romagnoli et al., 2020; 2023).
While cholinergic neurotransmission has been widely recognized for
its role in supporting the PLR, GABAergic regulation of the Edinger-
Westphal nucleus and its potential alterations in ADmay also play a
significant role. Investigating the PLR across different stages of AD
could offer further insights into the interplay between
neurotransmitter dysfunction and disease progression (Chougule
et al., 2019).

2.6.3 Study of visual attention processing using
cognitive task
2.6.3.1 Reading task

Patients with AD typically exhibit distinctive eye movement
patterns during reading tasks, characterized by reduced saccade
amplitudes, prolonged fixation durations, higher regression rates,
and more frequent and extended backward eye movements
(Fernández et al., 2022). These oculomotor abnormalities provide
valuable insight into underlying cognitive processing difficulties,
particularly in phonological working memory and semantic
integration. Dysfunction in GABAergic transmission may play a
key role in these reading deficits, as GABA is essential for saccade
control, visual cortex function, and overall oculomotor regulation,
all of which are critical for fluent reading. Impaired GABAergic
transmission can lead to increased saccadic frequency, more
frequent fixations and regressions, prolonged fixation durations,
and reduced saccade amplitudes, ultimately diminishing reading
efficiency (Leventhal et al., 2003; Ibbotson and Krekelberg, 2011;
Vidyasagar, 2019). Additionally, deficits in memory-guided saccades
may further disrupt smooth text navigation, compounding
difficulties in reading speed and comprehension. Specialized
reading protocols integrating eye-tracking technology could help
address these impairments by examining how AD patients process
complex linguistic information, integrate semantic context, and
manage cognitive load during language comprehension (Walenski
et al., 2021). Analyses of fixation patterns, saccadic dynamics, and
reading strategies provide a window into the mechanisms of
progressive aphasia associated with neurodegenerative conditions.
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Beyond their clinical utility, such protocols may also illuminate AD
pathophysiology by revealing parallels between abnormalities
observed in neurodevelopmental disorders such as dyslexia and
those in AD, particularly with respect to network vulnerabilities
shaped by early E/I imbalance.

2.6.3.2 Memory and other cognitive tasks
The current challenge in neurodegenerative disease research lies

in integrating cognitive neuroscience data with oculomotor behavior
analysis, particularly in the early stages of these conditions, with a
focus on the role of GABAergic transmission impairments.
GABAergic dysfunction is a key contributor to early memory
impairment and may subsequently alter oculomotor behavior,
particularly in AD. One manifestation of this dysfunction is
hippocampal hyperexcitability due to reduced GABAergic
transmission, leading to an E/I balance disruption that promotes
epileptogenesis andmemory deficits (Mao et al., 2024). Additionally,
alterations in GABAergic signaling disrupt neural network
synchronization and the regulation of neuronal activity in crucial
areas such as the hippocampus, which plays an essential role in
episodic memory (Hernández-Frausto et al., 2023). Furthermore, by
modulating the balance between tonic and phasic firing modes,
GABAergic transmission in the LC fine-tunes memory processes,
optimizing cognitive performance across different behavioral
contexts (Jin et al., 2016; Breton-Provencher and Sur, 2019).
Several studies have demonstrated the potential of eye movement
analysis as a tool for the early detection and prediction of cognitive
decline (Zola et al., 2013)) found that the proportion of eye fixations
in a visual pair memory task effectively predicted the conversion rate
from MCI to major cognitive disorder over a 3-year period. Other

research has identified differences in pupil dilation speeds during
visual associative memory tasks between cognitively normal elderly
individuals and those at risk of developing cognitive disorders
(Dragan et al., 2017; Granholm et al., 2017) expanded on this by
analyzing pupillary responses during working memory tasks,
showing variations linked to the presence or absence of cognitive
disorders and individual cognitive reserve. Notably, these ocular
abnormalities were detectable even in seemingly normal individuals
with a genetic predisposition to AD, as indicated by high polygenic
risk scores (Kremen et al., 2019). Recent studies on healthy subjects
have further evaluated the potential of pupillary response
measurements in visual recognition memory. Findings indicate
that pupillary dilation can distinguish between familiar and novel
stimuli, with a stronger dilation response for previously encountered
stimuli and a differentiation between familiarity and recollection-
based memory processes (Otero et al., 2011; Kafkas and Montaldi,
2012; Gomes et al., 2015; 2021). These two processes engage distinct
memory systems, particularly in terms of visual attention allocation.
In AD, at the stage of amnestic MCI, early deficits in familiarity-
based visual recognition memory could be detected through
pupillary response differences. These variations may reflect
individual performance levels, and the cognitive processes
engaged during memory tasks, providing a potential biomarker
for early disease detection and progression monitoring.

The precise measurement of oculomotor parameters offers a
non-invasive approach to tracking the neurophysiological
progression of AD, providing promising diagnostic and
monitoring opportunities. By analyzing subtle changes in eye
movement control, which reflect underlying GABAergic deficits,
researchers and clinicians may be able to detect neurological

FIGURE 9
Disruption of chloride homeostasis and GABAergic dysfunction in Alzheimer’s disease (AD). The diagram illustrates how early downregulation of
KCC2 and upregulation of NKCC1 in AD impair GABAergic inhibition and disrupt chloride homeostasis. These changes contribute to cortical network
hyperexcitability, loss of parvalbumin-positive (PV) interneurons, and altered gamma oscillations. These pathophysiological processes are further
exacerbated by neuroinflammation, amyloid-β toxicity, and deficits in BDNF- TrkB signaling, ultimately leading to oculomotor dysfunction and
cognitive deficits. Emerging therapeutic strategies aim to restore inhibitory balance through pharmacological modulation of chloride transporters,
enhancement of neurotrophic support, and anti-inflammatory interventions in combination with neuromodulatory strategies. KCC2 has become a
central therapeutic target due to its dual role in ion regulation and synaptic structure maintenance.

Frontiers in Pharmacology frontiersin.org18

Porcher et al. 10.3389/fphar.2025.1675799

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1675799


alterations before pronounced cognitive symptoms emerge. Early
detection could enable timely intervention and improve patient
outcomes, particularly as ongoing research explores GABAergic
therapies for AD. Integrating oculomotor assessments with other
biomarkers may lead to more comprehensive and sensitive
diagnostic strategies, ultimately enhancing patient care and
treatment approaches.

Tailored experimental protocols could be designed to
accommodate the specific eye movement patterns and cognitive
challenges observed in AD patients, potentially improving reading
performance and overall language processing. The convergence of
eye movement analysis and cognitive neuroscience underscores its
potential as a non-invasive early indicator of neurodegenerative
processes. Understanding the relationship between pathological
chloride homeostasis and oculomotor characteristics provides
crucial insights into underlying cognitive processing deficits,
particularly in phonological working memory, semantic
integration, and broader memory functions. This knowledge
highlights the intricate interplay between neurotransmitter
systems, cognitive function, and motor control. Such insights
may pave the way for novel therapeutic interventions targeting
the GABAergic system via cation-chloride co-transporters
(Capsoni et al., 2022; Lam et al., 2022; Kadam and Hegarty,
2024), aiming to improve both cognitive function and
oculomotor control in neurodegenerative diseases. Restoring
chloride homeostasis could offer a novel therapeutic strategy to
alleviate cognitive and motor symptoms in AD, potentially
improving patients’ quality of life and preserving functional
independence.

The intricate relationship between synaptic dysfunction, neural
network disruption, and oculomotor performance in AD highlights
the need for comprehensive, multidimensional approaches to both
understanding and developing potential interventions for this
neurodegenerative condition.

2.7 Therapeutic perspectives: targeting
chloride transport and GABAergic
dysfunction

Disrupted chloride homeostasis has emerged as a central
feature of AD, with growing evidence implicating the
dysregulation of chloride co-transporters, particularly
KCC2 and NKCC1, in early E/I imbalances, cortical
hyperexcitability, and cognitive decline. These alterations
compromise the polarity of GABAergic signaling, leading to
reduced inhibition or even paradoxical excitation, which
contributes to abnormal network synchronization and
neurodegeneration. Therapeutic strategies aimed at restoring
GABAergic inhibition by modulating chloride transport hold
significant promise. Enhancing KCC2 function or inhibiting
NKCC1 has shown beneficial effects in various preclinical
models of brain disorders, including epilepsy, traumatic brain
injury, and AD (Capsoni et al., 2022; Hochstetler et al., 2025).
Although bumetanide, a known NKCC1 inhibitor, has
demonstrated neuroprotective effects, its clinical utility in AD
remains limited due to poor brain penetration and systemic
side effects (Glykys et al., 2014; Töllner et al., 2014).

Beyond direct pharmacological modulation, several
experimental approaches aim to indirectly stabilize KCC2. These
include reducing neuroinflammation, mitigating oxidative stress, or
enhancing neurotrophic support via BDNF-TrkB signaling. For
instance, activation of TrkB receptors or improving proBDNF-to-
BDNF maturation promotes KCC2 expression and functional
recovery (Rivera et al., 2004; Tang et al., 2019). Similarly,
exosome-based therapies derived from adipose mesenchymal
stem cells have shown efficacy in modulating inflammatory
cascades and preserving chloride balance (Li P. et al., 2024).
Inhibition of the NF-κB/NLRP3 pathway may also rescue
KCC2 expression and reduce synaptic damage (Bergauer
et al., 2022).

The therapeutic relevance of KCC2 has expanded with
recognition of its dual function, not only in regulating
intracellular chloride, but also in stabilizing dendritic spines and
supporting synaptic plasticity (Gauvain et al., 2011; Virtanen et al.,
2021). In consequence, loss of KCC2 thus affects both neuronal
signaling and network architecture. Recent studies have highlighted
post-translational mechanisms, such as phosphorylation and
membrane trafficking, as promising targets for more specific
therapeutic interventions (Friedel et al., 2015; Tang et al., 2019;
Hartmann and Nothwang, 2022). Encouragingly, strategies aimed at
restoring KCC2 function have shown considerable promise. For
instance, pharmacological enhancement of KCC2 activity using
small molecules like CLP290 reinstates inhibitory
neurotransmission, normalizes chloride homeostasis, and reverses
cognitive deficits in AD mouse models (Keramidis et al., 2023).

In parallel, emerging approaches are focusing on modulating
network oscillations, particularly gamma oscillations, which are
closely tied to GABAergic interneuron function and cognitive
performance. Abnormal gamma activity is an early hallmark of
AD and correlates with synaptic dysfunction and memory
impairment. Restoration of gamma oscillations is thus a key
therapeutic objective, aiming to counteract pathological
hyperexcitability, reduce amyloid and tau pathology, normalize
microglial activity, and improve cognitive outcomes.

Neuromodulation strategies have demonstrated promising
effects in preclinical models. For instance, optogenetic
stimulation of PV interneurons at 40 Hz reduces amyloid
plaque burden by enhancing frequency-specific gamma-
oscillations and improving network synchrony (Iaccarino
et al., 2016). Although highly informative mechanistically,
optogenetics faces major hurdles for clinical application due to
its invasiveness. Non-invasive alternatives, including sensory
stimulation (visual or auditory 40 Hz entrainment) and brain
stimulation techniques such as transcranial magnetic stimulation
and transcranial alternating current stimulation, offer more
translational potential (Toniolo et al., 2020). However,
challenges such as timing mismatches with endogenous
oscillations and variable clinical efficacy highlight the need for
more reliable interventions.

Pharmacological strategies provide a compelling alternative by
directly targeting the molecular underpinnings of gamma-
oscillation deficits. Recent efforts have focused on modulating
GABAergic inhibition in PV interneurons, particularly in the
context of KCC2 dysfunction, which disrupts chloride
homeostasis and impairs inhibitory tone (Wei et al., 2024). A
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notable example is DDL-920, a negative allosteric modulator of
extrasynaptic α1β2δ GABAARs. By selectively reducing excessive
tonic inhibition (achieving a 71% suppression at 1 nM) while
sparing phasic transmission, DDL-920 restores PV interneurons
excitability and enhances gamma-power (2.5-fold increase),
effectively bypassing the need for direct KCC2 reactivation. This
pharmacological approach addresses key limitations of
neuromodulation by providing sustained, cell-type-specific
modulation of gamma-oscillations independent of external stimuli.

Future therapeutic development may benefit from combination
strategies that integrate sensory entrainment with chloride-targeted
therapies or GABAergic modulators like DDL-920, aiming for a
more robust and durable restoration of network function. Such
approaches are particularly attractive given their low invasiveness
and potential for synergistic effects. By promoting synchronous
GABAergic activity, gamma entrainment may indirectly support
KCC2 function, reinforcing inhibitory tone and enhancing cognitive
performance. The transition from optogenetic proof-of-concept
studies to clinically viable pharmacological agents mark a
significant advance toward precision medicine for gamma-
oscillation deficits in neurodegeneration.

In addition, innovative tools such as eye-tracking in transgenic
models with KCC2 alterations (Ambrad Giovannetti and Rancz,
2024) are emerging as non-invasive biomarkers of GABAergic
function and network integrity. These platforms hold great
promise for monitoring therapeutic efficacy and network-level
responses in both preclinical and clinical settings.

Despite encouraging progress, several gaps remain. The timeline
of chloride dysregulation during AD progression is not well defined,
and validation in human postmortem tissue is still limited (Zhou
et al., 2021; Kreis et al., 2023). Moreover, the interplay between
KCC2 and other chloride transporters, such as NKCC1, requires
further investigation (Lam et al., 2022). Nevertheless, targeting
chloride homeostasis, particularly in combination with
neuromodulatory strategies, represents a sophisticated and
increasingly promising avenue for restoring inhibitory balance
and mitigating neurodegeneration in AD.

3 General conclusion and future
directions

GABAergic dysfunction, driven largely by disrupted chloride
homeostasis, emerges as a key early event in the pathogenesis of
AD. The downregulation of KCC2 and upregulation of
NKCC1 compromise inhibitory signaling, disturb E/I balance, and
contribute to cortical hyperexcitability, impaired gamma oscillations,
and cognitive decline. These alterations are further exacerbated by
neuroinflammation, Aβ toxicity, and deficits in neurotrophic
signaling, particularly involving BDNF. Understanding the
interplay between gamma oscillations, E/I balance, and GABAergic
inhibition is thus essential for the development of targeted therapies in
AD. Emerging approaches, including pharmacological modulation of
chloride transporters, enhancement of BDNF-TrkB signaling, and
anti-inflammatory interventions, seek to correct inhibitory deficits at
multiple levels. KCC2 has become a central therapeutic target due to
its dual role in regulating ion gradients and maintaining synaptic
structure (Figure 9).

Until now, translation to clinical application remains
challenging. Many candidate therapies are still at the preclinical
stage, and the heterogeneity of AD pathology, combined with
barriers to brain delivery and uncertainties about therapeutic
timing, complicate the development of broadly effective
interventions. Longitudinal studies, improved biomarkers, and
refined animal models will be critical for determining when and
how to intervene most effectively.

Altogether, these findings suggest that restoring chloride
homeostasis to rebalance inhibitory signaling represents a
promising avenue for disease modification in AD. As our
understanding of the molecular and circuit-level
underpinnings of GABAergic dysfunction deepens, so too does
the potential for personalized, mechanism-based treatments
aimed at halting or even reversing cognitive decline in
neurodegenerative disease.
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